xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision 21ab7031)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/idr.h>
9 #include <linux/io.h>
10 #include <linux/irqreturn.h>
11 #include <linux/log2.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include <linux/hisi_acc_qm.h>
19 #include "qm_common.h"
20 
21 /* eq/aeq irq enable */
22 #define QM_VF_AEQ_INT_SOURCE		0x0
23 #define QM_VF_AEQ_INT_MASK		0x4
24 #define QM_VF_EQ_INT_SOURCE		0x8
25 #define QM_VF_EQ_INT_MASK		0xc
26 
27 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
29 #define QM_IRQ_TYPE_SHIFT		16
30 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
31 
32 /* mailbox */
33 #define QM_MB_PING_ALL_VFS		0xffff
34 #define QM_MB_CMD_DATA_SHIFT		32
35 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
36 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
37 
38 /* sqc shift */
39 #define QM_SQ_HOP_NUM_SHIFT		0
40 #define QM_SQ_PAGE_SIZE_SHIFT		4
41 #define QM_SQ_BUF_SIZE_SHIFT		8
42 #define QM_SQ_SQE_SIZE_SHIFT		12
43 #define QM_SQ_PRIORITY_SHIFT		0
44 #define QM_SQ_ORDERS_SHIFT		4
45 #define QM_SQ_TYPE_SHIFT		8
46 #define QM_QC_PASID_ENABLE		0x1
47 #define QM_QC_PASID_ENABLE_SHIFT	7
48 
49 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
50 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
51 
52 /* cqc shift */
53 #define QM_CQ_HOP_NUM_SHIFT		0
54 #define QM_CQ_PAGE_SIZE_SHIFT		4
55 #define QM_CQ_BUF_SIZE_SHIFT		8
56 #define QM_CQ_CQE_SIZE_SHIFT		12
57 #define QM_CQ_PHASE_SHIFT		0
58 #define QM_CQ_FLAG_SHIFT		1
59 
60 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
61 #define QM_QC_CQE_SIZE			4
62 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
63 
64 /* eqc shift */
65 #define QM_EQE_AEQE_SIZE		(2UL << 12)
66 #define QM_EQC_PHASE_SHIFT		16
67 
68 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
69 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
70 
71 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
72 #define QM_AEQE_TYPE_SHIFT		17
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 
93 #define QM_MEM_START_INIT		0x100040
94 #define QM_MEM_INIT_DONE		0x100044
95 #define QM_VFT_CFG_RDY			0x10006c
96 #define QM_VFT_CFG_OP_WR		0x100058
97 #define QM_VFT_CFG_TYPE			0x10005c
98 #define QM_SQC_VFT			0x0
99 #define QM_CQC_VFT			0x1
100 #define QM_VFT_CFG			0x100060
101 #define QM_VFT_CFG_OP_ENABLE		0x100054
102 #define QM_PM_CTRL			0x100148
103 #define QM_IDLE_DISABLE			BIT(9)
104 
105 #define QM_VFT_CFG_DATA_L		0x100064
106 #define QM_VFT_CFG_DATA_H		0x100068
107 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
108 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
109 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
110 #define QM_SQC_VFT_START_SQN_SHIFT	28
111 #define QM_SQC_VFT_VALID		(1ULL << 44)
112 #define QM_SQC_VFT_SQN_SHIFT		45
113 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
114 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
115 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
116 #define QM_CQC_VFT_VALID		(1ULL << 28)
117 
118 #define QM_SQC_VFT_BASE_SHIFT_V2	28
119 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
120 #define QM_SQC_VFT_NUM_SHIFT_V2		45
121 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
122 
123 #define QM_ABNORMAL_INT_SOURCE		0x100000
124 #define QM_ABNORMAL_INT_MASK		0x100004
125 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
126 #define QM_ABNORMAL_INT_STATUS		0x100008
127 #define QM_ABNORMAL_INT_SET		0x10000c
128 #define QM_ABNORMAL_INF00		0x100010
129 #define QM_FIFO_OVERFLOW_TYPE		0xc0
130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
131 #define QM_FIFO_OVERFLOW_VF		0x3f
132 #define QM_ABNORMAL_INF01		0x100014
133 #define QM_DB_TIMEOUT_TYPE		0xc0
134 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
135 #define QM_DB_TIMEOUT_VF		0x3f
136 #define QM_RAS_CE_ENABLE		0x1000ec
137 #define QM_RAS_FE_ENABLE		0x1000f0
138 #define QM_RAS_NFE_ENABLE		0x1000f4
139 #define QM_RAS_CE_THRESHOLD		0x1000f8
140 #define QM_RAS_CE_TIMES_PER_IRQ		1
141 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
142 #define QM_ECC_MBIT			BIT(2)
143 #define QM_DB_TIMEOUT			BIT(10)
144 #define QM_OF_FIFO_OF			BIT(11)
145 
146 #define QM_RESET_WAIT_TIMEOUT		400
147 #define QM_PEH_VENDOR_ID		0x1000d8
148 #define ACC_VENDOR_ID_VALUE		0x5a5a
149 #define QM_PEH_DFX_INFO0		0x1000fc
150 #define QM_PEH_DFX_INFO1		0x100100
151 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
152 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
153 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
154 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
155 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
156 #define ACC_MASTER_TRANS_RETURN_RW	3
157 #define ACC_MASTER_TRANS_RETURN		0x300150
158 #define ACC_MASTER_GLOBAL_CTRL		0x300000
159 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
160 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
161 #define ACC_AM_ROB_ECC_INT_STS		0x300104
162 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
163 #define QM_MSI_CAP_ENABLE		BIT(16)
164 
165 /* interfunction communication */
166 #define QM_IFC_READY_STATUS		0x100128
167 #define QM_IFC_C_STS_M			0x10012C
168 #define QM_IFC_INT_SET_P		0x100130
169 #define QM_IFC_INT_CFG			0x100134
170 #define QM_IFC_INT_SOURCE_P		0x100138
171 #define QM_IFC_INT_SOURCE_V		0x0020
172 #define QM_IFC_INT_MASK			0x0024
173 #define QM_IFC_INT_STATUS		0x0028
174 #define QM_IFC_INT_SET_V		0x002C
175 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
176 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
177 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
178 #define QM_IFC_INT_DISABLE		BIT(0)
179 #define QM_IFC_INT_STATUS_MASK		BIT(0)
180 #define QM_IFC_INT_SET_MASK		BIT(0)
181 #define QM_WAIT_DST_ACK			10
182 #define QM_MAX_PF_WAIT_COUNT		10
183 #define QM_MAX_VF_WAIT_COUNT		40
184 #define QM_VF_RESET_WAIT_US            20000
185 #define QM_VF_RESET_WAIT_CNT           3000
186 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
187 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
188 
189 #define POLL_PERIOD			10
190 #define POLL_TIMEOUT			1000
191 #define WAIT_PERIOD_US_MAX		200
192 #define WAIT_PERIOD_US_MIN		100
193 #define MAX_WAIT_COUNTS			1000
194 #define QM_CACHE_WB_START		0x204
195 #define QM_CACHE_WB_DONE		0x208
196 #define QM_FUNC_CAPS_REG		0x3100
197 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
198 
199 #define PCI_BAR_2			2
200 #define PCI_BAR_4			4
201 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
202 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
203 
204 #define QM_DBG_READ_LEN		256
205 #define QM_PCI_COMMAND_INVALID		~0
206 #define QM_RESET_STOP_TX_OFFSET		1
207 #define QM_RESET_STOP_RX_OFFSET		2
208 
209 #define WAIT_PERIOD			20
210 #define REMOVE_WAIT_DELAY		10
211 
212 #define QM_DRIVER_REMOVING		0
213 #define QM_RST_SCHED			1
214 #define QM_QOS_PARAM_NUM		2
215 #define QM_QOS_VAL_NUM			1
216 #define QM_QOS_BDF_PARAM_NUM		4
217 #define QM_QOS_MAX_VAL			1000
218 #define QM_QOS_RATE			100
219 #define QM_QOS_EXPAND_RATE		1000
220 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
221 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
222 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
223 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
224 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
225 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
226 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
227 #define QM_SHAPER_CBS_B			1
228 #define QM_SHAPER_CBS_S			16
229 #define QM_SHAPER_VFT_OFFSET		6
230 #define WAIT_FOR_QOS_VF			100
231 #define QM_QOS_MIN_ERROR_RATE		5
232 #define QM_QOS_TYPICAL_NUM		8
233 #define QM_SHAPER_MIN_CBS_S		8
234 #define QM_QOS_TICK			0x300U
235 #define QM_QOS_DIVISOR_CLK		0x1f40U
236 #define QM_QOS_MAX_CIR_B		200
237 #define QM_QOS_MIN_CIR_B		100
238 #define QM_QOS_MAX_CIR_U		6
239 #define QM_QOS_MAX_CIR_S		11
240 #define QM_AUTOSUSPEND_DELAY		3000
241 
242 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
243 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
244 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
245 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
246 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
247 
248 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
249 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
250 
251 #define QM_MK_SQC_W13(priority, orders, alg_type) \
252 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
253 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
254 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
255 
256 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
257 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
258 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
259 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
260 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
261 
262 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
263 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
264 
265 #define INIT_QC_COMMON(qc, base, pasid) do {			\
266 	(qc)->head = 0;						\
267 	(qc)->tail = 0;						\
268 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
269 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
270 	(qc)->dw3 = 0;						\
271 	(qc)->w8 = 0;						\
272 	(qc)->rsvd0 = 0;					\
273 	(qc)->pasid = cpu_to_le16(pasid);			\
274 	(qc)->w11 = 0;						\
275 	(qc)->rsvd1 = 0;					\
276 } while (0)
277 
278 enum vft_type {
279 	SQC_VFT = 0,
280 	CQC_VFT,
281 	SHAPER_VFT,
282 };
283 
284 enum acc_err_result {
285 	ACC_ERR_NONE,
286 	ACC_ERR_NEED_RESET,
287 	ACC_ERR_RECOVERED,
288 };
289 
290 enum qm_alg_type {
291 	ALG_TYPE_0,
292 	ALG_TYPE_1,
293 };
294 
295 enum qm_mb_cmd {
296 	QM_PF_FLR_PREPARE = 0x01,
297 	QM_PF_SRST_PREPARE,
298 	QM_PF_RESET_DONE,
299 	QM_VF_PREPARE_DONE,
300 	QM_VF_PREPARE_FAIL,
301 	QM_VF_START_DONE,
302 	QM_VF_START_FAIL,
303 	QM_PF_SET_QOS,
304 	QM_VF_GET_QOS,
305 };
306 
307 enum qm_basic_type {
308 	QM_TOTAL_QP_NUM_CAP = 0x0,
309 	QM_FUNC_MAX_QP_CAP,
310 	QM_XEQ_DEPTH_CAP,
311 	QM_QP_DEPTH_CAP,
312 	QM_EQ_IRQ_TYPE_CAP,
313 	QM_AEQ_IRQ_TYPE_CAP,
314 	QM_ABN_IRQ_TYPE_CAP,
315 	QM_PF2VF_IRQ_TYPE_CAP,
316 	QM_PF_IRQ_NUM_CAP,
317 	QM_VF_IRQ_NUM_CAP,
318 };
319 
320 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
321 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
322 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
323 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
324 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
325 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
326 };
327 
328 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
329 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
330 };
331 
332 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
333 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
334 };
335 
336 static const struct hisi_qm_cap_info qm_basic_info[] = {
337 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
338 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
339 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
340 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
341 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
342 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
343 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
344 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
345 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
346 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
347 };
348 
349 struct qm_mailbox {
350 	__le16 w0;
351 	__le16 queue_num;
352 	__le32 base_l;
353 	__le32 base_h;
354 	__le32 rsvd;
355 };
356 
357 struct qm_doorbell {
358 	__le16 queue_num;
359 	__le16 cmd;
360 	__le16 index;
361 	__le16 priority;
362 };
363 
364 struct hisi_qm_resource {
365 	struct hisi_qm *qm;
366 	int distance;
367 	struct list_head list;
368 };
369 
370 struct hisi_qm_hw_ops {
371 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
372 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
373 		      u8 cmd, u16 index, u8 priority);
374 	int (*debug_init)(struct hisi_qm *qm);
375 	void (*hw_error_init)(struct hisi_qm *qm);
376 	void (*hw_error_uninit)(struct hisi_qm *qm);
377 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
378 	int (*set_msi)(struct hisi_qm *qm, bool set);
379 };
380 
381 struct hisi_qm_hw_error {
382 	u32 int_msk;
383 	const char *msg;
384 };
385 
386 static const struct hisi_qm_hw_error qm_hw_error[] = {
387 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
388 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
389 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
390 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
391 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
392 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
393 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
394 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
395 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
396 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
397 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
398 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
399 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
400 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
401 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
402 	{ /* sentinel */ }
403 };
404 
405 static const char * const qm_db_timeout[] = {
406 	"sq", "cq", "eq", "aeq",
407 };
408 
409 static const char * const qm_fifo_overflow[] = {
410 	"cq", "eq", "aeq",
411 };
412 
413 static const char * const qp_s[] = {
414 	"none", "init", "start", "stop", "close",
415 };
416 
417 struct qm_typical_qos_table {
418 	u32 start;
419 	u32 end;
420 	u32 val;
421 };
422 
423 /* the qos step is 100 */
424 static struct qm_typical_qos_table shaper_cir_s[] = {
425 	{100, 100, 4},
426 	{200, 200, 3},
427 	{300, 500, 2},
428 	{600, 1000, 1},
429 	{1100, 100000, 0},
430 };
431 
432 static struct qm_typical_qos_table shaper_cbs_s[] = {
433 	{100, 200, 9},
434 	{300, 500, 11},
435 	{600, 1000, 12},
436 	{1100, 10000, 16},
437 	{10100, 25000, 17},
438 	{25100, 50000, 18},
439 	{50100, 100000, 19}
440 };
441 
442 static void qm_irqs_unregister(struct hisi_qm *qm);
443 
444 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
445 {
446 	enum qm_state curr = atomic_read(&qm->status.flags);
447 	bool avail = false;
448 
449 	switch (curr) {
450 	case QM_INIT:
451 		if (new == QM_START || new == QM_CLOSE)
452 			avail = true;
453 		break;
454 	case QM_START:
455 		if (new == QM_STOP)
456 			avail = true;
457 		break;
458 	case QM_STOP:
459 		if (new == QM_CLOSE || new == QM_START)
460 			avail = true;
461 		break;
462 	default:
463 		break;
464 	}
465 
466 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
467 		qm_s[curr], qm_s[new]);
468 
469 	if (!avail)
470 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
471 			 qm_s[curr], qm_s[new]);
472 
473 	return avail;
474 }
475 
476 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
477 			      enum qp_state new)
478 {
479 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
480 	enum qp_state qp_curr = 0;
481 	bool avail = false;
482 
483 	if (qp)
484 		qp_curr = atomic_read(&qp->qp_status.flags);
485 
486 	switch (new) {
487 	case QP_INIT:
488 		if (qm_curr == QM_START || qm_curr == QM_INIT)
489 			avail = true;
490 		break;
491 	case QP_START:
492 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
493 		    (qm_curr == QM_START && qp_curr == QP_STOP))
494 			avail = true;
495 		break;
496 	case QP_STOP:
497 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
498 		    (qp_curr == QP_INIT))
499 			avail = true;
500 		break;
501 	case QP_CLOSE:
502 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
503 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
504 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
505 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
506 			avail = true;
507 		break;
508 	default:
509 		break;
510 	}
511 
512 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
513 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
514 
515 	if (!avail)
516 		dev_warn(&qm->pdev->dev,
517 			 "Can not change qp state from %s to %s in QM %s\n",
518 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
519 
520 	return avail;
521 }
522 
523 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
524 {
525 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
526 }
527 
528 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
529 {
530 	return qm->err_ini->get_dev_hw_err_status(qm);
531 }
532 
533 /* Check if the error causes the master ooo block */
534 static bool qm_check_dev_error(struct hisi_qm *qm)
535 {
536 	u32 val, dev_val;
537 
538 	if (qm->fun_type == QM_HW_VF)
539 		return false;
540 
541 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
542 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
543 
544 	return val || dev_val;
545 }
546 
547 static int qm_wait_reset_finish(struct hisi_qm *qm)
548 {
549 	int delay = 0;
550 
551 	/* All reset requests need to be queued for processing */
552 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
553 		msleep(++delay);
554 		if (delay > QM_RESET_WAIT_TIMEOUT)
555 			return -EBUSY;
556 	}
557 
558 	return 0;
559 }
560 
561 static int qm_reset_prepare_ready(struct hisi_qm *qm)
562 {
563 	struct pci_dev *pdev = qm->pdev;
564 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
565 
566 	/*
567 	 * PF and VF on host doesnot support resetting at the
568 	 * same time on Kunpeng920.
569 	 */
570 	if (qm->ver < QM_HW_V3)
571 		return qm_wait_reset_finish(pf_qm);
572 
573 	return qm_wait_reset_finish(qm);
574 }
575 
576 static void qm_reset_bit_clear(struct hisi_qm *qm)
577 {
578 	struct pci_dev *pdev = qm->pdev;
579 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
580 
581 	if (qm->ver < QM_HW_V3)
582 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
583 
584 	clear_bit(QM_RESETTING, &qm->misc_ctl);
585 }
586 
587 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
588 			   u64 base, u16 queue, bool op)
589 {
590 	mailbox->w0 = cpu_to_le16((cmd) |
591 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
592 		(0x1 << QM_MB_BUSY_SHIFT));
593 	mailbox->queue_num = cpu_to_le16(queue);
594 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
595 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
596 	mailbox->rsvd = 0;
597 }
598 
599 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
600 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
601 {
602 	u32 val;
603 
604 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
605 					  val, !((val >> QM_MB_BUSY_SHIFT) &
606 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
607 }
608 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
609 
610 /* 128 bit should be written to hardware at one time to trigger a mailbox */
611 static void qm_mb_write(struct hisi_qm *qm, const void *src)
612 {
613 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
614 	unsigned long tmp0 = 0, tmp1 = 0;
615 
616 	if (!IS_ENABLED(CONFIG_ARM64)) {
617 		memcpy_toio(fun_base, src, 16);
618 		dma_wmb();
619 		return;
620 	}
621 
622 	asm volatile("ldp %0, %1, %3\n"
623 		     "stp %0, %1, %2\n"
624 		     "dmb oshst\n"
625 		     : "=&r" (tmp0),
626 		       "=&r" (tmp1),
627 		       "+Q" (*((char __iomem *)fun_base))
628 		     : "Q" (*((char *)src))
629 		     : "memory");
630 }
631 
632 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
633 {
634 	int ret;
635 	u32 val;
636 
637 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
638 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
639 		ret = -EBUSY;
640 		goto mb_busy;
641 	}
642 
643 	qm_mb_write(qm, mailbox);
644 
645 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
646 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
647 		ret = -ETIMEDOUT;
648 		goto mb_busy;
649 	}
650 
651 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
652 	if (val & QM_MB_STATUS_MASK) {
653 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
654 		ret = -EIO;
655 		goto mb_busy;
656 	}
657 
658 	return 0;
659 
660 mb_busy:
661 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
662 	return ret;
663 }
664 
665 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
666 	       bool op)
667 {
668 	struct qm_mailbox mailbox;
669 	int ret;
670 
671 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
672 		queue, cmd, (unsigned long long)dma_addr);
673 
674 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
675 
676 	mutex_lock(&qm->mailbox_lock);
677 	ret = qm_mb_nolock(qm, &mailbox);
678 	mutex_unlock(&qm->mailbox_lock);
679 
680 	return ret;
681 }
682 EXPORT_SYMBOL_GPL(hisi_qm_mb);
683 
684 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
685 {
686 	u64 doorbell;
687 
688 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
689 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
690 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
691 
692 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
693 }
694 
695 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
696 {
697 	void __iomem *io_base = qm->io_base;
698 	u16 randata = 0;
699 	u64 doorbell;
700 
701 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
702 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
703 			  QM_DOORBELL_SQ_CQ_BASE_V2;
704 	else
705 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
706 
707 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
708 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
709 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
710 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
711 
712 	writeq(doorbell, io_base);
713 }
714 
715 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
716 {
717 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
718 		qn, cmd, index);
719 
720 	qm->ops->qm_db(qm, qn, cmd, index, priority);
721 }
722 
723 static void qm_disable_clock_gate(struct hisi_qm *qm)
724 {
725 	u32 val;
726 
727 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
728 	if (qm->ver < QM_HW_V3)
729 		return;
730 
731 	val = readl(qm->io_base + QM_PM_CTRL);
732 	val |= QM_IDLE_DISABLE;
733 	writel(val, qm->io_base +  QM_PM_CTRL);
734 }
735 
736 static int qm_dev_mem_reset(struct hisi_qm *qm)
737 {
738 	u32 val;
739 
740 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
741 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
742 					  val & BIT(0), POLL_PERIOD,
743 					  POLL_TIMEOUT);
744 }
745 
746 /**
747  * hisi_qm_get_hw_info() - Get device information.
748  * @qm: The qm which want to get information.
749  * @info_table: Array for storing device information.
750  * @index: Index in info_table.
751  * @is_read: Whether read from reg, 0: not support read from reg.
752  *
753  * This function returns device information the caller needs.
754  */
755 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
756 			const struct hisi_qm_cap_info *info_table,
757 			u32 index, bool is_read)
758 {
759 	u32 val;
760 
761 	switch (qm->ver) {
762 	case QM_HW_V1:
763 		return info_table[index].v1_val;
764 	case QM_HW_V2:
765 		return info_table[index].v2_val;
766 	default:
767 		if (!is_read)
768 			return info_table[index].v3_val;
769 
770 		val = readl(qm->io_base + info_table[index].offset);
771 		return (val >> info_table[index].shift) & info_table[index].mask;
772 	}
773 }
774 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
775 
776 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
777 			     u16 *high_bits, enum qm_basic_type type)
778 {
779 	u32 depth;
780 
781 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
782 	*low_bits = depth & QM_XQ_DEPTH_MASK;
783 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
784 }
785 
786 static u32 qm_get_irq_num(struct hisi_qm *qm)
787 {
788 	if (qm->fun_type == QM_HW_PF)
789 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
790 
791 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
792 }
793 
794 static int qm_pm_get_sync(struct hisi_qm *qm)
795 {
796 	struct device *dev = &qm->pdev->dev;
797 	int ret;
798 
799 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
800 		return 0;
801 
802 	ret = pm_runtime_resume_and_get(dev);
803 	if (ret < 0) {
804 		dev_err(dev, "failed to get_sync(%d).\n", ret);
805 		return ret;
806 	}
807 
808 	return 0;
809 }
810 
811 static void qm_pm_put_sync(struct hisi_qm *qm)
812 {
813 	struct device *dev = &qm->pdev->dev;
814 
815 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
816 		return;
817 
818 	pm_runtime_mark_last_busy(dev);
819 	pm_runtime_put_autosuspend(dev);
820 }
821 
822 static void qm_cq_head_update(struct hisi_qp *qp)
823 {
824 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
825 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
826 		qp->qp_status.cq_head = 0;
827 	} else {
828 		qp->qp_status.cq_head++;
829 	}
830 }
831 
832 static void qm_poll_req_cb(struct hisi_qp *qp)
833 {
834 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
835 	struct hisi_qm *qm = qp->qm;
836 
837 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
838 		dma_rmb();
839 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
840 			   le16_to_cpu(cqe->sq_head));
841 		qm_cq_head_update(qp);
842 		cqe = qp->cqe + qp->qp_status.cq_head;
843 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
844 		      qp->qp_status.cq_head, 0);
845 		atomic_dec(&qp->qp_status.used);
846 	}
847 
848 	/* set c_flag */
849 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
850 }
851 
852 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data)
853 {
854 	struct hisi_qm *qm = poll_data->qm;
855 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
856 	u16 eq_depth = qm->eq_depth;
857 	int eqe_num = 0;
858 	u16 cqn;
859 
860 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
861 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
862 		poll_data->qp_finish_id[eqe_num] = cqn;
863 		eqe_num++;
864 
865 		if (qm->status.eq_head == eq_depth - 1) {
866 			qm->status.eqc_phase = !qm->status.eqc_phase;
867 			eqe = qm->eqe;
868 			qm->status.eq_head = 0;
869 		} else {
870 			eqe++;
871 			qm->status.eq_head++;
872 		}
873 
874 		if (eqe_num == (eq_depth >> 1) - 1)
875 			break;
876 	}
877 
878 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
879 
880 	return eqe_num;
881 }
882 
883 static void qm_work_process(struct work_struct *work)
884 {
885 	struct hisi_qm_poll_data *poll_data =
886 		container_of(work, struct hisi_qm_poll_data, work);
887 	struct hisi_qm *qm = poll_data->qm;
888 	struct hisi_qp *qp;
889 	int eqe_num, i;
890 
891 	/* Get qp id of completed tasks and re-enable the interrupt. */
892 	eqe_num = qm_get_complete_eqe_num(poll_data);
893 	for (i = eqe_num - 1; i >= 0; i--) {
894 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
895 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
896 			continue;
897 
898 		if (qp->event_cb) {
899 			qp->event_cb(qp);
900 			continue;
901 		}
902 
903 		if (likely(qp->req_cb))
904 			qm_poll_req_cb(qp);
905 	}
906 }
907 
908 static bool do_qm_irq(struct hisi_qm *qm)
909 {
910 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
911 	struct hisi_qm_poll_data *poll_data;
912 	u16 cqn;
913 
914 	if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
915 		return false;
916 
917 	if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
918 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
919 		poll_data = &qm->poll_data[cqn];
920 		queue_work(qm->wq, &poll_data->work);
921 
922 		return true;
923 	}
924 
925 	return false;
926 }
927 
928 static irqreturn_t qm_irq(int irq, void *data)
929 {
930 	struct hisi_qm *qm = data;
931 	bool ret;
932 
933 	ret = do_qm_irq(qm);
934 	if (ret)
935 		return IRQ_HANDLED;
936 
937 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
938 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
939 
940 	return IRQ_NONE;
941 }
942 
943 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
944 {
945 	struct hisi_qm *qm = data;
946 	u32 val;
947 
948 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
949 	val &= QM_IFC_INT_STATUS_MASK;
950 	if (!val)
951 		return IRQ_NONE;
952 
953 	schedule_work(&qm->cmd_process);
954 
955 	return IRQ_HANDLED;
956 }
957 
958 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
959 {
960 	u32 *addr;
961 
962 	if (qp->is_in_kernel)
963 		return;
964 
965 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
966 	*addr = 1;
967 
968 	/* make sure setup is completed */
969 	smp_wmb();
970 }
971 
972 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
973 {
974 	struct hisi_qp *qp = &qm->qp_array[qp_id];
975 
976 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
977 	hisi_qm_stop_qp(qp);
978 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
979 }
980 
981 static void qm_reset_function(struct hisi_qm *qm)
982 {
983 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
984 	struct device *dev = &qm->pdev->dev;
985 	int ret;
986 
987 	if (qm_check_dev_error(pf_qm))
988 		return;
989 
990 	ret = qm_reset_prepare_ready(qm);
991 	if (ret) {
992 		dev_err(dev, "reset function not ready\n");
993 		return;
994 	}
995 
996 	ret = hisi_qm_stop(qm, QM_FLR);
997 	if (ret) {
998 		dev_err(dev, "failed to stop qm when reset function\n");
999 		goto clear_bit;
1000 	}
1001 
1002 	ret = hisi_qm_start(qm);
1003 	if (ret)
1004 		dev_err(dev, "failed to start qm when reset function\n");
1005 
1006 clear_bit:
1007 	qm_reset_bit_clear(qm);
1008 }
1009 
1010 static irqreturn_t qm_aeq_thread(int irq, void *data)
1011 {
1012 	struct hisi_qm *qm = data;
1013 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1014 	u16 aeq_depth = qm->aeq_depth;
1015 	u32 type, qp_id;
1016 
1017 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1018 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
1019 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1020 
1021 		switch (type) {
1022 		case QM_EQ_OVERFLOW:
1023 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1024 			qm_reset_function(qm);
1025 			return IRQ_HANDLED;
1026 		case QM_CQ_OVERFLOW:
1027 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1028 				qp_id);
1029 			fallthrough;
1030 		case QM_CQE_ERROR:
1031 			qm_disable_qp(qm, qp_id);
1032 			break;
1033 		default:
1034 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1035 				type);
1036 			break;
1037 		}
1038 
1039 		if (qm->status.aeq_head == aeq_depth - 1) {
1040 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1041 			aeqe = qm->aeqe;
1042 			qm->status.aeq_head = 0;
1043 		} else {
1044 			aeqe++;
1045 			qm->status.aeq_head++;
1046 		}
1047 	}
1048 
1049 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1050 
1051 	return IRQ_HANDLED;
1052 }
1053 
1054 static irqreturn_t qm_aeq_irq(int irq, void *data)
1055 {
1056 	struct hisi_qm *qm = data;
1057 
1058 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1059 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
1060 		return IRQ_NONE;
1061 
1062 	return IRQ_WAKE_THREAD;
1063 }
1064 
1065 static void qm_init_qp_status(struct hisi_qp *qp)
1066 {
1067 	struct hisi_qp_status *qp_status = &qp->qp_status;
1068 
1069 	qp_status->sq_tail = 0;
1070 	qp_status->cq_head = 0;
1071 	qp_status->cqc_phase = true;
1072 	atomic_set(&qp_status->used, 0);
1073 }
1074 
1075 static void qm_init_prefetch(struct hisi_qm *qm)
1076 {
1077 	struct device *dev = &qm->pdev->dev;
1078 	u32 page_type = 0x0;
1079 
1080 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1081 		return;
1082 
1083 	switch (PAGE_SIZE) {
1084 	case SZ_4K:
1085 		page_type = 0x0;
1086 		break;
1087 	case SZ_16K:
1088 		page_type = 0x1;
1089 		break;
1090 	case SZ_64K:
1091 		page_type = 0x2;
1092 		break;
1093 	default:
1094 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1095 			PAGE_SIZE);
1096 	}
1097 
1098 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1099 }
1100 
1101 /*
1102  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1103  * is the expected qos calculated.
1104  * the formula:
1105  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1106  *
1107  *		IR_b * (2 ^ IR_u) * 8000
1108  * IR(Mbps) = -------------------------
1109  *		  Tick * (2 ^ IR_s)
1110  */
1111 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1112 {
1113 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1114 					(QM_QOS_TICK * (1 << cir_s));
1115 }
1116 
1117 static u32 acc_shaper_calc_cbs_s(u32 ir)
1118 {
1119 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1120 	int i;
1121 
1122 	for (i = 0; i < table_size; i++) {
1123 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1124 			return shaper_cbs_s[i].val;
1125 	}
1126 
1127 	return QM_SHAPER_MIN_CBS_S;
1128 }
1129 
1130 static u32 acc_shaper_calc_cir_s(u32 ir)
1131 {
1132 	int table_size = ARRAY_SIZE(shaper_cir_s);
1133 	int i;
1134 
1135 	for (i = 0; i < table_size; i++) {
1136 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1137 			return shaper_cir_s[i].val;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1144 {
1145 	u32 cir_b, cir_u, cir_s, ir_calc;
1146 	u32 error_rate;
1147 
1148 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1149 	cir_s = acc_shaper_calc_cir_s(ir);
1150 
1151 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1152 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1153 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1154 
1155 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1156 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1157 				factor->cir_b = cir_b;
1158 				factor->cir_u = cir_u;
1159 				factor->cir_s = cir_s;
1160 				return 0;
1161 			}
1162 		}
1163 	}
1164 
1165 	return -EINVAL;
1166 }
1167 
1168 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1169 			    u32 number, struct qm_shaper_factor *factor)
1170 {
1171 	u64 tmp = 0;
1172 
1173 	if (number > 0) {
1174 		switch (type) {
1175 		case SQC_VFT:
1176 			if (qm->ver == QM_HW_V1) {
1177 				tmp = QM_SQC_VFT_BUF_SIZE	|
1178 				      QM_SQC_VFT_SQC_SIZE	|
1179 				      QM_SQC_VFT_INDEX_NUMBER	|
1180 				      QM_SQC_VFT_VALID		|
1181 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1182 			} else {
1183 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1184 				      QM_SQC_VFT_VALID |
1185 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1186 			}
1187 			break;
1188 		case CQC_VFT:
1189 			if (qm->ver == QM_HW_V1) {
1190 				tmp = QM_CQC_VFT_BUF_SIZE	|
1191 				      QM_CQC_VFT_SQC_SIZE	|
1192 				      QM_CQC_VFT_INDEX_NUMBER	|
1193 				      QM_CQC_VFT_VALID;
1194 			} else {
1195 				tmp = QM_CQC_VFT_VALID;
1196 			}
1197 			break;
1198 		case SHAPER_VFT:
1199 			if (factor) {
1200 				tmp = factor->cir_b |
1201 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1202 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1203 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1204 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1205 			}
1206 			break;
1207 		}
1208 	}
1209 
1210 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1211 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1212 }
1213 
1214 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1215 			     u32 fun_num, u32 base, u32 number)
1216 {
1217 	struct qm_shaper_factor *factor = NULL;
1218 	unsigned int val;
1219 	int ret;
1220 
1221 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1222 		factor = &qm->factor[fun_num];
1223 
1224 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1225 					 val & BIT(0), POLL_PERIOD,
1226 					 POLL_TIMEOUT);
1227 	if (ret)
1228 		return ret;
1229 
1230 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1231 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1232 	if (type == SHAPER_VFT)
1233 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1234 
1235 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1236 
1237 	qm_vft_data_cfg(qm, type, base, number, factor);
1238 
1239 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1240 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1241 
1242 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1243 					  val & BIT(0), POLL_PERIOD,
1244 					  POLL_TIMEOUT);
1245 }
1246 
1247 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1248 {
1249 	u32 qos = qm->factor[fun_num].func_qos;
1250 	int ret, i;
1251 
1252 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1253 	if (ret) {
1254 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1255 		return ret;
1256 	}
1257 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1258 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1259 		/* The base number of queue reuse for different alg type */
1260 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1261 		if (ret)
1262 			return ret;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /* The config should be conducted after qm_dev_mem_reset() */
1269 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1270 			      u32 number)
1271 {
1272 	int ret, i;
1273 
1274 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1275 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1276 		if (ret)
1277 			return ret;
1278 	}
1279 
1280 	/* init default shaper qos val */
1281 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1282 		ret = qm_shaper_init_vft(qm, fun_num);
1283 		if (ret)
1284 			goto back_sqc_cqc;
1285 	}
1286 
1287 	return 0;
1288 back_sqc_cqc:
1289 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1290 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1291 
1292 	return ret;
1293 }
1294 
1295 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1296 {
1297 	u64 sqc_vft;
1298 	int ret;
1299 
1300 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1301 	if (ret)
1302 		return ret;
1303 
1304 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1305 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1306 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1307 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
1308 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1309 
1310 	return 0;
1311 }
1312 
1313 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1314 			  dma_addr_t *dma_addr)
1315 {
1316 	struct device *dev = &qm->pdev->dev;
1317 	void *ctx_addr;
1318 
1319 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1320 	if (!ctx_addr)
1321 		return ERR_PTR(-ENOMEM);
1322 
1323 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1324 	if (dma_mapping_error(dev, *dma_addr)) {
1325 		dev_err(dev, "DMA mapping error!\n");
1326 		kfree(ctx_addr);
1327 		return ERR_PTR(-ENOMEM);
1328 	}
1329 
1330 	return ctx_addr;
1331 }
1332 
1333 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1334 			const void *ctx_addr, dma_addr_t *dma_addr)
1335 {
1336 	struct device *dev = &qm->pdev->dev;
1337 
1338 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1339 	kfree(ctx_addr);
1340 }
1341 
1342 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1343 {
1344 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1345 }
1346 
1347 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1348 {
1349 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1350 }
1351 
1352 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1353 {
1354 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1355 }
1356 
1357 static void qm_hw_error_cfg(struct hisi_qm *qm)
1358 {
1359 	struct hisi_qm_err_info *err_info = &qm->err_info;
1360 
1361 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1362 	/* clear QM hw residual error source */
1363 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1364 
1365 	/* configure error type */
1366 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1367 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1368 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1369 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1370 }
1371 
1372 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1373 {
1374 	u32 irq_unmask;
1375 
1376 	qm_hw_error_cfg(qm);
1377 
1378 	irq_unmask = ~qm->error_mask;
1379 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1380 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1381 }
1382 
1383 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1384 {
1385 	u32 irq_mask = qm->error_mask;
1386 
1387 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1388 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1389 }
1390 
1391 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1392 {
1393 	u32 irq_unmask;
1394 
1395 	qm_hw_error_cfg(qm);
1396 
1397 	/* enable close master ooo when hardware error happened */
1398 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1399 
1400 	irq_unmask = ~qm->error_mask;
1401 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1402 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1403 }
1404 
1405 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1406 {
1407 	u32 irq_mask = qm->error_mask;
1408 
1409 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1410 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1411 
1412 	/* disable close master ooo when hardware error happened */
1413 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1414 }
1415 
1416 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1417 {
1418 	const struct hisi_qm_hw_error *err;
1419 	struct device *dev = &qm->pdev->dev;
1420 	u32 reg_val, type, vf_num;
1421 	int i;
1422 
1423 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1424 		err = &qm_hw_error[i];
1425 		if (!(err->int_msk & error_status))
1426 			continue;
1427 
1428 		dev_err(dev, "%s [error status=0x%x] found\n",
1429 			err->msg, err->int_msk);
1430 
1431 		if (err->int_msk & QM_DB_TIMEOUT) {
1432 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1433 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1434 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1435 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1436 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1437 				qm_db_timeout[type], vf_num);
1438 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1439 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1440 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1441 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1442 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1443 
1444 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1445 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1446 					qm_fifo_overflow[type], vf_num);
1447 			else
1448 				dev_err(dev, "unknown error type\n");
1449 		}
1450 	}
1451 }
1452 
1453 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1454 {
1455 	u32 error_status, tmp;
1456 
1457 	/* read err sts */
1458 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1459 	error_status = qm->error_mask & tmp;
1460 
1461 	if (error_status) {
1462 		if (error_status & QM_ECC_MBIT)
1463 			qm->err_status.is_qm_ecc_mbit = true;
1464 
1465 		qm_log_hw_error(qm, error_status);
1466 		if (error_status & qm->err_info.qm_reset_mask)
1467 			return ACC_ERR_NEED_RESET;
1468 
1469 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1470 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1471 	}
1472 
1473 	return ACC_ERR_RECOVERED;
1474 }
1475 
1476 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1477 {
1478 	struct qm_mailbox mailbox;
1479 	int ret;
1480 
1481 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1482 	mutex_lock(&qm->mailbox_lock);
1483 	ret = qm_mb_nolock(qm, &mailbox);
1484 	if (ret)
1485 		goto err_unlock;
1486 
1487 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1488 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1489 
1490 err_unlock:
1491 	mutex_unlock(&qm->mailbox_lock);
1492 	return ret;
1493 }
1494 
1495 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1496 {
1497 	u32 val;
1498 
1499 	if (qm->fun_type == QM_HW_PF)
1500 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1501 
1502 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1503 	val |= QM_IFC_INT_SOURCE_MASK;
1504 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1505 }
1506 
1507 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1508 {
1509 	struct device *dev = &qm->pdev->dev;
1510 	u32 cmd;
1511 	u64 msg;
1512 	int ret;
1513 
1514 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1515 	if (ret) {
1516 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1517 		return;
1518 	}
1519 
1520 	cmd = msg & QM_MB_CMD_DATA_MASK;
1521 	switch (cmd) {
1522 	case QM_VF_PREPARE_FAIL:
1523 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1524 		break;
1525 	case QM_VF_START_FAIL:
1526 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1527 		break;
1528 	case QM_VF_PREPARE_DONE:
1529 	case QM_VF_START_DONE:
1530 		break;
1531 	default:
1532 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1533 		break;
1534 	}
1535 }
1536 
1537 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1538 {
1539 	struct device *dev = &qm->pdev->dev;
1540 	u32 vfs_num = qm->vfs_num;
1541 	int cnt = 0;
1542 	int ret = 0;
1543 	u64 val;
1544 	u32 i;
1545 
1546 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1547 		return 0;
1548 
1549 	while (true) {
1550 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1551 		/* All VFs send command to PF, break */
1552 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1553 			break;
1554 
1555 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1556 			ret = -EBUSY;
1557 			break;
1558 		}
1559 
1560 		msleep(QM_WAIT_DST_ACK);
1561 	}
1562 
1563 	/* PF check VFs msg */
1564 	for (i = 1; i <= vfs_num; i++) {
1565 		if (val & BIT(i))
1566 			qm_handle_vf_msg(qm, i);
1567 		else
1568 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1569 	}
1570 
1571 	/* PF clear interrupt to ack VFs */
1572 	qm_clear_cmd_interrupt(qm, val);
1573 
1574 	return ret;
1575 }
1576 
1577 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1578 {
1579 	u32 val;
1580 
1581 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1582 	val &= ~QM_IFC_SEND_ALL_VFS;
1583 	val |= fun_num;
1584 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1585 
1586 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1587 	val |= QM_IFC_INT_SET_MASK;
1588 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1589 }
1590 
1591 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1592 {
1593 	u32 val;
1594 
1595 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1596 	val |= QM_IFC_INT_SET_MASK;
1597 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1598 }
1599 
1600 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1601 {
1602 	struct device *dev = &qm->pdev->dev;
1603 	struct qm_mailbox mailbox;
1604 	int cnt = 0;
1605 	u64 val;
1606 	int ret;
1607 
1608 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1609 	mutex_lock(&qm->mailbox_lock);
1610 	ret = qm_mb_nolock(qm, &mailbox);
1611 	if (ret) {
1612 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1613 		goto err_unlock;
1614 	}
1615 
1616 	qm_trigger_vf_interrupt(qm, fun_num);
1617 	while (true) {
1618 		msleep(QM_WAIT_DST_ACK);
1619 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1620 		/* if VF respond, PF notifies VF successfully. */
1621 		if (!(val & BIT(fun_num)))
1622 			goto err_unlock;
1623 
1624 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1625 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1626 			ret = -ETIMEDOUT;
1627 			break;
1628 		}
1629 	}
1630 
1631 err_unlock:
1632 	mutex_unlock(&qm->mailbox_lock);
1633 	return ret;
1634 }
1635 
1636 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1637 {
1638 	struct device *dev = &qm->pdev->dev;
1639 	u32 vfs_num = qm->vfs_num;
1640 	struct qm_mailbox mailbox;
1641 	u64 val = 0;
1642 	int cnt = 0;
1643 	int ret;
1644 	u32 i;
1645 
1646 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1647 	mutex_lock(&qm->mailbox_lock);
1648 	/* PF sends command to all VFs by mailbox */
1649 	ret = qm_mb_nolock(qm, &mailbox);
1650 	if (ret) {
1651 		dev_err(dev, "failed to send command to VFs!\n");
1652 		mutex_unlock(&qm->mailbox_lock);
1653 		return ret;
1654 	}
1655 
1656 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1657 	while (true) {
1658 		msleep(QM_WAIT_DST_ACK);
1659 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1660 		/* If all VFs acked, PF notifies VFs successfully. */
1661 		if (!(val & GENMASK(vfs_num, 1))) {
1662 			mutex_unlock(&qm->mailbox_lock);
1663 			return 0;
1664 		}
1665 
1666 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1667 			break;
1668 	}
1669 
1670 	mutex_unlock(&qm->mailbox_lock);
1671 
1672 	/* Check which vf respond timeout. */
1673 	for (i = 1; i <= vfs_num; i++) {
1674 		if (val & BIT(i))
1675 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1676 	}
1677 
1678 	return -ETIMEDOUT;
1679 }
1680 
1681 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1682 {
1683 	struct qm_mailbox mailbox;
1684 	int cnt = 0;
1685 	u32 val;
1686 	int ret;
1687 
1688 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1689 	mutex_lock(&qm->mailbox_lock);
1690 	ret = qm_mb_nolock(qm, &mailbox);
1691 	if (ret) {
1692 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1693 		goto unlock;
1694 	}
1695 
1696 	qm_trigger_pf_interrupt(qm);
1697 	/* Waiting for PF response */
1698 	while (true) {
1699 		msleep(QM_WAIT_DST_ACK);
1700 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1701 		if (!(val & QM_IFC_INT_STATUS_MASK))
1702 			break;
1703 
1704 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1705 			ret = -ETIMEDOUT;
1706 			break;
1707 		}
1708 	}
1709 
1710 unlock:
1711 	mutex_unlock(&qm->mailbox_lock);
1712 	return ret;
1713 }
1714 
1715 static int qm_stop_qp(struct hisi_qp *qp)
1716 {
1717 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1718 }
1719 
1720 static int qm_set_msi(struct hisi_qm *qm, bool set)
1721 {
1722 	struct pci_dev *pdev = qm->pdev;
1723 
1724 	if (set) {
1725 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1726 				       0);
1727 	} else {
1728 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1729 				       ACC_PEH_MSI_DISABLE);
1730 		if (qm->err_status.is_qm_ecc_mbit ||
1731 		    qm->err_status.is_dev_ecc_mbit)
1732 			return 0;
1733 
1734 		mdelay(1);
1735 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1736 			return -EFAULT;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static void qm_wait_msi_finish(struct hisi_qm *qm)
1743 {
1744 	struct pci_dev *pdev = qm->pdev;
1745 	u32 cmd = ~0;
1746 	int cnt = 0;
1747 	u32 val;
1748 	int ret;
1749 
1750 	while (true) {
1751 		pci_read_config_dword(pdev, pdev->msi_cap +
1752 				      PCI_MSI_PENDING_64, &cmd);
1753 		if (!cmd)
1754 			break;
1755 
1756 		if (++cnt > MAX_WAIT_COUNTS) {
1757 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1758 			break;
1759 		}
1760 
1761 		udelay(1);
1762 	}
1763 
1764 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1765 					 val, !(val & QM_PEH_DFX_MASK),
1766 					 POLL_PERIOD, POLL_TIMEOUT);
1767 	if (ret)
1768 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1769 
1770 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1771 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1772 					 POLL_PERIOD, POLL_TIMEOUT);
1773 	if (ret)
1774 		pci_warn(pdev, "failed to finish MSI operation!\n");
1775 }
1776 
1777 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1778 {
1779 	struct pci_dev *pdev = qm->pdev;
1780 	int ret = -ETIMEDOUT;
1781 	u32 cmd, i;
1782 
1783 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1784 	if (set)
1785 		cmd |= QM_MSI_CAP_ENABLE;
1786 	else
1787 		cmd &= ~QM_MSI_CAP_ENABLE;
1788 
1789 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1790 	if (set) {
1791 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1792 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1793 			if (cmd & QM_MSI_CAP_ENABLE)
1794 				return 0;
1795 
1796 			udelay(1);
1797 		}
1798 	} else {
1799 		udelay(WAIT_PERIOD_US_MIN);
1800 		qm_wait_msi_finish(qm);
1801 		ret = 0;
1802 	}
1803 
1804 	return ret;
1805 }
1806 
1807 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1808 	.qm_db = qm_db_v1,
1809 	.hw_error_init = qm_hw_error_init_v1,
1810 	.set_msi = qm_set_msi,
1811 };
1812 
1813 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1814 	.get_vft = qm_get_vft_v2,
1815 	.qm_db = qm_db_v2,
1816 	.hw_error_init = qm_hw_error_init_v2,
1817 	.hw_error_uninit = qm_hw_error_uninit_v2,
1818 	.hw_error_handle = qm_hw_error_handle_v2,
1819 	.set_msi = qm_set_msi,
1820 };
1821 
1822 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1823 	.get_vft = qm_get_vft_v2,
1824 	.qm_db = qm_db_v2,
1825 	.hw_error_init = qm_hw_error_init_v3,
1826 	.hw_error_uninit = qm_hw_error_uninit_v3,
1827 	.hw_error_handle = qm_hw_error_handle_v2,
1828 	.set_msi = qm_set_msi_v3,
1829 };
1830 
1831 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1832 {
1833 	struct hisi_qp_status *qp_status = &qp->qp_status;
1834 	u16 sq_tail = qp_status->sq_tail;
1835 
1836 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1837 		return NULL;
1838 
1839 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1840 }
1841 
1842 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1843 {
1844 	u64 *addr;
1845 
1846 	/* Use last 64 bits of DUS to reset status. */
1847 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1848 	*addr = 0;
1849 }
1850 
1851 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1852 {
1853 	struct device *dev = &qm->pdev->dev;
1854 	struct hisi_qp *qp;
1855 	int qp_id;
1856 
1857 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1858 		return ERR_PTR(-EPERM);
1859 
1860 	if (qm->qp_in_used == qm->qp_num) {
1861 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1862 				     qm->qp_num);
1863 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1864 		return ERR_PTR(-EBUSY);
1865 	}
1866 
1867 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1868 	if (qp_id < 0) {
1869 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1870 				    qm->qp_num);
1871 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1872 		return ERR_PTR(-EBUSY);
1873 	}
1874 
1875 	qp = &qm->qp_array[qp_id];
1876 	hisi_qm_unset_hw_reset(qp);
1877 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1878 
1879 	qp->event_cb = NULL;
1880 	qp->req_cb = NULL;
1881 	qp->qp_id = qp_id;
1882 	qp->alg_type = alg_type;
1883 	qp->is_in_kernel = true;
1884 	qm->qp_in_used++;
1885 	atomic_set(&qp->qp_status.flags, QP_INIT);
1886 
1887 	return qp;
1888 }
1889 
1890 /**
1891  * hisi_qm_create_qp() - Create a queue pair from qm.
1892  * @qm: The qm we create a qp from.
1893  * @alg_type: Accelerator specific algorithm type in sqc.
1894  *
1895  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
1896  * qp memory fails.
1897  */
1898 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1899 {
1900 	struct hisi_qp *qp;
1901 	int ret;
1902 
1903 	ret = qm_pm_get_sync(qm);
1904 	if (ret)
1905 		return ERR_PTR(ret);
1906 
1907 	down_write(&qm->qps_lock);
1908 	qp = qm_create_qp_nolock(qm, alg_type);
1909 	up_write(&qm->qps_lock);
1910 
1911 	if (IS_ERR(qp))
1912 		qm_pm_put_sync(qm);
1913 
1914 	return qp;
1915 }
1916 
1917 /**
1918  * hisi_qm_release_qp() - Release a qp back to its qm.
1919  * @qp: The qp we want to release.
1920  *
1921  * This function releases the resource of a qp.
1922  */
1923 static void hisi_qm_release_qp(struct hisi_qp *qp)
1924 {
1925 	struct hisi_qm *qm = qp->qm;
1926 
1927 	down_write(&qm->qps_lock);
1928 
1929 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1930 		up_write(&qm->qps_lock);
1931 		return;
1932 	}
1933 
1934 	qm->qp_in_used--;
1935 	idr_remove(&qm->qp_idr, qp->qp_id);
1936 
1937 	up_write(&qm->qps_lock);
1938 
1939 	qm_pm_put_sync(qm);
1940 }
1941 
1942 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1943 {
1944 	struct hisi_qm *qm = qp->qm;
1945 	struct device *dev = &qm->pdev->dev;
1946 	enum qm_hw_ver ver = qm->ver;
1947 	struct qm_sqc *sqc;
1948 	dma_addr_t sqc_dma;
1949 	int ret;
1950 
1951 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1952 	if (!sqc)
1953 		return -ENOMEM;
1954 
1955 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1956 	if (ver == QM_HW_V1) {
1957 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1958 		sqc->w8 = cpu_to_le16(qp->sq_depth - 1);
1959 	} else {
1960 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1961 		sqc->w8 = 0; /* rand_qc */
1962 	}
1963 	sqc->cq_num = cpu_to_le16(qp_id);
1964 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1965 
1966 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1967 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1968 				       QM_QC_PASID_ENABLE_SHIFT);
1969 
1970 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1971 				 DMA_TO_DEVICE);
1972 	if (dma_mapping_error(dev, sqc_dma)) {
1973 		kfree(sqc);
1974 		return -ENOMEM;
1975 	}
1976 
1977 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1978 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1979 	kfree(sqc);
1980 
1981 	return ret;
1982 }
1983 
1984 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1985 {
1986 	struct hisi_qm *qm = qp->qm;
1987 	struct device *dev = &qm->pdev->dev;
1988 	enum qm_hw_ver ver = qm->ver;
1989 	struct qm_cqc *cqc;
1990 	dma_addr_t cqc_dma;
1991 	int ret;
1992 
1993 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1994 	if (!cqc)
1995 		return -ENOMEM;
1996 
1997 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1998 	if (ver == QM_HW_V1) {
1999 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
2000 							QM_QC_CQE_SIZE));
2001 		cqc->w8 = cpu_to_le16(qp->cq_depth - 1);
2002 	} else {
2003 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2004 		cqc->w8 = 0; /* rand_qc */
2005 	}
2006 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2007 
2008 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2009 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2010 
2011 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2012 				 DMA_TO_DEVICE);
2013 	if (dma_mapping_error(dev, cqc_dma)) {
2014 		kfree(cqc);
2015 		return -ENOMEM;
2016 	}
2017 
2018 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2019 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2020 	kfree(cqc);
2021 
2022 	return ret;
2023 }
2024 
2025 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2026 {
2027 	int ret;
2028 
2029 	qm_init_qp_status(qp);
2030 
2031 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2032 	if (ret)
2033 		return ret;
2034 
2035 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2036 }
2037 
2038 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2039 {
2040 	struct hisi_qm *qm = qp->qm;
2041 	struct device *dev = &qm->pdev->dev;
2042 	int qp_id = qp->qp_id;
2043 	u32 pasid = arg;
2044 	int ret;
2045 
2046 	if (!qm_qp_avail_state(qm, qp, QP_START))
2047 		return -EPERM;
2048 
2049 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2050 	if (ret)
2051 		return ret;
2052 
2053 	atomic_set(&qp->qp_status.flags, QP_START);
2054 	dev_dbg(dev, "queue %d started\n", qp_id);
2055 
2056 	return 0;
2057 }
2058 
2059 /**
2060  * hisi_qm_start_qp() - Start a qp into running.
2061  * @qp: The qp we want to start to run.
2062  * @arg: Accelerator specific argument.
2063  *
2064  * After this function, qp can receive request from user. Return 0 if
2065  * successful, Return -EBUSY if failed.
2066  */
2067 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2068 {
2069 	struct hisi_qm *qm = qp->qm;
2070 	int ret;
2071 
2072 	down_write(&qm->qps_lock);
2073 	ret = qm_start_qp_nolock(qp, arg);
2074 	up_write(&qm->qps_lock);
2075 
2076 	return ret;
2077 }
2078 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2079 
2080 /**
2081  * qp_stop_fail_cb() - call request cb.
2082  * @qp: stopped failed qp.
2083  *
2084  * Callback function should be called whether task completed or not.
2085  */
2086 static void qp_stop_fail_cb(struct hisi_qp *qp)
2087 {
2088 	int qp_used = atomic_read(&qp->qp_status.used);
2089 	u16 cur_tail = qp->qp_status.sq_tail;
2090 	u16 sq_depth = qp->sq_depth;
2091 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2092 	struct hisi_qm *qm = qp->qm;
2093 	u16 pos;
2094 	int i;
2095 
2096 	for (i = 0; i < qp_used; i++) {
2097 		pos = (i + cur_head) % sq_depth;
2098 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2099 		atomic_dec(&qp->qp_status.used);
2100 	}
2101 }
2102 
2103 /**
2104  * qm_drain_qp() - Drain a qp.
2105  * @qp: The qp we want to drain.
2106  *
2107  * Determine whether the queue is cleared by judging the tail pointers of
2108  * sq and cq.
2109  */
2110 static int qm_drain_qp(struct hisi_qp *qp)
2111 {
2112 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2113 	struct hisi_qm *qm = qp->qm;
2114 	struct device *dev = &qm->pdev->dev;
2115 	struct qm_sqc *sqc;
2116 	struct qm_cqc *cqc;
2117 	dma_addr_t dma_addr;
2118 	int ret = 0, i = 0;
2119 	void *addr;
2120 
2121 	/* No need to judge if master OOO is blocked. */
2122 	if (qm_check_dev_error(qm))
2123 		return 0;
2124 
2125 	/* Kunpeng930 supports drain qp by device */
2126 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2127 		ret = qm_stop_qp(qp);
2128 		if (ret)
2129 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2130 		return ret;
2131 	}
2132 
2133 	addr = hisi_qm_ctx_alloc(qm, size, &dma_addr);
2134 	if (IS_ERR(addr)) {
2135 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2136 		return -ENOMEM;
2137 	}
2138 
2139 	while (++i) {
2140 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2141 		if (ret) {
2142 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2143 			break;
2144 		}
2145 		sqc = addr;
2146 
2147 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2148 				      qp->qp_id);
2149 		if (ret) {
2150 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2151 			break;
2152 		}
2153 		cqc = addr + sizeof(struct qm_sqc);
2154 
2155 		if ((sqc->tail == cqc->tail) &&
2156 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2157 			break;
2158 
2159 		if (i == MAX_WAIT_COUNTS) {
2160 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2161 			ret = -EBUSY;
2162 			break;
2163 		}
2164 
2165 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2166 	}
2167 
2168 	hisi_qm_ctx_free(qm, size, addr, &dma_addr);
2169 
2170 	return ret;
2171 }
2172 
2173 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2174 {
2175 	struct device *dev = &qp->qm->pdev->dev;
2176 	int ret;
2177 
2178 	/*
2179 	 * It is allowed to stop and release qp when reset, If the qp is
2180 	 * stopped when reset but still want to be released then, the
2181 	 * is_resetting flag should be set negative so that this qp will not
2182 	 * be restarted after reset.
2183 	 */
2184 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2185 		qp->is_resetting = false;
2186 		return 0;
2187 	}
2188 
2189 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2190 		return -EPERM;
2191 
2192 	atomic_set(&qp->qp_status.flags, QP_STOP);
2193 
2194 	ret = qm_drain_qp(qp);
2195 	if (ret)
2196 		dev_err(dev, "Failed to drain out data for stopping!\n");
2197 
2198 
2199 	flush_workqueue(qp->qm->wq);
2200 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2201 		qp_stop_fail_cb(qp);
2202 
2203 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2204 
2205 	return 0;
2206 }
2207 
2208 /**
2209  * hisi_qm_stop_qp() - Stop a qp in qm.
2210  * @qp: The qp we want to stop.
2211  *
2212  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2213  */
2214 int hisi_qm_stop_qp(struct hisi_qp *qp)
2215 {
2216 	int ret;
2217 
2218 	down_write(&qp->qm->qps_lock);
2219 	ret = qm_stop_qp_nolock(qp);
2220 	up_write(&qp->qm->qps_lock);
2221 
2222 	return ret;
2223 }
2224 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2225 
2226 /**
2227  * hisi_qp_send() - Queue up a task in the hardware queue.
2228  * @qp: The qp in which to put the message.
2229  * @msg: The message.
2230  *
2231  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2232  * if qp related qm is resetting.
2233  *
2234  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2235  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2236  *       reset may happen, we have no lock here considering performance. This
2237  *       causes current qm_db sending fail or can not receive sended sqe. QM
2238  *       sync/async receive function should handle the error sqe. ACC reset
2239  *       done function should clear used sqe to 0.
2240  */
2241 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2242 {
2243 	struct hisi_qp_status *qp_status = &qp->qp_status;
2244 	u16 sq_tail = qp_status->sq_tail;
2245 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2246 	void *sqe = qm_get_avail_sqe(qp);
2247 
2248 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2249 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2250 		     qp->is_resetting)) {
2251 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2252 		return -EAGAIN;
2253 	}
2254 
2255 	if (!sqe)
2256 		return -EBUSY;
2257 
2258 	memcpy(sqe, msg, qp->qm->sqe_size);
2259 
2260 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2261 	atomic_inc(&qp->qp_status.used);
2262 	qp_status->sq_tail = sq_tail_next;
2263 
2264 	return 0;
2265 }
2266 EXPORT_SYMBOL_GPL(hisi_qp_send);
2267 
2268 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2269 {
2270 	unsigned int val;
2271 
2272 	if (qm->ver == QM_HW_V1)
2273 		return;
2274 
2275 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2276 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2277 				       val, val & BIT(0), POLL_PERIOD,
2278 				       POLL_TIMEOUT))
2279 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2280 }
2281 
2282 static void qm_qp_event_notifier(struct hisi_qp *qp)
2283 {
2284 	wake_up_interruptible(&qp->uacce_q->wait);
2285 }
2286 
2287  /* This function returns free number of qp in qm. */
2288 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2289 {
2290 	struct hisi_qm *qm = uacce->priv;
2291 	int ret;
2292 
2293 	down_read(&qm->qps_lock);
2294 	ret = qm->qp_num - qm->qp_in_used;
2295 	up_read(&qm->qps_lock);
2296 
2297 	return ret;
2298 }
2299 
2300 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2301 {
2302 	int i;
2303 
2304 	for (i = 0; i < qm->qp_num; i++)
2305 		qm_set_qp_disable(&qm->qp_array[i], offset);
2306 }
2307 
2308 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2309 				   unsigned long arg,
2310 				   struct uacce_queue *q)
2311 {
2312 	struct hisi_qm *qm = uacce->priv;
2313 	struct hisi_qp *qp;
2314 	u8 alg_type = 0;
2315 
2316 	qp = hisi_qm_create_qp(qm, alg_type);
2317 	if (IS_ERR(qp))
2318 		return PTR_ERR(qp);
2319 
2320 	q->priv = qp;
2321 	q->uacce = uacce;
2322 	qp->uacce_q = q;
2323 	qp->event_cb = qm_qp_event_notifier;
2324 	qp->pasid = arg;
2325 	qp->is_in_kernel = false;
2326 
2327 	return 0;
2328 }
2329 
2330 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2331 {
2332 	struct hisi_qp *qp = q->priv;
2333 
2334 	hisi_qm_release_qp(qp);
2335 }
2336 
2337 /* map sq/cq/doorbell to user space */
2338 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2339 			      struct vm_area_struct *vma,
2340 			      struct uacce_qfile_region *qfr)
2341 {
2342 	struct hisi_qp *qp = q->priv;
2343 	struct hisi_qm *qm = qp->qm;
2344 	resource_size_t phys_base = qm->db_phys_base +
2345 				    qp->qp_id * qm->db_interval;
2346 	size_t sz = vma->vm_end - vma->vm_start;
2347 	struct pci_dev *pdev = qm->pdev;
2348 	struct device *dev = &pdev->dev;
2349 	unsigned long vm_pgoff;
2350 	int ret;
2351 
2352 	switch (qfr->type) {
2353 	case UACCE_QFRT_MMIO:
2354 		if (qm->ver == QM_HW_V1) {
2355 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2356 				return -EINVAL;
2357 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2358 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2359 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2360 				return -EINVAL;
2361 		} else {
2362 			if (sz > qm->db_interval)
2363 				return -EINVAL;
2364 		}
2365 
2366 		vma->vm_flags |= VM_IO;
2367 
2368 		return remap_pfn_range(vma, vma->vm_start,
2369 				       phys_base >> PAGE_SHIFT,
2370 				       sz, pgprot_noncached(vma->vm_page_prot));
2371 	case UACCE_QFRT_DUS:
2372 		if (sz != qp->qdma.size)
2373 			return -EINVAL;
2374 
2375 		/*
2376 		 * dma_mmap_coherent() requires vm_pgoff as 0
2377 		 * restore vm_pfoff to initial value for mmap()
2378 		 */
2379 		vm_pgoff = vma->vm_pgoff;
2380 		vma->vm_pgoff = 0;
2381 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2382 					qp->qdma.dma, sz);
2383 		vma->vm_pgoff = vm_pgoff;
2384 		return ret;
2385 
2386 	default:
2387 		return -EINVAL;
2388 	}
2389 }
2390 
2391 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2392 {
2393 	struct hisi_qp *qp = q->priv;
2394 
2395 	return hisi_qm_start_qp(qp, qp->pasid);
2396 }
2397 
2398 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2399 {
2400 	hisi_qm_stop_qp(q->priv);
2401 }
2402 
2403 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2404 {
2405 	struct hisi_qp *qp = q->priv;
2406 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2407 	int updated = 0;
2408 
2409 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2410 		/* make sure to read data from memory */
2411 		dma_rmb();
2412 		qm_cq_head_update(qp);
2413 		cqe = qp->cqe + qp->qp_status.cq_head;
2414 		updated = 1;
2415 	}
2416 
2417 	return updated;
2418 }
2419 
2420 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2421 {
2422 	struct hisi_qm *qm = q->uacce->priv;
2423 	struct hisi_qp *qp = q->priv;
2424 
2425 	down_write(&qm->qps_lock);
2426 	qp->alg_type = type;
2427 	up_write(&qm->qps_lock);
2428 }
2429 
2430 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2431 				unsigned long arg)
2432 {
2433 	struct hisi_qp *qp = q->priv;
2434 	struct hisi_qp_info qp_info;
2435 	struct hisi_qp_ctx qp_ctx;
2436 
2437 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2438 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2439 				   sizeof(struct hisi_qp_ctx)))
2440 			return -EFAULT;
2441 
2442 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2443 			return -EINVAL;
2444 
2445 		qm_set_sqctype(q, qp_ctx.qc_type);
2446 		qp_ctx.id = qp->qp_id;
2447 
2448 		if (copy_to_user((void __user *)arg, &qp_ctx,
2449 				 sizeof(struct hisi_qp_ctx)))
2450 			return -EFAULT;
2451 
2452 		return 0;
2453 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2454 		if (copy_from_user(&qp_info, (void __user *)arg,
2455 				   sizeof(struct hisi_qp_info)))
2456 			return -EFAULT;
2457 
2458 		qp_info.sqe_size = qp->qm->sqe_size;
2459 		qp_info.sq_depth = qp->sq_depth;
2460 		qp_info.cq_depth = qp->cq_depth;
2461 
2462 		if (copy_to_user((void __user *)arg, &qp_info,
2463 				  sizeof(struct hisi_qp_info)))
2464 			return -EFAULT;
2465 
2466 		return 0;
2467 	}
2468 
2469 	return -EINVAL;
2470 }
2471 
2472 static const struct uacce_ops uacce_qm_ops = {
2473 	.get_available_instances = hisi_qm_get_available_instances,
2474 	.get_queue = hisi_qm_uacce_get_queue,
2475 	.put_queue = hisi_qm_uacce_put_queue,
2476 	.start_queue = hisi_qm_uacce_start_queue,
2477 	.stop_queue = hisi_qm_uacce_stop_queue,
2478 	.mmap = hisi_qm_uacce_mmap,
2479 	.ioctl = hisi_qm_uacce_ioctl,
2480 	.is_q_updated = hisi_qm_is_q_updated,
2481 };
2482 
2483 static int qm_alloc_uacce(struct hisi_qm *qm)
2484 {
2485 	struct pci_dev *pdev = qm->pdev;
2486 	struct uacce_device *uacce;
2487 	unsigned long mmio_page_nr;
2488 	unsigned long dus_page_nr;
2489 	u16 sq_depth, cq_depth;
2490 	struct uacce_interface interface = {
2491 		.flags = UACCE_DEV_SVA,
2492 		.ops = &uacce_qm_ops,
2493 	};
2494 	int ret;
2495 
2496 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2497 		      sizeof(interface.name));
2498 	if (ret < 0)
2499 		return -ENAMETOOLONG;
2500 
2501 	uacce = uacce_alloc(&pdev->dev, &interface);
2502 	if (IS_ERR(uacce))
2503 		return PTR_ERR(uacce);
2504 
2505 	if (uacce->flags & UACCE_DEV_SVA) {
2506 		qm->use_sva = true;
2507 	} else {
2508 		/* only consider sva case */
2509 		uacce_remove(uacce);
2510 		qm->uacce = NULL;
2511 		return -EINVAL;
2512 	}
2513 
2514 	uacce->is_vf = pdev->is_virtfn;
2515 	uacce->priv = qm;
2516 
2517 	if (qm->ver == QM_HW_V1)
2518 		uacce->api_ver = HISI_QM_API_VER_BASE;
2519 	else if (qm->ver == QM_HW_V2)
2520 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2521 	else
2522 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2523 
2524 	if (qm->ver == QM_HW_V1)
2525 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2526 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2527 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2528 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2529 	else
2530 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2531 
2532 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2533 
2534 	/* Add one more page for device or qp status */
2535 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2536 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2537 					 PAGE_SHIFT;
2538 
2539 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2540 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2541 
2542 	qm->uacce = uacce;
2543 
2544 	return 0;
2545 }
2546 
2547 /**
2548  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2549  * there is user on the QM, return failure without doing anything.
2550  * @qm: The qm needed to be fronzen.
2551  *
2552  * This function frozes QM, then we can do SRIOV disabling.
2553  */
2554 static int qm_frozen(struct hisi_qm *qm)
2555 {
2556 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2557 		return 0;
2558 
2559 	down_write(&qm->qps_lock);
2560 
2561 	if (!qm->qp_in_used) {
2562 		qm->qp_in_used = qm->qp_num;
2563 		up_write(&qm->qps_lock);
2564 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2565 		return 0;
2566 	}
2567 
2568 	up_write(&qm->qps_lock);
2569 
2570 	return -EBUSY;
2571 }
2572 
2573 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2574 			     struct hisi_qm_list *qm_list)
2575 {
2576 	struct hisi_qm *qm, *vf_qm;
2577 	struct pci_dev *dev;
2578 	int ret = 0;
2579 
2580 	if (!qm_list || !pdev)
2581 		return -EINVAL;
2582 
2583 	/* Try to frozen all the VFs as disable SRIOV */
2584 	mutex_lock(&qm_list->lock);
2585 	list_for_each_entry(qm, &qm_list->list, list) {
2586 		dev = qm->pdev;
2587 		if (dev == pdev)
2588 			continue;
2589 		if (pci_physfn(dev) == pdev) {
2590 			vf_qm = pci_get_drvdata(dev);
2591 			ret = qm_frozen(vf_qm);
2592 			if (ret)
2593 				goto frozen_fail;
2594 		}
2595 	}
2596 
2597 frozen_fail:
2598 	mutex_unlock(&qm_list->lock);
2599 
2600 	return ret;
2601 }
2602 
2603 /**
2604  * hisi_qm_wait_task_finish() - Wait until the task is finished
2605  * when removing the driver.
2606  * @qm: The qm needed to wait for the task to finish.
2607  * @qm_list: The list of all available devices.
2608  */
2609 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2610 {
2611 	while (qm_frozen(qm) ||
2612 	       ((qm->fun_type == QM_HW_PF) &&
2613 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2614 		msleep(WAIT_PERIOD);
2615 	}
2616 
2617 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2618 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2619 		msleep(WAIT_PERIOD);
2620 
2621 	udelay(REMOVE_WAIT_DELAY);
2622 }
2623 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2624 
2625 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2626 {
2627 	struct device *dev = &qm->pdev->dev;
2628 	struct qm_dma *qdma;
2629 	int i;
2630 
2631 	for (i = num - 1; i >= 0; i--) {
2632 		qdma = &qm->qp_array[i].qdma;
2633 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2634 		kfree(qm->poll_data[i].qp_finish_id);
2635 	}
2636 
2637 	kfree(qm->poll_data);
2638 	kfree(qm->qp_array);
2639 }
2640 
2641 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2642 			       u16 sq_depth, u16 cq_depth)
2643 {
2644 	struct device *dev = &qm->pdev->dev;
2645 	size_t off = qm->sqe_size * sq_depth;
2646 	struct hisi_qp *qp;
2647 	int ret = -ENOMEM;
2648 
2649 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2650 						 GFP_KERNEL);
2651 	if (!qm->poll_data[id].qp_finish_id)
2652 		return -ENOMEM;
2653 
2654 	qp = &qm->qp_array[id];
2655 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2656 					 GFP_KERNEL);
2657 	if (!qp->qdma.va)
2658 		goto err_free_qp_finish_id;
2659 
2660 	qp->sqe = qp->qdma.va;
2661 	qp->sqe_dma = qp->qdma.dma;
2662 	qp->cqe = qp->qdma.va + off;
2663 	qp->cqe_dma = qp->qdma.dma + off;
2664 	qp->qdma.size = dma_size;
2665 	qp->sq_depth = sq_depth;
2666 	qp->cq_depth = cq_depth;
2667 	qp->qm = qm;
2668 	qp->qp_id = id;
2669 
2670 	return 0;
2671 
2672 err_free_qp_finish_id:
2673 	kfree(qm->poll_data[id].qp_finish_id);
2674 	return ret;
2675 }
2676 
2677 static void hisi_qm_pre_init(struct hisi_qm *qm)
2678 {
2679 	struct pci_dev *pdev = qm->pdev;
2680 
2681 	if (qm->ver == QM_HW_V1)
2682 		qm->ops = &qm_hw_ops_v1;
2683 	else if (qm->ver == QM_HW_V2)
2684 		qm->ops = &qm_hw_ops_v2;
2685 	else
2686 		qm->ops = &qm_hw_ops_v3;
2687 
2688 	pci_set_drvdata(pdev, qm);
2689 	mutex_init(&qm->mailbox_lock);
2690 	init_rwsem(&qm->qps_lock);
2691 	qm->qp_in_used = 0;
2692 	qm->misc_ctl = false;
2693 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2694 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2695 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2696 	}
2697 }
2698 
2699 static void qm_cmd_uninit(struct hisi_qm *qm)
2700 {
2701 	u32 val;
2702 
2703 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2704 		return;
2705 
2706 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2707 	val |= QM_IFC_INT_DISABLE;
2708 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2709 }
2710 
2711 static void qm_cmd_init(struct hisi_qm *qm)
2712 {
2713 	u32 val;
2714 
2715 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2716 		return;
2717 
2718 	/* Clear communication interrupt source */
2719 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2720 
2721 	/* Enable pf to vf communication reg. */
2722 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2723 	val &= ~QM_IFC_INT_DISABLE;
2724 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2725 }
2726 
2727 static void qm_put_pci_res(struct hisi_qm *qm)
2728 {
2729 	struct pci_dev *pdev = qm->pdev;
2730 
2731 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2732 		iounmap(qm->db_io_base);
2733 
2734 	iounmap(qm->io_base);
2735 	pci_release_mem_regions(pdev);
2736 }
2737 
2738 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2739 {
2740 	struct pci_dev *pdev = qm->pdev;
2741 
2742 	pci_free_irq_vectors(pdev);
2743 	qm_put_pci_res(qm);
2744 	pci_disable_device(pdev);
2745 }
2746 
2747 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2748 {
2749 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2750 		writel(state, qm->io_base + QM_VF_STATE);
2751 }
2752 
2753 static void hisi_qm_unint_work(struct hisi_qm *qm)
2754 {
2755 	destroy_workqueue(qm->wq);
2756 }
2757 
2758 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2759 {
2760 	struct device *dev = &qm->pdev->dev;
2761 
2762 	hisi_qp_memory_uninit(qm, qm->qp_num);
2763 	if (qm->qdma.va) {
2764 		hisi_qm_cache_wb(qm);
2765 		dma_free_coherent(dev, qm->qdma.size,
2766 				  qm->qdma.va, qm->qdma.dma);
2767 	}
2768 
2769 	idr_destroy(&qm->qp_idr);
2770 
2771 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2772 		kfree(qm->factor);
2773 }
2774 
2775 /**
2776  * hisi_qm_uninit() - Uninitialize qm.
2777  * @qm: The qm needed uninit.
2778  *
2779  * This function uninits qm related device resources.
2780  */
2781 void hisi_qm_uninit(struct hisi_qm *qm)
2782 {
2783 	qm_cmd_uninit(qm);
2784 	hisi_qm_unint_work(qm);
2785 	down_write(&qm->qps_lock);
2786 
2787 	if (!qm_avail_state(qm, QM_CLOSE)) {
2788 		up_write(&qm->qps_lock);
2789 		return;
2790 	}
2791 
2792 	hisi_qm_memory_uninit(qm);
2793 	hisi_qm_set_state(qm, QM_NOT_READY);
2794 	up_write(&qm->qps_lock);
2795 
2796 	qm_irqs_unregister(qm);
2797 	hisi_qm_pci_uninit(qm);
2798 	if (qm->use_sva) {
2799 		uacce_remove(qm->uacce);
2800 		qm->uacce = NULL;
2801 	}
2802 }
2803 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2804 
2805 /**
2806  * hisi_qm_get_vft() - Get vft from a qm.
2807  * @qm: The qm we want to get its vft.
2808  * @base: The base number of queue in vft.
2809  * @number: The number of queues in vft.
2810  *
2811  * We can allocate multiple queues to a qm by configuring virtual function
2812  * table. We get related configures by this function. Normally, we call this
2813  * function in VF driver to get the queue information.
2814  *
2815  * qm hw v1 does not support this interface.
2816  */
2817 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2818 {
2819 	if (!base || !number)
2820 		return -EINVAL;
2821 
2822 	if (!qm->ops->get_vft) {
2823 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2824 		return -EINVAL;
2825 	}
2826 
2827 	return qm->ops->get_vft(qm, base, number);
2828 }
2829 
2830 /**
2831  * hisi_qm_set_vft() - Set vft to a qm.
2832  * @qm: The qm we want to set its vft.
2833  * @fun_num: The function number.
2834  * @base: The base number of queue in vft.
2835  * @number: The number of queues in vft.
2836  *
2837  * This function is alway called in PF driver, it is used to assign queues
2838  * among PF and VFs.
2839  *
2840  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2841  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2842  * (VF function number 0x2)
2843  */
2844 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2845 		    u32 number)
2846 {
2847 	u32 max_q_num = qm->ctrl_qp_num;
2848 
2849 	if (base >= max_q_num || number > max_q_num ||
2850 	    (base + number) > max_q_num)
2851 		return -EINVAL;
2852 
2853 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2854 }
2855 
2856 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2857 {
2858 	struct hisi_qm_status *status = &qm->status;
2859 
2860 	status->eq_head = 0;
2861 	status->aeq_head = 0;
2862 	status->eqc_phase = true;
2863 	status->aeqc_phase = true;
2864 }
2865 
2866 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
2867 {
2868 	/* Clear eq/aeq interrupt source */
2869 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
2870 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
2871 
2872 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2873 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2874 }
2875 
2876 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
2877 {
2878 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2879 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2880 }
2881 
2882 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2883 {
2884 	struct device *dev = &qm->pdev->dev;
2885 	struct qm_eqc *eqc;
2886 	dma_addr_t eqc_dma;
2887 	int ret;
2888 
2889 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
2890 	if (!eqc)
2891 		return -ENOMEM;
2892 
2893 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2894 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2895 	if (qm->ver == QM_HW_V1)
2896 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2897 	eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
2898 
2899 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
2900 				 DMA_TO_DEVICE);
2901 	if (dma_mapping_error(dev, eqc_dma)) {
2902 		kfree(eqc);
2903 		return -ENOMEM;
2904 	}
2905 
2906 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
2907 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
2908 	kfree(eqc);
2909 
2910 	return ret;
2911 }
2912 
2913 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
2914 {
2915 	struct device *dev = &qm->pdev->dev;
2916 	struct qm_aeqc *aeqc;
2917 	dma_addr_t aeqc_dma;
2918 	int ret;
2919 
2920 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
2921 	if (!aeqc)
2922 		return -ENOMEM;
2923 
2924 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2925 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2926 	aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
2927 
2928 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
2929 				  DMA_TO_DEVICE);
2930 	if (dma_mapping_error(dev, aeqc_dma)) {
2931 		kfree(aeqc);
2932 		return -ENOMEM;
2933 	}
2934 
2935 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
2936 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
2937 	kfree(aeqc);
2938 
2939 	return ret;
2940 }
2941 
2942 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
2943 {
2944 	struct device *dev = &qm->pdev->dev;
2945 	int ret;
2946 
2947 	qm_init_eq_aeq_status(qm);
2948 
2949 	ret = qm_eq_ctx_cfg(qm);
2950 	if (ret) {
2951 		dev_err(dev, "Set eqc failed!\n");
2952 		return ret;
2953 	}
2954 
2955 	return qm_aeq_ctx_cfg(qm);
2956 }
2957 
2958 static int __hisi_qm_start(struct hisi_qm *qm)
2959 {
2960 	int ret;
2961 
2962 	WARN_ON(!qm->qdma.va);
2963 
2964 	if (qm->fun_type == QM_HW_PF) {
2965 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
2966 		if (ret)
2967 			return ret;
2968 	}
2969 
2970 	ret = qm_eq_aeq_ctx_cfg(qm);
2971 	if (ret)
2972 		return ret;
2973 
2974 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
2975 	if (ret)
2976 		return ret;
2977 
2978 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
2979 	if (ret)
2980 		return ret;
2981 
2982 	qm_init_prefetch(qm);
2983 	qm_enable_eq_aeq_interrupts(qm);
2984 
2985 	return 0;
2986 }
2987 
2988 /**
2989  * hisi_qm_start() - start qm
2990  * @qm: The qm to be started.
2991  *
2992  * This function starts a qm, then we can allocate qp from this qm.
2993  */
2994 int hisi_qm_start(struct hisi_qm *qm)
2995 {
2996 	struct device *dev = &qm->pdev->dev;
2997 	int ret = 0;
2998 
2999 	down_write(&qm->qps_lock);
3000 
3001 	if (!qm_avail_state(qm, QM_START)) {
3002 		up_write(&qm->qps_lock);
3003 		return -EPERM;
3004 	}
3005 
3006 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3007 
3008 	if (!qm->qp_num) {
3009 		dev_err(dev, "qp_num should not be 0\n");
3010 		ret = -EINVAL;
3011 		goto err_unlock;
3012 	}
3013 
3014 	ret = __hisi_qm_start(qm);
3015 	if (!ret)
3016 		atomic_set(&qm->status.flags, QM_START);
3017 
3018 	hisi_qm_set_state(qm, QM_READY);
3019 err_unlock:
3020 	up_write(&qm->qps_lock);
3021 	return ret;
3022 }
3023 EXPORT_SYMBOL_GPL(hisi_qm_start);
3024 
3025 static int qm_restart(struct hisi_qm *qm)
3026 {
3027 	struct device *dev = &qm->pdev->dev;
3028 	struct hisi_qp *qp;
3029 	int ret, i;
3030 
3031 	ret = hisi_qm_start(qm);
3032 	if (ret < 0)
3033 		return ret;
3034 
3035 	down_write(&qm->qps_lock);
3036 	for (i = 0; i < qm->qp_num; i++) {
3037 		qp = &qm->qp_array[i];
3038 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3039 		    qp->is_resetting == true) {
3040 			ret = qm_start_qp_nolock(qp, 0);
3041 			if (ret < 0) {
3042 				dev_err(dev, "Failed to start qp%d!\n", i);
3043 
3044 				up_write(&qm->qps_lock);
3045 				return ret;
3046 			}
3047 			qp->is_resetting = false;
3048 		}
3049 	}
3050 	up_write(&qm->qps_lock);
3051 
3052 	return 0;
3053 }
3054 
3055 /* Stop started qps in reset flow */
3056 static int qm_stop_started_qp(struct hisi_qm *qm)
3057 {
3058 	struct device *dev = &qm->pdev->dev;
3059 	struct hisi_qp *qp;
3060 	int i, ret;
3061 
3062 	for (i = 0; i < qm->qp_num; i++) {
3063 		qp = &qm->qp_array[i];
3064 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3065 			qp->is_resetting = true;
3066 			ret = qm_stop_qp_nolock(qp);
3067 			if (ret < 0) {
3068 				dev_err(dev, "Failed to stop qp%d!\n", i);
3069 				return ret;
3070 			}
3071 		}
3072 	}
3073 
3074 	return 0;
3075 }
3076 
3077 
3078 /**
3079  * qm_clear_queues() - Clear all queues memory in a qm.
3080  * @qm: The qm in which the queues will be cleared.
3081  *
3082  * This function clears all queues memory in a qm. Reset of accelerator can
3083  * use this to clear queues.
3084  */
3085 static void qm_clear_queues(struct hisi_qm *qm)
3086 {
3087 	struct hisi_qp *qp;
3088 	int i;
3089 
3090 	for (i = 0; i < qm->qp_num; i++) {
3091 		qp = &qm->qp_array[i];
3092 		if (qp->is_in_kernel && qp->is_resetting)
3093 			memset(qp->qdma.va, 0, qp->qdma.size);
3094 	}
3095 
3096 	memset(qm->qdma.va, 0, qm->qdma.size);
3097 }
3098 
3099 /**
3100  * hisi_qm_stop() - Stop a qm.
3101  * @qm: The qm which will be stopped.
3102  * @r: The reason to stop qm.
3103  *
3104  * This function stops qm and its qps, then qm can not accept request.
3105  * Related resources are not released at this state, we can use hisi_qm_start
3106  * to let qm start again.
3107  */
3108 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3109 {
3110 	struct device *dev = &qm->pdev->dev;
3111 	int ret = 0;
3112 
3113 	down_write(&qm->qps_lock);
3114 
3115 	qm->status.stop_reason = r;
3116 	if (!qm_avail_state(qm, QM_STOP)) {
3117 		ret = -EPERM;
3118 		goto err_unlock;
3119 	}
3120 
3121 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3122 	    qm->status.stop_reason == QM_FLR) {
3123 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3124 		ret = qm_stop_started_qp(qm);
3125 		if (ret < 0) {
3126 			dev_err(dev, "Failed to stop started qp!\n");
3127 			goto err_unlock;
3128 		}
3129 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3130 	}
3131 
3132 	qm_disable_eq_aeq_interrupts(qm);
3133 	if (qm->fun_type == QM_HW_PF) {
3134 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3135 		if (ret < 0) {
3136 			dev_err(dev, "Failed to set vft!\n");
3137 			ret = -EBUSY;
3138 			goto err_unlock;
3139 		}
3140 	}
3141 
3142 	qm_clear_queues(qm);
3143 	atomic_set(&qm->status.flags, QM_STOP);
3144 
3145 err_unlock:
3146 	up_write(&qm->qps_lock);
3147 	return ret;
3148 }
3149 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3150 
3151 static void qm_hw_error_init(struct hisi_qm *qm)
3152 {
3153 	if (!qm->ops->hw_error_init) {
3154 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3155 		return;
3156 	}
3157 
3158 	qm->ops->hw_error_init(qm);
3159 }
3160 
3161 static void qm_hw_error_uninit(struct hisi_qm *qm)
3162 {
3163 	if (!qm->ops->hw_error_uninit) {
3164 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3165 		return;
3166 	}
3167 
3168 	qm->ops->hw_error_uninit(qm);
3169 }
3170 
3171 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3172 {
3173 	if (!qm->ops->hw_error_handle) {
3174 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3175 		return ACC_ERR_NONE;
3176 	}
3177 
3178 	return qm->ops->hw_error_handle(qm);
3179 }
3180 
3181 /**
3182  * hisi_qm_dev_err_init() - Initialize device error configuration.
3183  * @qm: The qm for which we want to do error initialization.
3184  *
3185  * Initialize QM and device error related configuration.
3186  */
3187 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3188 {
3189 	if (qm->fun_type == QM_HW_VF)
3190 		return;
3191 
3192 	qm_hw_error_init(qm);
3193 
3194 	if (!qm->err_ini->hw_err_enable) {
3195 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3196 		return;
3197 	}
3198 	qm->err_ini->hw_err_enable(qm);
3199 }
3200 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3201 
3202 /**
3203  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3204  * @qm: The qm for which we want to do error uninitialization.
3205  *
3206  * Uninitialize QM and device error related configuration.
3207  */
3208 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3209 {
3210 	if (qm->fun_type == QM_HW_VF)
3211 		return;
3212 
3213 	qm_hw_error_uninit(qm);
3214 
3215 	if (!qm->err_ini->hw_err_disable) {
3216 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3217 		return;
3218 	}
3219 	qm->err_ini->hw_err_disable(qm);
3220 }
3221 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3222 
3223 /**
3224  * hisi_qm_free_qps() - free multiple queue pairs.
3225  * @qps: The queue pairs need to be freed.
3226  * @qp_num: The num of queue pairs.
3227  */
3228 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3229 {
3230 	int i;
3231 
3232 	if (!qps || qp_num <= 0)
3233 		return;
3234 
3235 	for (i = qp_num - 1; i >= 0; i--)
3236 		hisi_qm_release_qp(qps[i]);
3237 }
3238 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3239 
3240 static void free_list(struct list_head *head)
3241 {
3242 	struct hisi_qm_resource *res, *tmp;
3243 
3244 	list_for_each_entry_safe(res, tmp, head, list) {
3245 		list_del(&res->list);
3246 		kfree(res);
3247 	}
3248 }
3249 
3250 static int hisi_qm_sort_devices(int node, struct list_head *head,
3251 				struct hisi_qm_list *qm_list)
3252 {
3253 	struct hisi_qm_resource *res, *tmp;
3254 	struct hisi_qm *qm;
3255 	struct list_head *n;
3256 	struct device *dev;
3257 	int dev_node;
3258 
3259 	list_for_each_entry(qm, &qm_list->list, list) {
3260 		dev = &qm->pdev->dev;
3261 
3262 		dev_node = dev_to_node(dev);
3263 		if (dev_node < 0)
3264 			dev_node = 0;
3265 
3266 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3267 		if (!res)
3268 			return -ENOMEM;
3269 
3270 		res->qm = qm;
3271 		res->distance = node_distance(dev_node, node);
3272 		n = head;
3273 		list_for_each_entry(tmp, head, list) {
3274 			if (res->distance < tmp->distance) {
3275 				n = &tmp->list;
3276 				break;
3277 			}
3278 		}
3279 		list_add_tail(&res->list, n);
3280 	}
3281 
3282 	return 0;
3283 }
3284 
3285 /**
3286  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3287  * @qm_list: The list of all available devices.
3288  * @qp_num: The number of queue pairs need created.
3289  * @alg_type: The algorithm type.
3290  * @node: The numa node.
3291  * @qps: The queue pairs need created.
3292  *
3293  * This function will sort all available device according to numa distance.
3294  * Then try to create all queue pairs from one device, if all devices do
3295  * not meet the requirements will return error.
3296  */
3297 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3298 			   u8 alg_type, int node, struct hisi_qp **qps)
3299 {
3300 	struct hisi_qm_resource *tmp;
3301 	int ret = -ENODEV;
3302 	LIST_HEAD(head);
3303 	int i;
3304 
3305 	if (!qps || !qm_list || qp_num <= 0)
3306 		return -EINVAL;
3307 
3308 	mutex_lock(&qm_list->lock);
3309 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3310 		mutex_unlock(&qm_list->lock);
3311 		goto err;
3312 	}
3313 
3314 	list_for_each_entry(tmp, &head, list) {
3315 		for (i = 0; i < qp_num; i++) {
3316 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3317 			if (IS_ERR(qps[i])) {
3318 				hisi_qm_free_qps(qps, i);
3319 				break;
3320 			}
3321 		}
3322 
3323 		if (i == qp_num) {
3324 			ret = 0;
3325 			break;
3326 		}
3327 	}
3328 
3329 	mutex_unlock(&qm_list->lock);
3330 	if (ret)
3331 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3332 			node, alg_type, qp_num);
3333 
3334 err:
3335 	free_list(&head);
3336 	return ret;
3337 }
3338 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3339 
3340 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3341 {
3342 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3343 	u32 max_qp_num = qm->max_qp_num;
3344 	u32 q_base = qm->qp_num;
3345 	int ret;
3346 
3347 	if (!num_vfs)
3348 		return -EINVAL;
3349 
3350 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3351 
3352 	/* If vfs_q_num is less than num_vfs, return error. */
3353 	if (vfs_q_num < num_vfs)
3354 		return -EINVAL;
3355 
3356 	q_num = vfs_q_num / num_vfs;
3357 	remain_q_num = vfs_q_num % num_vfs;
3358 
3359 	for (i = num_vfs; i > 0; i--) {
3360 		/*
3361 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3362 		 * remaining queues equally.
3363 		 */
3364 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3365 			act_q_num = q_num + remain_q_num;
3366 			remain_q_num = 0;
3367 		} else if (remain_q_num > 0) {
3368 			act_q_num = q_num + 1;
3369 			remain_q_num--;
3370 		} else {
3371 			act_q_num = q_num;
3372 		}
3373 
3374 		act_q_num = min_t(int, act_q_num, max_qp_num);
3375 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3376 		if (ret) {
3377 			for (j = num_vfs; j > i; j--)
3378 				hisi_qm_set_vft(qm, j, 0, 0);
3379 			return ret;
3380 		}
3381 		q_base += act_q_num;
3382 	}
3383 
3384 	return 0;
3385 }
3386 
3387 static int qm_clear_vft_config(struct hisi_qm *qm)
3388 {
3389 	int ret;
3390 	u32 i;
3391 
3392 	for (i = 1; i <= qm->vfs_num; i++) {
3393 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3394 		if (ret)
3395 			return ret;
3396 	}
3397 	qm->vfs_num = 0;
3398 
3399 	return 0;
3400 }
3401 
3402 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3403 {
3404 	struct device *dev = &qm->pdev->dev;
3405 	u32 ir = qos * QM_QOS_RATE;
3406 	int ret, total_vfs, i;
3407 
3408 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3409 	if (fun_index > total_vfs)
3410 		return -EINVAL;
3411 
3412 	qm->factor[fun_index].func_qos = qos;
3413 
3414 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3415 	if (ret) {
3416 		dev_err(dev, "failed to calculate shaper parameter!\n");
3417 		return -EINVAL;
3418 	}
3419 
3420 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3421 		/* The base number of queue reuse for different alg type */
3422 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3423 		if (ret) {
3424 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3425 			return -EINVAL;
3426 		}
3427 	}
3428 
3429 	return 0;
3430 }
3431 
3432 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3433 {
3434 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3435 	u64 shaper_vft, ir_calc, ir;
3436 	unsigned int val;
3437 	u32 error_rate;
3438 	int ret;
3439 
3440 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3441 					 val & BIT(0), POLL_PERIOD,
3442 					 POLL_TIMEOUT);
3443 	if (ret)
3444 		return 0;
3445 
3446 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3447 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3448 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3449 
3450 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3451 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3452 
3453 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3454 					 val & BIT(0), POLL_PERIOD,
3455 					 POLL_TIMEOUT);
3456 	if (ret)
3457 		return 0;
3458 
3459 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3460 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3461 
3462 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3463 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3464 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3465 
3466 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3467 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3468 
3469 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3470 
3471 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3472 
3473 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3474 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3475 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3476 		return 0;
3477 	}
3478 
3479 	return ir;
3480 }
3481 
3482 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3483 {
3484 	struct device *dev = &qm->pdev->dev;
3485 	u64 mb_cmd;
3486 	u32 qos;
3487 	int ret;
3488 
3489 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3490 	if (!qos) {
3491 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3492 		return;
3493 	}
3494 
3495 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3496 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3497 	if (ret)
3498 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3499 }
3500 
3501 static int qm_vf_read_qos(struct hisi_qm *qm)
3502 {
3503 	int cnt = 0;
3504 	int ret = -EINVAL;
3505 
3506 	/* reset mailbox qos val */
3507 	qm->mb_qos = 0;
3508 
3509 	/* vf ping pf to get function qos */
3510 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3511 	if (ret) {
3512 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3513 		return ret;
3514 	}
3515 
3516 	while (true) {
3517 		msleep(QM_WAIT_DST_ACK);
3518 		if (qm->mb_qos)
3519 			break;
3520 
3521 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3522 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3523 			return  -ETIMEDOUT;
3524 		}
3525 	}
3526 
3527 	return ret;
3528 }
3529 
3530 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3531 			       size_t count, loff_t *pos)
3532 {
3533 	struct hisi_qm *qm = filp->private_data;
3534 	char tbuf[QM_DBG_READ_LEN];
3535 	u32 qos_val, ir;
3536 	int ret;
3537 
3538 	ret = hisi_qm_get_dfx_access(qm);
3539 	if (ret)
3540 		return ret;
3541 
3542 	/* Mailbox and reset cannot be operated at the same time */
3543 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3544 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3545 		ret = -EAGAIN;
3546 		goto err_put_dfx_access;
3547 	}
3548 
3549 	if (qm->fun_type == QM_HW_PF) {
3550 		ir = qm_get_shaper_vft_qos(qm, 0);
3551 	} else {
3552 		ret = qm_vf_read_qos(qm);
3553 		if (ret)
3554 			goto err_get_status;
3555 		ir = qm->mb_qos;
3556 	}
3557 
3558 	qos_val = ir / QM_QOS_RATE;
3559 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3560 
3561 	ret =  simple_read_from_buffer(buf, count, pos, tbuf, ret);
3562 
3563 err_get_status:
3564 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3565 err_put_dfx_access:
3566 	hisi_qm_put_dfx_access(qm);
3567 	return ret;
3568 }
3569 
3570 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3571 			       unsigned long *val,
3572 			       unsigned int *fun_index)
3573 {
3574 	struct bus_type *bus_type = qm->pdev->dev.bus;
3575 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3576 	char val_buf[QM_DBG_READ_LEN] = {0};
3577 	struct pci_dev *pdev;
3578 	struct device *dev;
3579 	int ret;
3580 
3581 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3582 	if (ret != QM_QOS_PARAM_NUM)
3583 		return -EINVAL;
3584 
3585 	ret = kstrtoul(val_buf, 10, val);
3586 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3587 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3588 		return -EINVAL;
3589 	}
3590 
3591 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3592 	if (!dev) {
3593 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3594 		return -ENODEV;
3595 	}
3596 
3597 	pdev = container_of(dev, struct pci_dev, dev);
3598 
3599 	*fun_index = pdev->devfn;
3600 
3601 	return 0;
3602 }
3603 
3604 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3605 			       size_t count, loff_t *pos)
3606 {
3607 	struct hisi_qm *qm = filp->private_data;
3608 	char tbuf[QM_DBG_READ_LEN];
3609 	unsigned int fun_index;
3610 	unsigned long val;
3611 	int len, ret;
3612 
3613 	if (*pos != 0)
3614 		return 0;
3615 
3616 	if (count >= QM_DBG_READ_LEN)
3617 		return -ENOSPC;
3618 
3619 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3620 	if (len < 0)
3621 		return len;
3622 
3623 	tbuf[len] = '\0';
3624 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3625 	if (ret)
3626 		return ret;
3627 
3628 	/* Mailbox and reset cannot be operated at the same time */
3629 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3630 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3631 		return -EAGAIN;
3632 	}
3633 
3634 	ret = qm_pm_get_sync(qm);
3635 	if (ret) {
3636 		ret = -EINVAL;
3637 		goto err_get_status;
3638 	}
3639 
3640 	ret = qm_func_shaper_enable(qm, fun_index, val);
3641 	if (ret) {
3642 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3643 		ret = -EINVAL;
3644 		goto err_put_sync;
3645 	}
3646 
3647 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3648 		 fun_index, val);
3649 	ret = count;
3650 
3651 err_put_sync:
3652 	qm_pm_put_sync(qm);
3653 err_get_status:
3654 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3655 	return ret;
3656 }
3657 
3658 static const struct file_operations qm_algqos_fops = {
3659 	.owner = THIS_MODULE,
3660 	.open = simple_open,
3661 	.read = qm_algqos_read,
3662 	.write = qm_algqos_write,
3663 };
3664 
3665 /**
3666  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3667  * @qm: The qm for which we want to add debugfs files.
3668  *
3669  * Create function qos debugfs files, VF ping PF to get function qos.
3670  */
3671 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3672 {
3673 	if (qm->fun_type == QM_HW_PF)
3674 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3675 				    qm, &qm_algqos_fops);
3676 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3677 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3678 				    qm, &qm_algqos_fops);
3679 }
3680 
3681 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3682 {
3683 	int i;
3684 
3685 	for (i = 1; i <= total_func; i++)
3686 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3687 }
3688 
3689 /**
3690  * hisi_qm_sriov_enable() - enable virtual functions
3691  * @pdev: the PCIe device
3692  * @max_vfs: the number of virtual functions to enable
3693  *
3694  * Returns the number of enabled VFs. If there are VFs enabled already or
3695  * max_vfs is more than the total number of device can be enabled, returns
3696  * failure.
3697  */
3698 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3699 {
3700 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3701 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3702 
3703 	ret = qm_pm_get_sync(qm);
3704 	if (ret)
3705 		return ret;
3706 
3707 	total_vfs = pci_sriov_get_totalvfs(pdev);
3708 	pre_existing_vfs = pci_num_vf(pdev);
3709 	if (pre_existing_vfs) {
3710 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3711 			pre_existing_vfs);
3712 		goto err_put_sync;
3713 	}
3714 
3715 	if (max_vfs > total_vfs) {
3716 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3717 		ret = -ERANGE;
3718 		goto err_put_sync;
3719 	}
3720 
3721 	num_vfs = max_vfs;
3722 
3723 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3724 		hisi_qm_init_vf_qos(qm, num_vfs);
3725 
3726 	ret = qm_vf_q_assign(qm, num_vfs);
3727 	if (ret) {
3728 		pci_err(pdev, "Can't assign queues for VF!\n");
3729 		goto err_put_sync;
3730 	}
3731 
3732 	qm->vfs_num = num_vfs;
3733 
3734 	ret = pci_enable_sriov(pdev, num_vfs);
3735 	if (ret) {
3736 		pci_err(pdev, "Can't enable VF!\n");
3737 		qm_clear_vft_config(qm);
3738 		goto err_put_sync;
3739 	}
3740 
3741 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3742 
3743 	return num_vfs;
3744 
3745 err_put_sync:
3746 	qm_pm_put_sync(qm);
3747 	return ret;
3748 }
3749 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3750 
3751 /**
3752  * hisi_qm_sriov_disable - disable virtual functions
3753  * @pdev: the PCI device.
3754  * @is_frozen: true when all the VFs are frozen.
3755  *
3756  * Return failure if there are VFs assigned already or VF is in used.
3757  */
3758 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3759 {
3760 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3761 	int ret;
3762 
3763 	if (pci_vfs_assigned(pdev)) {
3764 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3765 		return -EPERM;
3766 	}
3767 
3768 	/* While VF is in used, SRIOV cannot be disabled. */
3769 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3770 		pci_err(pdev, "Task is using its VF!\n");
3771 		return -EBUSY;
3772 	}
3773 
3774 	pci_disable_sriov(pdev);
3775 
3776 	ret = qm_clear_vft_config(qm);
3777 	if (ret)
3778 		return ret;
3779 
3780 	qm_pm_put_sync(qm);
3781 
3782 	return 0;
3783 }
3784 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3785 
3786 /**
3787  * hisi_qm_sriov_configure - configure the number of VFs
3788  * @pdev: The PCI device
3789  * @num_vfs: The number of VFs need enabled
3790  *
3791  * Enable SR-IOV according to num_vfs, 0 means disable.
3792  */
3793 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3794 {
3795 	if (num_vfs == 0)
3796 		return hisi_qm_sriov_disable(pdev, false);
3797 	else
3798 		return hisi_qm_sriov_enable(pdev, num_vfs);
3799 }
3800 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3801 
3802 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3803 {
3804 	u32 err_sts;
3805 
3806 	if (!qm->err_ini->get_dev_hw_err_status) {
3807 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3808 		return ACC_ERR_NONE;
3809 	}
3810 
3811 	/* get device hardware error status */
3812 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3813 	if (err_sts) {
3814 		if (err_sts & qm->err_info.ecc_2bits_mask)
3815 			qm->err_status.is_dev_ecc_mbit = true;
3816 
3817 		if (qm->err_ini->log_dev_hw_err)
3818 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3819 
3820 		if (err_sts & qm->err_info.dev_reset_mask)
3821 			return ACC_ERR_NEED_RESET;
3822 
3823 		if (qm->err_ini->clear_dev_hw_err_status)
3824 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3825 	}
3826 
3827 	return ACC_ERR_RECOVERED;
3828 }
3829 
3830 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3831 {
3832 	enum acc_err_result qm_ret, dev_ret;
3833 
3834 	/* log qm error */
3835 	qm_ret = qm_hw_error_handle(qm);
3836 
3837 	/* log device error */
3838 	dev_ret = qm_dev_err_handle(qm);
3839 
3840 	return (qm_ret == ACC_ERR_NEED_RESET ||
3841 		dev_ret == ACC_ERR_NEED_RESET) ?
3842 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3843 }
3844 
3845 /**
3846  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3847  * @pdev: The PCI device which need report error.
3848  * @state: The connectivity between CPU and device.
3849  *
3850  * We register this function into PCIe AER handlers, It will report device or
3851  * qm hardware error status when error occur.
3852  */
3853 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3854 					  pci_channel_state_t state)
3855 {
3856 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3857 	enum acc_err_result ret;
3858 
3859 	if (pdev->is_virtfn)
3860 		return PCI_ERS_RESULT_NONE;
3861 
3862 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3863 	if (state == pci_channel_io_perm_failure)
3864 		return PCI_ERS_RESULT_DISCONNECT;
3865 
3866 	ret = qm_process_dev_error(qm);
3867 	if (ret == ACC_ERR_NEED_RESET)
3868 		return PCI_ERS_RESULT_NEED_RESET;
3869 
3870 	return PCI_ERS_RESULT_RECOVERED;
3871 }
3872 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3873 
3874 static int qm_check_req_recv(struct hisi_qm *qm)
3875 {
3876 	struct pci_dev *pdev = qm->pdev;
3877 	int ret;
3878 	u32 val;
3879 
3880 	if (qm->ver >= QM_HW_V3)
3881 		return 0;
3882 
3883 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3884 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3885 					 (val == ACC_VENDOR_ID_VALUE),
3886 					 POLL_PERIOD, POLL_TIMEOUT);
3887 	if (ret) {
3888 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3889 		return ret;
3890 	}
3891 
3892 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3893 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3894 					 (val == PCI_VENDOR_ID_HUAWEI),
3895 					 POLL_PERIOD, POLL_TIMEOUT);
3896 	if (ret)
3897 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3898 
3899 	return ret;
3900 }
3901 
3902 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3903 {
3904 	struct pci_dev *pdev = qm->pdev;
3905 	u16 cmd;
3906 	int i;
3907 
3908 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3909 	if (set)
3910 		cmd |= PCI_COMMAND_MEMORY;
3911 	else
3912 		cmd &= ~PCI_COMMAND_MEMORY;
3913 
3914 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3915 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3916 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3917 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3918 			return 0;
3919 
3920 		udelay(1);
3921 	}
3922 
3923 	return -ETIMEDOUT;
3924 }
3925 
3926 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3927 {
3928 	struct pci_dev *pdev = qm->pdev;
3929 	u16 sriov_ctrl;
3930 	int pos;
3931 	int i;
3932 
3933 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3934 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3935 	if (set)
3936 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3937 	else
3938 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3939 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3940 
3941 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3942 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3943 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3944 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3945 			return 0;
3946 
3947 		udelay(1);
3948 	}
3949 
3950 	return -ETIMEDOUT;
3951 }
3952 
3953 static int qm_vf_reset_prepare(struct hisi_qm *qm,
3954 			       enum qm_stop_reason stop_reason)
3955 {
3956 	struct hisi_qm_list *qm_list = qm->qm_list;
3957 	struct pci_dev *pdev = qm->pdev;
3958 	struct pci_dev *virtfn;
3959 	struct hisi_qm *vf_qm;
3960 	int ret = 0;
3961 
3962 	mutex_lock(&qm_list->lock);
3963 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3964 		virtfn = vf_qm->pdev;
3965 		if (virtfn == pdev)
3966 			continue;
3967 
3968 		if (pci_physfn(virtfn) == pdev) {
3969 			/* save VFs PCIE BAR configuration */
3970 			pci_save_state(virtfn);
3971 
3972 			ret = hisi_qm_stop(vf_qm, stop_reason);
3973 			if (ret)
3974 				goto stop_fail;
3975 		}
3976 	}
3977 
3978 stop_fail:
3979 	mutex_unlock(&qm_list->lock);
3980 	return ret;
3981 }
3982 
3983 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
3984 			   enum qm_stop_reason stop_reason)
3985 {
3986 	struct pci_dev *pdev = qm->pdev;
3987 	int ret;
3988 
3989 	if (!qm->vfs_num)
3990 		return 0;
3991 
3992 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
3993 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
3994 		ret = qm_ping_all_vfs(qm, cmd);
3995 		if (ret)
3996 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
3997 	} else {
3998 		ret = qm_vf_reset_prepare(qm, stop_reason);
3999 		if (ret)
4000 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4001 	}
4002 
4003 	return ret;
4004 }
4005 
4006 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4007 {
4008 	struct pci_dev *pdev = qm->pdev;
4009 	int ret;
4010 
4011 	ret = qm_reset_prepare_ready(qm);
4012 	if (ret) {
4013 		pci_err(pdev, "Controller reset not ready!\n");
4014 		return ret;
4015 	}
4016 
4017 	/* PF obtains the information of VF by querying the register. */
4018 	qm_cmd_uninit(qm);
4019 
4020 	/* Whether VFs stop successfully, soft reset will continue. */
4021 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4022 	if (ret)
4023 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4024 
4025 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4026 	if (ret) {
4027 		pci_err(pdev, "Fails to stop QM!\n");
4028 		qm_reset_bit_clear(qm);
4029 		return ret;
4030 	}
4031 
4032 	ret = qm_wait_vf_prepare_finish(qm);
4033 	if (ret)
4034 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4035 
4036 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4037 
4038 	return 0;
4039 }
4040 
4041 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4042 {
4043 	u32 nfe_enb = 0;
4044 
4045 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4046 	if (qm->ver >= QM_HW_V3)
4047 		return;
4048 
4049 	if (!qm->err_status.is_dev_ecc_mbit &&
4050 	    qm->err_status.is_qm_ecc_mbit &&
4051 	    qm->err_ini->close_axi_master_ooo) {
4052 
4053 		qm->err_ini->close_axi_master_ooo(qm);
4054 
4055 	} else if (qm->err_status.is_dev_ecc_mbit &&
4056 		   !qm->err_status.is_qm_ecc_mbit &&
4057 		   !qm->err_ini->close_axi_master_ooo) {
4058 
4059 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4060 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4061 		       qm->io_base + QM_RAS_NFE_ENABLE);
4062 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4063 	}
4064 }
4065 
4066 static int qm_soft_reset(struct hisi_qm *qm)
4067 {
4068 	struct pci_dev *pdev = qm->pdev;
4069 	int ret;
4070 	u32 val;
4071 
4072 	/* Ensure all doorbells and mailboxes received by QM */
4073 	ret = qm_check_req_recv(qm);
4074 	if (ret)
4075 		return ret;
4076 
4077 	if (qm->vfs_num) {
4078 		ret = qm_set_vf_mse(qm, false);
4079 		if (ret) {
4080 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4081 			return ret;
4082 		}
4083 	}
4084 
4085 	ret = qm->ops->set_msi(qm, false);
4086 	if (ret) {
4087 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4088 		return ret;
4089 	}
4090 
4091 	qm_dev_ecc_mbit_handle(qm);
4092 
4093 	/* OOO register set and check */
4094 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4095 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4096 
4097 	/* If bus lock, reset chip */
4098 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4099 					 val,
4100 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4101 					 POLL_PERIOD, POLL_TIMEOUT);
4102 	if (ret) {
4103 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4104 		return ret;
4105 	}
4106 
4107 	if (qm->err_ini->close_sva_prefetch)
4108 		qm->err_ini->close_sva_prefetch(qm);
4109 
4110 	ret = qm_set_pf_mse(qm, false);
4111 	if (ret) {
4112 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4113 		return ret;
4114 	}
4115 
4116 	/* The reset related sub-control registers are not in PCI BAR */
4117 	if (ACPI_HANDLE(&pdev->dev)) {
4118 		unsigned long long value = 0;
4119 		acpi_status s;
4120 
4121 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4122 					  qm->err_info.acpi_rst,
4123 					  NULL, &value);
4124 		if (ACPI_FAILURE(s)) {
4125 			pci_err(pdev, "NO controller reset method!\n");
4126 			return -EIO;
4127 		}
4128 
4129 		if (value) {
4130 			pci_err(pdev, "Reset step %llu failed!\n", value);
4131 			return -EIO;
4132 		}
4133 	} else {
4134 		pci_err(pdev, "No reset method!\n");
4135 		return -EINVAL;
4136 	}
4137 
4138 	return 0;
4139 }
4140 
4141 static int qm_vf_reset_done(struct hisi_qm *qm)
4142 {
4143 	struct hisi_qm_list *qm_list = qm->qm_list;
4144 	struct pci_dev *pdev = qm->pdev;
4145 	struct pci_dev *virtfn;
4146 	struct hisi_qm *vf_qm;
4147 	int ret = 0;
4148 
4149 	mutex_lock(&qm_list->lock);
4150 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4151 		virtfn = vf_qm->pdev;
4152 		if (virtfn == pdev)
4153 			continue;
4154 
4155 		if (pci_physfn(virtfn) == pdev) {
4156 			/* enable VFs PCIE BAR configuration */
4157 			pci_restore_state(virtfn);
4158 
4159 			ret = qm_restart(vf_qm);
4160 			if (ret)
4161 				goto restart_fail;
4162 		}
4163 	}
4164 
4165 restart_fail:
4166 	mutex_unlock(&qm_list->lock);
4167 	return ret;
4168 }
4169 
4170 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4171 {
4172 	struct pci_dev *pdev = qm->pdev;
4173 	int ret;
4174 
4175 	if (!qm->vfs_num)
4176 		return 0;
4177 
4178 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4179 	if (ret) {
4180 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4181 		return ret;
4182 	}
4183 
4184 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4185 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4186 		ret = qm_ping_all_vfs(qm, cmd);
4187 		if (ret)
4188 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4189 	} else {
4190 		ret = qm_vf_reset_done(qm);
4191 		if (ret)
4192 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4193 	}
4194 
4195 	return ret;
4196 }
4197 
4198 static int qm_dev_hw_init(struct hisi_qm *qm)
4199 {
4200 	return qm->err_ini->hw_init(qm);
4201 }
4202 
4203 static void qm_restart_prepare(struct hisi_qm *qm)
4204 {
4205 	u32 value;
4206 
4207 	if (qm->err_ini->open_sva_prefetch)
4208 		qm->err_ini->open_sva_prefetch(qm);
4209 
4210 	if (qm->ver >= QM_HW_V3)
4211 		return;
4212 
4213 	if (!qm->err_status.is_qm_ecc_mbit &&
4214 	    !qm->err_status.is_dev_ecc_mbit)
4215 		return;
4216 
4217 	/* temporarily close the OOO port used for PEH to write out MSI */
4218 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4219 	writel(value & ~qm->err_info.msi_wr_port,
4220 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4221 
4222 	/* clear dev ecc 2bit error source if having */
4223 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4224 	if (value && qm->err_ini->clear_dev_hw_err_status)
4225 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4226 
4227 	/* clear QM ecc mbit error source */
4228 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4229 
4230 	/* clear AM Reorder Buffer ecc mbit source */
4231 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4232 }
4233 
4234 static void qm_restart_done(struct hisi_qm *qm)
4235 {
4236 	u32 value;
4237 
4238 	if (qm->ver >= QM_HW_V3)
4239 		goto clear_flags;
4240 
4241 	if (!qm->err_status.is_qm_ecc_mbit &&
4242 	    !qm->err_status.is_dev_ecc_mbit)
4243 		return;
4244 
4245 	/* open the OOO port for PEH to write out MSI */
4246 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4247 	value |= qm->err_info.msi_wr_port;
4248 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4249 
4250 clear_flags:
4251 	qm->err_status.is_qm_ecc_mbit = false;
4252 	qm->err_status.is_dev_ecc_mbit = false;
4253 }
4254 
4255 static int qm_controller_reset_done(struct hisi_qm *qm)
4256 {
4257 	struct pci_dev *pdev = qm->pdev;
4258 	int ret;
4259 
4260 	ret = qm->ops->set_msi(qm, true);
4261 	if (ret) {
4262 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4263 		return ret;
4264 	}
4265 
4266 	ret = qm_set_pf_mse(qm, true);
4267 	if (ret) {
4268 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4269 		return ret;
4270 	}
4271 
4272 	if (qm->vfs_num) {
4273 		ret = qm_set_vf_mse(qm, true);
4274 		if (ret) {
4275 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4276 			return ret;
4277 		}
4278 	}
4279 
4280 	ret = qm_dev_hw_init(qm);
4281 	if (ret) {
4282 		pci_err(pdev, "Failed to init device\n");
4283 		return ret;
4284 	}
4285 
4286 	qm_restart_prepare(qm);
4287 	hisi_qm_dev_err_init(qm);
4288 	if (qm->err_ini->open_axi_master_ooo)
4289 		qm->err_ini->open_axi_master_ooo(qm);
4290 
4291 	ret = qm_dev_mem_reset(qm);
4292 	if (ret) {
4293 		pci_err(pdev, "failed to reset device memory\n");
4294 		return ret;
4295 	}
4296 
4297 	ret = qm_restart(qm);
4298 	if (ret) {
4299 		pci_err(pdev, "Failed to start QM!\n");
4300 		return ret;
4301 	}
4302 
4303 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4304 	if (ret)
4305 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4306 
4307 	ret = qm_wait_vf_prepare_finish(qm);
4308 	if (ret)
4309 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4310 
4311 	qm_cmd_init(qm);
4312 	qm_restart_done(qm);
4313 
4314 	qm_reset_bit_clear(qm);
4315 
4316 	return 0;
4317 }
4318 
4319 static int qm_controller_reset(struct hisi_qm *qm)
4320 {
4321 	struct pci_dev *pdev = qm->pdev;
4322 	int ret;
4323 
4324 	pci_info(pdev, "Controller resetting...\n");
4325 
4326 	ret = qm_controller_reset_prepare(qm);
4327 	if (ret) {
4328 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4329 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4330 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4331 		return ret;
4332 	}
4333 
4334 	hisi_qm_show_last_dfx_regs(qm);
4335 	if (qm->err_ini->show_last_dfx_regs)
4336 		qm->err_ini->show_last_dfx_regs(qm);
4337 
4338 	ret = qm_soft_reset(qm);
4339 	if (ret) {
4340 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4341 		qm_reset_bit_clear(qm);
4342 		return ret;
4343 	}
4344 
4345 	ret = qm_controller_reset_done(qm);
4346 	if (ret) {
4347 		qm_reset_bit_clear(qm);
4348 		return ret;
4349 	}
4350 
4351 	pci_info(pdev, "Controller reset complete\n");
4352 
4353 	return 0;
4354 }
4355 
4356 /**
4357  * hisi_qm_dev_slot_reset() - slot reset
4358  * @pdev: the PCIe device
4359  *
4360  * This function offers QM relate PCIe device reset interface. Drivers which
4361  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4362  */
4363 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4364 {
4365 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4366 	int ret;
4367 
4368 	if (pdev->is_virtfn)
4369 		return PCI_ERS_RESULT_RECOVERED;
4370 
4371 	/* reset pcie device controller */
4372 	ret = qm_controller_reset(qm);
4373 	if (ret) {
4374 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4375 		return PCI_ERS_RESULT_DISCONNECT;
4376 	}
4377 
4378 	return PCI_ERS_RESULT_RECOVERED;
4379 }
4380 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4381 
4382 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4383 {
4384 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4385 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4386 	u32 delay = 0;
4387 	int ret;
4388 
4389 	hisi_qm_dev_err_uninit(pf_qm);
4390 
4391 	/*
4392 	 * Check whether there is an ECC mbit error, If it occurs, need to
4393 	 * wait for soft reset to fix it.
4394 	 */
4395 	while (qm_check_dev_error(pf_qm)) {
4396 		msleep(++delay);
4397 		if (delay > QM_RESET_WAIT_TIMEOUT)
4398 			return;
4399 	}
4400 
4401 	ret = qm_reset_prepare_ready(qm);
4402 	if (ret) {
4403 		pci_err(pdev, "FLR not ready!\n");
4404 		return;
4405 	}
4406 
4407 	/* PF obtains the information of VF by querying the register. */
4408 	if (qm->fun_type == QM_HW_PF)
4409 		qm_cmd_uninit(qm);
4410 
4411 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
4412 	if (ret)
4413 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4414 
4415 	ret = hisi_qm_stop(qm, QM_FLR);
4416 	if (ret) {
4417 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4418 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4419 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4420 		return;
4421 	}
4422 
4423 	ret = qm_wait_vf_prepare_finish(qm);
4424 	if (ret)
4425 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4426 
4427 	pci_info(pdev, "FLR resetting...\n");
4428 }
4429 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4430 
4431 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4432 {
4433 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4434 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4435 	u32 id;
4436 
4437 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4438 	if (id == QM_PCI_COMMAND_INVALID) {
4439 		pci_err(pdev, "Device can not be used!\n");
4440 		return false;
4441 	}
4442 
4443 	return true;
4444 }
4445 
4446 void hisi_qm_reset_done(struct pci_dev *pdev)
4447 {
4448 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4449 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4450 	int ret;
4451 
4452 	if (qm->fun_type == QM_HW_PF) {
4453 		ret = qm_dev_hw_init(qm);
4454 		if (ret) {
4455 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4456 			goto flr_done;
4457 		}
4458 	}
4459 
4460 	hisi_qm_dev_err_init(pf_qm);
4461 
4462 	ret = qm_restart(qm);
4463 	if (ret) {
4464 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4465 		goto flr_done;
4466 	}
4467 
4468 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4469 	if (ret)
4470 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4471 
4472 	ret = qm_wait_vf_prepare_finish(qm);
4473 	if (ret)
4474 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4475 
4476 flr_done:
4477 	if (qm->fun_type == QM_HW_PF)
4478 		qm_cmd_init(qm);
4479 
4480 	if (qm_flr_reset_complete(pdev))
4481 		pci_info(pdev, "FLR reset complete\n");
4482 
4483 	qm_reset_bit_clear(qm);
4484 }
4485 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4486 
4487 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4488 {
4489 	struct hisi_qm *qm = data;
4490 	enum acc_err_result ret;
4491 
4492 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4493 	ret = qm_process_dev_error(qm);
4494 	if (ret == ACC_ERR_NEED_RESET &&
4495 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4496 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4497 		schedule_work(&qm->rst_work);
4498 
4499 	return IRQ_HANDLED;
4500 }
4501 
4502 
4503 /**
4504  * hisi_qm_dev_shutdown() - Shutdown device.
4505  * @pdev: The device will be shutdown.
4506  *
4507  * This function will stop qm when OS shutdown or rebooting.
4508  */
4509 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4510 {
4511 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4512 	int ret;
4513 
4514 	ret = hisi_qm_stop(qm, QM_NORMAL);
4515 	if (ret)
4516 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4517 }
4518 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4519 
4520 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4521 {
4522 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4523 	int ret;
4524 
4525 	ret = qm_pm_get_sync(qm);
4526 	if (ret) {
4527 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4528 		return;
4529 	}
4530 
4531 	/* reset pcie device controller */
4532 	ret = qm_controller_reset(qm);
4533 	if (ret)
4534 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4535 
4536 	qm_pm_put_sync(qm);
4537 }
4538 
4539 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4540 				   enum qm_stop_reason stop_reason)
4541 {
4542 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4543 	struct pci_dev *pdev = qm->pdev;
4544 	int ret;
4545 
4546 	ret = qm_reset_prepare_ready(qm);
4547 	if (ret) {
4548 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4549 		atomic_set(&qm->status.flags, QM_STOP);
4550 		cmd = QM_VF_PREPARE_FAIL;
4551 		goto err_prepare;
4552 	}
4553 
4554 	ret = hisi_qm_stop(qm, stop_reason);
4555 	if (ret) {
4556 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4557 		atomic_set(&qm->status.flags, QM_STOP);
4558 		cmd = QM_VF_PREPARE_FAIL;
4559 		goto err_prepare;
4560 	} else {
4561 		goto out;
4562 	}
4563 
4564 err_prepare:
4565 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4566 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4567 out:
4568 	pci_save_state(pdev);
4569 	ret = qm_ping_pf(qm, cmd);
4570 	if (ret)
4571 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4572 }
4573 
4574 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4575 {
4576 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4577 	struct pci_dev *pdev = qm->pdev;
4578 	int ret;
4579 
4580 	pci_restore_state(pdev);
4581 	ret = hisi_qm_start(qm);
4582 	if (ret) {
4583 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4584 		cmd = QM_VF_START_FAIL;
4585 	}
4586 
4587 	qm_cmd_init(qm);
4588 	ret = qm_ping_pf(qm, cmd);
4589 	if (ret)
4590 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4591 
4592 	qm_reset_bit_clear(qm);
4593 }
4594 
4595 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4596 {
4597 	struct device *dev = &qm->pdev->dev;
4598 	u32 val, cmd;
4599 	u64 msg;
4600 	int ret;
4601 
4602 	/* Wait for reset to finish */
4603 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4604 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4605 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4606 	/* hardware completion status should be available by this time */
4607 	if (ret) {
4608 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4609 		return -ETIMEDOUT;
4610 	}
4611 
4612 	/*
4613 	 * Whether message is got successfully,
4614 	 * VF needs to ack PF by clearing the interrupt.
4615 	 */
4616 	ret = qm_get_mb_cmd(qm, &msg, 0);
4617 	qm_clear_cmd_interrupt(qm, 0);
4618 	if (ret) {
4619 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4620 		return ret;
4621 	}
4622 
4623 	cmd = msg & QM_MB_CMD_DATA_MASK;
4624 	if (cmd != QM_PF_RESET_DONE) {
4625 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4626 		ret = -EINVAL;
4627 	}
4628 
4629 	return ret;
4630 }
4631 
4632 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4633 				   enum qm_stop_reason stop_reason)
4634 {
4635 	struct device *dev = &qm->pdev->dev;
4636 	int ret;
4637 
4638 	dev_info(dev, "device reset start...\n");
4639 
4640 	/* The message is obtained by querying the register during resetting */
4641 	qm_cmd_uninit(qm);
4642 	qm_pf_reset_vf_prepare(qm, stop_reason);
4643 
4644 	ret = qm_wait_pf_reset_finish(qm);
4645 	if (ret)
4646 		goto err_get_status;
4647 
4648 	qm_pf_reset_vf_done(qm);
4649 
4650 	dev_info(dev, "device reset done.\n");
4651 
4652 	return;
4653 
4654 err_get_status:
4655 	qm_cmd_init(qm);
4656 	qm_reset_bit_clear(qm);
4657 }
4658 
4659 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4660 {
4661 	struct device *dev = &qm->pdev->dev;
4662 	u64 msg;
4663 	u32 cmd;
4664 	int ret;
4665 
4666 	/*
4667 	 * Get the msg from source by sending mailbox. Whether message is got
4668 	 * successfully, destination needs to ack source by clearing the interrupt.
4669 	 */
4670 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4671 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4672 	if (ret) {
4673 		dev_err(dev, "failed to get msg from source!\n");
4674 		return;
4675 	}
4676 
4677 	cmd = msg & QM_MB_CMD_DATA_MASK;
4678 	switch (cmd) {
4679 	case QM_PF_FLR_PREPARE:
4680 		qm_pf_reset_vf_process(qm, QM_FLR);
4681 		break;
4682 	case QM_PF_SRST_PREPARE:
4683 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4684 		break;
4685 	case QM_VF_GET_QOS:
4686 		qm_vf_get_qos(qm, fun_num);
4687 		break;
4688 	case QM_PF_SET_QOS:
4689 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4690 		break;
4691 	default:
4692 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4693 		break;
4694 	}
4695 }
4696 
4697 static void qm_cmd_process(struct work_struct *cmd_process)
4698 {
4699 	struct hisi_qm *qm = container_of(cmd_process,
4700 					struct hisi_qm, cmd_process);
4701 	u32 vfs_num = qm->vfs_num;
4702 	u64 val;
4703 	u32 i;
4704 
4705 	if (qm->fun_type == QM_HW_PF) {
4706 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4707 		if (!val)
4708 			return;
4709 
4710 		for (i = 1; i <= vfs_num; i++) {
4711 			if (val & BIT(i))
4712 				qm_handle_cmd_msg(qm, i);
4713 		}
4714 
4715 		return;
4716 	}
4717 
4718 	qm_handle_cmd_msg(qm, 0);
4719 }
4720 
4721 /**
4722  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
4723  * @qm: The qm needs add.
4724  * @qm_list: The qm list.
4725  *
4726  * This function adds qm to qm list, and will register algorithm to
4727  * crypto when the qm list is empty.
4728  */
4729 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4730 {
4731 	struct device *dev = &qm->pdev->dev;
4732 	int flag = 0;
4733 	int ret = 0;
4734 
4735 	mutex_lock(&qm_list->lock);
4736 	if (list_empty(&qm_list->list))
4737 		flag = 1;
4738 	list_add_tail(&qm->list, &qm_list->list);
4739 	mutex_unlock(&qm_list->lock);
4740 
4741 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4742 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4743 		return 0;
4744 	}
4745 
4746 	if (flag) {
4747 		ret = qm_list->register_to_crypto(qm);
4748 		if (ret) {
4749 			mutex_lock(&qm_list->lock);
4750 			list_del(&qm->list);
4751 			mutex_unlock(&qm_list->lock);
4752 		}
4753 	}
4754 
4755 	return ret;
4756 }
4757 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4758 
4759 /**
4760  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
4761  * qm list.
4762  * @qm: The qm needs delete.
4763  * @qm_list: The qm list.
4764  *
4765  * This function deletes qm from qm list, and will unregister algorithm
4766  * from crypto when the qm list is empty.
4767  */
4768 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4769 {
4770 	mutex_lock(&qm_list->lock);
4771 	list_del(&qm->list);
4772 	mutex_unlock(&qm_list->lock);
4773 
4774 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4775 		return;
4776 
4777 	if (list_empty(&qm_list->list))
4778 		qm_list->unregister_from_crypto(qm);
4779 }
4780 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4781 
4782 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4783 {
4784 	struct pci_dev *pdev = qm->pdev;
4785 	u32 irq_vector, val;
4786 
4787 	if (qm->fun_type == QM_HW_VF)
4788 		return;
4789 
4790 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4791 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4792 		return;
4793 
4794 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4795 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4796 }
4797 
4798 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4799 {
4800 	struct pci_dev *pdev = qm->pdev;
4801 	u32 irq_vector, val;
4802 	int ret;
4803 
4804 	if (qm->fun_type == QM_HW_VF)
4805 		return 0;
4806 
4807 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4808 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4809 		return 0;
4810 
4811 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4812 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4813 	if (ret)
4814 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4815 
4816 	return ret;
4817 }
4818 
4819 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4820 {
4821 	struct pci_dev *pdev = qm->pdev;
4822 	u32 irq_vector, val;
4823 
4824 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4825 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4826 		return;
4827 
4828 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4829 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4830 }
4831 
4832 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4833 {
4834 	struct pci_dev *pdev = qm->pdev;
4835 	u32 irq_vector, val;
4836 	int ret;
4837 
4838 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4839 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4840 		return 0;
4841 
4842 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4843 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4844 	if (ret)
4845 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4846 
4847 	return ret;
4848 }
4849 
4850 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4851 {
4852 	struct pci_dev *pdev = qm->pdev;
4853 	u32 irq_vector, val;
4854 
4855 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4856 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4857 		return;
4858 
4859 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4860 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4861 }
4862 
4863 static int qm_register_aeq_irq(struct hisi_qm *qm)
4864 {
4865 	struct pci_dev *pdev = qm->pdev;
4866 	u32 irq_vector, val;
4867 	int ret;
4868 
4869 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4870 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4871 		return 0;
4872 
4873 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4874 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq,
4875 						   qm_aeq_thread, 0, qm->dev_name, qm);
4876 	if (ret)
4877 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4878 
4879 	return ret;
4880 }
4881 
4882 static void qm_unregister_eq_irq(struct hisi_qm *qm)
4883 {
4884 	struct pci_dev *pdev = qm->pdev;
4885 	u32 irq_vector, val;
4886 
4887 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
4888 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4889 		return;
4890 
4891 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4892 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4893 }
4894 
4895 static int qm_register_eq_irq(struct hisi_qm *qm)
4896 {
4897 	struct pci_dev *pdev = qm->pdev;
4898 	u32 irq_vector, val;
4899 	int ret;
4900 
4901 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
4902 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4903 		return 0;
4904 
4905 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4906 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_irq, 0, qm->dev_name, qm);
4907 	if (ret)
4908 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4909 
4910 	return ret;
4911 }
4912 
4913 static void qm_irqs_unregister(struct hisi_qm *qm)
4914 {
4915 	qm_unregister_mb_cmd_irq(qm);
4916 	qm_unregister_abnormal_irq(qm);
4917 	qm_unregister_aeq_irq(qm);
4918 	qm_unregister_eq_irq(qm);
4919 }
4920 
4921 static int qm_irqs_register(struct hisi_qm *qm)
4922 {
4923 	int ret;
4924 
4925 	ret = qm_register_eq_irq(qm);
4926 	if (ret)
4927 		return ret;
4928 
4929 	ret = qm_register_aeq_irq(qm);
4930 	if (ret)
4931 		goto free_eq_irq;
4932 
4933 	ret = qm_register_abnormal_irq(qm);
4934 	if (ret)
4935 		goto free_aeq_irq;
4936 
4937 	ret = qm_register_mb_cmd_irq(qm);
4938 	if (ret)
4939 		goto free_abnormal_irq;
4940 
4941 	return 0;
4942 
4943 free_abnormal_irq:
4944 	qm_unregister_abnormal_irq(qm);
4945 free_aeq_irq:
4946 	qm_unregister_aeq_irq(qm);
4947 free_eq_irq:
4948 	qm_unregister_eq_irq(qm);
4949 	return ret;
4950 }
4951 
4952 static int qm_get_qp_num(struct hisi_qm *qm)
4953 {
4954 	bool is_db_isolation;
4955 
4956 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
4957 	if (qm->fun_type == QM_HW_VF) {
4958 		if (qm->ver != QM_HW_V1)
4959 			/* v2 starts to support get vft by mailbox */
4960 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
4961 
4962 		return 0;
4963 	}
4964 
4965 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
4966 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
4967 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
4968 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
4969 
4970 	/* check if qp number is valid */
4971 	if (qm->qp_num > qm->max_qp_num) {
4972 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
4973 			qm->qp_num, qm->max_qp_num);
4974 		return -EINVAL;
4975 	}
4976 
4977 	return 0;
4978 }
4979 
4980 static void qm_get_hw_caps(struct hisi_qm *qm)
4981 {
4982 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
4983 						  qm_cap_info_pf : qm_cap_info_vf;
4984 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
4985 				   ARRAY_SIZE(qm_cap_info_vf);
4986 	u32 val, i;
4987 
4988 	/* Doorbell isolate register is a independent register. */
4989 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
4990 	if (val)
4991 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
4992 
4993 	if (qm->ver >= QM_HW_V3) {
4994 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
4995 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
4996 	}
4997 
4998 	/* Get PF/VF common capbility */
4999 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5000 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5001 		if (val)
5002 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5003 	}
5004 
5005 	/* Get PF/VF different capbility */
5006 	for (i = 0; i < size; i++) {
5007 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5008 		if (val)
5009 			set_bit(cap_info[i].type, &qm->caps);
5010 	}
5011 }
5012 
5013 static int qm_get_pci_res(struct hisi_qm *qm)
5014 {
5015 	struct pci_dev *pdev = qm->pdev;
5016 	struct device *dev = &pdev->dev;
5017 	int ret;
5018 
5019 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5020 	if (ret < 0) {
5021 		dev_err(dev, "Failed to request mem regions!\n");
5022 		return ret;
5023 	}
5024 
5025 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5026 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5027 	if (!qm->io_base) {
5028 		ret = -EIO;
5029 		goto err_request_mem_regions;
5030 	}
5031 
5032 	qm_get_hw_caps(qm);
5033 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5034 		qm->db_interval = QM_QP_DB_INTERVAL;
5035 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5036 		qm->db_io_base = ioremap(qm->db_phys_base,
5037 					 pci_resource_len(pdev, PCI_BAR_4));
5038 		if (!qm->db_io_base) {
5039 			ret = -EIO;
5040 			goto err_ioremap;
5041 		}
5042 	} else {
5043 		qm->db_phys_base = qm->phys_base;
5044 		qm->db_io_base = qm->io_base;
5045 		qm->db_interval = 0;
5046 	}
5047 
5048 	ret = qm_get_qp_num(qm);
5049 	if (ret)
5050 		goto err_db_ioremap;
5051 
5052 	return 0;
5053 
5054 err_db_ioremap:
5055 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5056 		iounmap(qm->db_io_base);
5057 err_ioremap:
5058 	iounmap(qm->io_base);
5059 err_request_mem_regions:
5060 	pci_release_mem_regions(pdev);
5061 	return ret;
5062 }
5063 
5064 static int hisi_qm_pci_init(struct hisi_qm *qm)
5065 {
5066 	struct pci_dev *pdev = qm->pdev;
5067 	struct device *dev = &pdev->dev;
5068 	unsigned int num_vec;
5069 	int ret;
5070 
5071 	ret = pci_enable_device_mem(pdev);
5072 	if (ret < 0) {
5073 		dev_err(dev, "Failed to enable device mem!\n");
5074 		return ret;
5075 	}
5076 
5077 	ret = qm_get_pci_res(qm);
5078 	if (ret)
5079 		goto err_disable_pcidev;
5080 
5081 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5082 	if (ret < 0)
5083 		goto err_get_pci_res;
5084 	pci_set_master(pdev);
5085 
5086 	num_vec = qm_get_irq_num(qm);
5087 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5088 	if (ret < 0) {
5089 		dev_err(dev, "Failed to enable MSI vectors!\n");
5090 		goto err_get_pci_res;
5091 	}
5092 
5093 	return 0;
5094 
5095 err_get_pci_res:
5096 	qm_put_pci_res(qm);
5097 err_disable_pcidev:
5098 	pci_disable_device(pdev);
5099 	return ret;
5100 }
5101 
5102 static int hisi_qm_init_work(struct hisi_qm *qm)
5103 {
5104 	int i;
5105 
5106 	for (i = 0; i < qm->qp_num; i++)
5107 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5108 
5109 	if (qm->fun_type == QM_HW_PF)
5110 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5111 
5112 	if (qm->ver > QM_HW_V2)
5113 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5114 
5115 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5116 				 WQ_UNBOUND, num_online_cpus(),
5117 				 pci_name(qm->pdev));
5118 	if (!qm->wq) {
5119 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5120 		return -ENOMEM;
5121 	}
5122 
5123 	return 0;
5124 }
5125 
5126 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5127 {
5128 	struct device *dev = &qm->pdev->dev;
5129 	u16 sq_depth, cq_depth;
5130 	size_t qp_dma_size;
5131 	int i, ret;
5132 
5133 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5134 	if (!qm->qp_array)
5135 		return -ENOMEM;
5136 
5137 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5138 	if (!qm->poll_data) {
5139 		kfree(qm->qp_array);
5140 		return -ENOMEM;
5141 	}
5142 
5143 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5144 
5145 	/* one more page for device or qp statuses */
5146 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5147 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5148 	for (i = 0; i < qm->qp_num; i++) {
5149 		qm->poll_data[i].qm = qm;
5150 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5151 		if (ret)
5152 			goto err_init_qp_mem;
5153 
5154 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5155 	}
5156 
5157 	return 0;
5158 err_init_qp_mem:
5159 	hisi_qp_memory_uninit(qm, i);
5160 
5161 	return ret;
5162 }
5163 
5164 static int hisi_qm_memory_init(struct hisi_qm *qm)
5165 {
5166 	struct device *dev = &qm->pdev->dev;
5167 	int ret, total_func;
5168 	size_t off = 0;
5169 
5170 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5171 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5172 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5173 		if (!qm->factor)
5174 			return -ENOMEM;
5175 
5176 		/* Only the PF value needs to be initialized */
5177 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5178 	}
5179 
5180 #define QM_INIT_BUF(qm, type, num) do { \
5181 	(qm)->type = ((qm)->qdma.va + (off)); \
5182 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5183 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5184 } while (0)
5185 
5186 	idr_init(&qm->qp_idr);
5187 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5188 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5189 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5190 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5191 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5192 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5193 					 GFP_ATOMIC);
5194 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5195 	if (!qm->qdma.va) {
5196 		ret = -ENOMEM;
5197 		goto err_destroy_idr;
5198 	}
5199 
5200 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5201 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5202 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5203 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5204 
5205 	ret = hisi_qp_alloc_memory(qm);
5206 	if (ret)
5207 		goto err_alloc_qp_array;
5208 
5209 	return 0;
5210 
5211 err_alloc_qp_array:
5212 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5213 err_destroy_idr:
5214 	idr_destroy(&qm->qp_idr);
5215 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5216 		kfree(qm->factor);
5217 
5218 	return ret;
5219 }
5220 
5221 /**
5222  * hisi_qm_init() - Initialize configures about qm.
5223  * @qm: The qm needing init.
5224  *
5225  * This function init qm, then we can call hisi_qm_start to put qm into work.
5226  */
5227 int hisi_qm_init(struct hisi_qm *qm)
5228 {
5229 	struct pci_dev *pdev = qm->pdev;
5230 	struct device *dev = &pdev->dev;
5231 	int ret;
5232 
5233 	hisi_qm_pre_init(qm);
5234 
5235 	ret = hisi_qm_pci_init(qm);
5236 	if (ret)
5237 		return ret;
5238 
5239 	ret = qm_irqs_register(qm);
5240 	if (ret)
5241 		goto err_pci_init;
5242 
5243 	if (qm->fun_type == QM_HW_PF) {
5244 		qm_disable_clock_gate(qm);
5245 		ret = qm_dev_mem_reset(qm);
5246 		if (ret) {
5247 			dev_err(dev, "failed to reset device memory\n");
5248 			goto err_irq_register;
5249 		}
5250 	}
5251 
5252 	if (qm->mode == UACCE_MODE_SVA) {
5253 		ret = qm_alloc_uacce(qm);
5254 		if (ret < 0)
5255 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5256 	}
5257 
5258 	ret = hisi_qm_memory_init(qm);
5259 	if (ret)
5260 		goto err_alloc_uacce;
5261 
5262 	ret = hisi_qm_init_work(qm);
5263 	if (ret)
5264 		goto err_free_qm_memory;
5265 
5266 	qm_cmd_init(qm);
5267 	atomic_set(&qm->status.flags, QM_INIT);
5268 
5269 	return 0;
5270 
5271 err_free_qm_memory:
5272 	hisi_qm_memory_uninit(qm);
5273 err_alloc_uacce:
5274 	if (qm->use_sva) {
5275 		uacce_remove(qm->uacce);
5276 		qm->uacce = NULL;
5277 	}
5278 err_irq_register:
5279 	qm_irqs_unregister(qm);
5280 err_pci_init:
5281 	hisi_qm_pci_uninit(qm);
5282 	return ret;
5283 }
5284 EXPORT_SYMBOL_GPL(hisi_qm_init);
5285 
5286 /**
5287  * hisi_qm_get_dfx_access() - Try to get dfx access.
5288  * @qm: pointer to accelerator device.
5289  *
5290  * Try to get dfx access, then user can get message.
5291  *
5292  * If device is in suspended, return failure, otherwise
5293  * bump up the runtime PM usage counter.
5294  */
5295 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5296 {
5297 	struct device *dev = &qm->pdev->dev;
5298 
5299 	if (pm_runtime_suspended(dev)) {
5300 		dev_info(dev, "can not read/write - device in suspended.\n");
5301 		return -EAGAIN;
5302 	}
5303 
5304 	return qm_pm_get_sync(qm);
5305 }
5306 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5307 
5308 /**
5309  * hisi_qm_put_dfx_access() - Put dfx access.
5310  * @qm: pointer to accelerator device.
5311  *
5312  * Put dfx access, drop runtime PM usage counter.
5313  */
5314 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5315 {
5316 	qm_pm_put_sync(qm);
5317 }
5318 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5319 
5320 /**
5321  * hisi_qm_pm_init() - Initialize qm runtime PM.
5322  * @qm: pointer to accelerator device.
5323  *
5324  * Function that initialize qm runtime PM.
5325  */
5326 void hisi_qm_pm_init(struct hisi_qm *qm)
5327 {
5328 	struct device *dev = &qm->pdev->dev;
5329 
5330 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5331 		return;
5332 
5333 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5334 	pm_runtime_use_autosuspend(dev);
5335 	pm_runtime_put_noidle(dev);
5336 }
5337 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5338 
5339 /**
5340  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5341  * @qm: pointer to accelerator device.
5342  *
5343  * Function that uninitialize qm runtime PM.
5344  */
5345 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5346 {
5347 	struct device *dev = &qm->pdev->dev;
5348 
5349 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5350 		return;
5351 
5352 	pm_runtime_get_noresume(dev);
5353 	pm_runtime_dont_use_autosuspend(dev);
5354 }
5355 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5356 
5357 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5358 {
5359 	struct pci_dev *pdev = qm->pdev;
5360 	int ret;
5361 	u32 val;
5362 
5363 	ret = qm->ops->set_msi(qm, false);
5364 	if (ret) {
5365 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5366 		return ret;
5367 	}
5368 
5369 	/* shutdown OOO register */
5370 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5371 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5372 
5373 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5374 					 val,
5375 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5376 					 POLL_PERIOD, POLL_TIMEOUT);
5377 	if (ret) {
5378 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5379 		return ret;
5380 	}
5381 
5382 	ret = qm_set_pf_mse(qm, false);
5383 	if (ret)
5384 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5385 
5386 	return ret;
5387 }
5388 
5389 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5390 {
5391 	struct pci_dev *pdev = qm->pdev;
5392 	int ret;
5393 
5394 	ret = qm_set_pf_mse(qm, true);
5395 	if (ret) {
5396 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5397 		return ret;
5398 	}
5399 
5400 	ret = qm->ops->set_msi(qm, true);
5401 	if (ret) {
5402 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5403 		return ret;
5404 	}
5405 
5406 	ret = qm_dev_hw_init(qm);
5407 	if (ret) {
5408 		pci_err(pdev, "failed to init device after resuming\n");
5409 		return ret;
5410 	}
5411 
5412 	qm_cmd_init(qm);
5413 	hisi_qm_dev_err_init(qm);
5414 	qm_disable_clock_gate(qm);
5415 	ret = qm_dev_mem_reset(qm);
5416 	if (ret)
5417 		pci_err(pdev, "failed to reset device memory\n");
5418 
5419 	return ret;
5420 }
5421 
5422 /**
5423  * hisi_qm_suspend() - Runtime suspend of given device.
5424  * @dev: device to suspend.
5425  *
5426  * Function that suspend the device.
5427  */
5428 int hisi_qm_suspend(struct device *dev)
5429 {
5430 	struct pci_dev *pdev = to_pci_dev(dev);
5431 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5432 	int ret;
5433 
5434 	pci_info(pdev, "entering suspended state\n");
5435 
5436 	ret = hisi_qm_stop(qm, QM_NORMAL);
5437 	if (ret) {
5438 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5439 		return ret;
5440 	}
5441 
5442 	ret = qm_prepare_for_suspend(qm);
5443 	if (ret)
5444 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5445 
5446 	return ret;
5447 }
5448 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5449 
5450 /**
5451  * hisi_qm_resume() - Runtime resume of given device.
5452  * @dev: device to resume.
5453  *
5454  * Function that resume the device.
5455  */
5456 int hisi_qm_resume(struct device *dev)
5457 {
5458 	struct pci_dev *pdev = to_pci_dev(dev);
5459 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5460 	int ret;
5461 
5462 	pci_info(pdev, "resuming from suspend state\n");
5463 
5464 	ret = qm_rebuild_for_resume(qm);
5465 	if (ret) {
5466 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5467 		return ret;
5468 	}
5469 
5470 	ret = hisi_qm_start(qm);
5471 	if (ret) {
5472 		if (qm_check_dev_error(qm)) {
5473 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5474 			return 0;
5475 		}
5476 
5477 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5478 	}
5479 
5480 	return ret;
5481 }
5482 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5483 
5484 MODULE_LICENSE("GPL v2");
5485 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5486 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5487