1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/aer.h> 6 #include <linux/bitmap.h> 7 #include <linux/debugfs.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/idr.h> 10 #include <linux/io.h> 11 #include <linux/irqreturn.h> 12 #include <linux/log2.h> 13 #include <linux/seq_file.h> 14 #include <linux/slab.h> 15 #include <linux/uacce.h> 16 #include <linux/uaccess.h> 17 #include <uapi/misc/uacce/hisi_qm.h> 18 #include "qm.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 #define QM_IRQ_NUM_V1 1 26 #define QM_IRQ_NUM_PF_V2 4 27 #define QM_IRQ_NUM_VF_V2 2 28 29 #define QM_EQ_EVENT_IRQ_VECTOR 0 30 #define QM_AEQ_EVENT_IRQ_VECTOR 1 31 #define QM_ABNORMAL_EVENT_IRQ_VECTOR 3 32 33 /* mailbox */ 34 #define QM_MB_CMD_SQC 0x0 35 #define QM_MB_CMD_CQC 0x1 36 #define QM_MB_CMD_EQC 0x2 37 #define QM_MB_CMD_AEQC 0x3 38 #define QM_MB_CMD_SQC_BT 0x4 39 #define QM_MB_CMD_CQC_BT 0x5 40 #define QM_MB_CMD_SQC_VFT_V2 0x6 41 42 #define QM_MB_CMD_SEND_BASE 0x300 43 #define QM_MB_EVENT_SHIFT 8 44 #define QM_MB_BUSY_SHIFT 13 45 #define QM_MB_OP_SHIFT 14 46 #define QM_MB_CMD_DATA_ADDR_L 0x304 47 #define QM_MB_CMD_DATA_ADDR_H 0x308 48 49 /* sqc shift */ 50 #define QM_SQ_HOP_NUM_SHIFT 0 51 #define QM_SQ_PAGE_SIZE_SHIFT 4 52 #define QM_SQ_BUF_SIZE_SHIFT 8 53 #define QM_SQ_SQE_SIZE_SHIFT 12 54 #define QM_SQ_PRIORITY_SHIFT 0 55 #define QM_SQ_ORDERS_SHIFT 4 56 #define QM_SQ_TYPE_SHIFT 8 57 58 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 59 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 60 61 /* cqc shift */ 62 #define QM_CQ_HOP_NUM_SHIFT 0 63 #define QM_CQ_PAGE_SIZE_SHIFT 4 64 #define QM_CQ_BUF_SIZE_SHIFT 8 65 #define QM_CQ_CQE_SIZE_SHIFT 12 66 #define QM_CQ_PHASE_SHIFT 0 67 #define QM_CQ_FLAG_SHIFT 1 68 69 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 70 #define QM_QC_CQE_SIZE 4 71 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 72 73 /* eqc shift */ 74 #define QM_EQE_AEQE_SIZE (2UL << 12) 75 #define QM_EQC_PHASE_SHIFT 16 76 77 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 78 #define QM_EQE_CQN_MASK GENMASK(15, 0) 79 80 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 81 #define QM_AEQE_TYPE_SHIFT 17 82 83 #define QM_DOORBELL_CMD_SQ 0 84 #define QM_DOORBELL_CMD_CQ 1 85 #define QM_DOORBELL_CMD_EQ 2 86 #define QM_DOORBELL_CMD_AEQ 3 87 88 #define QM_DOORBELL_BASE_V1 0x340 89 #define QM_DB_CMD_SHIFT_V1 16 90 #define QM_DB_INDEX_SHIFT_V1 32 91 #define QM_DB_PRIORITY_SHIFT_V1 48 92 #define QM_DOORBELL_SQ_CQ_BASE_V2 0x1000 93 #define QM_DOORBELL_EQ_AEQ_BASE_V2 0x2000 94 #define QM_DB_CMD_SHIFT_V2 12 95 #define QM_DB_RAND_SHIFT_V2 16 96 #define QM_DB_INDEX_SHIFT_V2 32 97 #define QM_DB_PRIORITY_SHIFT_V2 48 98 99 #define QM_MEM_START_INIT 0x100040 100 #define QM_MEM_INIT_DONE 0x100044 101 #define QM_VFT_CFG_RDY 0x10006c 102 #define QM_VFT_CFG_OP_WR 0x100058 103 #define QM_VFT_CFG_TYPE 0x10005c 104 #define QM_SQC_VFT 0x0 105 #define QM_CQC_VFT 0x1 106 #define QM_VFT_CFG 0x100060 107 #define QM_VFT_CFG_OP_ENABLE 0x100054 108 109 #define QM_VFT_CFG_DATA_L 0x100064 110 #define QM_VFT_CFG_DATA_H 0x100068 111 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 112 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 113 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 114 #define QM_SQC_VFT_START_SQN_SHIFT 28 115 #define QM_SQC_VFT_VALID (1ULL << 44) 116 #define QM_SQC_VFT_SQN_SHIFT 45 117 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 118 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 119 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 120 #define QM_CQC_VFT_VALID (1ULL << 28) 121 122 #define QM_SQC_VFT_BASE_SHIFT_V2 28 123 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(5, 0) 124 #define QM_SQC_VFT_NUM_SHIFT_V2 45 125 #define QM_SQC_VFT_NUM_MASK_v2 GENMASK(9, 0) 126 127 #define QM_DFX_CNT_CLR_CE 0x100118 128 129 #define QM_ABNORMAL_INT_SOURCE 0x100000 130 #define QM_ABNORMAL_INT_SOURCE_CLR GENMASK(12, 0) 131 #define QM_ABNORMAL_INT_MASK 0x100004 132 #define QM_ABNORMAL_INT_MASK_VALUE 0x1fff 133 #define QM_ABNORMAL_INT_STATUS 0x100008 134 #define QM_ABNORMAL_INT_SET 0x10000c 135 #define QM_ABNORMAL_INF00 0x100010 136 #define QM_FIFO_OVERFLOW_TYPE 0xc0 137 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 138 #define QM_FIFO_OVERFLOW_VF 0x3f 139 #define QM_ABNORMAL_INF01 0x100014 140 #define QM_DB_TIMEOUT_TYPE 0xc0 141 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 142 #define QM_DB_TIMEOUT_VF 0x3f 143 #define QM_RAS_CE_ENABLE 0x1000ec 144 #define QM_RAS_FE_ENABLE 0x1000f0 145 #define QM_RAS_NFE_ENABLE 0x1000f4 146 #define QM_RAS_CE_THRESHOLD 0x1000f8 147 #define QM_RAS_CE_TIMES_PER_IRQ 1 148 #define QM_RAS_MSI_INT_SEL 0x1040f4 149 150 #define QM_DEV_RESET_FLAG 0 151 #define QM_RESET_WAIT_TIMEOUT 400 152 #define QM_PEH_VENDOR_ID 0x1000d8 153 #define ACC_VENDOR_ID_VALUE 0x5a5a 154 #define QM_PEH_DFX_INFO0 0x1000fc 155 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 156 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 157 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 158 #define ACC_MASTER_TRANS_RETURN_RW 3 159 #define ACC_MASTER_TRANS_RETURN 0x300150 160 #define ACC_MASTER_GLOBAL_CTRL 0x300000 161 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 162 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 163 #define ACC_AM_ROB_ECC_INT_STS 0x300104 164 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 165 166 #define POLL_PERIOD 10 167 #define POLL_TIMEOUT 1000 168 #define WAIT_PERIOD_US_MAX 200 169 #define WAIT_PERIOD_US_MIN 100 170 #define MAX_WAIT_COUNTS 1000 171 #define QM_CACHE_WB_START 0x204 172 #define QM_CACHE_WB_DONE 0x208 173 174 #define PCI_BAR_2 2 175 #define QM_SQE_DATA_ALIGN_MASK GENMASK(6, 0) 176 #define QMC_ALIGN(sz) ALIGN(sz, 32) 177 178 #define QM_DBG_READ_LEN 256 179 #define QM_DBG_WRITE_LEN 1024 180 #define QM_DBG_TMP_BUF_LEN 22 181 #define QM_PCI_COMMAND_INVALID ~0 182 183 #define WAIT_PERIOD 20 184 #define REMOVE_WAIT_DELAY 10 185 #define QM_SQE_ADDR_MASK GENMASK(7, 0) 186 #define QM_EQ_DEPTH (1024 * 2) 187 188 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 189 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 190 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 191 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 192 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 193 194 #define QM_MK_CQC_DW3_V2(cqe_sz) \ 195 ((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 196 197 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 198 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 199 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 200 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 201 202 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 203 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 204 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 205 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 206 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 207 208 #define QM_MK_SQC_DW3_V2(sqe_sz) \ 209 ((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 210 211 #define INIT_QC_COMMON(qc, base, pasid) do { \ 212 (qc)->head = 0; \ 213 (qc)->tail = 0; \ 214 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 215 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 216 (qc)->dw3 = 0; \ 217 (qc)->w8 = 0; \ 218 (qc)->rsvd0 = 0; \ 219 (qc)->pasid = cpu_to_le16(pasid); \ 220 (qc)->w11 = 0; \ 221 (qc)->rsvd1 = 0; \ 222 } while (0) 223 224 enum vft_type { 225 SQC_VFT = 0, 226 CQC_VFT, 227 }; 228 229 enum acc_err_result { 230 ACC_ERR_NONE, 231 ACC_ERR_NEED_RESET, 232 ACC_ERR_RECOVERED, 233 }; 234 235 struct qm_cqe { 236 __le32 rsvd0; 237 __le16 cmd_id; 238 __le16 rsvd1; 239 __le16 sq_head; 240 __le16 sq_num; 241 __le16 rsvd2; 242 __le16 w7; 243 }; 244 245 struct qm_eqe { 246 __le32 dw0; 247 }; 248 249 struct qm_aeqe { 250 __le32 dw0; 251 }; 252 253 struct qm_sqc { 254 __le16 head; 255 __le16 tail; 256 __le32 base_l; 257 __le32 base_h; 258 __le32 dw3; 259 __le16 w8; 260 __le16 rsvd0; 261 __le16 pasid; 262 __le16 w11; 263 __le16 cq_num; 264 __le16 w13; 265 __le32 rsvd1; 266 }; 267 268 struct qm_cqc { 269 __le16 head; 270 __le16 tail; 271 __le32 base_l; 272 __le32 base_h; 273 __le32 dw3; 274 __le16 w8; 275 __le16 rsvd0; 276 __le16 pasid; 277 __le16 w11; 278 __le32 dw6; 279 __le32 rsvd1; 280 }; 281 282 struct qm_eqc { 283 __le16 head; 284 __le16 tail; 285 __le32 base_l; 286 __le32 base_h; 287 __le32 dw3; 288 __le32 rsvd[2]; 289 __le32 dw6; 290 }; 291 292 struct qm_aeqc { 293 __le16 head; 294 __le16 tail; 295 __le32 base_l; 296 __le32 base_h; 297 __le32 dw3; 298 __le32 rsvd[2]; 299 __le32 dw6; 300 }; 301 302 struct qm_mailbox { 303 __le16 w0; 304 __le16 queue_num; 305 __le32 base_l; 306 __le32 base_h; 307 __le32 rsvd; 308 }; 309 310 struct qm_doorbell { 311 __le16 queue_num; 312 __le16 cmd; 313 __le16 index; 314 __le16 priority; 315 }; 316 317 struct hisi_qm_resource { 318 struct hisi_qm *qm; 319 int distance; 320 struct list_head list; 321 }; 322 323 struct hisi_qm_hw_ops { 324 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 325 void (*qm_db)(struct hisi_qm *qm, u16 qn, 326 u8 cmd, u16 index, u8 priority); 327 u32 (*get_irq_num)(struct hisi_qm *qm); 328 int (*debug_init)(struct hisi_qm *qm); 329 void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe); 330 void (*hw_error_uninit)(struct hisi_qm *qm); 331 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 332 }; 333 334 struct qm_dfx_item { 335 const char *name; 336 u32 offset; 337 }; 338 339 static struct qm_dfx_item qm_dfx_files[] = { 340 {"err_irq", offsetof(struct qm_dfx, err_irq_cnt)}, 341 {"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)}, 342 {"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)}, 343 {"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)}, 344 {"mb_err", offsetof(struct qm_dfx, mb_err_cnt)}, 345 }; 346 347 static const char * const qm_debug_file_name[] = { 348 [CURRENT_Q] = "current_q", 349 [CLEAR_ENABLE] = "clear_enable", 350 }; 351 352 struct hisi_qm_hw_error { 353 u32 int_msk; 354 const char *msg; 355 }; 356 357 static const struct hisi_qm_hw_error qm_hw_error[] = { 358 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 359 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 360 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 361 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 362 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 363 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 364 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 365 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 366 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 367 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 368 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 369 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 370 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 371 { /* sentinel */ } 372 }; 373 374 static const char * const qm_db_timeout[] = { 375 "sq", "cq", "eq", "aeq", 376 }; 377 378 static const char * const qm_fifo_overflow[] = { 379 "cq", "eq", "aeq", 380 }; 381 382 static const char * const qm_s[] = { 383 "init", "start", "close", "stop", 384 }; 385 386 static const char * const qp_s[] = { 387 "none", "init", "start", "stop", "close", 388 }; 389 390 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 391 { 392 enum qm_state curr = atomic_read(&qm->status.flags); 393 bool avail = false; 394 395 switch (curr) { 396 case QM_INIT: 397 if (new == QM_START || new == QM_CLOSE) 398 avail = true; 399 break; 400 case QM_START: 401 if (new == QM_STOP) 402 avail = true; 403 break; 404 case QM_STOP: 405 if (new == QM_CLOSE || new == QM_START) 406 avail = true; 407 break; 408 default: 409 break; 410 } 411 412 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 413 qm_s[curr], qm_s[new]); 414 415 if (!avail) 416 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 417 qm_s[curr], qm_s[new]); 418 419 return avail; 420 } 421 422 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 423 enum qp_state new) 424 { 425 enum qm_state qm_curr = atomic_read(&qm->status.flags); 426 enum qp_state qp_curr = 0; 427 bool avail = false; 428 429 if (qp) 430 qp_curr = atomic_read(&qp->qp_status.flags); 431 432 switch (new) { 433 case QP_INIT: 434 if (qm_curr == QM_START || qm_curr == QM_INIT) 435 avail = true; 436 break; 437 case QP_START: 438 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 439 (qm_curr == QM_START && qp_curr == QP_STOP)) 440 avail = true; 441 break; 442 case QP_STOP: 443 if ((qm_curr == QM_START && qp_curr == QP_START) || 444 (qp_curr == QP_INIT)) 445 avail = true; 446 break; 447 case QP_CLOSE: 448 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 449 (qm_curr == QM_START && qp_curr == QP_STOP) || 450 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 451 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 452 avail = true; 453 break; 454 default: 455 break; 456 } 457 458 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 459 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 460 461 if (!avail) 462 dev_warn(&qm->pdev->dev, 463 "Can not change qp state from %s to %s in QM %s\n", 464 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 465 466 return avail; 467 } 468 469 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 470 static int qm_wait_mb_ready(struct hisi_qm *qm) 471 { 472 u32 val; 473 474 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 475 val, !((val >> QM_MB_BUSY_SHIFT) & 476 0x1), POLL_PERIOD, POLL_TIMEOUT); 477 } 478 479 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 480 static void qm_mb_write(struct hisi_qm *qm, const void *src) 481 { 482 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 483 unsigned long tmp0 = 0, tmp1 = 0; 484 485 if (!IS_ENABLED(CONFIG_ARM64)) { 486 memcpy_toio(fun_base, src, 16); 487 wmb(); 488 return; 489 } 490 491 asm volatile("ldp %0, %1, %3\n" 492 "stp %0, %1, %2\n" 493 "dsb sy\n" 494 : "=&r" (tmp0), 495 "=&r" (tmp1), 496 "+Q" (*((char __iomem *)fun_base)) 497 : "Q" (*((char *)src)) 498 : "memory"); 499 } 500 501 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 502 bool op) 503 { 504 struct qm_mailbox mailbox; 505 int ret = 0; 506 507 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 508 queue, cmd, (unsigned long long)dma_addr); 509 510 mailbox.w0 = cpu_to_le16(cmd | 511 (op ? 0x1 << QM_MB_OP_SHIFT : 0) | 512 (0x1 << QM_MB_BUSY_SHIFT)); 513 mailbox.queue_num = cpu_to_le16(queue); 514 mailbox.base_l = cpu_to_le32(lower_32_bits(dma_addr)); 515 mailbox.base_h = cpu_to_le32(upper_32_bits(dma_addr)); 516 mailbox.rsvd = 0; 517 518 mutex_lock(&qm->mailbox_lock); 519 520 if (unlikely(qm_wait_mb_ready(qm))) { 521 ret = -EBUSY; 522 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 523 goto busy_unlock; 524 } 525 526 qm_mb_write(qm, &mailbox); 527 528 if (unlikely(qm_wait_mb_ready(qm))) { 529 ret = -EBUSY; 530 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 531 goto busy_unlock; 532 } 533 534 busy_unlock: 535 mutex_unlock(&qm->mailbox_lock); 536 537 if (ret) 538 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 539 return ret; 540 } 541 542 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 543 { 544 u64 doorbell; 545 546 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 547 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 548 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 549 550 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 551 } 552 553 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 554 { 555 u64 doorbell; 556 u64 dbase; 557 u16 randata = 0; 558 559 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 560 dbase = QM_DOORBELL_SQ_CQ_BASE_V2; 561 else 562 dbase = QM_DOORBELL_EQ_AEQ_BASE_V2; 563 564 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 565 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 566 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 567 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 568 569 writeq(doorbell, qm->io_base + dbase); 570 } 571 572 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 573 { 574 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 575 qn, cmd, index); 576 577 qm->ops->qm_db(qm, qn, cmd, index, priority); 578 } 579 580 static int qm_dev_mem_reset(struct hisi_qm *qm) 581 { 582 u32 val; 583 584 writel(0x1, qm->io_base + QM_MEM_START_INIT); 585 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 586 val & BIT(0), POLL_PERIOD, 587 POLL_TIMEOUT); 588 } 589 590 static u32 qm_get_irq_num_v1(struct hisi_qm *qm) 591 { 592 return QM_IRQ_NUM_V1; 593 } 594 595 static u32 qm_get_irq_num_v2(struct hisi_qm *qm) 596 { 597 if (qm->fun_type == QM_HW_PF) 598 return QM_IRQ_NUM_PF_V2; 599 else 600 return QM_IRQ_NUM_VF_V2; 601 } 602 603 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe) 604 { 605 u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 606 607 return &qm->qp_array[cqn]; 608 } 609 610 static void qm_cq_head_update(struct hisi_qp *qp) 611 { 612 if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) { 613 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 614 qp->qp_status.cq_head = 0; 615 } else { 616 qp->qp_status.cq_head++; 617 } 618 } 619 620 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm) 621 { 622 if (qp->event_cb) { 623 qp->event_cb(qp); 624 return; 625 } 626 627 if (qp->req_cb) { 628 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 629 630 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 631 dma_rmb(); 632 qp->req_cb(qp, qp->sqe + qm->sqe_size * 633 le16_to_cpu(cqe->sq_head)); 634 qm_cq_head_update(qp); 635 cqe = qp->cqe + qp->qp_status.cq_head; 636 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 637 qp->qp_status.cq_head, 0); 638 atomic_dec(&qp->qp_status.used); 639 } 640 641 /* set c_flag */ 642 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 643 qp->qp_status.cq_head, 1); 644 } 645 } 646 647 static void qm_work_process(struct work_struct *work) 648 { 649 struct hisi_qm *qm = container_of(work, struct hisi_qm, work); 650 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 651 struct hisi_qp *qp; 652 int eqe_num = 0; 653 654 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 655 eqe_num++; 656 qp = qm_to_hisi_qp(qm, eqe); 657 qm_poll_qp(qp, qm); 658 659 if (qm->status.eq_head == QM_EQ_DEPTH - 1) { 660 qm->status.eqc_phase = !qm->status.eqc_phase; 661 eqe = qm->eqe; 662 qm->status.eq_head = 0; 663 } else { 664 eqe++; 665 qm->status.eq_head++; 666 } 667 668 if (eqe_num == QM_EQ_DEPTH / 2 - 1) { 669 eqe_num = 0; 670 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 671 } 672 } 673 674 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 675 } 676 677 static irqreturn_t do_qm_irq(int irq, void *data) 678 { 679 struct hisi_qm *qm = (struct hisi_qm *)data; 680 681 /* the workqueue created by device driver of QM */ 682 if (qm->wq) 683 queue_work(qm->wq, &qm->work); 684 else 685 schedule_work(&qm->work); 686 687 return IRQ_HANDLED; 688 } 689 690 static irqreturn_t qm_irq(int irq, void *data) 691 { 692 struct hisi_qm *qm = data; 693 694 if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 695 return do_qm_irq(irq, data); 696 697 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 698 dev_err(&qm->pdev->dev, "invalid int source\n"); 699 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 700 701 return IRQ_NONE; 702 } 703 704 static irqreturn_t qm_aeq_irq(int irq, void *data) 705 { 706 struct hisi_qm *qm = data; 707 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 708 u32 type; 709 710 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 711 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 712 return IRQ_NONE; 713 714 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 715 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 716 if (type < ARRAY_SIZE(qm_fifo_overflow)) 717 dev_err(&qm->pdev->dev, "%s overflow\n", 718 qm_fifo_overflow[type]); 719 else 720 dev_err(&qm->pdev->dev, "unknown error type %d\n", 721 type); 722 723 if (qm->status.aeq_head == QM_Q_DEPTH - 1) { 724 qm->status.aeqc_phase = !qm->status.aeqc_phase; 725 aeqe = qm->aeqe; 726 qm->status.aeq_head = 0; 727 } else { 728 aeqe++; 729 qm->status.aeq_head++; 730 } 731 732 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 733 } 734 735 return IRQ_HANDLED; 736 } 737 738 static void qm_irq_unregister(struct hisi_qm *qm) 739 { 740 struct pci_dev *pdev = qm->pdev; 741 742 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 743 744 if (qm->ver == QM_HW_V1) 745 return; 746 747 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 748 749 if (qm->fun_type == QM_HW_PF) 750 free_irq(pci_irq_vector(pdev, 751 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); 752 } 753 754 static void qm_init_qp_status(struct hisi_qp *qp) 755 { 756 struct hisi_qp_status *qp_status = &qp->qp_status; 757 758 qp_status->sq_tail = 0; 759 qp_status->cq_head = 0; 760 qp_status->cqc_phase = true; 761 atomic_set(&qp_status->used, 0); 762 } 763 764 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 765 u32 number) 766 { 767 u64 tmp = 0; 768 769 if (number > 0) { 770 switch (type) { 771 case SQC_VFT: 772 if (qm->ver == QM_HW_V1) { 773 tmp = QM_SQC_VFT_BUF_SIZE | 774 QM_SQC_VFT_SQC_SIZE | 775 QM_SQC_VFT_INDEX_NUMBER | 776 QM_SQC_VFT_VALID | 777 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 778 } else { 779 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 780 QM_SQC_VFT_VALID | 781 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 782 } 783 break; 784 case CQC_VFT: 785 if (qm->ver == QM_HW_V1) { 786 tmp = QM_CQC_VFT_BUF_SIZE | 787 QM_CQC_VFT_SQC_SIZE | 788 QM_CQC_VFT_INDEX_NUMBER | 789 QM_CQC_VFT_VALID; 790 } else { 791 tmp = QM_CQC_VFT_VALID; 792 } 793 break; 794 } 795 } 796 797 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 798 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 799 } 800 801 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 802 u32 fun_num, u32 base, u32 number) 803 { 804 unsigned int val; 805 int ret; 806 807 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 808 val & BIT(0), POLL_PERIOD, 809 POLL_TIMEOUT); 810 if (ret) 811 return ret; 812 813 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 814 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 815 writel(fun_num, qm->io_base + QM_VFT_CFG); 816 817 qm_vft_data_cfg(qm, type, base, number); 818 819 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 820 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 821 822 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 823 val & BIT(0), POLL_PERIOD, 824 POLL_TIMEOUT); 825 } 826 827 /* The config should be conducted after qm_dev_mem_reset() */ 828 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 829 u32 number) 830 { 831 int ret, i; 832 833 for (i = SQC_VFT; i <= CQC_VFT; i++) { 834 ret = qm_set_vft_common(qm, i, fun_num, base, number); 835 if (ret) 836 return ret; 837 } 838 839 return 0; 840 } 841 842 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 843 { 844 u64 sqc_vft; 845 int ret; 846 847 ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 848 if (ret) 849 return ret; 850 851 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 852 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 853 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 854 *number = (QM_SQC_VFT_NUM_MASK_v2 & 855 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 856 857 return 0; 858 } 859 860 static struct hisi_qm *file_to_qm(struct debugfs_file *file) 861 { 862 struct qm_debug *debug = file->debug; 863 864 return container_of(debug, struct hisi_qm, debug); 865 } 866 867 static u32 current_q_read(struct debugfs_file *file) 868 { 869 struct hisi_qm *qm = file_to_qm(file); 870 871 return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT; 872 } 873 874 static int current_q_write(struct debugfs_file *file, u32 val) 875 { 876 struct hisi_qm *qm = file_to_qm(file); 877 u32 tmp; 878 879 if (val >= qm->debug.curr_qm_qp_num) 880 return -EINVAL; 881 882 tmp = val << QM_DFX_QN_SHIFT | 883 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK); 884 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 885 886 tmp = val << QM_DFX_QN_SHIFT | 887 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK); 888 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 889 890 return 0; 891 } 892 893 static u32 clear_enable_read(struct debugfs_file *file) 894 { 895 struct hisi_qm *qm = file_to_qm(file); 896 897 return readl(qm->io_base + QM_DFX_CNT_CLR_CE); 898 } 899 900 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */ 901 static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl) 902 { 903 struct hisi_qm *qm = file_to_qm(file); 904 905 if (rd_clr_ctrl > 1) 906 return -EINVAL; 907 908 writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE); 909 910 return 0; 911 } 912 913 static ssize_t qm_debug_read(struct file *filp, char __user *buf, 914 size_t count, loff_t *pos) 915 { 916 struct debugfs_file *file = filp->private_data; 917 enum qm_debug_file index = file->index; 918 char tbuf[QM_DBG_TMP_BUF_LEN]; 919 u32 val; 920 int ret; 921 922 mutex_lock(&file->lock); 923 switch (index) { 924 case CURRENT_Q: 925 val = current_q_read(file); 926 break; 927 case CLEAR_ENABLE: 928 val = clear_enable_read(file); 929 break; 930 default: 931 mutex_unlock(&file->lock); 932 return -EINVAL; 933 } 934 mutex_unlock(&file->lock); 935 936 ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val); 937 return simple_read_from_buffer(buf, count, pos, tbuf, ret); 938 } 939 940 static ssize_t qm_debug_write(struct file *filp, const char __user *buf, 941 size_t count, loff_t *pos) 942 { 943 struct debugfs_file *file = filp->private_data; 944 enum qm_debug_file index = file->index; 945 unsigned long val; 946 char tbuf[QM_DBG_TMP_BUF_LEN]; 947 int len, ret; 948 949 if (*pos != 0) 950 return 0; 951 952 if (count >= QM_DBG_TMP_BUF_LEN) 953 return -ENOSPC; 954 955 len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf, 956 count); 957 if (len < 0) 958 return len; 959 960 tbuf[len] = '\0'; 961 if (kstrtoul(tbuf, 0, &val)) 962 return -EFAULT; 963 964 mutex_lock(&file->lock); 965 switch (index) { 966 case CURRENT_Q: 967 ret = current_q_write(file, val); 968 if (ret) 969 goto err_input; 970 break; 971 case CLEAR_ENABLE: 972 ret = clear_enable_write(file, val); 973 if (ret) 974 goto err_input; 975 break; 976 default: 977 ret = -EINVAL; 978 goto err_input; 979 } 980 mutex_unlock(&file->lock); 981 982 return count; 983 984 err_input: 985 mutex_unlock(&file->lock); 986 return ret; 987 } 988 989 static const struct file_operations qm_debug_fops = { 990 .owner = THIS_MODULE, 991 .open = simple_open, 992 .read = qm_debug_read, 993 .write = qm_debug_write, 994 }; 995 996 struct qm_dfx_registers { 997 char *reg_name; 998 u64 reg_offset; 999 }; 1000 1001 #define CNT_CYC_REGS_NUM 10 1002 static struct qm_dfx_registers qm_dfx_regs[] = { 1003 /* XXX_CNT are reading clear register */ 1004 {"QM_ECC_1BIT_CNT ", 0x104000ull}, 1005 {"QM_ECC_MBIT_CNT ", 0x104008ull}, 1006 {"QM_DFX_MB_CNT ", 0x104018ull}, 1007 {"QM_DFX_DB_CNT ", 0x104028ull}, 1008 {"QM_DFX_SQE_CNT ", 0x104038ull}, 1009 {"QM_DFX_CQE_CNT ", 0x104048ull}, 1010 {"QM_DFX_SEND_SQE_TO_ACC_CNT ", 0x104050ull}, 1011 {"QM_DFX_WB_SQE_FROM_ACC_CNT ", 0x104058ull}, 1012 {"QM_DFX_ACC_FINISH_CNT ", 0x104060ull}, 1013 {"QM_DFX_CQE_ERR_CNT ", 0x1040b4ull}, 1014 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1015 {"QM_ECC_1BIT_INF ", 0x104004ull}, 1016 {"QM_ECC_MBIT_INF ", 0x10400cull}, 1017 {"QM_DFX_ACC_RDY_VLD0 ", 0x1040a0ull}, 1018 {"QM_DFX_ACC_RDY_VLD1 ", 0x1040a4ull}, 1019 {"QM_DFX_AXI_RDY_VLD ", 0x1040a8ull}, 1020 {"QM_DFX_FF_ST0 ", 0x1040c8ull}, 1021 {"QM_DFX_FF_ST1 ", 0x1040ccull}, 1022 {"QM_DFX_FF_ST2 ", 0x1040d0ull}, 1023 {"QM_DFX_FF_ST3 ", 0x1040d4ull}, 1024 {"QM_DFX_FF_ST4 ", 0x1040d8ull}, 1025 {"QM_DFX_FF_ST5 ", 0x1040dcull}, 1026 {"QM_DFX_FF_ST6 ", 0x1040e0ull}, 1027 {"QM_IN_IDLE_ST ", 0x1040e4ull}, 1028 { NULL, 0} 1029 }; 1030 1031 static struct qm_dfx_registers qm_vf_dfx_regs[] = { 1032 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1033 { NULL, 0} 1034 }; 1035 1036 static int qm_regs_show(struct seq_file *s, void *unused) 1037 { 1038 struct hisi_qm *qm = s->private; 1039 struct qm_dfx_registers *regs; 1040 u32 val; 1041 1042 if (qm->fun_type == QM_HW_PF) 1043 regs = qm_dfx_regs; 1044 else 1045 regs = qm_vf_dfx_regs; 1046 1047 while (regs->reg_name) { 1048 val = readl(qm->io_base + regs->reg_offset); 1049 seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val); 1050 regs++; 1051 } 1052 1053 return 0; 1054 } 1055 1056 DEFINE_SHOW_ATTRIBUTE(qm_regs); 1057 1058 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer, 1059 size_t count, loff_t *pos) 1060 { 1061 char buf[QM_DBG_READ_LEN]; 1062 int len; 1063 1064 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", 1065 "Please echo help to cmd to get help information"); 1066 1067 return simple_read_from_buffer(buffer, count, pos, buf, len); 1068 } 1069 1070 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1071 dma_addr_t *dma_addr) 1072 { 1073 struct device *dev = &qm->pdev->dev; 1074 void *ctx_addr; 1075 1076 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1077 if (!ctx_addr) 1078 return ERR_PTR(-ENOMEM); 1079 1080 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1081 if (dma_mapping_error(dev, *dma_addr)) { 1082 dev_err(dev, "DMA mapping error!\n"); 1083 kfree(ctx_addr); 1084 return ERR_PTR(-ENOMEM); 1085 } 1086 1087 return ctx_addr; 1088 } 1089 1090 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1091 const void *ctx_addr, dma_addr_t *dma_addr) 1092 { 1093 struct device *dev = &qm->pdev->dev; 1094 1095 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1096 kfree(ctx_addr); 1097 } 1098 1099 static int dump_show(struct hisi_qm *qm, void *info, 1100 unsigned int info_size, char *info_name) 1101 { 1102 struct device *dev = &qm->pdev->dev; 1103 u8 *info_buf, *info_curr = info; 1104 u32 i; 1105 #define BYTE_PER_DW 4 1106 1107 info_buf = kzalloc(info_size, GFP_KERNEL); 1108 if (!info_buf) 1109 return -ENOMEM; 1110 1111 for (i = 0; i < info_size; i++, info_curr++) { 1112 if (i % BYTE_PER_DW == 0) 1113 info_buf[i + 3UL] = *info_curr; 1114 else if (i % BYTE_PER_DW == 1) 1115 info_buf[i + 1UL] = *info_curr; 1116 else if (i % BYTE_PER_DW == 2) 1117 info_buf[i - 1] = *info_curr; 1118 else if (i % BYTE_PER_DW == 3) 1119 info_buf[i - 3] = *info_curr; 1120 } 1121 1122 dev_info(dev, "%s DUMP\n", info_name); 1123 for (i = 0; i < info_size; i += BYTE_PER_DW) { 1124 pr_info("DW%d: %02X%02X %02X%02X\n", i / BYTE_PER_DW, 1125 info_buf[i], info_buf[i + 1UL], 1126 info_buf[i + 2UL], info_buf[i + 3UL]); 1127 } 1128 1129 kfree(info_buf); 1130 1131 return 0; 1132 } 1133 1134 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1135 { 1136 return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1137 } 1138 1139 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1140 { 1141 return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1142 } 1143 1144 static int qm_sqc_dump(struct hisi_qm *qm, const char *s) 1145 { 1146 struct device *dev = &qm->pdev->dev; 1147 struct qm_sqc *sqc, *sqc_curr; 1148 dma_addr_t sqc_dma; 1149 u32 qp_id; 1150 int ret; 1151 1152 if (!s) 1153 return -EINVAL; 1154 1155 ret = kstrtou32(s, 0, &qp_id); 1156 if (ret || qp_id >= qm->qp_num) { 1157 dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1); 1158 return -EINVAL; 1159 } 1160 1161 sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma); 1162 if (IS_ERR(sqc)) 1163 return PTR_ERR(sqc); 1164 1165 ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id); 1166 if (ret) { 1167 down_read(&qm->qps_lock); 1168 if (qm->sqc) { 1169 sqc_curr = qm->sqc + qp_id; 1170 1171 ret = dump_show(qm, sqc_curr, sizeof(*sqc), 1172 "SOFT SQC"); 1173 if (ret) 1174 dev_info(dev, "Show soft sqc failed!\n"); 1175 } 1176 up_read(&qm->qps_lock); 1177 1178 goto err_free_ctx; 1179 } 1180 1181 ret = dump_show(qm, sqc, sizeof(*sqc), "SQC"); 1182 if (ret) 1183 dev_info(dev, "Show hw sqc failed!\n"); 1184 1185 err_free_ctx: 1186 qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma); 1187 return ret; 1188 } 1189 1190 static int qm_cqc_dump(struct hisi_qm *qm, const char *s) 1191 { 1192 struct device *dev = &qm->pdev->dev; 1193 struct qm_cqc *cqc, *cqc_curr; 1194 dma_addr_t cqc_dma; 1195 u32 qp_id; 1196 int ret; 1197 1198 if (!s) 1199 return -EINVAL; 1200 1201 ret = kstrtou32(s, 0, &qp_id); 1202 if (ret || qp_id >= qm->qp_num) { 1203 dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1); 1204 return -EINVAL; 1205 } 1206 1207 cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma); 1208 if (IS_ERR(cqc)) 1209 return PTR_ERR(cqc); 1210 1211 ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id); 1212 if (ret) { 1213 down_read(&qm->qps_lock); 1214 if (qm->cqc) { 1215 cqc_curr = qm->cqc + qp_id; 1216 1217 ret = dump_show(qm, cqc_curr, sizeof(*cqc), 1218 "SOFT CQC"); 1219 if (ret) 1220 dev_info(dev, "Show soft cqc failed!\n"); 1221 } 1222 up_read(&qm->qps_lock); 1223 1224 goto err_free_ctx; 1225 } 1226 1227 ret = dump_show(qm, cqc, sizeof(*cqc), "CQC"); 1228 if (ret) 1229 dev_info(dev, "Show hw cqc failed!\n"); 1230 1231 err_free_ctx: 1232 qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma); 1233 return ret; 1234 } 1235 1236 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size, 1237 int cmd, char *name) 1238 { 1239 struct device *dev = &qm->pdev->dev; 1240 dma_addr_t xeqc_dma; 1241 void *xeqc; 1242 int ret; 1243 1244 if (strsep(&s, " ")) { 1245 dev_err(dev, "Please do not input extra characters!\n"); 1246 return -EINVAL; 1247 } 1248 1249 xeqc = qm_ctx_alloc(qm, size, &xeqc_dma); 1250 if (IS_ERR(xeqc)) 1251 return PTR_ERR(xeqc); 1252 1253 ret = qm_mb(qm, cmd, xeqc_dma, 0, 1); 1254 if (ret) 1255 goto err_free_ctx; 1256 1257 ret = dump_show(qm, xeqc, size, name); 1258 if (ret) 1259 dev_info(dev, "Show hw %s failed!\n", name); 1260 1261 err_free_ctx: 1262 qm_ctx_free(qm, size, xeqc, &xeqc_dma); 1263 return ret; 1264 } 1265 1266 static int q_dump_param_parse(struct hisi_qm *qm, char *s, 1267 u32 *e_id, u32 *q_id) 1268 { 1269 struct device *dev = &qm->pdev->dev; 1270 unsigned int qp_num = qm->qp_num; 1271 char *presult; 1272 int ret; 1273 1274 presult = strsep(&s, " "); 1275 if (!presult) { 1276 dev_err(dev, "Please input qp number!\n"); 1277 return -EINVAL; 1278 } 1279 1280 ret = kstrtou32(presult, 0, q_id); 1281 if (ret || *q_id >= qp_num) { 1282 dev_err(dev, "Please input qp num (0-%d)", qp_num - 1); 1283 return -EINVAL; 1284 } 1285 1286 presult = strsep(&s, " "); 1287 if (!presult) { 1288 dev_err(dev, "Please input sqe number!\n"); 1289 return -EINVAL; 1290 } 1291 1292 ret = kstrtou32(presult, 0, e_id); 1293 if (ret || *e_id >= QM_Q_DEPTH) { 1294 dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1); 1295 return -EINVAL; 1296 } 1297 1298 if (strsep(&s, " ")) { 1299 dev_err(dev, "Please do not input extra characters!\n"); 1300 return -EINVAL; 1301 } 1302 1303 return 0; 1304 } 1305 1306 static int qm_sq_dump(struct hisi_qm *qm, char *s) 1307 { 1308 struct device *dev = &qm->pdev->dev; 1309 void *sqe, *sqe_curr; 1310 struct hisi_qp *qp; 1311 u32 qp_id, sqe_id; 1312 int ret; 1313 1314 ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id); 1315 if (ret) 1316 return ret; 1317 1318 sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL); 1319 if (!sqe) 1320 return -ENOMEM; 1321 1322 qp = &qm->qp_array[qp_id]; 1323 memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH); 1324 sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size); 1325 memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK, 1326 qm->debug.sqe_mask_len); 1327 1328 ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE"); 1329 if (ret) 1330 dev_info(dev, "Show sqe failed!\n"); 1331 1332 kfree(sqe); 1333 1334 return ret; 1335 } 1336 1337 static int qm_cq_dump(struct hisi_qm *qm, char *s) 1338 { 1339 struct device *dev = &qm->pdev->dev; 1340 struct qm_cqe *cqe_curr; 1341 struct hisi_qp *qp; 1342 u32 qp_id, cqe_id; 1343 int ret; 1344 1345 ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id); 1346 if (ret) 1347 return ret; 1348 1349 qp = &qm->qp_array[qp_id]; 1350 cqe_curr = qp->cqe + cqe_id; 1351 ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE"); 1352 if (ret) 1353 dev_info(dev, "Show cqe failed!\n"); 1354 1355 return ret; 1356 } 1357 1358 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s, 1359 size_t size, char *name) 1360 { 1361 struct device *dev = &qm->pdev->dev; 1362 void *xeqe; 1363 u32 xeqe_id; 1364 int ret; 1365 1366 if (!s) 1367 return -EINVAL; 1368 1369 ret = kstrtou32(s, 0, &xeqe_id); 1370 if (ret) 1371 return -EINVAL; 1372 1373 if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) { 1374 dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1); 1375 return -EINVAL; 1376 } else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) { 1377 dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1); 1378 return -EINVAL; 1379 } 1380 1381 down_read(&qm->qps_lock); 1382 1383 if (qm->eqe && !strcmp(name, "EQE")) { 1384 xeqe = qm->eqe + xeqe_id; 1385 } else if (qm->aeqe && !strcmp(name, "AEQE")) { 1386 xeqe = qm->aeqe + xeqe_id; 1387 } else { 1388 ret = -EINVAL; 1389 goto err_unlock; 1390 } 1391 1392 ret = dump_show(qm, xeqe, size, name); 1393 if (ret) 1394 dev_info(dev, "Show %s failed!\n", name); 1395 1396 err_unlock: 1397 up_read(&qm->qps_lock); 1398 return ret; 1399 } 1400 1401 static int qm_dbg_help(struct hisi_qm *qm, char *s) 1402 { 1403 struct device *dev = &qm->pdev->dev; 1404 1405 if (strsep(&s, " ")) { 1406 dev_err(dev, "Please do not input extra characters!\n"); 1407 return -EINVAL; 1408 } 1409 1410 dev_info(dev, "available commands:\n"); 1411 dev_info(dev, "sqc <num>\n"); 1412 dev_info(dev, "cqc <num>\n"); 1413 dev_info(dev, "eqc\n"); 1414 dev_info(dev, "aeqc\n"); 1415 dev_info(dev, "sq <num> <e>\n"); 1416 dev_info(dev, "cq <num> <e>\n"); 1417 dev_info(dev, "eq <e>\n"); 1418 dev_info(dev, "aeq <e>\n"); 1419 1420 return 0; 1421 } 1422 1423 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf) 1424 { 1425 struct device *dev = &qm->pdev->dev; 1426 char *presult, *s, *s_tmp; 1427 int ret; 1428 1429 s = kstrdup(cmd_buf, GFP_KERNEL); 1430 if (!s) 1431 return -ENOMEM; 1432 1433 s_tmp = s; 1434 presult = strsep(&s, " "); 1435 if (!presult) { 1436 ret = -EINVAL; 1437 goto err_buffer_free; 1438 } 1439 1440 if (!strcmp(presult, "sqc")) 1441 ret = qm_sqc_dump(qm, s); 1442 else if (!strcmp(presult, "cqc")) 1443 ret = qm_cqc_dump(qm, s); 1444 else if (!strcmp(presult, "eqc")) 1445 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc), 1446 QM_MB_CMD_EQC, "EQC"); 1447 else if (!strcmp(presult, "aeqc")) 1448 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc), 1449 QM_MB_CMD_AEQC, "AEQC"); 1450 else if (!strcmp(presult, "sq")) 1451 ret = qm_sq_dump(qm, s); 1452 else if (!strcmp(presult, "cq")) 1453 ret = qm_cq_dump(qm, s); 1454 else if (!strcmp(presult, "eq")) 1455 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE"); 1456 else if (!strcmp(presult, "aeq")) 1457 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE"); 1458 else if (!strcmp(presult, "help")) 1459 ret = qm_dbg_help(qm, s); 1460 else 1461 ret = -EINVAL; 1462 1463 if (ret) 1464 dev_info(dev, "Please echo help\n"); 1465 1466 err_buffer_free: 1467 kfree(s_tmp); 1468 1469 return ret; 1470 } 1471 1472 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer, 1473 size_t count, loff_t *pos) 1474 { 1475 struct hisi_qm *qm = filp->private_data; 1476 char *cmd_buf, *cmd_buf_tmp; 1477 int ret; 1478 1479 if (*pos) 1480 return 0; 1481 1482 /* Judge if the instance is being reset. */ 1483 if (unlikely(atomic_read(&qm->status.flags) == QM_STOP)) 1484 return 0; 1485 1486 if (count > QM_DBG_WRITE_LEN) 1487 return -ENOSPC; 1488 1489 cmd_buf = kzalloc(count + 1, GFP_KERNEL); 1490 if (!cmd_buf) 1491 return -ENOMEM; 1492 1493 if (copy_from_user(cmd_buf, buffer, count)) { 1494 kfree(cmd_buf); 1495 return -EFAULT; 1496 } 1497 1498 cmd_buf[count] = '\0'; 1499 1500 cmd_buf_tmp = strchr(cmd_buf, '\n'); 1501 if (cmd_buf_tmp) { 1502 *cmd_buf_tmp = '\0'; 1503 count = cmd_buf_tmp - cmd_buf + 1; 1504 } 1505 1506 ret = qm_cmd_write_dump(qm, cmd_buf); 1507 if (ret) { 1508 kfree(cmd_buf); 1509 return ret; 1510 } 1511 1512 kfree(cmd_buf); 1513 1514 return count; 1515 } 1516 1517 static const struct file_operations qm_cmd_fops = { 1518 .owner = THIS_MODULE, 1519 .open = simple_open, 1520 .read = qm_cmd_read, 1521 .write = qm_cmd_write, 1522 }; 1523 1524 static void qm_create_debugfs_file(struct hisi_qm *qm, enum qm_debug_file index) 1525 { 1526 struct dentry *qm_d = qm->debug.qm_d; 1527 struct debugfs_file *file = qm->debug.files + index; 1528 1529 debugfs_create_file(qm_debug_file_name[index], 0600, qm_d, file, 1530 &qm_debug_fops); 1531 1532 file->index = index; 1533 mutex_init(&file->lock); 1534 file->debug = &qm->debug; 1535 } 1536 1537 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 1538 { 1539 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1540 } 1541 1542 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 1543 { 1544 u32 irq_enable = ce | nfe | fe; 1545 u32 irq_unmask = ~irq_enable; 1546 1547 qm->error_mask = ce | nfe | fe; 1548 1549 /* clear QM hw residual error source */ 1550 writel(QM_ABNORMAL_INT_SOURCE_CLR, 1551 qm->io_base + QM_ABNORMAL_INT_SOURCE); 1552 1553 /* configure error type */ 1554 writel(ce, qm->io_base + QM_RAS_CE_ENABLE); 1555 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1556 writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1557 writel(fe, qm->io_base + QM_RAS_FE_ENABLE); 1558 1559 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1560 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1561 } 1562 1563 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1564 { 1565 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1566 } 1567 1568 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1569 { 1570 const struct hisi_qm_hw_error *err; 1571 struct device *dev = &qm->pdev->dev; 1572 u32 reg_val, type, vf_num; 1573 int i; 1574 1575 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1576 err = &qm_hw_error[i]; 1577 if (!(err->int_msk & error_status)) 1578 continue; 1579 1580 dev_err(dev, "%s [error status=0x%x] found\n", 1581 err->msg, err->int_msk); 1582 1583 if (err->int_msk & QM_DB_TIMEOUT) { 1584 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1585 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1586 QM_DB_TIMEOUT_TYPE_SHIFT; 1587 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1588 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1589 qm_db_timeout[type], vf_num); 1590 } else if (err->int_msk & QM_OF_FIFO_OF) { 1591 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1592 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1593 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1594 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1595 1596 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1597 dev_err(dev, "qm %s fifo overflow in function %u\n", 1598 qm_fifo_overflow[type], vf_num); 1599 else 1600 dev_err(dev, "unknown error type\n"); 1601 } 1602 } 1603 } 1604 1605 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1606 { 1607 u32 error_status, tmp; 1608 1609 /* read err sts */ 1610 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1611 error_status = qm->error_mask & tmp; 1612 1613 if (error_status) { 1614 if (error_status & QM_ECC_MBIT) 1615 qm->err_status.is_qm_ecc_mbit = true; 1616 1617 qm_log_hw_error(qm, error_status); 1618 if (error_status == QM_DB_RANDOM_INVALID) { 1619 writel(error_status, qm->io_base + 1620 QM_ABNORMAL_INT_SOURCE); 1621 return ACC_ERR_RECOVERED; 1622 } 1623 1624 return ACC_ERR_NEED_RESET; 1625 } 1626 1627 return ACC_ERR_RECOVERED; 1628 } 1629 1630 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1631 .qm_db = qm_db_v1, 1632 .get_irq_num = qm_get_irq_num_v1, 1633 .hw_error_init = qm_hw_error_init_v1, 1634 }; 1635 1636 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1637 .get_vft = qm_get_vft_v2, 1638 .qm_db = qm_db_v2, 1639 .get_irq_num = qm_get_irq_num_v2, 1640 .hw_error_init = qm_hw_error_init_v2, 1641 .hw_error_uninit = qm_hw_error_uninit_v2, 1642 .hw_error_handle = qm_hw_error_handle_v2, 1643 }; 1644 1645 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1646 { 1647 struct hisi_qp_status *qp_status = &qp->qp_status; 1648 u16 sq_tail = qp_status->sq_tail; 1649 1650 if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1)) 1651 return NULL; 1652 1653 return qp->sqe + sq_tail * qp->qm->sqe_size; 1654 } 1655 1656 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1657 { 1658 struct device *dev = &qm->pdev->dev; 1659 struct hisi_qp *qp; 1660 int qp_id; 1661 1662 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1663 return ERR_PTR(-EPERM); 1664 1665 if (qm->qp_in_used == qm->qp_num) { 1666 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1667 qm->qp_num); 1668 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1669 return ERR_PTR(-EBUSY); 1670 } 1671 1672 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1673 if (qp_id < 0) { 1674 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1675 qm->qp_num); 1676 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1677 return ERR_PTR(-EBUSY); 1678 } 1679 1680 qp = &qm->qp_array[qp_id]; 1681 1682 memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH); 1683 1684 qp->event_cb = NULL; 1685 qp->req_cb = NULL; 1686 qp->qp_id = qp_id; 1687 qp->alg_type = alg_type; 1688 qm->qp_in_used++; 1689 atomic_set(&qp->qp_status.flags, QP_INIT); 1690 1691 return qp; 1692 } 1693 1694 /** 1695 * hisi_qm_create_qp() - Create a queue pair from qm. 1696 * @qm: The qm we create a qp from. 1697 * @alg_type: Accelerator specific algorithm type in sqc. 1698 * 1699 * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating 1700 * qp memory fails. 1701 */ 1702 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1703 { 1704 struct hisi_qp *qp; 1705 1706 down_write(&qm->qps_lock); 1707 qp = qm_create_qp_nolock(qm, alg_type); 1708 up_write(&qm->qps_lock); 1709 1710 return qp; 1711 } 1712 EXPORT_SYMBOL_GPL(hisi_qm_create_qp); 1713 1714 /** 1715 * hisi_qm_release_qp() - Release a qp back to its qm. 1716 * @qp: The qp we want to release. 1717 * 1718 * This function releases the resource of a qp. 1719 */ 1720 void hisi_qm_release_qp(struct hisi_qp *qp) 1721 { 1722 struct hisi_qm *qm = qp->qm; 1723 1724 down_write(&qm->qps_lock); 1725 1726 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1727 up_write(&qm->qps_lock); 1728 return; 1729 } 1730 1731 qm->qp_in_used--; 1732 idr_remove(&qm->qp_idr, qp->qp_id); 1733 1734 up_write(&qm->qps_lock); 1735 } 1736 EXPORT_SYMBOL_GPL(hisi_qm_release_qp); 1737 1738 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1739 { 1740 struct hisi_qm *qm = qp->qm; 1741 struct device *dev = &qm->pdev->dev; 1742 enum qm_hw_ver ver = qm->ver; 1743 struct qm_sqc *sqc; 1744 dma_addr_t sqc_dma; 1745 int ret; 1746 1747 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1748 if (!sqc) 1749 return -ENOMEM; 1750 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 1751 DMA_TO_DEVICE); 1752 if (dma_mapping_error(dev, sqc_dma)) { 1753 kfree(sqc); 1754 return -ENOMEM; 1755 } 1756 1757 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1758 if (ver == QM_HW_V1) { 1759 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1760 sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 1761 } else { 1762 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size)); 1763 sqc->w8 = 0; /* rand_qc */ 1764 } 1765 sqc->cq_num = cpu_to_le16(qp_id); 1766 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1767 1768 ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 1769 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 1770 kfree(sqc); 1771 1772 return ret; 1773 } 1774 1775 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1776 { 1777 struct hisi_qm *qm = qp->qm; 1778 struct device *dev = &qm->pdev->dev; 1779 enum qm_hw_ver ver = qm->ver; 1780 struct qm_cqc *cqc; 1781 dma_addr_t cqc_dma; 1782 int ret; 1783 1784 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 1785 if (!cqc) 1786 return -ENOMEM; 1787 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 1788 DMA_TO_DEVICE); 1789 if (dma_mapping_error(dev, cqc_dma)) { 1790 kfree(cqc); 1791 return -ENOMEM; 1792 } 1793 1794 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 1795 if (ver == QM_HW_V1) { 1796 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 1797 QM_QC_CQE_SIZE)); 1798 cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 1799 } else { 1800 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE)); 1801 cqc->w8 = 0; /* rand_qc */ 1802 } 1803 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 1804 1805 ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 1806 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 1807 kfree(cqc); 1808 1809 return ret; 1810 } 1811 1812 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1813 { 1814 int ret; 1815 1816 qm_init_qp_status(qp); 1817 1818 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 1819 if (ret) 1820 return ret; 1821 1822 return qm_cq_ctx_cfg(qp, qp_id, pasid); 1823 } 1824 1825 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 1826 { 1827 struct hisi_qm *qm = qp->qm; 1828 struct device *dev = &qm->pdev->dev; 1829 int qp_id = qp->qp_id; 1830 u32 pasid = arg; 1831 int ret; 1832 1833 if (!qm_qp_avail_state(qm, qp, QP_START)) 1834 return -EPERM; 1835 1836 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 1837 if (ret) 1838 return ret; 1839 1840 atomic_set(&qp->qp_status.flags, QP_START); 1841 dev_dbg(dev, "queue %d started\n", qp_id); 1842 1843 return 0; 1844 } 1845 1846 /** 1847 * hisi_qm_start_qp() - Start a qp into running. 1848 * @qp: The qp we want to start to run. 1849 * @arg: Accelerator specific argument. 1850 * 1851 * After this function, qp can receive request from user. Return 0 if 1852 * successful, Return -EBUSY if failed. 1853 */ 1854 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 1855 { 1856 struct hisi_qm *qm = qp->qm; 1857 int ret; 1858 1859 down_write(&qm->qps_lock); 1860 ret = qm_start_qp_nolock(qp, arg); 1861 up_write(&qm->qps_lock); 1862 1863 return ret; 1864 } 1865 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 1866 1867 /** 1868 * qm_drain_qp() - Drain a qp. 1869 * @qp: The qp we want to drain. 1870 * 1871 * Determine whether the queue is cleared by judging the tail pointers of 1872 * sq and cq. 1873 */ 1874 static int qm_drain_qp(struct hisi_qp *qp) 1875 { 1876 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 1877 struct hisi_qm *qm = qp->qm; 1878 struct device *dev = &qm->pdev->dev; 1879 struct qm_sqc *sqc; 1880 struct qm_cqc *cqc; 1881 dma_addr_t dma_addr; 1882 int ret = 0, i = 0; 1883 void *addr; 1884 1885 /* 1886 * No need to judge if ECC multi-bit error occurs because the 1887 * master OOO will be blocked. 1888 */ 1889 if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit) 1890 return 0; 1891 1892 addr = qm_ctx_alloc(qm, size, &dma_addr); 1893 if (IS_ERR(addr)) { 1894 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 1895 return -ENOMEM; 1896 } 1897 1898 while (++i) { 1899 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 1900 if (ret) { 1901 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 1902 break; 1903 } 1904 sqc = addr; 1905 1906 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 1907 qp->qp_id); 1908 if (ret) { 1909 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 1910 break; 1911 } 1912 cqc = addr + sizeof(struct qm_sqc); 1913 1914 if ((sqc->tail == cqc->tail) && 1915 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 1916 break; 1917 1918 if (i == MAX_WAIT_COUNTS) { 1919 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 1920 ret = -EBUSY; 1921 break; 1922 } 1923 1924 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 1925 } 1926 1927 qm_ctx_free(qm, size, addr, &dma_addr); 1928 1929 return ret; 1930 } 1931 1932 static int qm_stop_qp_nolock(struct hisi_qp *qp) 1933 { 1934 struct device *dev = &qp->qm->pdev->dev; 1935 int ret; 1936 1937 /* 1938 * It is allowed to stop and release qp when reset, If the qp is 1939 * stopped when reset but still want to be released then, the 1940 * is_resetting flag should be set negative so that this qp will not 1941 * be restarted after reset. 1942 */ 1943 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 1944 qp->is_resetting = false; 1945 return 0; 1946 } 1947 1948 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 1949 return -EPERM; 1950 1951 atomic_set(&qp->qp_status.flags, QP_STOP); 1952 1953 ret = qm_drain_qp(qp); 1954 if (ret) 1955 dev_err(dev, "Failed to drain out data for stopping!\n"); 1956 1957 if (qp->qm->wq) 1958 flush_workqueue(qp->qm->wq); 1959 else 1960 flush_work(&qp->qm->work); 1961 1962 dev_dbg(dev, "stop queue %u!", qp->qp_id); 1963 1964 return 0; 1965 } 1966 1967 /** 1968 * hisi_qm_stop_qp() - Stop a qp in qm. 1969 * @qp: The qp we want to stop. 1970 * 1971 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 1972 */ 1973 int hisi_qm_stop_qp(struct hisi_qp *qp) 1974 { 1975 int ret; 1976 1977 down_write(&qp->qm->qps_lock); 1978 ret = qm_stop_qp_nolock(qp); 1979 up_write(&qp->qm->qps_lock); 1980 1981 return ret; 1982 } 1983 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 1984 1985 /** 1986 * hisi_qp_send() - Queue up a task in the hardware queue. 1987 * @qp: The qp in which to put the message. 1988 * @msg: The message. 1989 * 1990 * This function will return -EBUSY if qp is currently full, and -EAGAIN 1991 * if qp related qm is resetting. 1992 * 1993 * Note: This function may run with qm_irq_thread and ACC reset at same time. 1994 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 1995 * reset may happen, we have no lock here considering performance. This 1996 * causes current qm_db sending fail or can not receive sended sqe. QM 1997 * sync/async receive function should handle the error sqe. ACC reset 1998 * done function should clear used sqe to 0. 1999 */ 2000 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2001 { 2002 struct hisi_qp_status *qp_status = &qp->qp_status; 2003 u16 sq_tail = qp_status->sq_tail; 2004 u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH; 2005 void *sqe = qm_get_avail_sqe(qp); 2006 2007 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2008 atomic_read(&qp->qm->status.flags) == QM_STOP || 2009 qp->is_resetting)) { 2010 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2011 return -EAGAIN; 2012 } 2013 2014 if (!sqe) 2015 return -EBUSY; 2016 2017 memcpy(sqe, msg, qp->qm->sqe_size); 2018 2019 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2020 atomic_inc(&qp->qp_status.used); 2021 qp_status->sq_tail = sq_tail_next; 2022 2023 return 0; 2024 } 2025 EXPORT_SYMBOL_GPL(hisi_qp_send); 2026 2027 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2028 { 2029 unsigned int val; 2030 2031 if (qm->ver == QM_HW_V1) 2032 return; 2033 2034 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2035 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2036 val, val & BIT(0), POLL_PERIOD, 2037 POLL_TIMEOUT)) 2038 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2039 } 2040 2041 static void qm_qp_event_notifier(struct hisi_qp *qp) 2042 { 2043 wake_up_interruptible(&qp->uacce_q->wait); 2044 } 2045 2046 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2047 { 2048 return hisi_qm_get_free_qp_num(uacce->priv); 2049 } 2050 2051 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2052 unsigned long arg, 2053 struct uacce_queue *q) 2054 { 2055 struct hisi_qm *qm = uacce->priv; 2056 struct hisi_qp *qp; 2057 u8 alg_type = 0; 2058 2059 qp = hisi_qm_create_qp(qm, alg_type); 2060 if (IS_ERR(qp)) 2061 return PTR_ERR(qp); 2062 2063 q->priv = qp; 2064 q->uacce = uacce; 2065 qp->uacce_q = q; 2066 qp->event_cb = qm_qp_event_notifier; 2067 qp->pasid = arg; 2068 2069 return 0; 2070 } 2071 2072 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2073 { 2074 struct hisi_qp *qp = q->priv; 2075 2076 hisi_qm_cache_wb(qp->qm); 2077 hisi_qm_release_qp(qp); 2078 } 2079 2080 /* map sq/cq/doorbell to user space */ 2081 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2082 struct vm_area_struct *vma, 2083 struct uacce_qfile_region *qfr) 2084 { 2085 struct hisi_qp *qp = q->priv; 2086 struct hisi_qm *qm = qp->qm; 2087 size_t sz = vma->vm_end - vma->vm_start; 2088 struct pci_dev *pdev = qm->pdev; 2089 struct device *dev = &pdev->dev; 2090 unsigned long vm_pgoff; 2091 int ret; 2092 2093 switch (qfr->type) { 2094 case UACCE_QFRT_MMIO: 2095 if (qm->ver == QM_HW_V1) { 2096 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2097 return -EINVAL; 2098 } else { 2099 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2100 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2101 return -EINVAL; 2102 } 2103 2104 vma->vm_flags |= VM_IO; 2105 2106 return remap_pfn_range(vma, vma->vm_start, 2107 qm->phys_base >> PAGE_SHIFT, 2108 sz, pgprot_noncached(vma->vm_page_prot)); 2109 case UACCE_QFRT_DUS: 2110 if (sz != qp->qdma.size) 2111 return -EINVAL; 2112 2113 /* 2114 * dma_mmap_coherent() requires vm_pgoff as 0 2115 * restore vm_pfoff to initial value for mmap() 2116 */ 2117 vm_pgoff = vma->vm_pgoff; 2118 vma->vm_pgoff = 0; 2119 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2120 qp->qdma.dma, sz); 2121 vma->vm_pgoff = vm_pgoff; 2122 return ret; 2123 2124 default: 2125 return -EINVAL; 2126 } 2127 } 2128 2129 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2130 { 2131 struct hisi_qp *qp = q->priv; 2132 2133 return hisi_qm_start_qp(qp, qp->pasid); 2134 } 2135 2136 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2137 { 2138 hisi_qm_stop_qp(q->priv); 2139 } 2140 2141 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2142 { 2143 struct hisi_qm *qm = q->uacce->priv; 2144 struct hisi_qp *qp = q->priv; 2145 2146 down_write(&qm->qps_lock); 2147 qp->alg_type = type; 2148 up_write(&qm->qps_lock); 2149 } 2150 2151 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2152 unsigned long arg) 2153 { 2154 struct hisi_qp *qp = q->priv; 2155 struct hisi_qp_ctx qp_ctx; 2156 2157 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2158 if (copy_from_user(&qp_ctx, (void __user *)arg, 2159 sizeof(struct hisi_qp_ctx))) 2160 return -EFAULT; 2161 2162 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2163 return -EINVAL; 2164 2165 qm_set_sqctype(q, qp_ctx.qc_type); 2166 qp_ctx.id = qp->qp_id; 2167 2168 if (copy_to_user((void __user *)arg, &qp_ctx, 2169 sizeof(struct hisi_qp_ctx))) 2170 return -EFAULT; 2171 } else { 2172 return -EINVAL; 2173 } 2174 2175 return 0; 2176 } 2177 2178 static const struct uacce_ops uacce_qm_ops = { 2179 .get_available_instances = hisi_qm_get_available_instances, 2180 .get_queue = hisi_qm_uacce_get_queue, 2181 .put_queue = hisi_qm_uacce_put_queue, 2182 .start_queue = hisi_qm_uacce_start_queue, 2183 .stop_queue = hisi_qm_uacce_stop_queue, 2184 .mmap = hisi_qm_uacce_mmap, 2185 .ioctl = hisi_qm_uacce_ioctl, 2186 }; 2187 2188 static int qm_alloc_uacce(struct hisi_qm *qm) 2189 { 2190 struct pci_dev *pdev = qm->pdev; 2191 struct uacce_device *uacce; 2192 unsigned long mmio_page_nr; 2193 unsigned long dus_page_nr; 2194 struct uacce_interface interface = { 2195 .flags = UACCE_DEV_SVA, 2196 .ops = &uacce_qm_ops, 2197 }; 2198 int ret; 2199 2200 ret = strscpy(interface.name, pdev->driver->name, 2201 sizeof(interface.name)); 2202 if (ret < 0) 2203 return -ENAMETOOLONG; 2204 2205 uacce = uacce_alloc(&pdev->dev, &interface); 2206 if (IS_ERR(uacce)) 2207 return PTR_ERR(uacce); 2208 2209 if (uacce->flags & UACCE_DEV_SVA) { 2210 qm->use_sva = true; 2211 } else { 2212 /* only consider sva case */ 2213 uacce_remove(uacce); 2214 qm->uacce = NULL; 2215 return -EINVAL; 2216 } 2217 2218 uacce->is_vf = pdev->is_virtfn; 2219 uacce->priv = qm; 2220 uacce->algs = qm->algs; 2221 2222 if (qm->ver == QM_HW_V1) { 2223 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2224 uacce->api_ver = HISI_QM_API_VER_BASE; 2225 } else { 2226 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2227 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2228 uacce->api_ver = HISI_QM_API_VER2_BASE; 2229 } 2230 2231 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH + 2232 sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT; 2233 2234 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2235 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2236 2237 qm->uacce = uacce; 2238 2239 return 0; 2240 } 2241 2242 /** 2243 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2244 * there is user on the QM, return failure without doing anything. 2245 * @qm: The qm needed to be fronzen. 2246 * 2247 * This function frozes QM, then we can do SRIOV disabling. 2248 */ 2249 static int qm_frozen(struct hisi_qm *qm) 2250 { 2251 down_write(&qm->qps_lock); 2252 2253 if (qm->is_frozen) { 2254 up_write(&qm->qps_lock); 2255 return 0; 2256 } 2257 2258 if (!qm->qp_in_used) { 2259 qm->qp_in_used = qm->qp_num; 2260 qm->is_frozen = true; 2261 up_write(&qm->qps_lock); 2262 return 0; 2263 } 2264 2265 up_write(&qm->qps_lock); 2266 2267 return -EBUSY; 2268 } 2269 2270 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2271 struct hisi_qm_list *qm_list) 2272 { 2273 struct hisi_qm *qm, *vf_qm; 2274 struct pci_dev *dev; 2275 int ret = 0; 2276 2277 if (!qm_list || !pdev) 2278 return -EINVAL; 2279 2280 /* Try to frozen all the VFs as disable SRIOV */ 2281 mutex_lock(&qm_list->lock); 2282 list_for_each_entry(qm, &qm_list->list, list) { 2283 dev = qm->pdev; 2284 if (dev == pdev) 2285 continue; 2286 if (pci_physfn(dev) == pdev) { 2287 vf_qm = pci_get_drvdata(dev); 2288 ret = qm_frozen(vf_qm); 2289 if (ret) 2290 goto frozen_fail; 2291 } 2292 } 2293 2294 frozen_fail: 2295 mutex_unlock(&qm_list->lock); 2296 2297 return ret; 2298 } 2299 2300 /** 2301 * hisi_qm_wait_task_finish() - Wait until the task is finished 2302 * when removing the driver. 2303 * @qm: The qm needed to wait for the task to finish. 2304 * @qm_list: The list of all available devices. 2305 */ 2306 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2307 { 2308 while (qm_frozen(qm) || 2309 ((qm->fun_type == QM_HW_PF) && 2310 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2311 msleep(WAIT_PERIOD); 2312 } 2313 2314 udelay(REMOVE_WAIT_DELAY); 2315 } 2316 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2317 2318 /** 2319 * hisi_qm_get_free_qp_num() - Get free number of qp in qm. 2320 * @qm: The qm which want to get free qp. 2321 * 2322 * This function return free number of qp in qm. 2323 */ 2324 int hisi_qm_get_free_qp_num(struct hisi_qm *qm) 2325 { 2326 int ret; 2327 2328 down_read(&qm->qps_lock); 2329 ret = qm->qp_num - qm->qp_in_used; 2330 up_read(&qm->qps_lock); 2331 2332 return ret; 2333 } 2334 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num); 2335 2336 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2337 { 2338 struct device *dev = &qm->pdev->dev; 2339 struct qm_dma *qdma; 2340 int i; 2341 2342 for (i = num - 1; i >= 0; i--) { 2343 qdma = &qm->qp_array[i].qdma; 2344 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2345 } 2346 2347 kfree(qm->qp_array); 2348 } 2349 2350 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id) 2351 { 2352 struct device *dev = &qm->pdev->dev; 2353 size_t off = qm->sqe_size * QM_Q_DEPTH; 2354 struct hisi_qp *qp; 2355 2356 qp = &qm->qp_array[id]; 2357 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2358 GFP_KERNEL); 2359 if (!qp->qdma.va) 2360 return -ENOMEM; 2361 2362 qp->sqe = qp->qdma.va; 2363 qp->sqe_dma = qp->qdma.dma; 2364 qp->cqe = qp->qdma.va + off; 2365 qp->cqe_dma = qp->qdma.dma + off; 2366 qp->qdma.size = dma_size; 2367 qp->qm = qm; 2368 qp->qp_id = id; 2369 2370 return 0; 2371 } 2372 2373 static int hisi_qm_memory_init(struct hisi_qm *qm) 2374 { 2375 struct device *dev = &qm->pdev->dev; 2376 size_t qp_dma_size, off = 0; 2377 int i, ret = 0; 2378 2379 #define QM_INIT_BUF(qm, type, num) do { \ 2380 (qm)->type = ((qm)->qdma.va + (off)); \ 2381 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 2382 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 2383 } while (0) 2384 2385 idr_init(&qm->qp_idr); 2386 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) + 2387 QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) + 2388 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 2389 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 2390 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 2391 GFP_ATOMIC); 2392 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 2393 if (!qm->qdma.va) 2394 return -ENOMEM; 2395 2396 QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH); 2397 QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH); 2398 QM_INIT_BUF(qm, sqc, qm->qp_num); 2399 QM_INIT_BUF(qm, cqc, qm->qp_num); 2400 2401 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 2402 if (!qm->qp_array) { 2403 ret = -ENOMEM; 2404 goto err_alloc_qp_array; 2405 } 2406 2407 /* one more page for device or qp statuses */ 2408 qp_dma_size = qm->sqe_size * QM_Q_DEPTH + 2409 sizeof(struct qm_cqe) * QM_Q_DEPTH; 2410 qp_dma_size = PAGE_ALIGN(qp_dma_size); 2411 for (i = 0; i < qm->qp_num; i++) { 2412 ret = hisi_qp_memory_init(qm, qp_dma_size, i); 2413 if (ret) 2414 goto err_init_qp_mem; 2415 2416 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 2417 } 2418 2419 return ret; 2420 2421 err_init_qp_mem: 2422 hisi_qp_memory_uninit(qm, i); 2423 err_alloc_qp_array: 2424 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 2425 2426 return ret; 2427 } 2428 2429 static void hisi_qm_pre_init(struct hisi_qm *qm) 2430 { 2431 struct pci_dev *pdev = qm->pdev; 2432 2433 if (qm->ver == QM_HW_V1) 2434 qm->ops = &qm_hw_ops_v1; 2435 else 2436 qm->ops = &qm_hw_ops_v2; 2437 2438 pci_set_drvdata(pdev, qm); 2439 mutex_init(&qm->mailbox_lock); 2440 init_rwsem(&qm->qps_lock); 2441 qm->qp_in_used = 0; 2442 qm->is_frozen = false; 2443 } 2444 2445 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2446 { 2447 struct pci_dev *pdev = qm->pdev; 2448 2449 pci_free_irq_vectors(pdev); 2450 iounmap(qm->io_base); 2451 pci_release_mem_regions(pdev); 2452 pci_disable_device(pdev); 2453 } 2454 2455 /** 2456 * hisi_qm_uninit() - Uninitialize qm. 2457 * @qm: The qm needed uninit. 2458 * 2459 * This function uninits qm related device resources. 2460 */ 2461 void hisi_qm_uninit(struct hisi_qm *qm) 2462 { 2463 struct pci_dev *pdev = qm->pdev; 2464 struct device *dev = &pdev->dev; 2465 2466 down_write(&qm->qps_lock); 2467 2468 if (!qm_avail_state(qm, QM_CLOSE)) { 2469 up_write(&qm->qps_lock); 2470 return; 2471 } 2472 2473 hisi_qp_memory_uninit(qm, qm->qp_num); 2474 idr_destroy(&qm->qp_idr); 2475 2476 if (qm->qdma.va) { 2477 hisi_qm_cache_wb(qm); 2478 dma_free_coherent(dev, qm->qdma.size, 2479 qm->qdma.va, qm->qdma.dma); 2480 memset(&qm->qdma, 0, sizeof(qm->qdma)); 2481 } 2482 2483 qm_irq_unregister(qm); 2484 hisi_qm_pci_uninit(qm); 2485 uacce_remove(qm->uacce); 2486 qm->uacce = NULL; 2487 2488 up_write(&qm->qps_lock); 2489 } 2490 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2491 2492 /** 2493 * hisi_qm_get_vft() - Get vft from a qm. 2494 * @qm: The qm we want to get its vft. 2495 * @base: The base number of queue in vft. 2496 * @number: The number of queues in vft. 2497 * 2498 * We can allocate multiple queues to a qm by configuring virtual function 2499 * table. We get related configures by this function. Normally, we call this 2500 * function in VF driver to get the queue information. 2501 * 2502 * qm hw v1 does not support this interface. 2503 */ 2504 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2505 { 2506 if (!base || !number) 2507 return -EINVAL; 2508 2509 if (!qm->ops->get_vft) { 2510 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2511 return -EINVAL; 2512 } 2513 2514 return qm->ops->get_vft(qm, base, number); 2515 } 2516 EXPORT_SYMBOL_GPL(hisi_qm_get_vft); 2517 2518 /** 2519 * hisi_qm_set_vft() - Set vft to a qm. 2520 * @qm: The qm we want to set its vft. 2521 * @fun_num: The function number. 2522 * @base: The base number of queue in vft. 2523 * @number: The number of queues in vft. 2524 * 2525 * This function is alway called in PF driver, it is used to assign queues 2526 * among PF and VFs. 2527 * 2528 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2529 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2530 * (VF function number 0x2) 2531 */ 2532 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2533 u32 number) 2534 { 2535 u32 max_q_num = qm->ctrl_qp_num; 2536 2537 if (base >= max_q_num || number > max_q_num || 2538 (base + number) > max_q_num) 2539 return -EINVAL; 2540 2541 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2542 } 2543 2544 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2545 { 2546 struct hisi_qm_status *status = &qm->status; 2547 2548 status->eq_head = 0; 2549 status->aeq_head = 0; 2550 status->eqc_phase = true; 2551 status->aeqc_phase = true; 2552 } 2553 2554 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 2555 { 2556 struct device *dev = &qm->pdev->dev; 2557 struct qm_eqc *eqc; 2558 dma_addr_t eqc_dma; 2559 int ret; 2560 2561 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); //todo 2562 if (!eqc) 2563 return -ENOMEM; 2564 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 2565 DMA_TO_DEVICE); 2566 if (dma_mapping_error(dev, eqc_dma)) { 2567 kfree(eqc); 2568 return -ENOMEM; 2569 } 2570 2571 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 2572 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 2573 if (qm->ver == QM_HW_V1) 2574 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 2575 eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 2576 2577 ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 2578 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 2579 kfree(eqc); 2580 2581 return ret; 2582 } 2583 2584 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 2585 { 2586 struct device *dev = &qm->pdev->dev; 2587 struct qm_aeqc *aeqc; 2588 dma_addr_t aeqc_dma; 2589 int ret; 2590 2591 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 2592 if (!aeqc) 2593 return -ENOMEM; 2594 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 2595 DMA_TO_DEVICE); 2596 if (dma_mapping_error(dev, aeqc_dma)) { 2597 kfree(aeqc); 2598 return -ENOMEM; 2599 } 2600 2601 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 2602 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 2603 aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 2604 2605 ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 2606 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 2607 kfree(aeqc); 2608 2609 return ret; 2610 } 2611 2612 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 2613 { 2614 struct device *dev = &qm->pdev->dev; 2615 int ret; 2616 2617 qm_init_eq_aeq_status(qm); 2618 2619 ret = qm_eq_ctx_cfg(qm); 2620 if (ret) { 2621 dev_err(dev, "Set eqc failed!\n"); 2622 return ret; 2623 } 2624 2625 return qm_aeq_ctx_cfg(qm); 2626 } 2627 2628 static int __hisi_qm_start(struct hisi_qm *qm) 2629 { 2630 int ret; 2631 2632 WARN_ON(!qm->qdma.dma); 2633 2634 if (qm->fun_type == QM_HW_PF) { 2635 ret = qm_dev_mem_reset(qm); 2636 if (ret) 2637 return ret; 2638 2639 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 2640 if (ret) 2641 return ret; 2642 } 2643 2644 ret = qm_eq_aeq_ctx_cfg(qm); 2645 if (ret) 2646 return ret; 2647 2648 ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 2649 if (ret) 2650 return ret; 2651 2652 ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 2653 if (ret) 2654 return ret; 2655 2656 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 2657 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 2658 2659 return 0; 2660 } 2661 2662 /** 2663 * hisi_qm_start() - start qm 2664 * @qm: The qm to be started. 2665 * 2666 * This function starts a qm, then we can allocate qp from this qm. 2667 */ 2668 int hisi_qm_start(struct hisi_qm *qm) 2669 { 2670 struct device *dev = &qm->pdev->dev; 2671 int ret = 0; 2672 2673 down_write(&qm->qps_lock); 2674 2675 if (!qm_avail_state(qm, QM_START)) { 2676 up_write(&qm->qps_lock); 2677 return -EPERM; 2678 } 2679 2680 dev_dbg(dev, "qm start with %d queue pairs\n", qm->qp_num); 2681 2682 if (!qm->qp_num) { 2683 dev_err(dev, "qp_num should not be 0\n"); 2684 ret = -EINVAL; 2685 goto err_unlock; 2686 } 2687 2688 ret = __hisi_qm_start(qm); 2689 if (!ret) 2690 atomic_set(&qm->status.flags, QM_START); 2691 2692 err_unlock: 2693 up_write(&qm->qps_lock); 2694 return ret; 2695 } 2696 EXPORT_SYMBOL_GPL(hisi_qm_start); 2697 2698 static int qm_restart(struct hisi_qm *qm) 2699 { 2700 struct device *dev = &qm->pdev->dev; 2701 struct hisi_qp *qp; 2702 int ret, i; 2703 2704 ret = hisi_qm_start(qm); 2705 if (ret < 0) 2706 return ret; 2707 2708 down_write(&qm->qps_lock); 2709 for (i = 0; i < qm->qp_num; i++) { 2710 qp = &qm->qp_array[i]; 2711 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 2712 qp->is_resetting == true) { 2713 ret = qm_start_qp_nolock(qp, 0); 2714 if (ret < 0) { 2715 dev_err(dev, "Failed to start qp%d!\n", i); 2716 2717 up_write(&qm->qps_lock); 2718 return ret; 2719 } 2720 qp->is_resetting = false; 2721 } 2722 } 2723 up_write(&qm->qps_lock); 2724 2725 return 0; 2726 } 2727 2728 /* Stop started qps in reset flow */ 2729 static int qm_stop_started_qp(struct hisi_qm *qm) 2730 { 2731 struct device *dev = &qm->pdev->dev; 2732 struct hisi_qp *qp; 2733 int i, ret; 2734 2735 for (i = 0; i < qm->qp_num; i++) { 2736 qp = &qm->qp_array[i]; 2737 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 2738 qp->is_resetting = true; 2739 ret = qm_stop_qp_nolock(qp); 2740 if (ret < 0) { 2741 dev_err(dev, "Failed to stop qp%d!\n", i); 2742 return ret; 2743 } 2744 } 2745 } 2746 2747 return 0; 2748 } 2749 2750 2751 /** 2752 * qm_clear_queues() - Clear all queues memory in a qm. 2753 * @qm: The qm in which the queues will be cleared. 2754 * 2755 * This function clears all queues memory in a qm. Reset of accelerator can 2756 * use this to clear queues. 2757 */ 2758 static void qm_clear_queues(struct hisi_qm *qm) 2759 { 2760 struct hisi_qp *qp; 2761 int i; 2762 2763 for (i = 0; i < qm->qp_num; i++) { 2764 qp = &qm->qp_array[i]; 2765 if (qp->is_resetting) 2766 memset(qp->qdma.va, 0, qp->qdma.size); 2767 } 2768 2769 memset(qm->qdma.va, 0, qm->qdma.size); 2770 } 2771 2772 /** 2773 * hisi_qm_stop() - Stop a qm. 2774 * @qm: The qm which will be stopped. 2775 * @r: The reason to stop qm. 2776 * 2777 * This function stops qm and its qps, then qm can not accept request. 2778 * Related resources are not released at this state, we can use hisi_qm_start 2779 * to let qm start again. 2780 */ 2781 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 2782 { 2783 struct device *dev = &qm->pdev->dev; 2784 int ret = 0; 2785 2786 down_write(&qm->qps_lock); 2787 2788 qm->status.stop_reason = r; 2789 if (!qm_avail_state(qm, QM_STOP)) { 2790 ret = -EPERM; 2791 goto err_unlock; 2792 } 2793 2794 if (qm->status.stop_reason == QM_SOFT_RESET || 2795 qm->status.stop_reason == QM_FLR) { 2796 ret = qm_stop_started_qp(qm); 2797 if (ret < 0) { 2798 dev_err(dev, "Failed to stop started qp!\n"); 2799 goto err_unlock; 2800 } 2801 } 2802 2803 /* Mask eq and aeq irq */ 2804 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 2805 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 2806 2807 if (qm->fun_type == QM_HW_PF) { 2808 ret = hisi_qm_set_vft(qm, 0, 0, 0); 2809 if (ret < 0) { 2810 dev_err(dev, "Failed to set vft!\n"); 2811 ret = -EBUSY; 2812 goto err_unlock; 2813 } 2814 } 2815 2816 qm_clear_queues(qm); 2817 atomic_set(&qm->status.flags, QM_STOP); 2818 2819 err_unlock: 2820 up_write(&qm->qps_lock); 2821 return ret; 2822 } 2823 EXPORT_SYMBOL_GPL(hisi_qm_stop); 2824 2825 static ssize_t qm_status_read(struct file *filp, char __user *buffer, 2826 size_t count, loff_t *pos) 2827 { 2828 struct hisi_qm *qm = filp->private_data; 2829 char buf[QM_DBG_READ_LEN]; 2830 int val, len; 2831 2832 val = atomic_read(&qm->status.flags); 2833 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]); 2834 2835 return simple_read_from_buffer(buffer, count, pos, buf, len); 2836 } 2837 2838 static const struct file_operations qm_status_fops = { 2839 .owner = THIS_MODULE, 2840 .open = simple_open, 2841 .read = qm_status_read, 2842 }; 2843 2844 static int qm_debugfs_atomic64_set(void *data, u64 val) 2845 { 2846 if (val) 2847 return -EINVAL; 2848 2849 atomic64_set((atomic64_t *)data, 0); 2850 2851 return 0; 2852 } 2853 2854 static int qm_debugfs_atomic64_get(void *data, u64 *val) 2855 { 2856 *val = atomic64_read((atomic64_t *)data); 2857 2858 return 0; 2859 } 2860 2861 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get, 2862 qm_debugfs_atomic64_set, "%llu\n"); 2863 2864 /** 2865 * hisi_qm_debug_init() - Initialize qm related debugfs files. 2866 * @qm: The qm for which we want to add debugfs files. 2867 * 2868 * Create qm related debugfs files. 2869 */ 2870 void hisi_qm_debug_init(struct hisi_qm *qm) 2871 { 2872 struct qm_dfx *dfx = &qm->debug.dfx; 2873 struct dentry *qm_d; 2874 void *data; 2875 int i; 2876 2877 qm_d = debugfs_create_dir("qm", qm->debug.debug_root); 2878 qm->debug.qm_d = qm_d; 2879 2880 /* only show this in PF */ 2881 if (qm->fun_type == QM_HW_PF) 2882 for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++) 2883 qm_create_debugfs_file(qm, i); 2884 2885 debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops); 2886 2887 debugfs_create_file("cmd", 0444, qm->debug.qm_d, qm, &qm_cmd_fops); 2888 2889 debugfs_create_file("status", 0444, qm->debug.qm_d, qm, 2890 &qm_status_fops); 2891 for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) { 2892 data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset); 2893 debugfs_create_file(qm_dfx_files[i].name, 2894 0644, 2895 qm_d, 2896 data, 2897 &qm_atomic64_ops); 2898 } 2899 } 2900 EXPORT_SYMBOL_GPL(hisi_qm_debug_init); 2901 2902 /** 2903 * hisi_qm_debug_regs_clear() - clear qm debug related registers. 2904 * @qm: The qm for which we want to clear its debug registers. 2905 */ 2906 void hisi_qm_debug_regs_clear(struct hisi_qm *qm) 2907 { 2908 struct qm_dfx_registers *regs; 2909 int i; 2910 2911 /* clear current_q */ 2912 writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 2913 writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 2914 2915 /* 2916 * these registers are reading and clearing, so clear them after 2917 * reading them. 2918 */ 2919 writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE); 2920 2921 regs = qm_dfx_regs; 2922 for (i = 0; i < CNT_CYC_REGS_NUM; i++) { 2923 readl(qm->io_base + regs->reg_offset); 2924 regs++; 2925 } 2926 2927 writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE); 2928 } 2929 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear); 2930 2931 static void qm_hw_error_init(struct hisi_qm *qm) 2932 { 2933 const struct hisi_qm_err_info *err_info = &qm->err_ini->err_info; 2934 2935 if (!qm->ops->hw_error_init) { 2936 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 2937 return; 2938 } 2939 2940 qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe); 2941 } 2942 2943 static void qm_hw_error_uninit(struct hisi_qm *qm) 2944 { 2945 if (!qm->ops->hw_error_uninit) { 2946 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 2947 return; 2948 } 2949 2950 qm->ops->hw_error_uninit(qm); 2951 } 2952 2953 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 2954 { 2955 if (!qm->ops->hw_error_handle) { 2956 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 2957 return ACC_ERR_NONE; 2958 } 2959 2960 return qm->ops->hw_error_handle(qm); 2961 } 2962 2963 /** 2964 * hisi_qm_dev_err_init() - Initialize device error configuration. 2965 * @qm: The qm for which we want to do error initialization. 2966 * 2967 * Initialize QM and device error related configuration. 2968 */ 2969 void hisi_qm_dev_err_init(struct hisi_qm *qm) 2970 { 2971 if (qm->fun_type == QM_HW_VF) 2972 return; 2973 2974 qm_hw_error_init(qm); 2975 2976 if (!qm->err_ini->hw_err_enable) { 2977 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 2978 return; 2979 } 2980 qm->err_ini->hw_err_enable(qm); 2981 } 2982 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 2983 2984 /** 2985 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 2986 * @qm: The qm for which we want to do error uninitialization. 2987 * 2988 * Uninitialize QM and device error related configuration. 2989 */ 2990 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 2991 { 2992 if (qm->fun_type == QM_HW_VF) 2993 return; 2994 2995 qm_hw_error_uninit(qm); 2996 2997 if (!qm->err_ini->hw_err_disable) { 2998 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 2999 return; 3000 } 3001 qm->err_ini->hw_err_disable(qm); 3002 } 3003 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3004 3005 /** 3006 * hisi_qm_free_qps() - free multiple queue pairs. 3007 * @qps: The queue pairs need to be freed. 3008 * @qp_num: The num of queue pairs. 3009 */ 3010 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3011 { 3012 int i; 3013 3014 if (!qps || qp_num <= 0) 3015 return; 3016 3017 for (i = qp_num - 1; i >= 0; i--) 3018 hisi_qm_release_qp(qps[i]); 3019 } 3020 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3021 3022 static void free_list(struct list_head *head) 3023 { 3024 struct hisi_qm_resource *res, *tmp; 3025 3026 list_for_each_entry_safe(res, tmp, head, list) { 3027 list_del(&res->list); 3028 kfree(res); 3029 } 3030 } 3031 3032 static int hisi_qm_sort_devices(int node, struct list_head *head, 3033 struct hisi_qm_list *qm_list) 3034 { 3035 struct hisi_qm_resource *res, *tmp; 3036 struct hisi_qm *qm; 3037 struct list_head *n; 3038 struct device *dev; 3039 int dev_node = 0; 3040 3041 list_for_each_entry(qm, &qm_list->list, list) { 3042 dev = &qm->pdev->dev; 3043 3044 if (IS_ENABLED(CONFIG_NUMA)) { 3045 dev_node = dev_to_node(dev); 3046 if (dev_node < 0) 3047 dev_node = 0; 3048 } 3049 3050 res = kzalloc(sizeof(*res), GFP_KERNEL); 3051 if (!res) 3052 return -ENOMEM; 3053 3054 res->qm = qm; 3055 res->distance = node_distance(dev_node, node); 3056 n = head; 3057 list_for_each_entry(tmp, head, list) { 3058 if (res->distance < tmp->distance) { 3059 n = &tmp->list; 3060 break; 3061 } 3062 } 3063 list_add_tail(&res->list, n); 3064 } 3065 3066 return 0; 3067 } 3068 3069 /** 3070 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3071 * @qm_list: The list of all available devices. 3072 * @qp_num: The number of queue pairs need created. 3073 * @alg_type: The algorithm type. 3074 * @node: The numa node. 3075 * @qps: The queue pairs need created. 3076 * 3077 * This function will sort all available device according to numa distance. 3078 * Then try to create all queue pairs from one device, if all devices do 3079 * not meet the requirements will return error. 3080 */ 3081 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3082 u8 alg_type, int node, struct hisi_qp **qps) 3083 { 3084 struct hisi_qm_resource *tmp; 3085 int ret = -ENODEV; 3086 LIST_HEAD(head); 3087 int i; 3088 3089 if (!qps || !qm_list || qp_num <= 0) 3090 return -EINVAL; 3091 3092 mutex_lock(&qm_list->lock); 3093 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3094 mutex_unlock(&qm_list->lock); 3095 goto err; 3096 } 3097 3098 list_for_each_entry(tmp, &head, list) { 3099 for (i = 0; i < qp_num; i++) { 3100 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3101 if (IS_ERR(qps[i])) { 3102 hisi_qm_free_qps(qps, i); 3103 break; 3104 } 3105 } 3106 3107 if (i == qp_num) { 3108 ret = 0; 3109 break; 3110 } 3111 } 3112 3113 mutex_unlock(&qm_list->lock); 3114 if (ret) 3115 pr_info("Failed to create qps, node[%d], alg[%d], qp[%d]!\n", 3116 node, alg_type, qp_num); 3117 3118 err: 3119 free_list(&head); 3120 return ret; 3121 } 3122 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3123 3124 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3125 { 3126 u32 remain_q_num, q_num, i, j; 3127 u32 q_base = qm->qp_num; 3128 int ret; 3129 3130 if (!num_vfs) 3131 return -EINVAL; 3132 3133 remain_q_num = qm->ctrl_qp_num - qm->qp_num; 3134 3135 /* If remain queues not enough, return error. */ 3136 if (qm->ctrl_qp_num < qm->qp_num || remain_q_num < num_vfs) 3137 return -EINVAL; 3138 3139 q_num = remain_q_num / num_vfs; 3140 for (i = 1; i <= num_vfs; i++) { 3141 if (i == num_vfs) 3142 q_num += remain_q_num % num_vfs; 3143 ret = hisi_qm_set_vft(qm, i, q_base, q_num); 3144 if (ret) { 3145 for (j = i; j > 0; j--) 3146 hisi_qm_set_vft(qm, j, 0, 0); 3147 return ret; 3148 } 3149 q_base += q_num; 3150 } 3151 3152 return 0; 3153 } 3154 3155 static int qm_clear_vft_config(struct hisi_qm *qm) 3156 { 3157 int ret; 3158 u32 i; 3159 3160 for (i = 1; i <= qm->vfs_num; i++) { 3161 ret = hisi_qm_set_vft(qm, i, 0, 0); 3162 if (ret) 3163 return ret; 3164 } 3165 qm->vfs_num = 0; 3166 3167 return 0; 3168 } 3169 3170 /** 3171 * hisi_qm_sriov_enable() - enable virtual functions 3172 * @pdev: the PCIe device 3173 * @max_vfs: the number of virtual functions to enable 3174 * 3175 * Returns the number of enabled VFs. If there are VFs enabled already or 3176 * max_vfs is more than the total number of device can be enabled, returns 3177 * failure. 3178 */ 3179 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3180 { 3181 struct hisi_qm *qm = pci_get_drvdata(pdev); 3182 int pre_existing_vfs, num_vfs, total_vfs, ret; 3183 3184 total_vfs = pci_sriov_get_totalvfs(pdev); 3185 pre_existing_vfs = pci_num_vf(pdev); 3186 if (pre_existing_vfs) { 3187 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3188 pre_existing_vfs); 3189 return 0; 3190 } 3191 3192 num_vfs = min_t(int, max_vfs, total_vfs); 3193 ret = qm_vf_q_assign(qm, num_vfs); 3194 if (ret) { 3195 pci_err(pdev, "Can't assign queues for VF!\n"); 3196 return ret; 3197 } 3198 3199 qm->vfs_num = num_vfs; 3200 3201 ret = pci_enable_sriov(pdev, num_vfs); 3202 if (ret) { 3203 pci_err(pdev, "Can't enable VF!\n"); 3204 qm_clear_vft_config(qm); 3205 return ret; 3206 } 3207 3208 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3209 3210 return num_vfs; 3211 } 3212 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3213 3214 /** 3215 * hisi_qm_sriov_disable - disable virtual functions 3216 * @pdev: the PCI device. 3217 * @is_frozen: true when all the VFs are frozen. 3218 * 3219 * Return failure if there are VFs assigned already or VF is in used. 3220 */ 3221 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3222 { 3223 struct hisi_qm *qm = pci_get_drvdata(pdev); 3224 3225 if (pci_vfs_assigned(pdev)) { 3226 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3227 return -EPERM; 3228 } 3229 3230 /* While VF is in used, SRIOV cannot be disabled. */ 3231 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3232 pci_err(pdev, "Task is using its VF!\n"); 3233 return -EBUSY; 3234 } 3235 3236 pci_disable_sriov(pdev); 3237 return qm_clear_vft_config(qm); 3238 } 3239 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3240 3241 /** 3242 * hisi_qm_sriov_configure - configure the number of VFs 3243 * @pdev: The PCI device 3244 * @num_vfs: The number of VFs need enabled 3245 * 3246 * Enable SR-IOV according to num_vfs, 0 means disable. 3247 */ 3248 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3249 { 3250 if (num_vfs == 0) 3251 return hisi_qm_sriov_disable(pdev, 0); 3252 else 3253 return hisi_qm_sriov_enable(pdev, num_vfs); 3254 } 3255 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3256 3257 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3258 { 3259 u32 err_sts; 3260 3261 if (!qm->err_ini->get_dev_hw_err_status) { 3262 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3263 return ACC_ERR_NONE; 3264 } 3265 3266 /* get device hardware error status */ 3267 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3268 if (err_sts) { 3269 if (err_sts & qm->err_ini->err_info.ecc_2bits_mask) 3270 qm->err_status.is_dev_ecc_mbit = true; 3271 3272 if (!qm->err_ini->log_dev_hw_err) { 3273 dev_err(&qm->pdev->dev, "Device doesn't support log hw error!\n"); 3274 return ACC_ERR_NEED_RESET; 3275 } 3276 3277 qm->err_ini->log_dev_hw_err(qm, err_sts); 3278 return ACC_ERR_NEED_RESET; 3279 } 3280 3281 return ACC_ERR_RECOVERED; 3282 } 3283 3284 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3285 { 3286 enum acc_err_result qm_ret, dev_ret; 3287 3288 /* log qm error */ 3289 qm_ret = qm_hw_error_handle(qm); 3290 3291 /* log device error */ 3292 dev_ret = qm_dev_err_handle(qm); 3293 3294 return (qm_ret == ACC_ERR_NEED_RESET || 3295 dev_ret == ACC_ERR_NEED_RESET) ? 3296 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3297 } 3298 3299 /** 3300 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3301 * @pdev: The PCI device which need report error. 3302 * @state: The connectivity between CPU and device. 3303 * 3304 * We register this function into PCIe AER handlers, It will report device or 3305 * qm hardware error status when error occur. 3306 */ 3307 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3308 pci_channel_state_t state) 3309 { 3310 struct hisi_qm *qm = pci_get_drvdata(pdev); 3311 enum acc_err_result ret; 3312 3313 if (pdev->is_virtfn) 3314 return PCI_ERS_RESULT_NONE; 3315 3316 pci_info(pdev, "PCI error detected, state(=%d)!!\n", state); 3317 if (state == pci_channel_io_perm_failure) 3318 return PCI_ERS_RESULT_DISCONNECT; 3319 3320 ret = qm_process_dev_error(qm); 3321 if (ret == ACC_ERR_NEED_RESET) 3322 return PCI_ERS_RESULT_NEED_RESET; 3323 3324 return PCI_ERS_RESULT_RECOVERED; 3325 } 3326 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 3327 3328 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 3329 { 3330 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 3331 } 3332 3333 static int qm_check_req_recv(struct hisi_qm *qm) 3334 { 3335 struct pci_dev *pdev = qm->pdev; 3336 int ret; 3337 u32 val; 3338 3339 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 3340 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3341 (val == ACC_VENDOR_ID_VALUE), 3342 POLL_PERIOD, POLL_TIMEOUT); 3343 if (ret) { 3344 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 3345 return ret; 3346 } 3347 3348 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 3349 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3350 (val == PCI_VENDOR_ID_HUAWEI), 3351 POLL_PERIOD, POLL_TIMEOUT); 3352 if (ret) 3353 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 3354 3355 return ret; 3356 } 3357 3358 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 3359 { 3360 struct pci_dev *pdev = qm->pdev; 3361 u16 cmd; 3362 int i; 3363 3364 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3365 if (set) 3366 cmd |= PCI_COMMAND_MEMORY; 3367 else 3368 cmd &= ~PCI_COMMAND_MEMORY; 3369 3370 pci_write_config_word(pdev, PCI_COMMAND, cmd); 3371 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 3372 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3373 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 3374 return 0; 3375 3376 udelay(1); 3377 } 3378 3379 return -ETIMEDOUT; 3380 } 3381 3382 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 3383 { 3384 struct pci_dev *pdev = qm->pdev; 3385 u16 sriov_ctrl; 3386 int pos; 3387 int i; 3388 3389 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 3390 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 3391 if (set) 3392 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 3393 else 3394 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 3395 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 3396 3397 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 3398 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 3399 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 3400 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 3401 return 0; 3402 3403 udelay(1); 3404 } 3405 3406 return -ETIMEDOUT; 3407 } 3408 3409 static int qm_set_msi(struct hisi_qm *qm, bool set) 3410 { 3411 struct pci_dev *pdev = qm->pdev; 3412 3413 if (set) { 3414 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 3415 0); 3416 } else { 3417 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 3418 ACC_PEH_MSI_DISABLE); 3419 if (qm->err_status.is_qm_ecc_mbit || 3420 qm->err_status.is_dev_ecc_mbit) 3421 return 0; 3422 3423 mdelay(1); 3424 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 3425 return -EFAULT; 3426 } 3427 3428 return 0; 3429 } 3430 3431 static int qm_vf_reset_prepare(struct hisi_qm *qm, 3432 enum qm_stop_reason stop_reason) 3433 { 3434 struct hisi_qm_list *qm_list = qm->qm_list; 3435 struct pci_dev *pdev = qm->pdev; 3436 struct pci_dev *virtfn; 3437 struct hisi_qm *vf_qm; 3438 int ret = 0; 3439 3440 mutex_lock(&qm_list->lock); 3441 list_for_each_entry(vf_qm, &qm_list->list, list) { 3442 virtfn = vf_qm->pdev; 3443 if (virtfn == pdev) 3444 continue; 3445 3446 if (pci_physfn(virtfn) == pdev) { 3447 /* save VFs PCIE BAR configuration */ 3448 pci_save_state(virtfn); 3449 3450 ret = hisi_qm_stop(vf_qm, stop_reason); 3451 if (ret) 3452 goto stop_fail; 3453 } 3454 } 3455 3456 stop_fail: 3457 mutex_unlock(&qm_list->lock); 3458 return ret; 3459 } 3460 3461 static int qm_reset_prepare_ready(struct hisi_qm *qm) 3462 { 3463 struct pci_dev *pdev = qm->pdev; 3464 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 3465 int delay = 0; 3466 3467 /* All reset requests need to be queued for processing */ 3468 while (test_and_set_bit(QM_DEV_RESET_FLAG, &pf_qm->reset_flag)) { 3469 msleep(++delay); 3470 if (delay > QM_RESET_WAIT_TIMEOUT) 3471 return -EBUSY; 3472 } 3473 3474 return 0; 3475 } 3476 3477 static int qm_controller_reset_prepare(struct hisi_qm *qm) 3478 { 3479 struct pci_dev *pdev = qm->pdev; 3480 int ret; 3481 3482 ret = qm_reset_prepare_ready(qm); 3483 if (ret) { 3484 pci_err(pdev, "Controller reset not ready!\n"); 3485 return ret; 3486 } 3487 3488 if (qm->vfs_num) { 3489 ret = qm_vf_reset_prepare(qm, QM_SOFT_RESET); 3490 if (ret) { 3491 pci_err(pdev, "Fails to stop VFs!\n"); 3492 return ret; 3493 } 3494 } 3495 3496 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 3497 if (ret) { 3498 pci_err(pdev, "Fails to stop QM!\n"); 3499 return ret; 3500 } 3501 3502 return 0; 3503 } 3504 3505 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 3506 { 3507 u32 nfe_enb = 0; 3508 3509 if (!qm->err_status.is_dev_ecc_mbit && 3510 qm->err_status.is_qm_ecc_mbit && 3511 qm->err_ini->close_axi_master_ooo) { 3512 3513 qm->err_ini->close_axi_master_ooo(qm); 3514 3515 } else if (qm->err_status.is_dev_ecc_mbit && 3516 !qm->err_status.is_qm_ecc_mbit && 3517 !qm->err_ini->close_axi_master_ooo) { 3518 3519 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 3520 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 3521 qm->io_base + QM_RAS_NFE_ENABLE); 3522 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 3523 } 3524 } 3525 3526 static int qm_soft_reset(struct hisi_qm *qm) 3527 { 3528 struct pci_dev *pdev = qm->pdev; 3529 int ret; 3530 u32 val; 3531 3532 /* Ensure all doorbells and mailboxes received by QM */ 3533 ret = qm_check_req_recv(qm); 3534 if (ret) 3535 return ret; 3536 3537 if (qm->vfs_num) { 3538 ret = qm_set_vf_mse(qm, false); 3539 if (ret) { 3540 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 3541 return ret; 3542 } 3543 } 3544 3545 ret = qm_set_msi(qm, false); 3546 if (ret) { 3547 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 3548 return ret; 3549 } 3550 3551 qm_dev_ecc_mbit_handle(qm); 3552 3553 /* OOO register set and check */ 3554 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 3555 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 3556 3557 /* If bus lock, reset chip */ 3558 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 3559 val, 3560 (val == ACC_MASTER_TRANS_RETURN_RW), 3561 POLL_PERIOD, POLL_TIMEOUT); 3562 if (ret) { 3563 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 3564 return ret; 3565 } 3566 3567 ret = qm_set_pf_mse(qm, false); 3568 if (ret) { 3569 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 3570 return ret; 3571 } 3572 3573 /* The reset related sub-control registers are not in PCI BAR */ 3574 if (ACPI_HANDLE(&pdev->dev)) { 3575 unsigned long long value = 0; 3576 acpi_status s; 3577 3578 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 3579 qm->err_ini->err_info.acpi_rst, 3580 NULL, &value); 3581 if (ACPI_FAILURE(s)) { 3582 pci_err(pdev, "NO controller reset method!\n"); 3583 return -EIO; 3584 } 3585 3586 if (value) { 3587 pci_err(pdev, "Reset step %llu failed!\n", value); 3588 return -EIO; 3589 } 3590 } else { 3591 pci_err(pdev, "No reset method!\n"); 3592 return -EINVAL; 3593 } 3594 3595 return 0; 3596 } 3597 3598 static int qm_vf_reset_done(struct hisi_qm *qm) 3599 { 3600 struct hisi_qm_list *qm_list = qm->qm_list; 3601 struct pci_dev *pdev = qm->pdev; 3602 struct pci_dev *virtfn; 3603 struct hisi_qm *vf_qm; 3604 int ret = 0; 3605 3606 mutex_lock(&qm_list->lock); 3607 list_for_each_entry(vf_qm, &qm_list->list, list) { 3608 virtfn = vf_qm->pdev; 3609 if (virtfn == pdev) 3610 continue; 3611 3612 if (pci_physfn(virtfn) == pdev) { 3613 /* enable VFs PCIE BAR configuration */ 3614 pci_restore_state(virtfn); 3615 3616 ret = qm_restart(vf_qm); 3617 if (ret) 3618 goto restart_fail; 3619 } 3620 } 3621 3622 restart_fail: 3623 mutex_unlock(&qm_list->lock); 3624 return ret; 3625 } 3626 3627 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 3628 { 3629 return qm->err_ini->get_dev_hw_err_status(qm); 3630 } 3631 3632 static int qm_dev_hw_init(struct hisi_qm *qm) 3633 { 3634 return qm->err_ini->hw_init(qm); 3635 } 3636 3637 static void qm_restart_prepare(struct hisi_qm *qm) 3638 { 3639 u32 value; 3640 3641 if (!qm->err_status.is_qm_ecc_mbit && 3642 !qm->err_status.is_dev_ecc_mbit) 3643 return; 3644 3645 /* temporarily close the OOO port used for PEH to write out MSI */ 3646 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 3647 writel(value & ~qm->err_ini->err_info.msi_wr_port, 3648 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 3649 3650 /* clear dev ecc 2bit error source if having */ 3651 value = qm_get_dev_err_status(qm) & 3652 qm->err_ini->err_info.ecc_2bits_mask; 3653 if (value && qm->err_ini->clear_dev_hw_err_status) 3654 qm->err_ini->clear_dev_hw_err_status(qm, value); 3655 3656 /* clear QM ecc mbit error source */ 3657 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 3658 3659 /* clear AM Reorder Buffer ecc mbit source */ 3660 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 3661 3662 if (qm->err_ini->open_axi_master_ooo) 3663 qm->err_ini->open_axi_master_ooo(qm); 3664 } 3665 3666 static void qm_restart_done(struct hisi_qm *qm) 3667 { 3668 u32 value; 3669 3670 if (!qm->err_status.is_qm_ecc_mbit && 3671 !qm->err_status.is_dev_ecc_mbit) 3672 return; 3673 3674 /* open the OOO port for PEH to write out MSI */ 3675 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 3676 value |= qm->err_ini->err_info.msi_wr_port; 3677 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 3678 3679 qm->err_status.is_qm_ecc_mbit = false; 3680 qm->err_status.is_dev_ecc_mbit = false; 3681 } 3682 3683 static int qm_controller_reset_done(struct hisi_qm *qm) 3684 { 3685 struct pci_dev *pdev = qm->pdev; 3686 int ret; 3687 3688 ret = qm_set_msi(qm, true); 3689 if (ret) { 3690 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 3691 return ret; 3692 } 3693 3694 ret = qm_set_pf_mse(qm, true); 3695 if (ret) { 3696 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 3697 return ret; 3698 } 3699 3700 if (qm->vfs_num) { 3701 ret = qm_set_vf_mse(qm, true); 3702 if (ret) { 3703 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 3704 return ret; 3705 } 3706 } 3707 3708 ret = qm_dev_hw_init(qm); 3709 if (ret) { 3710 pci_err(pdev, "Failed to init device\n"); 3711 return ret; 3712 } 3713 3714 qm_restart_prepare(qm); 3715 3716 ret = qm_restart(qm); 3717 if (ret) { 3718 pci_err(pdev, "Failed to start QM!\n"); 3719 return ret; 3720 } 3721 3722 if (qm->vfs_num) { 3723 ret = qm_vf_q_assign(qm, qm->vfs_num); 3724 if (ret) { 3725 pci_err(pdev, "Failed to assign queue!\n"); 3726 return ret; 3727 } 3728 } 3729 3730 ret = qm_vf_reset_done(qm); 3731 if (ret) { 3732 pci_err(pdev, "Failed to start VFs!\n"); 3733 return -EPERM; 3734 } 3735 3736 hisi_qm_dev_err_init(qm); 3737 qm_restart_done(qm); 3738 3739 clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag); 3740 3741 return 0; 3742 } 3743 3744 static int qm_controller_reset(struct hisi_qm *qm) 3745 { 3746 struct pci_dev *pdev = qm->pdev; 3747 int ret; 3748 3749 pci_info(pdev, "Controller resetting...\n"); 3750 3751 ret = qm_controller_reset_prepare(qm); 3752 if (ret) 3753 return ret; 3754 3755 ret = qm_soft_reset(qm); 3756 if (ret) { 3757 pci_err(pdev, "Controller reset failed (%d)\n", ret); 3758 return ret; 3759 } 3760 3761 ret = qm_controller_reset_done(qm); 3762 if (ret) 3763 return ret; 3764 3765 pci_info(pdev, "Controller reset complete\n"); 3766 3767 return 0; 3768 } 3769 3770 /** 3771 * hisi_qm_dev_slot_reset() - slot reset 3772 * @pdev: the PCIe device 3773 * 3774 * This function offers QM relate PCIe device reset interface. Drivers which 3775 * use QM can use this function as slot_reset in its struct pci_error_handlers. 3776 */ 3777 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 3778 { 3779 struct hisi_qm *qm = pci_get_drvdata(pdev); 3780 int ret; 3781 3782 if (pdev->is_virtfn) 3783 return PCI_ERS_RESULT_RECOVERED; 3784 3785 pci_aer_clear_nonfatal_status(pdev); 3786 3787 /* reset pcie device controller */ 3788 ret = qm_controller_reset(qm); 3789 if (ret) { 3790 pci_err(pdev, "Controller reset failed (%d)\n", ret); 3791 return PCI_ERS_RESULT_DISCONNECT; 3792 } 3793 3794 return PCI_ERS_RESULT_RECOVERED; 3795 } 3796 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 3797 3798 /* check the interrupt is ecc-mbit error or not */ 3799 static int qm_check_dev_error(struct hisi_qm *qm) 3800 { 3801 int ret; 3802 3803 if (qm->fun_type == QM_HW_VF) 3804 return 0; 3805 3806 ret = qm_get_hw_error_status(qm) & QM_ECC_MBIT; 3807 if (ret) 3808 return ret; 3809 3810 return (qm_get_dev_err_status(qm) & 3811 qm->err_ini->err_info.ecc_2bits_mask); 3812 } 3813 3814 void hisi_qm_reset_prepare(struct pci_dev *pdev) 3815 { 3816 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 3817 struct hisi_qm *qm = pci_get_drvdata(pdev); 3818 u32 delay = 0; 3819 int ret; 3820 3821 hisi_qm_dev_err_uninit(pf_qm); 3822 3823 /* 3824 * Check whether there is an ECC mbit error, If it occurs, need to 3825 * wait for soft reset to fix it. 3826 */ 3827 while (qm_check_dev_error(pf_qm)) { 3828 msleep(++delay); 3829 if (delay > QM_RESET_WAIT_TIMEOUT) 3830 return; 3831 } 3832 3833 ret = qm_reset_prepare_ready(qm); 3834 if (ret) { 3835 pci_err(pdev, "FLR not ready!\n"); 3836 return; 3837 } 3838 3839 if (qm->vfs_num) { 3840 ret = qm_vf_reset_prepare(qm, QM_FLR); 3841 if (ret) { 3842 pci_err(pdev, "Failed to prepare reset, ret = %d.\n", 3843 ret); 3844 return; 3845 } 3846 } 3847 3848 ret = hisi_qm_stop(qm, QM_FLR); 3849 if (ret) { 3850 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 3851 return; 3852 } 3853 3854 pci_info(pdev, "FLR resetting...\n"); 3855 } 3856 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 3857 3858 static bool qm_flr_reset_complete(struct pci_dev *pdev) 3859 { 3860 struct pci_dev *pf_pdev = pci_physfn(pdev); 3861 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 3862 u32 id; 3863 3864 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 3865 if (id == QM_PCI_COMMAND_INVALID) { 3866 pci_err(pdev, "Device can not be used!\n"); 3867 return false; 3868 } 3869 3870 clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag); 3871 3872 return true; 3873 } 3874 3875 void hisi_qm_reset_done(struct pci_dev *pdev) 3876 { 3877 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 3878 struct hisi_qm *qm = pci_get_drvdata(pdev); 3879 int ret; 3880 3881 hisi_qm_dev_err_init(pf_qm); 3882 3883 ret = qm_restart(qm); 3884 if (ret) { 3885 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 3886 goto flr_done; 3887 } 3888 3889 if (qm->fun_type == QM_HW_PF) { 3890 ret = qm_dev_hw_init(qm); 3891 if (ret) { 3892 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 3893 goto flr_done; 3894 } 3895 3896 if (!qm->vfs_num) 3897 goto flr_done; 3898 3899 ret = qm_vf_q_assign(qm, qm->vfs_num); 3900 if (ret) { 3901 pci_err(pdev, "Failed to assign VFs, ret = %d.\n", ret); 3902 goto flr_done; 3903 } 3904 3905 ret = qm_vf_reset_done(qm); 3906 if (ret) { 3907 pci_err(pdev, "Failed to start VFs, ret = %d.\n", ret); 3908 goto flr_done; 3909 } 3910 } 3911 3912 flr_done: 3913 if (qm_flr_reset_complete(pdev)) 3914 pci_info(pdev, "FLR reset complete\n"); 3915 } 3916 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 3917 3918 static irqreturn_t qm_abnormal_irq(int irq, void *data) 3919 { 3920 struct hisi_qm *qm = data; 3921 enum acc_err_result ret; 3922 3923 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 3924 ret = qm_process_dev_error(qm); 3925 if (ret == ACC_ERR_NEED_RESET) 3926 schedule_work(&qm->rst_work); 3927 3928 return IRQ_HANDLED; 3929 } 3930 3931 static int qm_irq_register(struct hisi_qm *qm) 3932 { 3933 struct pci_dev *pdev = qm->pdev; 3934 int ret; 3935 3936 ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), 3937 qm_irq, IRQF_SHARED, qm->dev_name, qm); 3938 if (ret) 3939 return ret; 3940 3941 if (qm->ver != QM_HW_V1) { 3942 ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), 3943 qm_aeq_irq, IRQF_SHARED, qm->dev_name, qm); 3944 if (ret) 3945 goto err_aeq_irq; 3946 3947 if (qm->fun_type == QM_HW_PF) { 3948 ret = request_irq(pci_irq_vector(pdev, 3949 QM_ABNORMAL_EVENT_IRQ_VECTOR), 3950 qm_abnormal_irq, IRQF_SHARED, 3951 qm->dev_name, qm); 3952 if (ret) 3953 goto err_abonormal_irq; 3954 } 3955 } 3956 3957 return 0; 3958 3959 err_abonormal_irq: 3960 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 3961 err_aeq_irq: 3962 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 3963 return ret; 3964 } 3965 3966 /** 3967 * hisi_qm_dev_shutdown() - Shutdown device. 3968 * @pdev: The device will be shutdown. 3969 * 3970 * This function will stop qm when OS shutdown or rebooting. 3971 */ 3972 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 3973 { 3974 struct hisi_qm *qm = pci_get_drvdata(pdev); 3975 int ret; 3976 3977 ret = hisi_qm_stop(qm, QM_NORMAL); 3978 if (ret) 3979 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 3980 } 3981 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 3982 3983 static void hisi_qm_controller_reset(struct work_struct *rst_work) 3984 { 3985 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 3986 int ret; 3987 3988 /* reset pcie device controller */ 3989 ret = qm_controller_reset(qm); 3990 if (ret) 3991 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 3992 3993 } 3994 3995 /** 3996 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 3997 * @qm: The qm needs add. 3998 * @qm_list: The qm list. 3999 * 4000 * This function adds qm to qm list, and will register algorithm to 4001 * crypto when the qm list is empty. 4002 */ 4003 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4004 { 4005 int flag = 0; 4006 int ret = 0; 4007 4008 mutex_lock(&qm_list->lock); 4009 if (list_empty(&qm_list->list)) 4010 flag = 1; 4011 list_add_tail(&qm->list, &qm_list->list); 4012 mutex_unlock(&qm_list->lock); 4013 4014 if (flag) { 4015 ret = qm_list->register_to_crypto(); 4016 if (ret) { 4017 mutex_lock(&qm_list->lock); 4018 list_del(&qm->list); 4019 mutex_unlock(&qm_list->lock); 4020 } 4021 } 4022 4023 return ret; 4024 } 4025 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4026 4027 /** 4028 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4029 * qm list. 4030 * @qm: The qm needs delete. 4031 * @qm_list: The qm list. 4032 * 4033 * This function deletes qm from qm list, and will unregister algorithm 4034 * from crypto when the qm list is empty. 4035 */ 4036 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4037 { 4038 mutex_lock(&qm_list->lock); 4039 list_del(&qm->list); 4040 mutex_unlock(&qm_list->lock); 4041 4042 if (list_empty(&qm_list->list)) 4043 qm_list->unregister_from_crypto(); 4044 } 4045 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4046 4047 static int hisi_qm_pci_init(struct hisi_qm *qm) 4048 { 4049 struct pci_dev *pdev = qm->pdev; 4050 struct device *dev = &pdev->dev; 4051 unsigned int num_vec; 4052 int ret; 4053 4054 ret = pci_enable_device_mem(pdev); 4055 if (ret < 0) { 4056 dev_err(dev, "Failed to enable device mem!\n"); 4057 return ret; 4058 } 4059 4060 ret = pci_request_mem_regions(pdev, qm->dev_name); 4061 if (ret < 0) { 4062 dev_err(dev, "Failed to request mem regions!\n"); 4063 goto err_disable_pcidev; 4064 } 4065 4066 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 4067 qm->phys_size = pci_resource_len(qm->pdev, PCI_BAR_2); 4068 qm->io_base = ioremap(qm->phys_base, qm->phys_size); 4069 if (!qm->io_base) { 4070 ret = -EIO; 4071 goto err_release_mem_regions; 4072 } 4073 4074 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4075 if (ret < 0) 4076 goto err_iounmap; 4077 pci_set_master(pdev); 4078 4079 if (!qm->ops->get_irq_num) { 4080 ret = -EOPNOTSUPP; 4081 goto err_iounmap; 4082 } 4083 num_vec = qm->ops->get_irq_num(qm); 4084 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 4085 if (ret < 0) { 4086 dev_err(dev, "Failed to enable MSI vectors!\n"); 4087 goto err_iounmap; 4088 } 4089 4090 return 0; 4091 4092 err_iounmap: 4093 iounmap(qm->io_base); 4094 err_release_mem_regions: 4095 pci_release_mem_regions(pdev); 4096 err_disable_pcidev: 4097 pci_disable_device(pdev); 4098 return ret; 4099 } 4100 4101 /** 4102 * hisi_qm_init() - Initialize configures about qm. 4103 * @qm: The qm needing init. 4104 * 4105 * This function init qm, then we can call hisi_qm_start to put qm into work. 4106 */ 4107 int hisi_qm_init(struct hisi_qm *qm) 4108 { 4109 struct pci_dev *pdev = qm->pdev; 4110 struct device *dev = &pdev->dev; 4111 int ret; 4112 4113 hisi_qm_pre_init(qm); 4114 4115 ret = qm_alloc_uacce(qm); 4116 if (ret < 0) 4117 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 4118 4119 ret = hisi_qm_pci_init(qm); 4120 if (ret) 4121 goto err_remove_uacce; 4122 4123 ret = qm_irq_register(qm); 4124 if (ret) 4125 goto err_pci_uninit; 4126 4127 if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) { 4128 /* v2 starts to support get vft by mailbox */ 4129 ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 4130 if (ret) 4131 goto err_irq_unregister; 4132 } 4133 4134 ret = hisi_qm_memory_init(qm); 4135 if (ret) 4136 goto err_irq_unregister; 4137 4138 INIT_WORK(&qm->work, qm_work_process); 4139 if (qm->fun_type == QM_HW_PF) 4140 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 4141 4142 atomic_set(&qm->status.flags, QM_INIT); 4143 4144 return 0; 4145 4146 err_irq_unregister: 4147 qm_irq_unregister(qm); 4148 err_pci_uninit: 4149 hisi_qm_pci_uninit(qm); 4150 err_remove_uacce: 4151 uacce_remove(qm->uacce); 4152 qm->uacce = NULL; 4153 return ret; 4154 } 4155 EXPORT_SYMBOL_GPL(hisi_qm_init); 4156 4157 MODULE_LICENSE("GPL v2"); 4158 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 4159 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 4160