1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 73 #define QM_CQ_OVERFLOW 0 74 #define QM_EQ_OVERFLOW 1 75 #define QM_CQE_ERROR 2 76 77 #define QM_XQ_DEPTH_SHIFT 16 78 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_PAGE_SIZE 0x0034 90 #define QM_QP_DB_INTERVAL 0x10000 91 #define QM_DB_TIMEOUT_CFG 0x100074 92 #define QM_DB_TIMEOUT_SET 0x1fffff 93 94 #define QM_MEM_START_INIT 0x100040 95 #define QM_MEM_INIT_DONE 0x100044 96 #define QM_VFT_CFG_RDY 0x10006c 97 #define QM_VFT_CFG_OP_WR 0x100058 98 #define QM_VFT_CFG_TYPE 0x10005c 99 #define QM_VFT_CFG 0x100060 100 #define QM_VFT_CFG_OP_ENABLE 0x100054 101 #define QM_PM_CTRL 0x100148 102 #define QM_IDLE_DISABLE BIT(9) 103 104 #define QM_VFT_CFG_DATA_L 0x100064 105 #define QM_VFT_CFG_DATA_H 0x100068 106 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 107 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 108 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 109 #define QM_SQC_VFT_START_SQN_SHIFT 28 110 #define QM_SQC_VFT_VALID (1ULL << 44) 111 #define QM_SQC_VFT_SQN_SHIFT 45 112 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 113 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 114 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 115 #define QM_CQC_VFT_VALID (1ULL << 28) 116 117 #define QM_SQC_VFT_BASE_SHIFT_V2 28 118 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 119 #define QM_SQC_VFT_NUM_SHIFT_V2 45 120 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 121 122 #define QM_ABNORMAL_INT_SOURCE 0x100000 123 #define QM_ABNORMAL_INT_MASK 0x100004 124 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 125 #define QM_ABNORMAL_INT_STATUS 0x100008 126 #define QM_ABNORMAL_INT_SET 0x10000c 127 #define QM_ABNORMAL_INF00 0x100010 128 #define QM_FIFO_OVERFLOW_TYPE 0xc0 129 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 130 #define QM_FIFO_OVERFLOW_VF 0x3f 131 #define QM_ABNORMAL_INF01 0x100014 132 #define QM_DB_TIMEOUT_TYPE 0xc0 133 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 134 #define QM_DB_TIMEOUT_VF 0x3f 135 #define QM_RAS_CE_ENABLE 0x1000ec 136 #define QM_RAS_FE_ENABLE 0x1000f0 137 #define QM_RAS_NFE_ENABLE 0x1000f4 138 #define QM_RAS_CE_THRESHOLD 0x1000f8 139 #define QM_RAS_CE_TIMES_PER_IRQ 1 140 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 141 #define QM_ECC_MBIT BIT(2) 142 #define QM_DB_TIMEOUT BIT(10) 143 #define QM_OF_FIFO_OF BIT(11) 144 145 #define QM_RESET_WAIT_TIMEOUT 400 146 #define QM_PEH_VENDOR_ID 0x1000d8 147 #define ACC_VENDOR_ID_VALUE 0x5a5a 148 #define QM_PEH_DFX_INFO0 0x1000fc 149 #define QM_PEH_DFX_INFO1 0x100100 150 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 151 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 152 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 153 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 154 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 155 #define ACC_MASTER_TRANS_RETURN_RW 3 156 #define ACC_MASTER_TRANS_RETURN 0x300150 157 #define ACC_MASTER_GLOBAL_CTRL 0x300000 158 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 159 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 160 #define ACC_AM_ROB_ECC_INT_STS 0x300104 161 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 162 #define QM_MSI_CAP_ENABLE BIT(16) 163 164 /* interfunction communication */ 165 #define QM_IFC_READY_STATUS 0x100128 166 #define QM_IFC_INT_SET_P 0x100130 167 #define QM_IFC_INT_CFG 0x100134 168 #define QM_IFC_INT_SOURCE_P 0x100138 169 #define QM_IFC_INT_SOURCE_V 0x0020 170 #define QM_IFC_INT_MASK 0x0024 171 #define QM_IFC_INT_STATUS 0x0028 172 #define QM_IFC_INT_SET_V 0x002C 173 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 174 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 175 #define QM_IFC_INT_SOURCE_MASK BIT(0) 176 #define QM_IFC_INT_DISABLE BIT(0) 177 #define QM_IFC_INT_STATUS_MASK BIT(0) 178 #define QM_IFC_INT_SET_MASK BIT(0) 179 #define QM_WAIT_DST_ACK 10 180 #define QM_MAX_PF_WAIT_COUNT 10 181 #define QM_MAX_VF_WAIT_COUNT 40 182 #define QM_VF_RESET_WAIT_US 20000 183 #define QM_VF_RESET_WAIT_CNT 3000 184 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 185 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 186 187 #define POLL_PERIOD 10 188 #define POLL_TIMEOUT 1000 189 #define WAIT_PERIOD_US_MAX 200 190 #define WAIT_PERIOD_US_MIN 100 191 #define MAX_WAIT_COUNTS 1000 192 #define QM_CACHE_WB_START 0x204 193 #define QM_CACHE_WB_DONE 0x208 194 #define QM_FUNC_CAPS_REG 0x3100 195 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 196 197 #define PCI_BAR_2 2 198 #define PCI_BAR_4 4 199 #define QMC_ALIGN(sz) ALIGN(sz, 32) 200 201 #define QM_DBG_READ_LEN 256 202 #define QM_PCI_COMMAND_INVALID ~0 203 #define QM_RESET_STOP_TX_OFFSET 1 204 #define QM_RESET_STOP_RX_OFFSET 2 205 206 #define WAIT_PERIOD 20 207 #define REMOVE_WAIT_DELAY 10 208 209 #define QM_QOS_PARAM_NUM 2 210 #define QM_QOS_MAX_VAL 1000 211 #define QM_QOS_RATE 100 212 #define QM_QOS_EXPAND_RATE 1000 213 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 214 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 215 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 216 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 217 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 218 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 219 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 220 #define QM_SHAPER_CBS_B 1 221 #define QM_SHAPER_VFT_OFFSET 6 222 #define QM_QOS_MIN_ERROR_RATE 5 223 #define QM_SHAPER_MIN_CBS_S 8 224 #define QM_QOS_TICK 0x300U 225 #define QM_QOS_DIVISOR_CLK 0x1f40U 226 #define QM_QOS_MAX_CIR_B 200 227 #define QM_QOS_MIN_CIR_B 100 228 #define QM_QOS_MAX_CIR_U 6 229 #define QM_AUTOSUSPEND_DELAY 3000 230 231 #define QM_DEV_ALG_MAX_LEN 256 232 233 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 234 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 235 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 236 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 237 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 238 239 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 240 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 241 242 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 243 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 244 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 245 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 246 247 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 248 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 249 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 250 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 251 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 252 253 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 254 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 255 256 #define INIT_QC_COMMON(qc, base, pasid) do { \ 257 (qc)->head = 0; \ 258 (qc)->tail = 0; \ 259 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 260 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 261 (qc)->dw3 = 0; \ 262 (qc)->w8 = 0; \ 263 (qc)->rsvd0 = 0; \ 264 (qc)->pasid = cpu_to_le16(pasid); \ 265 (qc)->w11 = 0; \ 266 (qc)->rsvd1 = 0; \ 267 } while (0) 268 269 enum vft_type { 270 SQC_VFT = 0, 271 CQC_VFT, 272 SHAPER_VFT, 273 }; 274 275 enum acc_err_result { 276 ACC_ERR_NONE, 277 ACC_ERR_NEED_RESET, 278 ACC_ERR_RECOVERED, 279 }; 280 281 enum qm_alg_type { 282 ALG_TYPE_0, 283 ALG_TYPE_1, 284 }; 285 286 enum qm_mb_cmd { 287 QM_PF_FLR_PREPARE = 0x01, 288 QM_PF_SRST_PREPARE, 289 QM_PF_RESET_DONE, 290 QM_VF_PREPARE_DONE, 291 QM_VF_PREPARE_FAIL, 292 QM_VF_START_DONE, 293 QM_VF_START_FAIL, 294 QM_PF_SET_QOS, 295 QM_VF_GET_QOS, 296 }; 297 298 enum qm_basic_type { 299 QM_TOTAL_QP_NUM_CAP = 0x0, 300 QM_FUNC_MAX_QP_CAP, 301 QM_XEQ_DEPTH_CAP, 302 QM_QP_DEPTH_CAP, 303 QM_EQ_IRQ_TYPE_CAP, 304 QM_AEQ_IRQ_TYPE_CAP, 305 QM_ABN_IRQ_TYPE_CAP, 306 QM_PF2VF_IRQ_TYPE_CAP, 307 QM_PF_IRQ_NUM_CAP, 308 QM_VF_IRQ_NUM_CAP, 309 }; 310 311 enum qm_pre_store_cap_idx { 312 QM_EQ_IRQ_TYPE_CAP_IDX = 0x0, 313 QM_AEQ_IRQ_TYPE_CAP_IDX, 314 QM_ABN_IRQ_TYPE_CAP_IDX, 315 QM_PF2VF_IRQ_TYPE_CAP_IDX, 316 }; 317 318 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 319 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 320 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 321 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 322 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 323 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 324 }; 325 326 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 327 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 328 }; 329 330 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 331 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 332 }; 333 334 static const struct hisi_qm_cap_info qm_basic_info[] = { 335 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 336 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 337 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 338 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 339 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 340 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 341 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 342 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 343 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 344 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 345 }; 346 347 static const u32 qm_pre_store_caps[] = { 348 QM_EQ_IRQ_TYPE_CAP, 349 QM_AEQ_IRQ_TYPE_CAP, 350 QM_ABN_IRQ_TYPE_CAP, 351 QM_PF2VF_IRQ_TYPE_CAP, 352 }; 353 354 struct qm_mailbox { 355 __le16 w0; 356 __le16 queue_num; 357 __le32 base_l; 358 __le32 base_h; 359 __le32 rsvd; 360 }; 361 362 struct qm_doorbell { 363 __le16 queue_num; 364 __le16 cmd; 365 __le16 index; 366 __le16 priority; 367 }; 368 369 struct hisi_qm_resource { 370 struct hisi_qm *qm; 371 int distance; 372 struct list_head list; 373 }; 374 375 /** 376 * struct qm_hw_err - Structure describing the device errors 377 * @list: hardware error list 378 * @timestamp: timestamp when the error occurred 379 */ 380 struct qm_hw_err { 381 struct list_head list; 382 unsigned long long timestamp; 383 }; 384 385 struct hisi_qm_hw_ops { 386 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 387 void (*qm_db)(struct hisi_qm *qm, u16 qn, 388 u8 cmd, u16 index, u8 priority); 389 int (*debug_init)(struct hisi_qm *qm); 390 void (*hw_error_init)(struct hisi_qm *qm); 391 void (*hw_error_uninit)(struct hisi_qm *qm); 392 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 393 int (*set_msi)(struct hisi_qm *qm, bool set); 394 }; 395 396 struct hisi_qm_hw_error { 397 u32 int_msk; 398 const char *msg; 399 }; 400 401 static const struct hisi_qm_hw_error qm_hw_error[] = { 402 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 403 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 404 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 405 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 406 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 407 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 408 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 409 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 410 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 411 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 412 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 413 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 414 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 415 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 416 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 417 { /* sentinel */ } 418 }; 419 420 static const char * const qm_db_timeout[] = { 421 "sq", "cq", "eq", "aeq", 422 }; 423 424 static const char * const qm_fifo_overflow[] = { 425 "cq", "eq", "aeq", 426 }; 427 428 static const char * const qp_s[] = { 429 "none", "init", "start", "stop", "close", 430 }; 431 432 struct qm_typical_qos_table { 433 u32 start; 434 u32 end; 435 u32 val; 436 }; 437 438 /* the qos step is 100 */ 439 static struct qm_typical_qos_table shaper_cir_s[] = { 440 {100, 100, 4}, 441 {200, 200, 3}, 442 {300, 500, 2}, 443 {600, 1000, 1}, 444 {1100, 100000, 0}, 445 }; 446 447 static struct qm_typical_qos_table shaper_cbs_s[] = { 448 {100, 200, 9}, 449 {300, 500, 11}, 450 {600, 1000, 12}, 451 {1100, 10000, 16}, 452 {10100, 25000, 17}, 453 {25100, 50000, 18}, 454 {50100, 100000, 19} 455 }; 456 457 static void qm_irqs_unregister(struct hisi_qm *qm); 458 static int qm_reset_device(struct hisi_qm *qm); 459 460 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 461 { 462 enum qm_state curr = atomic_read(&qm->status.flags); 463 bool avail = false; 464 465 switch (curr) { 466 case QM_INIT: 467 if (new == QM_START || new == QM_CLOSE) 468 avail = true; 469 break; 470 case QM_START: 471 if (new == QM_STOP) 472 avail = true; 473 break; 474 case QM_STOP: 475 if (new == QM_CLOSE || new == QM_START) 476 avail = true; 477 break; 478 default: 479 break; 480 } 481 482 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 483 qm_s[curr], qm_s[new]); 484 485 if (!avail) 486 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 487 qm_s[curr], qm_s[new]); 488 489 return avail; 490 } 491 492 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 493 enum qp_state new) 494 { 495 enum qm_state qm_curr = atomic_read(&qm->status.flags); 496 enum qp_state qp_curr = 0; 497 bool avail = false; 498 499 if (qp) 500 qp_curr = atomic_read(&qp->qp_status.flags); 501 502 switch (new) { 503 case QP_INIT: 504 if (qm_curr == QM_START || qm_curr == QM_INIT) 505 avail = true; 506 break; 507 case QP_START: 508 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 509 (qm_curr == QM_START && qp_curr == QP_STOP)) 510 avail = true; 511 break; 512 case QP_STOP: 513 if ((qm_curr == QM_START && qp_curr == QP_START) || 514 (qp_curr == QP_INIT)) 515 avail = true; 516 break; 517 case QP_CLOSE: 518 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 519 (qm_curr == QM_START && qp_curr == QP_STOP) || 520 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 521 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 522 avail = true; 523 break; 524 default: 525 break; 526 } 527 528 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 529 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 530 531 if (!avail) 532 dev_warn(&qm->pdev->dev, 533 "Can not change qp state from %s to %s in QM %s\n", 534 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 535 536 return avail; 537 } 538 539 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 540 { 541 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 542 } 543 544 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 545 { 546 return qm->err_ini->get_dev_hw_err_status(qm); 547 } 548 549 /* Check if the error causes the master ooo block */ 550 static bool qm_check_dev_error(struct hisi_qm *qm) 551 { 552 u32 val, dev_val; 553 554 if (qm->fun_type == QM_HW_VF) 555 return false; 556 557 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 558 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 559 560 return val || dev_val; 561 } 562 563 static int qm_wait_reset_finish(struct hisi_qm *qm) 564 { 565 int delay = 0; 566 567 /* All reset requests need to be queued for processing */ 568 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 569 msleep(++delay); 570 if (delay > QM_RESET_WAIT_TIMEOUT) 571 return -EBUSY; 572 } 573 574 return 0; 575 } 576 577 static int qm_reset_prepare_ready(struct hisi_qm *qm) 578 { 579 struct pci_dev *pdev = qm->pdev; 580 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 581 582 /* 583 * PF and VF on host doesnot support resetting at the 584 * same time on Kunpeng920. 585 */ 586 if (qm->ver < QM_HW_V3) 587 return qm_wait_reset_finish(pf_qm); 588 589 return qm_wait_reset_finish(qm); 590 } 591 592 static void qm_reset_bit_clear(struct hisi_qm *qm) 593 { 594 struct pci_dev *pdev = qm->pdev; 595 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 596 597 if (qm->ver < QM_HW_V3) 598 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 599 600 clear_bit(QM_RESETTING, &qm->misc_ctl); 601 } 602 603 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 604 u64 base, u16 queue, bool op) 605 { 606 mailbox->w0 = cpu_to_le16((cmd) | 607 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 608 (0x1 << QM_MB_BUSY_SHIFT)); 609 mailbox->queue_num = cpu_to_le16(queue); 610 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 611 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 612 mailbox->rsvd = 0; 613 } 614 615 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 616 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 617 { 618 u32 val; 619 620 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 621 val, !((val >> QM_MB_BUSY_SHIFT) & 622 0x1), POLL_PERIOD, POLL_TIMEOUT); 623 } 624 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 625 626 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 627 static void qm_mb_write(struct hisi_qm *qm, const void *src) 628 { 629 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 630 631 #if IS_ENABLED(CONFIG_ARM64) 632 unsigned long tmp0 = 0, tmp1 = 0; 633 #endif 634 635 if (!IS_ENABLED(CONFIG_ARM64)) { 636 memcpy_toio(fun_base, src, 16); 637 dma_wmb(); 638 return; 639 } 640 641 #if IS_ENABLED(CONFIG_ARM64) 642 asm volatile("ldp %0, %1, %3\n" 643 "stp %0, %1, %2\n" 644 "dmb oshst\n" 645 : "=&r" (tmp0), 646 "=&r" (tmp1), 647 "+Q" (*((char __iomem *)fun_base)) 648 : "Q" (*((char *)src)) 649 : "memory"); 650 #endif 651 } 652 653 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 654 { 655 int ret; 656 u32 val; 657 658 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 659 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 660 ret = -EBUSY; 661 goto mb_busy; 662 } 663 664 qm_mb_write(qm, mailbox); 665 666 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 667 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 668 ret = -ETIMEDOUT; 669 goto mb_busy; 670 } 671 672 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 673 if (val & QM_MB_STATUS_MASK) { 674 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 675 ret = -EIO; 676 goto mb_busy; 677 } 678 679 return 0; 680 681 mb_busy: 682 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 683 return ret; 684 } 685 686 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 687 bool op) 688 { 689 struct qm_mailbox mailbox; 690 int ret; 691 692 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 693 queue, cmd, (unsigned long long)dma_addr); 694 695 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 696 697 mutex_lock(&qm->mailbox_lock); 698 ret = qm_mb_nolock(qm, &mailbox); 699 mutex_unlock(&qm->mailbox_lock); 700 701 return ret; 702 } 703 EXPORT_SYMBOL_GPL(hisi_qm_mb); 704 705 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 706 { 707 u64 doorbell; 708 709 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 710 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 711 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 712 713 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 714 } 715 716 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 717 { 718 void __iomem *io_base = qm->io_base; 719 u16 randata = 0; 720 u64 doorbell; 721 722 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 723 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 724 QM_DOORBELL_SQ_CQ_BASE_V2; 725 else 726 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 727 728 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 729 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 730 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 731 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 732 733 writeq(doorbell, io_base); 734 } 735 736 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 737 { 738 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 739 qn, cmd, index); 740 741 qm->ops->qm_db(qm, qn, cmd, index, priority); 742 } 743 744 static void qm_disable_clock_gate(struct hisi_qm *qm) 745 { 746 u32 val; 747 748 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 749 if (qm->ver < QM_HW_V3) 750 return; 751 752 val = readl(qm->io_base + QM_PM_CTRL); 753 val |= QM_IDLE_DISABLE; 754 writel(val, qm->io_base + QM_PM_CTRL); 755 } 756 757 static int qm_dev_mem_reset(struct hisi_qm *qm) 758 { 759 u32 val; 760 761 writel(0x1, qm->io_base + QM_MEM_START_INIT); 762 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 763 val & BIT(0), POLL_PERIOD, 764 POLL_TIMEOUT); 765 } 766 767 /** 768 * hisi_qm_get_hw_info() - Get device information. 769 * @qm: The qm which want to get information. 770 * @info_table: Array for storing device information. 771 * @index: Index in info_table. 772 * @is_read: Whether read from reg, 0: not support read from reg. 773 * 774 * This function returns device information the caller needs. 775 */ 776 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 777 const struct hisi_qm_cap_info *info_table, 778 u32 index, bool is_read) 779 { 780 u32 val; 781 782 switch (qm->ver) { 783 case QM_HW_V1: 784 return info_table[index].v1_val; 785 case QM_HW_V2: 786 return info_table[index].v2_val; 787 default: 788 if (!is_read) 789 return info_table[index].v3_val; 790 791 val = readl(qm->io_base + info_table[index].offset); 792 return (val >> info_table[index].shift) & info_table[index].mask; 793 } 794 } 795 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 796 797 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 798 u16 *high_bits, enum qm_basic_type type) 799 { 800 u32 depth; 801 802 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 803 *low_bits = depth & QM_XQ_DEPTH_MASK; 804 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 805 } 806 807 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, 808 u32 dev_algs_size) 809 { 810 struct device *dev = &qm->pdev->dev; 811 char *algs, *ptr; 812 int i; 813 814 if (!qm->uacce) 815 return 0; 816 817 if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { 818 dev_err(dev, "algs size %u is equal or larger than %d.\n", 819 dev_algs_size, QM_DEV_ALG_MAX_LEN); 820 return -EINVAL; 821 } 822 823 algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL); 824 if (!algs) 825 return -ENOMEM; 826 827 for (i = 0; i < dev_algs_size; i++) 828 if (alg_msk & dev_algs[i].alg_msk) 829 strcat(algs, dev_algs[i].alg); 830 831 ptr = strrchr(algs, '\n'); 832 if (ptr) { 833 *ptr = '\0'; 834 qm->uacce->algs = algs; 835 } 836 837 return 0; 838 } 839 EXPORT_SYMBOL_GPL(hisi_qm_set_algs); 840 841 static u32 qm_get_irq_num(struct hisi_qm *qm) 842 { 843 if (qm->fun_type == QM_HW_PF) 844 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 845 846 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 847 } 848 849 static int qm_pm_get_sync(struct hisi_qm *qm) 850 { 851 struct device *dev = &qm->pdev->dev; 852 int ret; 853 854 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 855 return 0; 856 857 ret = pm_runtime_resume_and_get(dev); 858 if (ret < 0) { 859 dev_err(dev, "failed to get_sync(%d).\n", ret); 860 return ret; 861 } 862 863 return 0; 864 } 865 866 static void qm_pm_put_sync(struct hisi_qm *qm) 867 { 868 struct device *dev = &qm->pdev->dev; 869 870 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 871 return; 872 873 pm_runtime_mark_last_busy(dev); 874 pm_runtime_put_autosuspend(dev); 875 } 876 877 static void qm_cq_head_update(struct hisi_qp *qp) 878 { 879 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 880 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 881 qp->qp_status.cq_head = 0; 882 } else { 883 qp->qp_status.cq_head++; 884 } 885 } 886 887 static void qm_poll_req_cb(struct hisi_qp *qp) 888 { 889 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 890 struct hisi_qm *qm = qp->qm; 891 892 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 893 dma_rmb(); 894 qp->req_cb(qp, qp->sqe + qm->sqe_size * 895 le16_to_cpu(cqe->sq_head)); 896 qm_cq_head_update(qp); 897 cqe = qp->cqe + qp->qp_status.cq_head; 898 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 899 qp->qp_status.cq_head, 0); 900 atomic_dec(&qp->qp_status.used); 901 902 cond_resched(); 903 } 904 905 /* set c_flag */ 906 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 907 } 908 909 static void qm_work_process(struct work_struct *work) 910 { 911 struct hisi_qm_poll_data *poll_data = 912 container_of(work, struct hisi_qm_poll_data, work); 913 struct hisi_qm *qm = poll_data->qm; 914 u16 eqe_num = poll_data->eqe_num; 915 struct hisi_qp *qp; 916 int i; 917 918 for (i = eqe_num - 1; i >= 0; i--) { 919 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 920 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 921 continue; 922 923 if (qp->event_cb) { 924 qp->event_cb(qp); 925 continue; 926 } 927 928 if (likely(qp->req_cb)) 929 qm_poll_req_cb(qp); 930 } 931 } 932 933 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 934 { 935 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 936 struct hisi_qm_poll_data *poll_data = NULL; 937 u16 eq_depth = qm->eq_depth; 938 u16 cqn, eqe_num = 0; 939 940 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 941 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 942 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 943 return; 944 } 945 946 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 947 if (unlikely(cqn >= qm->qp_num)) 948 return; 949 poll_data = &qm->poll_data[cqn]; 950 951 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 952 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 953 poll_data->qp_finish_id[eqe_num] = cqn; 954 eqe_num++; 955 956 if (qm->status.eq_head == eq_depth - 1) { 957 qm->status.eqc_phase = !qm->status.eqc_phase; 958 eqe = qm->eqe; 959 qm->status.eq_head = 0; 960 } else { 961 eqe++; 962 qm->status.eq_head++; 963 } 964 965 if (eqe_num == (eq_depth >> 1) - 1) 966 break; 967 } 968 969 poll_data->eqe_num = eqe_num; 970 queue_work(qm->wq, &poll_data->work); 971 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 972 } 973 974 static irqreturn_t qm_eq_irq(int irq, void *data) 975 { 976 struct hisi_qm *qm = data; 977 978 /* Get qp id of completed tasks and re-enable the interrupt */ 979 qm_get_complete_eqe_num(qm); 980 981 return IRQ_HANDLED; 982 } 983 984 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 985 { 986 struct hisi_qm *qm = data; 987 u32 val; 988 989 val = readl(qm->io_base + QM_IFC_INT_STATUS); 990 val &= QM_IFC_INT_STATUS_MASK; 991 if (!val) 992 return IRQ_NONE; 993 994 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 995 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 996 return IRQ_HANDLED; 997 } 998 999 schedule_work(&qm->cmd_process); 1000 1001 return IRQ_HANDLED; 1002 } 1003 1004 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 1005 { 1006 u32 *addr; 1007 1008 if (qp->is_in_kernel) 1009 return; 1010 1011 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1012 *addr = 1; 1013 1014 /* make sure setup is completed */ 1015 smp_wmb(); 1016 } 1017 1018 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1019 { 1020 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1021 1022 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1023 hisi_qm_stop_qp(qp); 1024 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1025 } 1026 1027 static void qm_reset_function(struct hisi_qm *qm) 1028 { 1029 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 1030 struct device *dev = &qm->pdev->dev; 1031 int ret; 1032 1033 if (qm_check_dev_error(pf_qm)) 1034 return; 1035 1036 ret = qm_reset_prepare_ready(qm); 1037 if (ret) { 1038 dev_err(dev, "reset function not ready\n"); 1039 return; 1040 } 1041 1042 ret = hisi_qm_stop(qm, QM_DOWN); 1043 if (ret) { 1044 dev_err(dev, "failed to stop qm when reset function\n"); 1045 goto clear_bit; 1046 } 1047 1048 ret = hisi_qm_start(qm); 1049 if (ret) 1050 dev_err(dev, "failed to start qm when reset function\n"); 1051 1052 clear_bit: 1053 qm_reset_bit_clear(qm); 1054 } 1055 1056 static irqreturn_t qm_aeq_thread(int irq, void *data) 1057 { 1058 struct hisi_qm *qm = data; 1059 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1060 u16 aeq_depth = qm->aeq_depth; 1061 u32 type, qp_id; 1062 1063 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1064 1065 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1066 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1067 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1068 1069 switch (type) { 1070 case QM_EQ_OVERFLOW: 1071 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1072 qm_reset_function(qm); 1073 return IRQ_HANDLED; 1074 case QM_CQ_OVERFLOW: 1075 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1076 qp_id); 1077 fallthrough; 1078 case QM_CQE_ERROR: 1079 qm_disable_qp(qm, qp_id); 1080 break; 1081 default: 1082 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1083 type); 1084 break; 1085 } 1086 1087 if (qm->status.aeq_head == aeq_depth - 1) { 1088 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1089 aeqe = qm->aeqe; 1090 qm->status.aeq_head = 0; 1091 } else { 1092 aeqe++; 1093 qm->status.aeq_head++; 1094 } 1095 } 1096 1097 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1098 1099 return IRQ_HANDLED; 1100 } 1101 1102 static void qm_init_qp_status(struct hisi_qp *qp) 1103 { 1104 struct hisi_qp_status *qp_status = &qp->qp_status; 1105 1106 qp_status->sq_tail = 0; 1107 qp_status->cq_head = 0; 1108 qp_status->cqc_phase = true; 1109 atomic_set(&qp_status->used, 0); 1110 } 1111 1112 static void qm_init_prefetch(struct hisi_qm *qm) 1113 { 1114 struct device *dev = &qm->pdev->dev; 1115 u32 page_type = 0x0; 1116 1117 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1118 return; 1119 1120 switch (PAGE_SIZE) { 1121 case SZ_4K: 1122 page_type = 0x0; 1123 break; 1124 case SZ_16K: 1125 page_type = 0x1; 1126 break; 1127 case SZ_64K: 1128 page_type = 0x2; 1129 break; 1130 default: 1131 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1132 PAGE_SIZE); 1133 } 1134 1135 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1136 } 1137 1138 /* 1139 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1140 * is the expected qos calculated. 1141 * the formula: 1142 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1143 * 1144 * IR_b * (2 ^ IR_u) * 8000 1145 * IR(Mbps) = ------------------------- 1146 * Tick * (2 ^ IR_s) 1147 */ 1148 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1149 { 1150 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1151 (QM_QOS_TICK * (1 << cir_s)); 1152 } 1153 1154 static u32 acc_shaper_calc_cbs_s(u32 ir) 1155 { 1156 int table_size = ARRAY_SIZE(shaper_cbs_s); 1157 int i; 1158 1159 for (i = 0; i < table_size; i++) { 1160 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1161 return shaper_cbs_s[i].val; 1162 } 1163 1164 return QM_SHAPER_MIN_CBS_S; 1165 } 1166 1167 static u32 acc_shaper_calc_cir_s(u32 ir) 1168 { 1169 int table_size = ARRAY_SIZE(shaper_cir_s); 1170 int i; 1171 1172 for (i = 0; i < table_size; i++) { 1173 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1174 return shaper_cir_s[i].val; 1175 } 1176 1177 return 0; 1178 } 1179 1180 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1181 { 1182 u32 cir_b, cir_u, cir_s, ir_calc; 1183 u32 error_rate; 1184 1185 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1186 cir_s = acc_shaper_calc_cir_s(ir); 1187 1188 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1189 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1190 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1191 1192 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1193 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1194 factor->cir_b = cir_b; 1195 factor->cir_u = cir_u; 1196 factor->cir_s = cir_s; 1197 return 0; 1198 } 1199 } 1200 } 1201 1202 return -EINVAL; 1203 } 1204 1205 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1206 u32 number, struct qm_shaper_factor *factor) 1207 { 1208 u64 tmp = 0; 1209 1210 if (number > 0) { 1211 switch (type) { 1212 case SQC_VFT: 1213 if (qm->ver == QM_HW_V1) { 1214 tmp = QM_SQC_VFT_BUF_SIZE | 1215 QM_SQC_VFT_SQC_SIZE | 1216 QM_SQC_VFT_INDEX_NUMBER | 1217 QM_SQC_VFT_VALID | 1218 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1219 } else { 1220 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1221 QM_SQC_VFT_VALID | 1222 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1223 } 1224 break; 1225 case CQC_VFT: 1226 if (qm->ver == QM_HW_V1) { 1227 tmp = QM_CQC_VFT_BUF_SIZE | 1228 QM_CQC_VFT_SQC_SIZE | 1229 QM_CQC_VFT_INDEX_NUMBER | 1230 QM_CQC_VFT_VALID; 1231 } else { 1232 tmp = QM_CQC_VFT_VALID; 1233 } 1234 break; 1235 case SHAPER_VFT: 1236 if (factor) { 1237 tmp = factor->cir_b | 1238 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1239 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1240 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1241 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1242 } 1243 break; 1244 } 1245 } 1246 1247 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1248 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1249 } 1250 1251 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1252 u32 fun_num, u32 base, u32 number) 1253 { 1254 struct qm_shaper_factor *factor = NULL; 1255 unsigned int val; 1256 int ret; 1257 1258 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1259 factor = &qm->factor[fun_num]; 1260 1261 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1262 val & BIT(0), POLL_PERIOD, 1263 POLL_TIMEOUT); 1264 if (ret) 1265 return ret; 1266 1267 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1268 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1269 if (type == SHAPER_VFT) 1270 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1271 1272 writel(fun_num, qm->io_base + QM_VFT_CFG); 1273 1274 qm_vft_data_cfg(qm, type, base, number, factor); 1275 1276 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1277 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1278 1279 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1280 val & BIT(0), POLL_PERIOD, 1281 POLL_TIMEOUT); 1282 } 1283 1284 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1285 { 1286 u32 qos = qm->factor[fun_num].func_qos; 1287 int ret, i; 1288 1289 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1290 if (ret) { 1291 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1292 return ret; 1293 } 1294 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1295 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1296 /* The base number of queue reuse for different alg type */ 1297 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1298 if (ret) 1299 return ret; 1300 } 1301 1302 return 0; 1303 } 1304 1305 /* The config should be conducted after qm_dev_mem_reset() */ 1306 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1307 u32 number) 1308 { 1309 int ret, i; 1310 1311 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1312 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1313 if (ret) 1314 return ret; 1315 } 1316 1317 /* init default shaper qos val */ 1318 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1319 ret = qm_shaper_init_vft(qm, fun_num); 1320 if (ret) 1321 goto back_sqc_cqc; 1322 } 1323 1324 return 0; 1325 back_sqc_cqc: 1326 for (i = SQC_VFT; i <= CQC_VFT; i++) 1327 qm_set_vft_common(qm, i, fun_num, 0, 0); 1328 1329 return ret; 1330 } 1331 1332 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1333 { 1334 u64 sqc_vft; 1335 int ret; 1336 1337 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1338 if (ret) 1339 return ret; 1340 1341 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1342 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1343 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1344 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1345 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1346 1347 return 0; 1348 } 1349 1350 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1351 dma_addr_t *dma_addr) 1352 { 1353 struct device *dev = &qm->pdev->dev; 1354 void *ctx_addr; 1355 1356 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1357 if (!ctx_addr) 1358 return ERR_PTR(-ENOMEM); 1359 1360 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1361 if (dma_mapping_error(dev, *dma_addr)) { 1362 dev_err(dev, "DMA mapping error!\n"); 1363 kfree(ctx_addr); 1364 return ERR_PTR(-ENOMEM); 1365 } 1366 1367 return ctx_addr; 1368 } 1369 1370 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1371 const void *ctx_addr, dma_addr_t *dma_addr) 1372 { 1373 struct device *dev = &qm->pdev->dev; 1374 1375 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1376 kfree(ctx_addr); 1377 } 1378 1379 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1380 { 1381 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1382 } 1383 1384 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1385 { 1386 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1387 } 1388 1389 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1390 { 1391 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1392 } 1393 1394 static void qm_hw_error_cfg(struct hisi_qm *qm) 1395 { 1396 struct hisi_qm_err_info *err_info = &qm->err_info; 1397 1398 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1399 /* clear QM hw residual error source */ 1400 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1401 1402 /* configure error type */ 1403 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1404 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1405 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1406 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1407 } 1408 1409 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1410 { 1411 u32 irq_unmask; 1412 1413 qm_hw_error_cfg(qm); 1414 1415 irq_unmask = ~qm->error_mask; 1416 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1417 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1418 } 1419 1420 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1421 { 1422 u32 irq_mask = qm->error_mask; 1423 1424 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1425 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1426 } 1427 1428 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1429 { 1430 u32 irq_unmask; 1431 1432 qm_hw_error_cfg(qm); 1433 1434 /* enable close master ooo when hardware error happened */ 1435 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1436 1437 irq_unmask = ~qm->error_mask; 1438 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1439 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1440 } 1441 1442 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1443 { 1444 u32 irq_mask = qm->error_mask; 1445 1446 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1447 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1448 1449 /* disable close master ooo when hardware error happened */ 1450 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1451 } 1452 1453 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1454 { 1455 const struct hisi_qm_hw_error *err; 1456 struct device *dev = &qm->pdev->dev; 1457 u32 reg_val, type, vf_num; 1458 int i; 1459 1460 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1461 err = &qm_hw_error[i]; 1462 if (!(err->int_msk & error_status)) 1463 continue; 1464 1465 dev_err(dev, "%s [error status=0x%x] found\n", 1466 err->msg, err->int_msk); 1467 1468 if (err->int_msk & QM_DB_TIMEOUT) { 1469 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1470 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1471 QM_DB_TIMEOUT_TYPE_SHIFT; 1472 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1473 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1474 qm_db_timeout[type], vf_num); 1475 } else if (err->int_msk & QM_OF_FIFO_OF) { 1476 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1477 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1478 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1479 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1480 1481 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1482 dev_err(dev, "qm %s fifo overflow in function %u\n", 1483 qm_fifo_overflow[type], vf_num); 1484 else 1485 dev_err(dev, "unknown error type\n"); 1486 } 1487 } 1488 } 1489 1490 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1491 { 1492 u32 error_status, tmp; 1493 1494 /* read err sts */ 1495 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1496 error_status = qm->error_mask & tmp; 1497 1498 if (error_status) { 1499 if (error_status & QM_ECC_MBIT) 1500 qm->err_status.is_qm_ecc_mbit = true; 1501 1502 qm_log_hw_error(qm, error_status); 1503 if (error_status & qm->err_info.qm_reset_mask) 1504 return ACC_ERR_NEED_RESET; 1505 1506 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1507 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1508 } 1509 1510 return ACC_ERR_RECOVERED; 1511 } 1512 1513 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1514 { 1515 struct qm_mailbox mailbox; 1516 int ret; 1517 1518 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1519 mutex_lock(&qm->mailbox_lock); 1520 ret = qm_mb_nolock(qm, &mailbox); 1521 if (ret) 1522 goto err_unlock; 1523 1524 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1525 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1526 1527 err_unlock: 1528 mutex_unlock(&qm->mailbox_lock); 1529 return ret; 1530 } 1531 1532 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1533 { 1534 u32 val; 1535 1536 if (qm->fun_type == QM_HW_PF) 1537 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1538 1539 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1540 val |= QM_IFC_INT_SOURCE_MASK; 1541 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1542 } 1543 1544 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1545 { 1546 struct device *dev = &qm->pdev->dev; 1547 u32 cmd; 1548 u64 msg; 1549 int ret; 1550 1551 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1552 if (ret) { 1553 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1554 return; 1555 } 1556 1557 cmd = msg & QM_MB_CMD_DATA_MASK; 1558 switch (cmd) { 1559 case QM_VF_PREPARE_FAIL: 1560 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1561 break; 1562 case QM_VF_START_FAIL: 1563 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1564 break; 1565 case QM_VF_PREPARE_DONE: 1566 case QM_VF_START_DONE: 1567 break; 1568 default: 1569 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1570 break; 1571 } 1572 } 1573 1574 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1575 { 1576 struct device *dev = &qm->pdev->dev; 1577 u32 vfs_num = qm->vfs_num; 1578 int cnt = 0; 1579 int ret = 0; 1580 u64 val; 1581 u32 i; 1582 1583 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1584 return 0; 1585 1586 while (true) { 1587 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1588 /* All VFs send command to PF, break */ 1589 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1590 break; 1591 1592 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1593 ret = -EBUSY; 1594 break; 1595 } 1596 1597 msleep(QM_WAIT_DST_ACK); 1598 } 1599 1600 /* PF check VFs msg */ 1601 for (i = 1; i <= vfs_num; i++) { 1602 if (val & BIT(i)) 1603 qm_handle_vf_msg(qm, i); 1604 else 1605 dev_err(dev, "VF(%u) not ping PF!\n", i); 1606 } 1607 1608 /* PF clear interrupt to ack VFs */ 1609 qm_clear_cmd_interrupt(qm, val); 1610 1611 return ret; 1612 } 1613 1614 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1615 { 1616 u32 val; 1617 1618 val = readl(qm->io_base + QM_IFC_INT_CFG); 1619 val &= ~QM_IFC_SEND_ALL_VFS; 1620 val |= fun_num; 1621 writel(val, qm->io_base + QM_IFC_INT_CFG); 1622 1623 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1624 val |= QM_IFC_INT_SET_MASK; 1625 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1626 } 1627 1628 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1629 { 1630 u32 val; 1631 1632 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1633 val |= QM_IFC_INT_SET_MASK; 1634 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1635 } 1636 1637 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1638 { 1639 struct device *dev = &qm->pdev->dev; 1640 struct qm_mailbox mailbox; 1641 int cnt = 0; 1642 u64 val; 1643 int ret; 1644 1645 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1646 mutex_lock(&qm->mailbox_lock); 1647 ret = qm_mb_nolock(qm, &mailbox); 1648 if (ret) { 1649 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1650 goto err_unlock; 1651 } 1652 1653 qm_trigger_vf_interrupt(qm, fun_num); 1654 while (true) { 1655 msleep(QM_WAIT_DST_ACK); 1656 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1657 /* if VF respond, PF notifies VF successfully. */ 1658 if (!(val & BIT(fun_num))) 1659 goto err_unlock; 1660 1661 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1662 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1663 ret = -ETIMEDOUT; 1664 break; 1665 } 1666 } 1667 1668 err_unlock: 1669 mutex_unlock(&qm->mailbox_lock); 1670 return ret; 1671 } 1672 1673 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1674 { 1675 struct device *dev = &qm->pdev->dev; 1676 u32 vfs_num = qm->vfs_num; 1677 struct qm_mailbox mailbox; 1678 u64 val = 0; 1679 int cnt = 0; 1680 int ret; 1681 u32 i; 1682 1683 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1684 mutex_lock(&qm->mailbox_lock); 1685 /* PF sends command to all VFs by mailbox */ 1686 ret = qm_mb_nolock(qm, &mailbox); 1687 if (ret) { 1688 dev_err(dev, "failed to send command to VFs!\n"); 1689 mutex_unlock(&qm->mailbox_lock); 1690 return ret; 1691 } 1692 1693 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1694 while (true) { 1695 msleep(QM_WAIT_DST_ACK); 1696 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1697 /* If all VFs acked, PF notifies VFs successfully. */ 1698 if (!(val & GENMASK(vfs_num, 1))) { 1699 mutex_unlock(&qm->mailbox_lock); 1700 return 0; 1701 } 1702 1703 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1704 break; 1705 } 1706 1707 mutex_unlock(&qm->mailbox_lock); 1708 1709 /* Check which vf respond timeout. */ 1710 for (i = 1; i <= vfs_num; i++) { 1711 if (val & BIT(i)) 1712 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1713 } 1714 1715 return -ETIMEDOUT; 1716 } 1717 1718 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1719 { 1720 struct qm_mailbox mailbox; 1721 int cnt = 0; 1722 u32 val; 1723 int ret; 1724 1725 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1726 mutex_lock(&qm->mailbox_lock); 1727 ret = qm_mb_nolock(qm, &mailbox); 1728 if (ret) { 1729 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1730 goto unlock; 1731 } 1732 1733 qm_trigger_pf_interrupt(qm); 1734 /* Waiting for PF response */ 1735 while (true) { 1736 msleep(QM_WAIT_DST_ACK); 1737 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1738 if (!(val & QM_IFC_INT_STATUS_MASK)) 1739 break; 1740 1741 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1742 ret = -ETIMEDOUT; 1743 break; 1744 } 1745 } 1746 1747 unlock: 1748 mutex_unlock(&qm->mailbox_lock); 1749 return ret; 1750 } 1751 1752 static int qm_stop_qp(struct hisi_qp *qp) 1753 { 1754 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1755 } 1756 1757 static int qm_set_msi(struct hisi_qm *qm, bool set) 1758 { 1759 struct pci_dev *pdev = qm->pdev; 1760 1761 if (set) { 1762 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1763 0); 1764 } else { 1765 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1766 ACC_PEH_MSI_DISABLE); 1767 if (qm->err_status.is_qm_ecc_mbit || 1768 qm->err_status.is_dev_ecc_mbit) 1769 return 0; 1770 1771 mdelay(1); 1772 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1773 return -EFAULT; 1774 } 1775 1776 return 0; 1777 } 1778 1779 static void qm_wait_msi_finish(struct hisi_qm *qm) 1780 { 1781 struct pci_dev *pdev = qm->pdev; 1782 u32 cmd = ~0; 1783 int cnt = 0; 1784 u32 val; 1785 int ret; 1786 1787 while (true) { 1788 pci_read_config_dword(pdev, pdev->msi_cap + 1789 PCI_MSI_PENDING_64, &cmd); 1790 if (!cmd) 1791 break; 1792 1793 if (++cnt > MAX_WAIT_COUNTS) { 1794 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1795 break; 1796 } 1797 1798 udelay(1); 1799 } 1800 1801 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1802 val, !(val & QM_PEH_DFX_MASK), 1803 POLL_PERIOD, POLL_TIMEOUT); 1804 if (ret) 1805 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1806 1807 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1808 val, !(val & QM_PEH_MSI_FINISH_MASK), 1809 POLL_PERIOD, POLL_TIMEOUT); 1810 if (ret) 1811 pci_warn(pdev, "failed to finish MSI operation!\n"); 1812 } 1813 1814 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1815 { 1816 struct pci_dev *pdev = qm->pdev; 1817 int ret = -ETIMEDOUT; 1818 u32 cmd, i; 1819 1820 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1821 if (set) 1822 cmd |= QM_MSI_CAP_ENABLE; 1823 else 1824 cmd &= ~QM_MSI_CAP_ENABLE; 1825 1826 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1827 if (set) { 1828 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1829 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1830 if (cmd & QM_MSI_CAP_ENABLE) 1831 return 0; 1832 1833 udelay(1); 1834 } 1835 } else { 1836 udelay(WAIT_PERIOD_US_MIN); 1837 qm_wait_msi_finish(qm); 1838 ret = 0; 1839 } 1840 1841 return ret; 1842 } 1843 1844 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1845 .qm_db = qm_db_v1, 1846 .hw_error_init = qm_hw_error_init_v1, 1847 .set_msi = qm_set_msi, 1848 }; 1849 1850 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1851 .get_vft = qm_get_vft_v2, 1852 .qm_db = qm_db_v2, 1853 .hw_error_init = qm_hw_error_init_v2, 1854 .hw_error_uninit = qm_hw_error_uninit_v2, 1855 .hw_error_handle = qm_hw_error_handle_v2, 1856 .set_msi = qm_set_msi, 1857 }; 1858 1859 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1860 .get_vft = qm_get_vft_v2, 1861 .qm_db = qm_db_v2, 1862 .hw_error_init = qm_hw_error_init_v3, 1863 .hw_error_uninit = qm_hw_error_uninit_v3, 1864 .hw_error_handle = qm_hw_error_handle_v2, 1865 .set_msi = qm_set_msi_v3, 1866 }; 1867 1868 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1869 { 1870 struct hisi_qp_status *qp_status = &qp->qp_status; 1871 u16 sq_tail = qp_status->sq_tail; 1872 1873 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1874 return NULL; 1875 1876 return qp->sqe + sq_tail * qp->qm->sqe_size; 1877 } 1878 1879 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1880 { 1881 u64 *addr; 1882 1883 /* Use last 64 bits of DUS to reset status. */ 1884 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1885 *addr = 0; 1886 } 1887 1888 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1889 { 1890 struct device *dev = &qm->pdev->dev; 1891 struct hisi_qp *qp; 1892 int qp_id; 1893 1894 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1895 return ERR_PTR(-EPERM); 1896 1897 if (qm->qp_in_used == qm->qp_num) { 1898 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1899 qm->qp_num); 1900 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1901 return ERR_PTR(-EBUSY); 1902 } 1903 1904 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1905 if (qp_id < 0) { 1906 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1907 qm->qp_num); 1908 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1909 return ERR_PTR(-EBUSY); 1910 } 1911 1912 qp = &qm->qp_array[qp_id]; 1913 hisi_qm_unset_hw_reset(qp); 1914 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1915 1916 qp->event_cb = NULL; 1917 qp->req_cb = NULL; 1918 qp->qp_id = qp_id; 1919 qp->alg_type = alg_type; 1920 qp->is_in_kernel = true; 1921 qm->qp_in_used++; 1922 atomic_set(&qp->qp_status.flags, QP_INIT); 1923 1924 return qp; 1925 } 1926 1927 /** 1928 * hisi_qm_create_qp() - Create a queue pair from qm. 1929 * @qm: The qm we create a qp from. 1930 * @alg_type: Accelerator specific algorithm type in sqc. 1931 * 1932 * Return created qp, negative error code if failed. 1933 */ 1934 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1935 { 1936 struct hisi_qp *qp; 1937 int ret; 1938 1939 ret = qm_pm_get_sync(qm); 1940 if (ret) 1941 return ERR_PTR(ret); 1942 1943 down_write(&qm->qps_lock); 1944 qp = qm_create_qp_nolock(qm, alg_type); 1945 up_write(&qm->qps_lock); 1946 1947 if (IS_ERR(qp)) 1948 qm_pm_put_sync(qm); 1949 1950 return qp; 1951 } 1952 1953 /** 1954 * hisi_qm_release_qp() - Release a qp back to its qm. 1955 * @qp: The qp we want to release. 1956 * 1957 * This function releases the resource of a qp. 1958 */ 1959 static void hisi_qm_release_qp(struct hisi_qp *qp) 1960 { 1961 struct hisi_qm *qm = qp->qm; 1962 1963 down_write(&qm->qps_lock); 1964 1965 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1966 up_write(&qm->qps_lock); 1967 return; 1968 } 1969 1970 qm->qp_in_used--; 1971 idr_remove(&qm->qp_idr, qp->qp_id); 1972 1973 up_write(&qm->qps_lock); 1974 1975 qm_pm_put_sync(qm); 1976 } 1977 1978 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1979 { 1980 struct hisi_qm *qm = qp->qm; 1981 struct device *dev = &qm->pdev->dev; 1982 enum qm_hw_ver ver = qm->ver; 1983 struct qm_sqc *sqc; 1984 dma_addr_t sqc_dma; 1985 int ret; 1986 1987 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1988 if (!sqc) 1989 return -ENOMEM; 1990 1991 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1992 if (ver == QM_HW_V1) { 1993 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1994 sqc->w8 = cpu_to_le16(qp->sq_depth - 1); 1995 } else { 1996 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1997 sqc->w8 = 0; /* rand_qc */ 1998 } 1999 sqc->cq_num = cpu_to_le16(qp_id); 2000 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2001 2002 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2003 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2004 QM_QC_PASID_ENABLE_SHIFT); 2005 2006 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 2007 DMA_TO_DEVICE); 2008 if (dma_mapping_error(dev, sqc_dma)) { 2009 kfree(sqc); 2010 return -ENOMEM; 2011 } 2012 2013 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 2014 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 2015 kfree(sqc); 2016 2017 return ret; 2018 } 2019 2020 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2021 { 2022 struct hisi_qm *qm = qp->qm; 2023 struct device *dev = &qm->pdev->dev; 2024 enum qm_hw_ver ver = qm->ver; 2025 struct qm_cqc *cqc; 2026 dma_addr_t cqc_dma; 2027 int ret; 2028 2029 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2030 if (!cqc) 2031 return -ENOMEM; 2032 2033 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2034 if (ver == QM_HW_V1) { 2035 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2036 QM_QC_CQE_SIZE)); 2037 cqc->w8 = cpu_to_le16(qp->cq_depth - 1); 2038 } else { 2039 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2040 cqc->w8 = 0; /* rand_qc */ 2041 } 2042 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2043 2044 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2045 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2046 2047 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2048 DMA_TO_DEVICE); 2049 if (dma_mapping_error(dev, cqc_dma)) { 2050 kfree(cqc); 2051 return -ENOMEM; 2052 } 2053 2054 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2055 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2056 kfree(cqc); 2057 2058 return ret; 2059 } 2060 2061 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2062 { 2063 int ret; 2064 2065 qm_init_qp_status(qp); 2066 2067 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2068 if (ret) 2069 return ret; 2070 2071 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2072 } 2073 2074 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2075 { 2076 struct hisi_qm *qm = qp->qm; 2077 struct device *dev = &qm->pdev->dev; 2078 int qp_id = qp->qp_id; 2079 u32 pasid = arg; 2080 int ret; 2081 2082 if (!qm_qp_avail_state(qm, qp, QP_START)) 2083 return -EPERM; 2084 2085 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2086 if (ret) 2087 return ret; 2088 2089 atomic_set(&qp->qp_status.flags, QP_START); 2090 dev_dbg(dev, "queue %d started\n", qp_id); 2091 2092 return 0; 2093 } 2094 2095 /** 2096 * hisi_qm_start_qp() - Start a qp into running. 2097 * @qp: The qp we want to start to run. 2098 * @arg: Accelerator specific argument. 2099 * 2100 * After this function, qp can receive request from user. Return 0 if 2101 * successful, negative error code if failed. 2102 */ 2103 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2104 { 2105 struct hisi_qm *qm = qp->qm; 2106 int ret; 2107 2108 down_write(&qm->qps_lock); 2109 ret = qm_start_qp_nolock(qp, arg); 2110 up_write(&qm->qps_lock); 2111 2112 return ret; 2113 } 2114 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2115 2116 /** 2117 * qp_stop_fail_cb() - call request cb. 2118 * @qp: stopped failed qp. 2119 * 2120 * Callback function should be called whether task completed or not. 2121 */ 2122 static void qp_stop_fail_cb(struct hisi_qp *qp) 2123 { 2124 int qp_used = atomic_read(&qp->qp_status.used); 2125 u16 cur_tail = qp->qp_status.sq_tail; 2126 u16 sq_depth = qp->sq_depth; 2127 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2128 struct hisi_qm *qm = qp->qm; 2129 u16 pos; 2130 int i; 2131 2132 for (i = 0; i < qp_used; i++) { 2133 pos = (i + cur_head) % sq_depth; 2134 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2135 atomic_dec(&qp->qp_status.used); 2136 } 2137 } 2138 2139 /** 2140 * qm_drain_qp() - Drain a qp. 2141 * @qp: The qp we want to drain. 2142 * 2143 * Determine whether the queue is cleared by judging the tail pointers of 2144 * sq and cq. 2145 */ 2146 static int qm_drain_qp(struct hisi_qp *qp) 2147 { 2148 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2149 struct hisi_qm *qm = qp->qm; 2150 struct device *dev = &qm->pdev->dev; 2151 struct qm_sqc *sqc; 2152 struct qm_cqc *cqc; 2153 dma_addr_t dma_addr; 2154 int ret = 0, i = 0; 2155 void *addr; 2156 2157 /* No need to judge if master OOO is blocked. */ 2158 if (qm_check_dev_error(qm)) 2159 return 0; 2160 2161 /* Kunpeng930 supports drain qp by device */ 2162 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2163 ret = qm_stop_qp(qp); 2164 if (ret) 2165 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2166 return ret; 2167 } 2168 2169 addr = hisi_qm_ctx_alloc(qm, size, &dma_addr); 2170 if (IS_ERR(addr)) { 2171 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2172 return -ENOMEM; 2173 } 2174 2175 while (++i) { 2176 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2177 if (ret) { 2178 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2179 break; 2180 } 2181 sqc = addr; 2182 2183 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2184 qp->qp_id); 2185 if (ret) { 2186 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2187 break; 2188 } 2189 cqc = addr + sizeof(struct qm_sqc); 2190 2191 if ((sqc->tail == cqc->tail) && 2192 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2193 break; 2194 2195 if (i == MAX_WAIT_COUNTS) { 2196 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2197 ret = -EBUSY; 2198 break; 2199 } 2200 2201 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2202 } 2203 2204 hisi_qm_ctx_free(qm, size, addr, &dma_addr); 2205 2206 return ret; 2207 } 2208 2209 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2210 { 2211 struct device *dev = &qp->qm->pdev->dev; 2212 int ret; 2213 2214 /* 2215 * It is allowed to stop and release qp when reset, If the qp is 2216 * stopped when reset but still want to be released then, the 2217 * is_resetting flag should be set negative so that this qp will not 2218 * be restarted after reset. 2219 */ 2220 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2221 qp->is_resetting = false; 2222 return 0; 2223 } 2224 2225 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2226 return -EPERM; 2227 2228 atomic_set(&qp->qp_status.flags, QP_STOP); 2229 2230 ret = qm_drain_qp(qp); 2231 if (ret) 2232 dev_err(dev, "Failed to drain out data for stopping!\n"); 2233 2234 2235 flush_workqueue(qp->qm->wq); 2236 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2237 qp_stop_fail_cb(qp); 2238 2239 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2240 2241 return 0; 2242 } 2243 2244 /** 2245 * hisi_qm_stop_qp() - Stop a qp in qm. 2246 * @qp: The qp we want to stop. 2247 * 2248 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2249 */ 2250 int hisi_qm_stop_qp(struct hisi_qp *qp) 2251 { 2252 int ret; 2253 2254 down_write(&qp->qm->qps_lock); 2255 ret = qm_stop_qp_nolock(qp); 2256 up_write(&qp->qm->qps_lock); 2257 2258 return ret; 2259 } 2260 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2261 2262 /** 2263 * hisi_qp_send() - Queue up a task in the hardware queue. 2264 * @qp: The qp in which to put the message. 2265 * @msg: The message. 2266 * 2267 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2268 * if qp related qm is resetting. 2269 * 2270 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2271 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2272 * reset may happen, we have no lock here considering performance. This 2273 * causes current qm_db sending fail or can not receive sended sqe. QM 2274 * sync/async receive function should handle the error sqe. ACC reset 2275 * done function should clear used sqe to 0. 2276 */ 2277 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2278 { 2279 struct hisi_qp_status *qp_status = &qp->qp_status; 2280 u16 sq_tail = qp_status->sq_tail; 2281 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2282 void *sqe = qm_get_avail_sqe(qp); 2283 2284 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2285 atomic_read(&qp->qm->status.flags) == QM_STOP || 2286 qp->is_resetting)) { 2287 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2288 return -EAGAIN; 2289 } 2290 2291 if (!sqe) 2292 return -EBUSY; 2293 2294 memcpy(sqe, msg, qp->qm->sqe_size); 2295 2296 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2297 atomic_inc(&qp->qp_status.used); 2298 qp_status->sq_tail = sq_tail_next; 2299 2300 return 0; 2301 } 2302 EXPORT_SYMBOL_GPL(hisi_qp_send); 2303 2304 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2305 { 2306 unsigned int val; 2307 2308 if (qm->ver == QM_HW_V1) 2309 return; 2310 2311 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2312 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2313 val, val & BIT(0), POLL_PERIOD, 2314 POLL_TIMEOUT)) 2315 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2316 } 2317 2318 static void qm_qp_event_notifier(struct hisi_qp *qp) 2319 { 2320 wake_up_interruptible(&qp->uacce_q->wait); 2321 } 2322 2323 /* This function returns free number of qp in qm. */ 2324 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2325 { 2326 struct hisi_qm *qm = uacce->priv; 2327 int ret; 2328 2329 down_read(&qm->qps_lock); 2330 ret = qm->qp_num - qm->qp_in_used; 2331 up_read(&qm->qps_lock); 2332 2333 return ret; 2334 } 2335 2336 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2337 { 2338 int i; 2339 2340 for (i = 0; i < qm->qp_num; i++) 2341 qm_set_qp_disable(&qm->qp_array[i], offset); 2342 } 2343 2344 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2345 unsigned long arg, 2346 struct uacce_queue *q) 2347 { 2348 struct hisi_qm *qm = uacce->priv; 2349 struct hisi_qp *qp; 2350 u8 alg_type = 0; 2351 2352 qp = hisi_qm_create_qp(qm, alg_type); 2353 if (IS_ERR(qp)) 2354 return PTR_ERR(qp); 2355 2356 q->priv = qp; 2357 q->uacce = uacce; 2358 qp->uacce_q = q; 2359 qp->event_cb = qm_qp_event_notifier; 2360 qp->pasid = arg; 2361 qp->is_in_kernel = false; 2362 2363 return 0; 2364 } 2365 2366 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2367 { 2368 struct hisi_qp *qp = q->priv; 2369 2370 hisi_qm_release_qp(qp); 2371 } 2372 2373 /* map sq/cq/doorbell to user space */ 2374 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2375 struct vm_area_struct *vma, 2376 struct uacce_qfile_region *qfr) 2377 { 2378 struct hisi_qp *qp = q->priv; 2379 struct hisi_qm *qm = qp->qm; 2380 resource_size_t phys_base = qm->db_phys_base + 2381 qp->qp_id * qm->db_interval; 2382 size_t sz = vma->vm_end - vma->vm_start; 2383 struct pci_dev *pdev = qm->pdev; 2384 struct device *dev = &pdev->dev; 2385 unsigned long vm_pgoff; 2386 int ret; 2387 2388 switch (qfr->type) { 2389 case UACCE_QFRT_MMIO: 2390 if (qm->ver == QM_HW_V1) { 2391 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2392 return -EINVAL; 2393 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2394 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2395 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2396 return -EINVAL; 2397 } else { 2398 if (sz > qm->db_interval) 2399 return -EINVAL; 2400 } 2401 2402 vm_flags_set(vma, VM_IO); 2403 2404 return remap_pfn_range(vma, vma->vm_start, 2405 phys_base >> PAGE_SHIFT, 2406 sz, pgprot_noncached(vma->vm_page_prot)); 2407 case UACCE_QFRT_DUS: 2408 if (sz != qp->qdma.size) 2409 return -EINVAL; 2410 2411 /* 2412 * dma_mmap_coherent() requires vm_pgoff as 0 2413 * restore vm_pfoff to initial value for mmap() 2414 */ 2415 vm_pgoff = vma->vm_pgoff; 2416 vma->vm_pgoff = 0; 2417 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2418 qp->qdma.dma, sz); 2419 vma->vm_pgoff = vm_pgoff; 2420 return ret; 2421 2422 default: 2423 return -EINVAL; 2424 } 2425 } 2426 2427 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2428 { 2429 struct hisi_qp *qp = q->priv; 2430 2431 return hisi_qm_start_qp(qp, qp->pasid); 2432 } 2433 2434 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2435 { 2436 hisi_qm_stop_qp(q->priv); 2437 } 2438 2439 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2440 { 2441 struct hisi_qp *qp = q->priv; 2442 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2443 int updated = 0; 2444 2445 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2446 /* make sure to read data from memory */ 2447 dma_rmb(); 2448 qm_cq_head_update(qp); 2449 cqe = qp->cqe + qp->qp_status.cq_head; 2450 updated = 1; 2451 } 2452 2453 return updated; 2454 } 2455 2456 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2457 { 2458 struct hisi_qm *qm = q->uacce->priv; 2459 struct hisi_qp *qp = q->priv; 2460 2461 down_write(&qm->qps_lock); 2462 qp->alg_type = type; 2463 up_write(&qm->qps_lock); 2464 } 2465 2466 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2467 unsigned long arg) 2468 { 2469 struct hisi_qp *qp = q->priv; 2470 struct hisi_qp_info qp_info; 2471 struct hisi_qp_ctx qp_ctx; 2472 2473 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2474 if (copy_from_user(&qp_ctx, (void __user *)arg, 2475 sizeof(struct hisi_qp_ctx))) 2476 return -EFAULT; 2477 2478 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2479 return -EINVAL; 2480 2481 qm_set_sqctype(q, qp_ctx.qc_type); 2482 qp_ctx.id = qp->qp_id; 2483 2484 if (copy_to_user((void __user *)arg, &qp_ctx, 2485 sizeof(struct hisi_qp_ctx))) 2486 return -EFAULT; 2487 2488 return 0; 2489 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2490 if (copy_from_user(&qp_info, (void __user *)arg, 2491 sizeof(struct hisi_qp_info))) 2492 return -EFAULT; 2493 2494 qp_info.sqe_size = qp->qm->sqe_size; 2495 qp_info.sq_depth = qp->sq_depth; 2496 qp_info.cq_depth = qp->cq_depth; 2497 2498 if (copy_to_user((void __user *)arg, &qp_info, 2499 sizeof(struct hisi_qp_info))) 2500 return -EFAULT; 2501 2502 return 0; 2503 } 2504 2505 return -EINVAL; 2506 } 2507 2508 /** 2509 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2510 * according to user's configuration of error threshold. 2511 * @qm: the uacce device 2512 */ 2513 static int qm_hw_err_isolate(struct hisi_qm *qm) 2514 { 2515 struct qm_hw_err *err, *tmp, *hw_err; 2516 struct qm_err_isolate *isolate; 2517 u32 count = 0; 2518 2519 isolate = &qm->isolate_data; 2520 2521 #define SECONDS_PER_HOUR 3600 2522 2523 /* All the hw errs are processed by PF driver */ 2524 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2525 return 0; 2526 2527 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2528 if (!hw_err) 2529 return -ENOMEM; 2530 2531 /* 2532 * Time-stamp every slot AER error. Then check the AER error log when the 2533 * next device AER error occurred. if the device slot AER error count exceeds 2534 * the setting error threshold in one hour, the isolated state will be set 2535 * to true. And the AER error logs that exceed one hour will be cleared. 2536 */ 2537 mutex_lock(&isolate->isolate_lock); 2538 hw_err->timestamp = jiffies; 2539 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2540 if ((hw_err->timestamp - err->timestamp) / HZ > 2541 SECONDS_PER_HOUR) { 2542 list_del(&err->list); 2543 kfree(err); 2544 } else { 2545 count++; 2546 } 2547 } 2548 list_add(&hw_err->list, &isolate->qm_hw_errs); 2549 mutex_unlock(&isolate->isolate_lock); 2550 2551 if (count >= isolate->err_threshold) 2552 isolate->is_isolate = true; 2553 2554 return 0; 2555 } 2556 2557 static void qm_hw_err_destroy(struct hisi_qm *qm) 2558 { 2559 struct qm_hw_err *err, *tmp; 2560 2561 mutex_lock(&qm->isolate_data.isolate_lock); 2562 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2563 list_del(&err->list); 2564 kfree(err); 2565 } 2566 mutex_unlock(&qm->isolate_data.isolate_lock); 2567 } 2568 2569 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2570 { 2571 struct hisi_qm *qm = uacce->priv; 2572 struct hisi_qm *pf_qm; 2573 2574 if (uacce->is_vf) 2575 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2576 else 2577 pf_qm = qm; 2578 2579 return pf_qm->isolate_data.is_isolate ? 2580 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2581 } 2582 2583 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2584 { 2585 struct hisi_qm *qm = uacce->priv; 2586 2587 /* Must be set by PF */ 2588 if (uacce->is_vf) 2589 return -EPERM; 2590 2591 if (qm->isolate_data.is_isolate) 2592 return -EPERM; 2593 2594 qm->isolate_data.err_threshold = num; 2595 2596 /* After the policy is updated, need to reset the hardware err list */ 2597 qm_hw_err_destroy(qm); 2598 2599 return 0; 2600 } 2601 2602 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2603 { 2604 struct hisi_qm *qm = uacce->priv; 2605 struct hisi_qm *pf_qm; 2606 2607 if (uacce->is_vf) { 2608 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2609 return pf_qm->isolate_data.err_threshold; 2610 } 2611 2612 return qm->isolate_data.err_threshold; 2613 } 2614 2615 static const struct uacce_ops uacce_qm_ops = { 2616 .get_available_instances = hisi_qm_get_available_instances, 2617 .get_queue = hisi_qm_uacce_get_queue, 2618 .put_queue = hisi_qm_uacce_put_queue, 2619 .start_queue = hisi_qm_uacce_start_queue, 2620 .stop_queue = hisi_qm_uacce_stop_queue, 2621 .mmap = hisi_qm_uacce_mmap, 2622 .ioctl = hisi_qm_uacce_ioctl, 2623 .is_q_updated = hisi_qm_is_q_updated, 2624 .get_isolate_state = hisi_qm_get_isolate_state, 2625 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2626 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2627 }; 2628 2629 static void qm_remove_uacce(struct hisi_qm *qm) 2630 { 2631 struct uacce_device *uacce = qm->uacce; 2632 2633 if (qm->use_sva) { 2634 qm_hw_err_destroy(qm); 2635 uacce_remove(uacce); 2636 qm->uacce = NULL; 2637 } 2638 } 2639 2640 static int qm_alloc_uacce(struct hisi_qm *qm) 2641 { 2642 struct pci_dev *pdev = qm->pdev; 2643 struct uacce_device *uacce; 2644 unsigned long mmio_page_nr; 2645 unsigned long dus_page_nr; 2646 u16 sq_depth, cq_depth; 2647 struct uacce_interface interface = { 2648 .flags = UACCE_DEV_SVA, 2649 .ops = &uacce_qm_ops, 2650 }; 2651 int ret; 2652 2653 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2654 sizeof(interface.name)); 2655 if (ret < 0) 2656 return -ENAMETOOLONG; 2657 2658 uacce = uacce_alloc(&pdev->dev, &interface); 2659 if (IS_ERR(uacce)) 2660 return PTR_ERR(uacce); 2661 2662 if (uacce->flags & UACCE_DEV_SVA) { 2663 qm->use_sva = true; 2664 } else { 2665 /* only consider sva case */ 2666 qm_remove_uacce(qm); 2667 return -EINVAL; 2668 } 2669 2670 uacce->is_vf = pdev->is_virtfn; 2671 uacce->priv = qm; 2672 2673 if (qm->ver == QM_HW_V1) 2674 uacce->api_ver = HISI_QM_API_VER_BASE; 2675 else if (qm->ver == QM_HW_V2) 2676 uacce->api_ver = HISI_QM_API_VER2_BASE; 2677 else 2678 uacce->api_ver = HISI_QM_API_VER3_BASE; 2679 2680 if (qm->ver == QM_HW_V1) 2681 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2682 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2683 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2684 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2685 else 2686 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2687 2688 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2689 2690 /* Add one more page for device or qp status */ 2691 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2692 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2693 PAGE_SHIFT; 2694 2695 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2696 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2697 2698 qm->uacce = uacce; 2699 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2700 mutex_init(&qm->isolate_data.isolate_lock); 2701 2702 return 0; 2703 } 2704 2705 /** 2706 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2707 * there is user on the QM, return failure without doing anything. 2708 * @qm: The qm needed to be fronzen. 2709 * 2710 * This function frozes QM, then we can do SRIOV disabling. 2711 */ 2712 static int qm_frozen(struct hisi_qm *qm) 2713 { 2714 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2715 return 0; 2716 2717 down_write(&qm->qps_lock); 2718 2719 if (!qm->qp_in_used) { 2720 qm->qp_in_used = qm->qp_num; 2721 up_write(&qm->qps_lock); 2722 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2723 return 0; 2724 } 2725 2726 up_write(&qm->qps_lock); 2727 2728 return -EBUSY; 2729 } 2730 2731 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2732 struct hisi_qm_list *qm_list) 2733 { 2734 struct hisi_qm *qm, *vf_qm; 2735 struct pci_dev *dev; 2736 int ret = 0; 2737 2738 if (!qm_list || !pdev) 2739 return -EINVAL; 2740 2741 /* Try to frozen all the VFs as disable SRIOV */ 2742 mutex_lock(&qm_list->lock); 2743 list_for_each_entry(qm, &qm_list->list, list) { 2744 dev = qm->pdev; 2745 if (dev == pdev) 2746 continue; 2747 if (pci_physfn(dev) == pdev) { 2748 vf_qm = pci_get_drvdata(dev); 2749 ret = qm_frozen(vf_qm); 2750 if (ret) 2751 goto frozen_fail; 2752 } 2753 } 2754 2755 frozen_fail: 2756 mutex_unlock(&qm_list->lock); 2757 2758 return ret; 2759 } 2760 2761 /** 2762 * hisi_qm_wait_task_finish() - Wait until the task is finished 2763 * when removing the driver. 2764 * @qm: The qm needed to wait for the task to finish. 2765 * @qm_list: The list of all available devices. 2766 */ 2767 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2768 { 2769 while (qm_frozen(qm) || 2770 ((qm->fun_type == QM_HW_PF) && 2771 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2772 msleep(WAIT_PERIOD); 2773 } 2774 2775 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2776 test_bit(QM_RESETTING, &qm->misc_ctl)) 2777 msleep(WAIT_PERIOD); 2778 2779 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2780 flush_work(&qm->cmd_process); 2781 2782 udelay(REMOVE_WAIT_DELAY); 2783 } 2784 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2785 2786 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2787 { 2788 struct device *dev = &qm->pdev->dev; 2789 struct qm_dma *qdma; 2790 int i; 2791 2792 for (i = num - 1; i >= 0; i--) { 2793 qdma = &qm->qp_array[i].qdma; 2794 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2795 kfree(qm->poll_data[i].qp_finish_id); 2796 } 2797 2798 kfree(qm->poll_data); 2799 kfree(qm->qp_array); 2800 } 2801 2802 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2803 u16 sq_depth, u16 cq_depth) 2804 { 2805 struct device *dev = &qm->pdev->dev; 2806 size_t off = qm->sqe_size * sq_depth; 2807 struct hisi_qp *qp; 2808 int ret = -ENOMEM; 2809 2810 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2811 GFP_KERNEL); 2812 if (!qm->poll_data[id].qp_finish_id) 2813 return -ENOMEM; 2814 2815 qp = &qm->qp_array[id]; 2816 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2817 GFP_KERNEL); 2818 if (!qp->qdma.va) 2819 goto err_free_qp_finish_id; 2820 2821 qp->sqe = qp->qdma.va; 2822 qp->sqe_dma = qp->qdma.dma; 2823 qp->cqe = qp->qdma.va + off; 2824 qp->cqe_dma = qp->qdma.dma + off; 2825 qp->qdma.size = dma_size; 2826 qp->sq_depth = sq_depth; 2827 qp->cq_depth = cq_depth; 2828 qp->qm = qm; 2829 qp->qp_id = id; 2830 2831 return 0; 2832 2833 err_free_qp_finish_id: 2834 kfree(qm->poll_data[id].qp_finish_id); 2835 return ret; 2836 } 2837 2838 static void hisi_qm_pre_init(struct hisi_qm *qm) 2839 { 2840 struct pci_dev *pdev = qm->pdev; 2841 2842 if (qm->ver == QM_HW_V1) 2843 qm->ops = &qm_hw_ops_v1; 2844 else if (qm->ver == QM_HW_V2) 2845 qm->ops = &qm_hw_ops_v2; 2846 else 2847 qm->ops = &qm_hw_ops_v3; 2848 2849 pci_set_drvdata(pdev, qm); 2850 mutex_init(&qm->mailbox_lock); 2851 init_rwsem(&qm->qps_lock); 2852 qm->qp_in_used = 0; 2853 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2854 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2855 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2856 } 2857 } 2858 2859 static void qm_cmd_uninit(struct hisi_qm *qm) 2860 { 2861 u32 val; 2862 2863 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2864 return; 2865 2866 val = readl(qm->io_base + QM_IFC_INT_MASK); 2867 val |= QM_IFC_INT_DISABLE; 2868 writel(val, qm->io_base + QM_IFC_INT_MASK); 2869 } 2870 2871 static void qm_cmd_init(struct hisi_qm *qm) 2872 { 2873 u32 val; 2874 2875 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2876 return; 2877 2878 /* Clear communication interrupt source */ 2879 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2880 2881 /* Enable pf to vf communication reg. */ 2882 val = readl(qm->io_base + QM_IFC_INT_MASK); 2883 val &= ~QM_IFC_INT_DISABLE; 2884 writel(val, qm->io_base + QM_IFC_INT_MASK); 2885 } 2886 2887 static void qm_put_pci_res(struct hisi_qm *qm) 2888 { 2889 struct pci_dev *pdev = qm->pdev; 2890 2891 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2892 iounmap(qm->db_io_base); 2893 2894 iounmap(qm->io_base); 2895 pci_release_mem_regions(pdev); 2896 } 2897 2898 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2899 { 2900 struct pci_dev *pdev = qm->pdev; 2901 2902 pci_free_irq_vectors(pdev); 2903 qm_put_pci_res(qm); 2904 pci_disable_device(pdev); 2905 } 2906 2907 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2908 { 2909 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2910 writel(state, qm->io_base + QM_VF_STATE); 2911 } 2912 2913 static void hisi_qm_unint_work(struct hisi_qm *qm) 2914 { 2915 destroy_workqueue(qm->wq); 2916 } 2917 2918 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2919 { 2920 struct device *dev = &qm->pdev->dev; 2921 2922 hisi_qp_memory_uninit(qm, qm->qp_num); 2923 if (qm->qdma.va) { 2924 hisi_qm_cache_wb(qm); 2925 dma_free_coherent(dev, qm->qdma.size, 2926 qm->qdma.va, qm->qdma.dma); 2927 } 2928 2929 idr_destroy(&qm->qp_idr); 2930 2931 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2932 kfree(qm->factor); 2933 } 2934 2935 /** 2936 * hisi_qm_uninit() - Uninitialize qm. 2937 * @qm: The qm needed uninit. 2938 * 2939 * This function uninits qm related device resources. 2940 */ 2941 void hisi_qm_uninit(struct hisi_qm *qm) 2942 { 2943 qm_cmd_uninit(qm); 2944 hisi_qm_unint_work(qm); 2945 down_write(&qm->qps_lock); 2946 2947 if (!qm_avail_state(qm, QM_CLOSE)) { 2948 up_write(&qm->qps_lock); 2949 return; 2950 } 2951 2952 hisi_qm_memory_uninit(qm); 2953 hisi_qm_set_state(qm, QM_NOT_READY); 2954 up_write(&qm->qps_lock); 2955 2956 qm_remove_uacce(qm); 2957 qm_irqs_unregister(qm); 2958 hisi_qm_pci_uninit(qm); 2959 } 2960 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2961 2962 /** 2963 * hisi_qm_get_vft() - Get vft from a qm. 2964 * @qm: The qm we want to get its vft. 2965 * @base: The base number of queue in vft. 2966 * @number: The number of queues in vft. 2967 * 2968 * We can allocate multiple queues to a qm by configuring virtual function 2969 * table. We get related configures by this function. Normally, we call this 2970 * function in VF driver to get the queue information. 2971 * 2972 * qm hw v1 does not support this interface. 2973 */ 2974 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2975 { 2976 if (!base || !number) 2977 return -EINVAL; 2978 2979 if (!qm->ops->get_vft) { 2980 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2981 return -EINVAL; 2982 } 2983 2984 return qm->ops->get_vft(qm, base, number); 2985 } 2986 2987 /** 2988 * hisi_qm_set_vft() - Set vft to a qm. 2989 * @qm: The qm we want to set its vft. 2990 * @fun_num: The function number. 2991 * @base: The base number of queue in vft. 2992 * @number: The number of queues in vft. 2993 * 2994 * This function is alway called in PF driver, it is used to assign queues 2995 * among PF and VFs. 2996 * 2997 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2998 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2999 * (VF function number 0x2) 3000 */ 3001 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3002 u32 number) 3003 { 3004 u32 max_q_num = qm->ctrl_qp_num; 3005 3006 if (base >= max_q_num || number > max_q_num || 3007 (base + number) > max_q_num) 3008 return -EINVAL; 3009 3010 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3011 } 3012 3013 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3014 { 3015 struct hisi_qm_status *status = &qm->status; 3016 3017 status->eq_head = 0; 3018 status->aeq_head = 0; 3019 status->eqc_phase = true; 3020 status->aeqc_phase = true; 3021 } 3022 3023 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3024 { 3025 /* Clear eq/aeq interrupt source */ 3026 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3027 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3028 3029 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3030 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3031 } 3032 3033 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3034 { 3035 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3036 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3037 } 3038 3039 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3040 { 3041 struct device *dev = &qm->pdev->dev; 3042 struct qm_eqc *eqc; 3043 dma_addr_t eqc_dma; 3044 int ret; 3045 3046 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3047 if (!eqc) 3048 return -ENOMEM; 3049 3050 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3051 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3052 if (qm->ver == QM_HW_V1) 3053 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3054 eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3055 3056 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3057 DMA_TO_DEVICE); 3058 if (dma_mapping_error(dev, eqc_dma)) { 3059 kfree(eqc); 3060 return -ENOMEM; 3061 } 3062 3063 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3064 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3065 kfree(eqc); 3066 3067 return ret; 3068 } 3069 3070 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3071 { 3072 struct device *dev = &qm->pdev->dev; 3073 struct qm_aeqc *aeqc; 3074 dma_addr_t aeqc_dma; 3075 int ret; 3076 3077 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3078 if (!aeqc) 3079 return -ENOMEM; 3080 3081 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3082 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3083 aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3084 3085 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3086 DMA_TO_DEVICE); 3087 if (dma_mapping_error(dev, aeqc_dma)) { 3088 kfree(aeqc); 3089 return -ENOMEM; 3090 } 3091 3092 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3093 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3094 kfree(aeqc); 3095 3096 return ret; 3097 } 3098 3099 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3100 { 3101 struct device *dev = &qm->pdev->dev; 3102 int ret; 3103 3104 qm_init_eq_aeq_status(qm); 3105 3106 ret = qm_eq_ctx_cfg(qm); 3107 if (ret) { 3108 dev_err(dev, "Set eqc failed!\n"); 3109 return ret; 3110 } 3111 3112 return qm_aeq_ctx_cfg(qm); 3113 } 3114 3115 static int __hisi_qm_start(struct hisi_qm *qm) 3116 { 3117 int ret; 3118 3119 WARN_ON(!qm->qdma.va); 3120 3121 if (qm->fun_type == QM_HW_PF) { 3122 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3123 if (ret) 3124 return ret; 3125 } 3126 3127 ret = qm_eq_aeq_ctx_cfg(qm); 3128 if (ret) 3129 return ret; 3130 3131 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3132 if (ret) 3133 return ret; 3134 3135 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3136 if (ret) 3137 return ret; 3138 3139 qm_init_prefetch(qm); 3140 qm_enable_eq_aeq_interrupts(qm); 3141 3142 return 0; 3143 } 3144 3145 /** 3146 * hisi_qm_start() - start qm 3147 * @qm: The qm to be started. 3148 * 3149 * This function starts a qm, then we can allocate qp from this qm. 3150 */ 3151 int hisi_qm_start(struct hisi_qm *qm) 3152 { 3153 struct device *dev = &qm->pdev->dev; 3154 int ret = 0; 3155 3156 down_write(&qm->qps_lock); 3157 3158 if (!qm_avail_state(qm, QM_START)) { 3159 up_write(&qm->qps_lock); 3160 return -EPERM; 3161 } 3162 3163 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3164 3165 if (!qm->qp_num) { 3166 dev_err(dev, "qp_num should not be 0\n"); 3167 ret = -EINVAL; 3168 goto err_unlock; 3169 } 3170 3171 ret = __hisi_qm_start(qm); 3172 if (!ret) 3173 atomic_set(&qm->status.flags, QM_START); 3174 3175 hisi_qm_set_state(qm, QM_READY); 3176 err_unlock: 3177 up_write(&qm->qps_lock); 3178 return ret; 3179 } 3180 EXPORT_SYMBOL_GPL(hisi_qm_start); 3181 3182 static int qm_restart(struct hisi_qm *qm) 3183 { 3184 struct device *dev = &qm->pdev->dev; 3185 struct hisi_qp *qp; 3186 int ret, i; 3187 3188 ret = hisi_qm_start(qm); 3189 if (ret < 0) 3190 return ret; 3191 3192 down_write(&qm->qps_lock); 3193 for (i = 0; i < qm->qp_num; i++) { 3194 qp = &qm->qp_array[i]; 3195 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3196 qp->is_resetting == true) { 3197 ret = qm_start_qp_nolock(qp, 0); 3198 if (ret < 0) { 3199 dev_err(dev, "Failed to start qp%d!\n", i); 3200 3201 up_write(&qm->qps_lock); 3202 return ret; 3203 } 3204 qp->is_resetting = false; 3205 } 3206 } 3207 up_write(&qm->qps_lock); 3208 3209 return 0; 3210 } 3211 3212 /* Stop started qps in reset flow */ 3213 static int qm_stop_started_qp(struct hisi_qm *qm) 3214 { 3215 struct device *dev = &qm->pdev->dev; 3216 struct hisi_qp *qp; 3217 int i, ret; 3218 3219 for (i = 0; i < qm->qp_num; i++) { 3220 qp = &qm->qp_array[i]; 3221 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3222 qp->is_resetting = true; 3223 ret = qm_stop_qp_nolock(qp); 3224 if (ret < 0) { 3225 dev_err(dev, "Failed to stop qp%d!\n", i); 3226 return ret; 3227 } 3228 } 3229 } 3230 3231 return 0; 3232 } 3233 3234 /** 3235 * qm_clear_queues() - Clear all queues memory in a qm. 3236 * @qm: The qm in which the queues will be cleared. 3237 * 3238 * This function clears all queues memory in a qm. Reset of accelerator can 3239 * use this to clear queues. 3240 */ 3241 static void qm_clear_queues(struct hisi_qm *qm) 3242 { 3243 struct hisi_qp *qp; 3244 int i; 3245 3246 for (i = 0; i < qm->qp_num; i++) { 3247 qp = &qm->qp_array[i]; 3248 if (qp->is_in_kernel && qp->is_resetting) 3249 memset(qp->qdma.va, 0, qp->qdma.size); 3250 } 3251 3252 memset(qm->qdma.va, 0, qm->qdma.size); 3253 } 3254 3255 /** 3256 * hisi_qm_stop() - Stop a qm. 3257 * @qm: The qm which will be stopped. 3258 * @r: The reason to stop qm. 3259 * 3260 * This function stops qm and its qps, then qm can not accept request. 3261 * Related resources are not released at this state, we can use hisi_qm_start 3262 * to let qm start again. 3263 */ 3264 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3265 { 3266 struct device *dev = &qm->pdev->dev; 3267 int ret = 0; 3268 3269 down_write(&qm->qps_lock); 3270 3271 qm->status.stop_reason = r; 3272 if (!qm_avail_state(qm, QM_STOP)) { 3273 ret = -EPERM; 3274 goto err_unlock; 3275 } 3276 3277 if (qm->status.stop_reason == QM_SOFT_RESET || 3278 qm->status.stop_reason == QM_DOWN) { 3279 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3280 ret = qm_stop_started_qp(qm); 3281 if (ret < 0) { 3282 dev_err(dev, "Failed to stop started qp!\n"); 3283 goto err_unlock; 3284 } 3285 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3286 } 3287 3288 qm_disable_eq_aeq_interrupts(qm); 3289 if (qm->fun_type == QM_HW_PF) { 3290 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3291 if (ret < 0) { 3292 dev_err(dev, "Failed to set vft!\n"); 3293 ret = -EBUSY; 3294 goto err_unlock; 3295 } 3296 } 3297 3298 qm_clear_queues(qm); 3299 atomic_set(&qm->status.flags, QM_STOP); 3300 3301 err_unlock: 3302 up_write(&qm->qps_lock); 3303 return ret; 3304 } 3305 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3306 3307 static void qm_hw_error_init(struct hisi_qm *qm) 3308 { 3309 if (!qm->ops->hw_error_init) { 3310 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3311 return; 3312 } 3313 3314 qm->ops->hw_error_init(qm); 3315 } 3316 3317 static void qm_hw_error_uninit(struct hisi_qm *qm) 3318 { 3319 if (!qm->ops->hw_error_uninit) { 3320 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3321 return; 3322 } 3323 3324 qm->ops->hw_error_uninit(qm); 3325 } 3326 3327 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3328 { 3329 if (!qm->ops->hw_error_handle) { 3330 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3331 return ACC_ERR_NONE; 3332 } 3333 3334 return qm->ops->hw_error_handle(qm); 3335 } 3336 3337 /** 3338 * hisi_qm_dev_err_init() - Initialize device error configuration. 3339 * @qm: The qm for which we want to do error initialization. 3340 * 3341 * Initialize QM and device error related configuration. 3342 */ 3343 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3344 { 3345 if (qm->fun_type == QM_HW_VF) 3346 return; 3347 3348 qm_hw_error_init(qm); 3349 3350 if (!qm->err_ini->hw_err_enable) { 3351 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3352 return; 3353 } 3354 qm->err_ini->hw_err_enable(qm); 3355 } 3356 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3357 3358 /** 3359 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3360 * @qm: The qm for which we want to do error uninitialization. 3361 * 3362 * Uninitialize QM and device error related configuration. 3363 */ 3364 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3365 { 3366 if (qm->fun_type == QM_HW_VF) 3367 return; 3368 3369 qm_hw_error_uninit(qm); 3370 3371 if (!qm->err_ini->hw_err_disable) { 3372 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3373 return; 3374 } 3375 qm->err_ini->hw_err_disable(qm); 3376 } 3377 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3378 3379 /** 3380 * hisi_qm_free_qps() - free multiple queue pairs. 3381 * @qps: The queue pairs need to be freed. 3382 * @qp_num: The num of queue pairs. 3383 */ 3384 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3385 { 3386 int i; 3387 3388 if (!qps || qp_num <= 0) 3389 return; 3390 3391 for (i = qp_num - 1; i >= 0; i--) 3392 hisi_qm_release_qp(qps[i]); 3393 } 3394 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3395 3396 static void free_list(struct list_head *head) 3397 { 3398 struct hisi_qm_resource *res, *tmp; 3399 3400 list_for_each_entry_safe(res, tmp, head, list) { 3401 list_del(&res->list); 3402 kfree(res); 3403 } 3404 } 3405 3406 static int hisi_qm_sort_devices(int node, struct list_head *head, 3407 struct hisi_qm_list *qm_list) 3408 { 3409 struct hisi_qm_resource *res, *tmp; 3410 struct hisi_qm *qm; 3411 struct list_head *n; 3412 struct device *dev; 3413 int dev_node; 3414 3415 list_for_each_entry(qm, &qm_list->list, list) { 3416 dev = &qm->pdev->dev; 3417 3418 dev_node = dev_to_node(dev); 3419 if (dev_node < 0) 3420 dev_node = 0; 3421 3422 res = kzalloc(sizeof(*res), GFP_KERNEL); 3423 if (!res) 3424 return -ENOMEM; 3425 3426 res->qm = qm; 3427 res->distance = node_distance(dev_node, node); 3428 n = head; 3429 list_for_each_entry(tmp, head, list) { 3430 if (res->distance < tmp->distance) { 3431 n = &tmp->list; 3432 break; 3433 } 3434 } 3435 list_add_tail(&res->list, n); 3436 } 3437 3438 return 0; 3439 } 3440 3441 /** 3442 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3443 * @qm_list: The list of all available devices. 3444 * @qp_num: The number of queue pairs need created. 3445 * @alg_type: The algorithm type. 3446 * @node: The numa node. 3447 * @qps: The queue pairs need created. 3448 * 3449 * This function will sort all available device according to numa distance. 3450 * Then try to create all queue pairs from one device, if all devices do 3451 * not meet the requirements will return error. 3452 */ 3453 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3454 u8 alg_type, int node, struct hisi_qp **qps) 3455 { 3456 struct hisi_qm_resource *tmp; 3457 int ret = -ENODEV; 3458 LIST_HEAD(head); 3459 int i; 3460 3461 if (!qps || !qm_list || qp_num <= 0) 3462 return -EINVAL; 3463 3464 mutex_lock(&qm_list->lock); 3465 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3466 mutex_unlock(&qm_list->lock); 3467 goto err; 3468 } 3469 3470 list_for_each_entry(tmp, &head, list) { 3471 for (i = 0; i < qp_num; i++) { 3472 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3473 if (IS_ERR(qps[i])) { 3474 hisi_qm_free_qps(qps, i); 3475 break; 3476 } 3477 } 3478 3479 if (i == qp_num) { 3480 ret = 0; 3481 break; 3482 } 3483 } 3484 3485 mutex_unlock(&qm_list->lock); 3486 if (ret) 3487 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3488 node, alg_type, qp_num); 3489 3490 err: 3491 free_list(&head); 3492 return ret; 3493 } 3494 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3495 3496 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3497 { 3498 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3499 u32 max_qp_num = qm->max_qp_num; 3500 u32 q_base = qm->qp_num; 3501 int ret; 3502 3503 if (!num_vfs) 3504 return -EINVAL; 3505 3506 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3507 3508 /* If vfs_q_num is less than num_vfs, return error. */ 3509 if (vfs_q_num < num_vfs) 3510 return -EINVAL; 3511 3512 q_num = vfs_q_num / num_vfs; 3513 remain_q_num = vfs_q_num % num_vfs; 3514 3515 for (i = num_vfs; i > 0; i--) { 3516 /* 3517 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3518 * remaining queues equally. 3519 */ 3520 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3521 act_q_num = q_num + remain_q_num; 3522 remain_q_num = 0; 3523 } else if (remain_q_num > 0) { 3524 act_q_num = q_num + 1; 3525 remain_q_num--; 3526 } else { 3527 act_q_num = q_num; 3528 } 3529 3530 act_q_num = min(act_q_num, max_qp_num); 3531 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3532 if (ret) { 3533 for (j = num_vfs; j > i; j--) 3534 hisi_qm_set_vft(qm, j, 0, 0); 3535 return ret; 3536 } 3537 q_base += act_q_num; 3538 } 3539 3540 return 0; 3541 } 3542 3543 static int qm_clear_vft_config(struct hisi_qm *qm) 3544 { 3545 int ret; 3546 u32 i; 3547 3548 for (i = 1; i <= qm->vfs_num; i++) { 3549 ret = hisi_qm_set_vft(qm, i, 0, 0); 3550 if (ret) 3551 return ret; 3552 } 3553 qm->vfs_num = 0; 3554 3555 return 0; 3556 } 3557 3558 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3559 { 3560 struct device *dev = &qm->pdev->dev; 3561 u32 ir = qos * QM_QOS_RATE; 3562 int ret, total_vfs, i; 3563 3564 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3565 if (fun_index > total_vfs) 3566 return -EINVAL; 3567 3568 qm->factor[fun_index].func_qos = qos; 3569 3570 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3571 if (ret) { 3572 dev_err(dev, "failed to calculate shaper parameter!\n"); 3573 return -EINVAL; 3574 } 3575 3576 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3577 /* The base number of queue reuse for different alg type */ 3578 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3579 if (ret) { 3580 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3581 return -EINVAL; 3582 } 3583 } 3584 3585 return 0; 3586 } 3587 3588 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3589 { 3590 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3591 u64 shaper_vft, ir_calc, ir; 3592 unsigned int val; 3593 u32 error_rate; 3594 int ret; 3595 3596 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3597 val & BIT(0), POLL_PERIOD, 3598 POLL_TIMEOUT); 3599 if (ret) 3600 return 0; 3601 3602 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3603 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3604 writel(fun_index, qm->io_base + QM_VFT_CFG); 3605 3606 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3607 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3608 3609 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3610 val & BIT(0), POLL_PERIOD, 3611 POLL_TIMEOUT); 3612 if (ret) 3613 return 0; 3614 3615 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3616 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3617 3618 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3619 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3620 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3621 3622 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3623 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3624 3625 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3626 3627 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3628 3629 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3630 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3631 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3632 return 0; 3633 } 3634 3635 return ir; 3636 } 3637 3638 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3639 { 3640 struct device *dev = &qm->pdev->dev; 3641 u64 mb_cmd; 3642 u32 qos; 3643 int ret; 3644 3645 qos = qm_get_shaper_vft_qos(qm, fun_num); 3646 if (!qos) { 3647 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3648 return; 3649 } 3650 3651 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3652 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3653 if (ret) 3654 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3655 } 3656 3657 static int qm_vf_read_qos(struct hisi_qm *qm) 3658 { 3659 int cnt = 0; 3660 int ret = -EINVAL; 3661 3662 /* reset mailbox qos val */ 3663 qm->mb_qos = 0; 3664 3665 /* vf ping pf to get function qos */ 3666 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3667 if (ret) { 3668 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3669 return ret; 3670 } 3671 3672 while (true) { 3673 msleep(QM_WAIT_DST_ACK); 3674 if (qm->mb_qos) 3675 break; 3676 3677 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3678 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3679 return -ETIMEDOUT; 3680 } 3681 } 3682 3683 return ret; 3684 } 3685 3686 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3687 size_t count, loff_t *pos) 3688 { 3689 struct hisi_qm *qm = filp->private_data; 3690 char tbuf[QM_DBG_READ_LEN]; 3691 u32 qos_val, ir; 3692 int ret; 3693 3694 ret = hisi_qm_get_dfx_access(qm); 3695 if (ret) 3696 return ret; 3697 3698 /* Mailbox and reset cannot be operated at the same time */ 3699 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3700 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3701 ret = -EAGAIN; 3702 goto err_put_dfx_access; 3703 } 3704 3705 if (qm->fun_type == QM_HW_PF) { 3706 ir = qm_get_shaper_vft_qos(qm, 0); 3707 } else { 3708 ret = qm_vf_read_qos(qm); 3709 if (ret) 3710 goto err_get_status; 3711 ir = qm->mb_qos; 3712 } 3713 3714 qos_val = ir / QM_QOS_RATE; 3715 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3716 3717 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3718 3719 err_get_status: 3720 clear_bit(QM_RESETTING, &qm->misc_ctl); 3721 err_put_dfx_access: 3722 hisi_qm_put_dfx_access(qm); 3723 return ret; 3724 } 3725 3726 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3727 unsigned long *val, 3728 unsigned int *fun_index) 3729 { 3730 const struct bus_type *bus_type = qm->pdev->dev.bus; 3731 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3732 char val_buf[QM_DBG_READ_LEN] = {0}; 3733 struct pci_dev *pdev; 3734 struct device *dev; 3735 int ret; 3736 3737 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3738 if (ret != QM_QOS_PARAM_NUM) 3739 return -EINVAL; 3740 3741 ret = kstrtoul(val_buf, 10, val); 3742 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3743 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3744 return -EINVAL; 3745 } 3746 3747 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3748 if (!dev) { 3749 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3750 return -ENODEV; 3751 } 3752 3753 pdev = container_of(dev, struct pci_dev, dev); 3754 3755 *fun_index = pdev->devfn; 3756 3757 return 0; 3758 } 3759 3760 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3761 size_t count, loff_t *pos) 3762 { 3763 struct hisi_qm *qm = filp->private_data; 3764 char tbuf[QM_DBG_READ_LEN]; 3765 unsigned int fun_index; 3766 unsigned long val; 3767 int len, ret; 3768 3769 if (*pos != 0) 3770 return 0; 3771 3772 if (count >= QM_DBG_READ_LEN) 3773 return -ENOSPC; 3774 3775 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3776 if (len < 0) 3777 return len; 3778 3779 tbuf[len] = '\0'; 3780 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3781 if (ret) 3782 return ret; 3783 3784 /* Mailbox and reset cannot be operated at the same time */ 3785 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3786 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3787 return -EAGAIN; 3788 } 3789 3790 ret = qm_pm_get_sync(qm); 3791 if (ret) { 3792 ret = -EINVAL; 3793 goto err_get_status; 3794 } 3795 3796 ret = qm_func_shaper_enable(qm, fun_index, val); 3797 if (ret) { 3798 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3799 ret = -EINVAL; 3800 goto err_put_sync; 3801 } 3802 3803 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3804 fun_index, val); 3805 ret = count; 3806 3807 err_put_sync: 3808 qm_pm_put_sync(qm); 3809 err_get_status: 3810 clear_bit(QM_RESETTING, &qm->misc_ctl); 3811 return ret; 3812 } 3813 3814 static const struct file_operations qm_algqos_fops = { 3815 .owner = THIS_MODULE, 3816 .open = simple_open, 3817 .read = qm_algqos_read, 3818 .write = qm_algqos_write, 3819 }; 3820 3821 /** 3822 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3823 * @qm: The qm for which we want to add debugfs files. 3824 * 3825 * Create function qos debugfs files, VF ping PF to get function qos. 3826 */ 3827 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3828 { 3829 if (qm->fun_type == QM_HW_PF) 3830 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3831 qm, &qm_algqos_fops); 3832 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3833 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3834 qm, &qm_algqos_fops); 3835 } 3836 3837 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3838 { 3839 int i; 3840 3841 for (i = 1; i <= total_func; i++) 3842 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3843 } 3844 3845 /** 3846 * hisi_qm_sriov_enable() - enable virtual functions 3847 * @pdev: the PCIe device 3848 * @max_vfs: the number of virtual functions to enable 3849 * 3850 * Returns the number of enabled VFs. If there are VFs enabled already or 3851 * max_vfs is more than the total number of device can be enabled, returns 3852 * failure. 3853 */ 3854 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3855 { 3856 struct hisi_qm *qm = pci_get_drvdata(pdev); 3857 int pre_existing_vfs, num_vfs, total_vfs, ret; 3858 3859 ret = qm_pm_get_sync(qm); 3860 if (ret) 3861 return ret; 3862 3863 total_vfs = pci_sriov_get_totalvfs(pdev); 3864 pre_existing_vfs = pci_num_vf(pdev); 3865 if (pre_existing_vfs) { 3866 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3867 pre_existing_vfs); 3868 goto err_put_sync; 3869 } 3870 3871 if (max_vfs > total_vfs) { 3872 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3873 ret = -ERANGE; 3874 goto err_put_sync; 3875 } 3876 3877 num_vfs = max_vfs; 3878 3879 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3880 hisi_qm_init_vf_qos(qm, num_vfs); 3881 3882 ret = qm_vf_q_assign(qm, num_vfs); 3883 if (ret) { 3884 pci_err(pdev, "Can't assign queues for VF!\n"); 3885 goto err_put_sync; 3886 } 3887 3888 qm->vfs_num = num_vfs; 3889 3890 ret = pci_enable_sriov(pdev, num_vfs); 3891 if (ret) { 3892 pci_err(pdev, "Can't enable VF!\n"); 3893 qm_clear_vft_config(qm); 3894 goto err_put_sync; 3895 } 3896 3897 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3898 3899 return num_vfs; 3900 3901 err_put_sync: 3902 qm_pm_put_sync(qm); 3903 return ret; 3904 } 3905 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3906 3907 /** 3908 * hisi_qm_sriov_disable - disable virtual functions 3909 * @pdev: the PCI device. 3910 * @is_frozen: true when all the VFs are frozen. 3911 * 3912 * Return failure if there are VFs assigned already or VF is in used. 3913 */ 3914 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3915 { 3916 struct hisi_qm *qm = pci_get_drvdata(pdev); 3917 int ret; 3918 3919 if (pci_vfs_assigned(pdev)) { 3920 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3921 return -EPERM; 3922 } 3923 3924 /* While VF is in used, SRIOV cannot be disabled. */ 3925 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3926 pci_err(pdev, "Task is using its VF!\n"); 3927 return -EBUSY; 3928 } 3929 3930 pci_disable_sriov(pdev); 3931 3932 ret = qm_clear_vft_config(qm); 3933 if (ret) 3934 return ret; 3935 3936 qm_pm_put_sync(qm); 3937 3938 return 0; 3939 } 3940 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3941 3942 /** 3943 * hisi_qm_sriov_configure - configure the number of VFs 3944 * @pdev: The PCI device 3945 * @num_vfs: The number of VFs need enabled 3946 * 3947 * Enable SR-IOV according to num_vfs, 0 means disable. 3948 */ 3949 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3950 { 3951 if (num_vfs == 0) 3952 return hisi_qm_sriov_disable(pdev, false); 3953 else 3954 return hisi_qm_sriov_enable(pdev, num_vfs); 3955 } 3956 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3957 3958 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3959 { 3960 u32 err_sts; 3961 3962 if (!qm->err_ini->get_dev_hw_err_status) { 3963 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3964 return ACC_ERR_NONE; 3965 } 3966 3967 /* get device hardware error status */ 3968 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3969 if (err_sts) { 3970 if (err_sts & qm->err_info.ecc_2bits_mask) 3971 qm->err_status.is_dev_ecc_mbit = true; 3972 3973 if (qm->err_ini->log_dev_hw_err) 3974 qm->err_ini->log_dev_hw_err(qm, err_sts); 3975 3976 if (err_sts & qm->err_info.dev_reset_mask) 3977 return ACC_ERR_NEED_RESET; 3978 3979 if (qm->err_ini->clear_dev_hw_err_status) 3980 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3981 } 3982 3983 return ACC_ERR_RECOVERED; 3984 } 3985 3986 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3987 { 3988 enum acc_err_result qm_ret, dev_ret; 3989 3990 /* log qm error */ 3991 qm_ret = qm_hw_error_handle(qm); 3992 3993 /* log device error */ 3994 dev_ret = qm_dev_err_handle(qm); 3995 3996 return (qm_ret == ACC_ERR_NEED_RESET || 3997 dev_ret == ACC_ERR_NEED_RESET) ? 3998 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3999 } 4000 4001 /** 4002 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4003 * @pdev: The PCI device which need report error. 4004 * @state: The connectivity between CPU and device. 4005 * 4006 * We register this function into PCIe AER handlers, It will report device or 4007 * qm hardware error status when error occur. 4008 */ 4009 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4010 pci_channel_state_t state) 4011 { 4012 struct hisi_qm *qm = pci_get_drvdata(pdev); 4013 enum acc_err_result ret; 4014 4015 if (pdev->is_virtfn) 4016 return PCI_ERS_RESULT_NONE; 4017 4018 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4019 if (state == pci_channel_io_perm_failure) 4020 return PCI_ERS_RESULT_DISCONNECT; 4021 4022 ret = qm_process_dev_error(qm); 4023 if (ret == ACC_ERR_NEED_RESET) 4024 return PCI_ERS_RESULT_NEED_RESET; 4025 4026 return PCI_ERS_RESULT_RECOVERED; 4027 } 4028 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4029 4030 static int qm_check_req_recv(struct hisi_qm *qm) 4031 { 4032 struct pci_dev *pdev = qm->pdev; 4033 int ret; 4034 u32 val; 4035 4036 if (qm->ver >= QM_HW_V3) 4037 return 0; 4038 4039 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4040 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4041 (val == ACC_VENDOR_ID_VALUE), 4042 POLL_PERIOD, POLL_TIMEOUT); 4043 if (ret) { 4044 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4045 return ret; 4046 } 4047 4048 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4049 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4050 (val == PCI_VENDOR_ID_HUAWEI), 4051 POLL_PERIOD, POLL_TIMEOUT); 4052 if (ret) 4053 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4054 4055 return ret; 4056 } 4057 4058 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4059 { 4060 struct pci_dev *pdev = qm->pdev; 4061 u16 cmd; 4062 int i; 4063 4064 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4065 if (set) 4066 cmd |= PCI_COMMAND_MEMORY; 4067 else 4068 cmd &= ~PCI_COMMAND_MEMORY; 4069 4070 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4071 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4072 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4073 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4074 return 0; 4075 4076 udelay(1); 4077 } 4078 4079 return -ETIMEDOUT; 4080 } 4081 4082 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4083 { 4084 struct pci_dev *pdev = qm->pdev; 4085 u16 sriov_ctrl; 4086 int pos; 4087 int i; 4088 4089 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4090 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4091 if (set) 4092 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4093 else 4094 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4095 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4096 4097 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4098 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4099 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4100 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4101 return 0; 4102 4103 udelay(1); 4104 } 4105 4106 return -ETIMEDOUT; 4107 } 4108 4109 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4110 { 4111 u32 nfe_enb = 0; 4112 4113 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4114 if (qm->ver >= QM_HW_V3) 4115 return; 4116 4117 if (!qm->err_status.is_dev_ecc_mbit && 4118 qm->err_status.is_qm_ecc_mbit && 4119 qm->err_ini->close_axi_master_ooo) { 4120 qm->err_ini->close_axi_master_ooo(qm); 4121 } else if (qm->err_status.is_dev_ecc_mbit && 4122 !qm->err_status.is_qm_ecc_mbit && 4123 !qm->err_ini->close_axi_master_ooo) { 4124 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4125 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4126 qm->io_base + QM_RAS_NFE_ENABLE); 4127 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4128 } 4129 } 4130 4131 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4132 enum qm_stop_reason stop_reason) 4133 { 4134 struct hisi_qm_list *qm_list = qm->qm_list; 4135 struct pci_dev *pdev = qm->pdev; 4136 struct pci_dev *virtfn; 4137 struct hisi_qm *vf_qm; 4138 int ret = 0; 4139 4140 mutex_lock(&qm_list->lock); 4141 list_for_each_entry(vf_qm, &qm_list->list, list) { 4142 virtfn = vf_qm->pdev; 4143 if (virtfn == pdev) 4144 continue; 4145 4146 if (pci_physfn(virtfn) == pdev) { 4147 /* save VFs PCIE BAR configuration */ 4148 pci_save_state(virtfn); 4149 4150 ret = hisi_qm_stop(vf_qm, stop_reason); 4151 if (ret) 4152 goto stop_fail; 4153 } 4154 } 4155 4156 stop_fail: 4157 mutex_unlock(&qm_list->lock); 4158 return ret; 4159 } 4160 4161 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4162 enum qm_stop_reason stop_reason) 4163 { 4164 struct pci_dev *pdev = qm->pdev; 4165 int ret; 4166 4167 if (!qm->vfs_num) 4168 return 0; 4169 4170 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4171 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4172 ret = qm_ping_all_vfs(qm, cmd); 4173 if (ret) 4174 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4175 } else { 4176 ret = qm_vf_reset_prepare(qm, stop_reason); 4177 if (ret) 4178 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4179 } 4180 4181 return ret; 4182 } 4183 4184 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4185 { 4186 struct pci_dev *pdev = qm->pdev; 4187 int ret; 4188 4189 ret = qm_reset_prepare_ready(qm); 4190 if (ret) { 4191 pci_err(pdev, "Controller reset not ready!\n"); 4192 return ret; 4193 } 4194 4195 qm_dev_ecc_mbit_handle(qm); 4196 4197 /* PF obtains the information of VF by querying the register. */ 4198 qm_cmd_uninit(qm); 4199 4200 /* Whether VFs stop successfully, soft reset will continue. */ 4201 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4202 if (ret) 4203 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4204 4205 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4206 if (ret) { 4207 pci_err(pdev, "Fails to stop QM!\n"); 4208 qm_reset_bit_clear(qm); 4209 return ret; 4210 } 4211 4212 if (qm->use_sva) { 4213 ret = qm_hw_err_isolate(qm); 4214 if (ret) 4215 pci_err(pdev, "failed to isolate hw err!\n"); 4216 } 4217 4218 ret = qm_wait_vf_prepare_finish(qm); 4219 if (ret) 4220 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4221 4222 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4223 4224 return 0; 4225 } 4226 4227 static int qm_master_ooo_check(struct hisi_qm *qm) 4228 { 4229 u32 val; 4230 int ret; 4231 4232 /* Check the ooo register of the device before resetting the device. */ 4233 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4234 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4235 val, (val == ACC_MASTER_TRANS_RETURN_RW), 4236 POLL_PERIOD, POLL_TIMEOUT); 4237 if (ret) 4238 pci_warn(qm->pdev, "Bus lock! Please reset system.\n"); 4239 4240 return ret; 4241 } 4242 4243 static int qm_soft_reset_prepare(struct hisi_qm *qm) 4244 { 4245 struct pci_dev *pdev = qm->pdev; 4246 int ret; 4247 4248 /* Ensure all doorbells and mailboxes received by QM */ 4249 ret = qm_check_req_recv(qm); 4250 if (ret) 4251 return ret; 4252 4253 if (qm->vfs_num) { 4254 ret = qm_set_vf_mse(qm, false); 4255 if (ret) { 4256 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4257 return ret; 4258 } 4259 } 4260 4261 ret = qm->ops->set_msi(qm, false); 4262 if (ret) { 4263 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4264 return ret; 4265 } 4266 4267 ret = qm_master_ooo_check(qm); 4268 if (ret) 4269 return ret; 4270 4271 if (qm->err_ini->close_sva_prefetch) 4272 qm->err_ini->close_sva_prefetch(qm); 4273 4274 ret = qm_set_pf_mse(qm, false); 4275 if (ret) 4276 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4277 4278 return ret; 4279 } 4280 4281 static int qm_reset_device(struct hisi_qm *qm) 4282 { 4283 struct pci_dev *pdev = qm->pdev; 4284 4285 /* The reset related sub-control registers are not in PCI BAR */ 4286 if (ACPI_HANDLE(&pdev->dev)) { 4287 unsigned long long value = 0; 4288 acpi_status s; 4289 4290 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4291 qm->err_info.acpi_rst, 4292 NULL, &value); 4293 if (ACPI_FAILURE(s)) { 4294 pci_err(pdev, "NO controller reset method!\n"); 4295 return -EIO; 4296 } 4297 4298 if (value) { 4299 pci_err(pdev, "Reset step %llu failed!\n", value); 4300 return -EIO; 4301 } 4302 4303 return 0; 4304 } 4305 4306 pci_err(pdev, "No reset method!\n"); 4307 return -EINVAL; 4308 } 4309 4310 static int qm_soft_reset(struct hisi_qm *qm) 4311 { 4312 int ret; 4313 4314 ret = qm_soft_reset_prepare(qm); 4315 if (ret) 4316 return ret; 4317 4318 return qm_reset_device(qm); 4319 } 4320 4321 static int qm_vf_reset_done(struct hisi_qm *qm) 4322 { 4323 struct hisi_qm_list *qm_list = qm->qm_list; 4324 struct pci_dev *pdev = qm->pdev; 4325 struct pci_dev *virtfn; 4326 struct hisi_qm *vf_qm; 4327 int ret = 0; 4328 4329 mutex_lock(&qm_list->lock); 4330 list_for_each_entry(vf_qm, &qm_list->list, list) { 4331 virtfn = vf_qm->pdev; 4332 if (virtfn == pdev) 4333 continue; 4334 4335 if (pci_physfn(virtfn) == pdev) { 4336 /* enable VFs PCIE BAR configuration */ 4337 pci_restore_state(virtfn); 4338 4339 ret = qm_restart(vf_qm); 4340 if (ret) 4341 goto restart_fail; 4342 } 4343 } 4344 4345 restart_fail: 4346 mutex_unlock(&qm_list->lock); 4347 return ret; 4348 } 4349 4350 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4351 { 4352 struct pci_dev *pdev = qm->pdev; 4353 int ret; 4354 4355 if (!qm->vfs_num) 4356 return 0; 4357 4358 ret = qm_vf_q_assign(qm, qm->vfs_num); 4359 if (ret) { 4360 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4361 return ret; 4362 } 4363 4364 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4365 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4366 ret = qm_ping_all_vfs(qm, cmd); 4367 if (ret) 4368 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4369 } else { 4370 ret = qm_vf_reset_done(qm); 4371 if (ret) 4372 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4373 } 4374 4375 return ret; 4376 } 4377 4378 static int qm_dev_hw_init(struct hisi_qm *qm) 4379 { 4380 return qm->err_ini->hw_init(qm); 4381 } 4382 4383 static void qm_restart_prepare(struct hisi_qm *qm) 4384 { 4385 u32 value; 4386 4387 if (qm->err_ini->open_sva_prefetch) 4388 qm->err_ini->open_sva_prefetch(qm); 4389 4390 if (qm->ver >= QM_HW_V3) 4391 return; 4392 4393 if (!qm->err_status.is_qm_ecc_mbit && 4394 !qm->err_status.is_dev_ecc_mbit) 4395 return; 4396 4397 /* temporarily close the OOO port used for PEH to write out MSI */ 4398 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4399 writel(value & ~qm->err_info.msi_wr_port, 4400 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4401 4402 /* clear dev ecc 2bit error source if having */ 4403 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4404 if (value && qm->err_ini->clear_dev_hw_err_status) 4405 qm->err_ini->clear_dev_hw_err_status(qm, value); 4406 4407 /* clear QM ecc mbit error source */ 4408 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4409 4410 /* clear AM Reorder Buffer ecc mbit source */ 4411 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4412 } 4413 4414 static void qm_restart_done(struct hisi_qm *qm) 4415 { 4416 u32 value; 4417 4418 if (qm->ver >= QM_HW_V3) 4419 goto clear_flags; 4420 4421 if (!qm->err_status.is_qm_ecc_mbit && 4422 !qm->err_status.is_dev_ecc_mbit) 4423 return; 4424 4425 /* open the OOO port for PEH to write out MSI */ 4426 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4427 value |= qm->err_info.msi_wr_port; 4428 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4429 4430 clear_flags: 4431 qm->err_status.is_qm_ecc_mbit = false; 4432 qm->err_status.is_dev_ecc_mbit = false; 4433 } 4434 4435 static int qm_controller_reset_done(struct hisi_qm *qm) 4436 { 4437 struct pci_dev *pdev = qm->pdev; 4438 int ret; 4439 4440 ret = qm->ops->set_msi(qm, true); 4441 if (ret) { 4442 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4443 return ret; 4444 } 4445 4446 ret = qm_set_pf_mse(qm, true); 4447 if (ret) { 4448 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4449 return ret; 4450 } 4451 4452 if (qm->vfs_num) { 4453 ret = qm_set_vf_mse(qm, true); 4454 if (ret) { 4455 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4456 return ret; 4457 } 4458 } 4459 4460 ret = qm_dev_hw_init(qm); 4461 if (ret) { 4462 pci_err(pdev, "Failed to init device\n"); 4463 return ret; 4464 } 4465 4466 qm_restart_prepare(qm); 4467 hisi_qm_dev_err_init(qm); 4468 if (qm->err_ini->open_axi_master_ooo) 4469 qm->err_ini->open_axi_master_ooo(qm); 4470 4471 ret = qm_dev_mem_reset(qm); 4472 if (ret) { 4473 pci_err(pdev, "failed to reset device memory\n"); 4474 return ret; 4475 } 4476 4477 ret = qm_restart(qm); 4478 if (ret) { 4479 pci_err(pdev, "Failed to start QM!\n"); 4480 return ret; 4481 } 4482 4483 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4484 if (ret) 4485 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4486 4487 ret = qm_wait_vf_prepare_finish(qm); 4488 if (ret) 4489 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4490 4491 qm_cmd_init(qm); 4492 qm_restart_done(qm); 4493 4494 qm_reset_bit_clear(qm); 4495 4496 return 0; 4497 } 4498 4499 static int qm_controller_reset(struct hisi_qm *qm) 4500 { 4501 struct pci_dev *pdev = qm->pdev; 4502 int ret; 4503 4504 pci_info(pdev, "Controller resetting...\n"); 4505 4506 ret = qm_controller_reset_prepare(qm); 4507 if (ret) { 4508 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4509 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4510 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4511 return ret; 4512 } 4513 4514 hisi_qm_show_last_dfx_regs(qm); 4515 if (qm->err_ini->show_last_dfx_regs) 4516 qm->err_ini->show_last_dfx_regs(qm); 4517 4518 ret = qm_soft_reset(qm); 4519 if (ret) 4520 goto err_reset; 4521 4522 ret = qm_controller_reset_done(qm); 4523 if (ret) 4524 goto err_reset; 4525 4526 pci_info(pdev, "Controller reset complete\n"); 4527 4528 return 0; 4529 4530 err_reset: 4531 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4532 qm_reset_bit_clear(qm); 4533 4534 /* if resetting fails, isolate the device */ 4535 if (qm->use_sva) 4536 qm->isolate_data.is_isolate = true; 4537 return ret; 4538 } 4539 4540 /** 4541 * hisi_qm_dev_slot_reset() - slot reset 4542 * @pdev: the PCIe device 4543 * 4544 * This function offers QM relate PCIe device reset interface. Drivers which 4545 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4546 */ 4547 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4548 { 4549 struct hisi_qm *qm = pci_get_drvdata(pdev); 4550 int ret; 4551 4552 if (pdev->is_virtfn) 4553 return PCI_ERS_RESULT_RECOVERED; 4554 4555 /* reset pcie device controller */ 4556 ret = qm_controller_reset(qm); 4557 if (ret) { 4558 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4559 return PCI_ERS_RESULT_DISCONNECT; 4560 } 4561 4562 return PCI_ERS_RESULT_RECOVERED; 4563 } 4564 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4565 4566 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4567 { 4568 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4569 struct hisi_qm *qm = pci_get_drvdata(pdev); 4570 u32 delay = 0; 4571 int ret; 4572 4573 hisi_qm_dev_err_uninit(pf_qm); 4574 4575 /* 4576 * Check whether there is an ECC mbit error, If it occurs, need to 4577 * wait for soft reset to fix it. 4578 */ 4579 while (qm_check_dev_error(pf_qm)) { 4580 msleep(++delay); 4581 if (delay > QM_RESET_WAIT_TIMEOUT) 4582 return; 4583 } 4584 4585 ret = qm_reset_prepare_ready(qm); 4586 if (ret) { 4587 pci_err(pdev, "FLR not ready!\n"); 4588 return; 4589 } 4590 4591 /* PF obtains the information of VF by querying the register. */ 4592 if (qm->fun_type == QM_HW_PF) 4593 qm_cmd_uninit(qm); 4594 4595 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4596 if (ret) 4597 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4598 4599 ret = hisi_qm_stop(qm, QM_DOWN); 4600 if (ret) { 4601 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4602 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4603 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4604 return; 4605 } 4606 4607 ret = qm_wait_vf_prepare_finish(qm); 4608 if (ret) 4609 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4610 4611 pci_info(pdev, "FLR resetting...\n"); 4612 } 4613 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4614 4615 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4616 { 4617 struct pci_dev *pf_pdev = pci_physfn(pdev); 4618 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4619 u32 id; 4620 4621 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4622 if (id == QM_PCI_COMMAND_INVALID) { 4623 pci_err(pdev, "Device can not be used!\n"); 4624 return false; 4625 } 4626 4627 return true; 4628 } 4629 4630 void hisi_qm_reset_done(struct pci_dev *pdev) 4631 { 4632 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4633 struct hisi_qm *qm = pci_get_drvdata(pdev); 4634 int ret; 4635 4636 if (qm->fun_type == QM_HW_PF) { 4637 ret = qm_dev_hw_init(qm); 4638 if (ret) { 4639 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4640 goto flr_done; 4641 } 4642 } 4643 4644 hisi_qm_dev_err_init(pf_qm); 4645 4646 ret = qm_restart(qm); 4647 if (ret) { 4648 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4649 goto flr_done; 4650 } 4651 4652 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4653 if (ret) 4654 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4655 4656 ret = qm_wait_vf_prepare_finish(qm); 4657 if (ret) 4658 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4659 4660 flr_done: 4661 if (qm->fun_type == QM_HW_PF) 4662 qm_cmd_init(qm); 4663 4664 if (qm_flr_reset_complete(pdev)) 4665 pci_info(pdev, "FLR reset complete\n"); 4666 4667 qm_reset_bit_clear(qm); 4668 } 4669 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4670 4671 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4672 { 4673 struct hisi_qm *qm = data; 4674 enum acc_err_result ret; 4675 4676 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4677 ret = qm_process_dev_error(qm); 4678 if (ret == ACC_ERR_NEED_RESET && 4679 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4680 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4681 schedule_work(&qm->rst_work); 4682 4683 return IRQ_HANDLED; 4684 } 4685 4686 /** 4687 * hisi_qm_dev_shutdown() - Shutdown device. 4688 * @pdev: The device will be shutdown. 4689 * 4690 * This function will stop qm when OS shutdown or rebooting. 4691 */ 4692 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4693 { 4694 struct hisi_qm *qm = pci_get_drvdata(pdev); 4695 int ret; 4696 4697 ret = hisi_qm_stop(qm, QM_DOWN); 4698 if (ret) 4699 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4700 4701 hisi_qm_cache_wb(qm); 4702 } 4703 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4704 4705 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4706 { 4707 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4708 int ret; 4709 4710 ret = qm_pm_get_sync(qm); 4711 if (ret) { 4712 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4713 return; 4714 } 4715 4716 /* reset pcie device controller */ 4717 ret = qm_controller_reset(qm); 4718 if (ret) 4719 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4720 4721 qm_pm_put_sync(qm); 4722 } 4723 4724 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4725 enum qm_stop_reason stop_reason) 4726 { 4727 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4728 struct pci_dev *pdev = qm->pdev; 4729 int ret; 4730 4731 ret = qm_reset_prepare_ready(qm); 4732 if (ret) { 4733 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4734 atomic_set(&qm->status.flags, QM_STOP); 4735 cmd = QM_VF_PREPARE_FAIL; 4736 goto err_prepare; 4737 } 4738 4739 ret = hisi_qm_stop(qm, stop_reason); 4740 if (ret) { 4741 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4742 atomic_set(&qm->status.flags, QM_STOP); 4743 cmd = QM_VF_PREPARE_FAIL; 4744 goto err_prepare; 4745 } else { 4746 goto out; 4747 } 4748 4749 err_prepare: 4750 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4751 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4752 out: 4753 pci_save_state(pdev); 4754 ret = qm_ping_pf(qm, cmd); 4755 if (ret) 4756 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4757 } 4758 4759 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4760 { 4761 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4762 struct pci_dev *pdev = qm->pdev; 4763 int ret; 4764 4765 pci_restore_state(pdev); 4766 ret = hisi_qm_start(qm); 4767 if (ret) { 4768 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4769 cmd = QM_VF_START_FAIL; 4770 } 4771 4772 qm_cmd_init(qm); 4773 ret = qm_ping_pf(qm, cmd); 4774 if (ret) 4775 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4776 4777 qm_reset_bit_clear(qm); 4778 } 4779 4780 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4781 { 4782 struct device *dev = &qm->pdev->dev; 4783 u32 val, cmd; 4784 u64 msg; 4785 int ret; 4786 4787 /* Wait for reset to finish */ 4788 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4789 val == BIT(0), QM_VF_RESET_WAIT_US, 4790 QM_VF_RESET_WAIT_TIMEOUT_US); 4791 /* hardware completion status should be available by this time */ 4792 if (ret) { 4793 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4794 return -ETIMEDOUT; 4795 } 4796 4797 /* 4798 * Whether message is got successfully, 4799 * VF needs to ack PF by clearing the interrupt. 4800 */ 4801 ret = qm_get_mb_cmd(qm, &msg, 0); 4802 qm_clear_cmd_interrupt(qm, 0); 4803 if (ret) { 4804 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4805 return ret; 4806 } 4807 4808 cmd = msg & QM_MB_CMD_DATA_MASK; 4809 if (cmd != QM_PF_RESET_DONE) { 4810 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4811 ret = -EINVAL; 4812 } 4813 4814 return ret; 4815 } 4816 4817 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4818 enum qm_stop_reason stop_reason) 4819 { 4820 struct device *dev = &qm->pdev->dev; 4821 int ret; 4822 4823 dev_info(dev, "device reset start...\n"); 4824 4825 /* The message is obtained by querying the register during resetting */ 4826 qm_cmd_uninit(qm); 4827 qm_pf_reset_vf_prepare(qm, stop_reason); 4828 4829 ret = qm_wait_pf_reset_finish(qm); 4830 if (ret) 4831 goto err_get_status; 4832 4833 qm_pf_reset_vf_done(qm); 4834 4835 dev_info(dev, "device reset done.\n"); 4836 4837 return; 4838 4839 err_get_status: 4840 qm_cmd_init(qm); 4841 qm_reset_bit_clear(qm); 4842 } 4843 4844 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4845 { 4846 struct device *dev = &qm->pdev->dev; 4847 u64 msg; 4848 u32 cmd; 4849 int ret; 4850 4851 /* 4852 * Get the msg from source by sending mailbox. Whether message is got 4853 * successfully, destination needs to ack source by clearing the interrupt. 4854 */ 4855 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4856 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4857 if (ret) { 4858 dev_err(dev, "failed to get msg from source!\n"); 4859 return; 4860 } 4861 4862 cmd = msg & QM_MB_CMD_DATA_MASK; 4863 switch (cmd) { 4864 case QM_PF_FLR_PREPARE: 4865 qm_pf_reset_vf_process(qm, QM_DOWN); 4866 break; 4867 case QM_PF_SRST_PREPARE: 4868 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4869 break; 4870 case QM_VF_GET_QOS: 4871 qm_vf_get_qos(qm, fun_num); 4872 break; 4873 case QM_PF_SET_QOS: 4874 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4875 break; 4876 default: 4877 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4878 break; 4879 } 4880 } 4881 4882 static void qm_cmd_process(struct work_struct *cmd_process) 4883 { 4884 struct hisi_qm *qm = container_of(cmd_process, 4885 struct hisi_qm, cmd_process); 4886 u32 vfs_num = qm->vfs_num; 4887 u64 val; 4888 u32 i; 4889 4890 if (qm->fun_type == QM_HW_PF) { 4891 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4892 if (!val) 4893 return; 4894 4895 for (i = 1; i <= vfs_num; i++) { 4896 if (val & BIT(i)) 4897 qm_handle_cmd_msg(qm, i); 4898 } 4899 4900 return; 4901 } 4902 4903 qm_handle_cmd_msg(qm, 0); 4904 } 4905 4906 /** 4907 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 4908 * @qm: The qm needs add. 4909 * @qm_list: The qm list. 4910 * 4911 * This function adds qm to qm list, and will register algorithm to 4912 * crypto when the qm list is empty. 4913 */ 4914 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4915 { 4916 struct device *dev = &qm->pdev->dev; 4917 int flag = 0; 4918 int ret = 0; 4919 4920 mutex_lock(&qm_list->lock); 4921 if (list_empty(&qm_list->list)) 4922 flag = 1; 4923 list_add_tail(&qm->list, &qm_list->list); 4924 mutex_unlock(&qm_list->lock); 4925 4926 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4927 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4928 return 0; 4929 } 4930 4931 if (flag) { 4932 ret = qm_list->register_to_crypto(qm); 4933 if (ret) { 4934 mutex_lock(&qm_list->lock); 4935 list_del(&qm->list); 4936 mutex_unlock(&qm_list->lock); 4937 } 4938 } 4939 4940 return ret; 4941 } 4942 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4943 4944 /** 4945 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4946 * qm list. 4947 * @qm: The qm needs delete. 4948 * @qm_list: The qm list. 4949 * 4950 * This function deletes qm from qm list, and will unregister algorithm 4951 * from crypto when the qm list is empty. 4952 */ 4953 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4954 { 4955 mutex_lock(&qm_list->lock); 4956 list_del(&qm->list); 4957 mutex_unlock(&qm_list->lock); 4958 4959 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4960 return; 4961 4962 if (list_empty(&qm_list->list)) 4963 qm_list->unregister_from_crypto(qm); 4964 } 4965 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4966 4967 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4968 { 4969 struct pci_dev *pdev = qm->pdev; 4970 u32 irq_vector, val; 4971 4972 if (qm->fun_type == QM_HW_VF) 4973 return; 4974 4975 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4976 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4977 return; 4978 4979 irq_vector = val & QM_IRQ_VECTOR_MASK; 4980 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4981 } 4982 4983 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4984 { 4985 struct pci_dev *pdev = qm->pdev; 4986 u32 irq_vector, val; 4987 int ret; 4988 4989 if (qm->fun_type == QM_HW_VF) 4990 return 0; 4991 4992 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4993 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4994 return 0; 4995 4996 irq_vector = val & QM_IRQ_VECTOR_MASK; 4997 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4998 if (ret) 4999 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 5000 5001 return ret; 5002 } 5003 5004 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 5005 { 5006 struct pci_dev *pdev = qm->pdev; 5007 u32 irq_vector, val; 5008 5009 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 5010 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5011 return; 5012 5013 irq_vector = val & QM_IRQ_VECTOR_MASK; 5014 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5015 } 5016 5017 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 5018 { 5019 struct pci_dev *pdev = qm->pdev; 5020 u32 irq_vector, val; 5021 int ret; 5022 5023 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 5024 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5025 return 0; 5026 5027 irq_vector = val & QM_IRQ_VECTOR_MASK; 5028 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 5029 if (ret) 5030 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 5031 5032 return ret; 5033 } 5034 5035 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 5036 { 5037 struct pci_dev *pdev = qm->pdev; 5038 u32 irq_vector, val; 5039 5040 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 5041 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5042 return; 5043 5044 irq_vector = val & QM_IRQ_VECTOR_MASK; 5045 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5046 } 5047 5048 static int qm_register_aeq_irq(struct hisi_qm *qm) 5049 { 5050 struct pci_dev *pdev = qm->pdev; 5051 u32 irq_vector, val; 5052 int ret; 5053 5054 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 5055 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5056 return 0; 5057 5058 irq_vector = val & QM_IRQ_VECTOR_MASK; 5059 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 5060 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 5061 if (ret) 5062 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5063 5064 return ret; 5065 } 5066 5067 static void qm_unregister_eq_irq(struct hisi_qm *qm) 5068 { 5069 struct pci_dev *pdev = qm->pdev; 5070 u32 irq_vector, val; 5071 5072 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 5073 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5074 return; 5075 5076 irq_vector = val & QM_IRQ_VECTOR_MASK; 5077 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5078 } 5079 5080 static int qm_register_eq_irq(struct hisi_qm *qm) 5081 { 5082 struct pci_dev *pdev = qm->pdev; 5083 u32 irq_vector, val; 5084 int ret; 5085 5086 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 5087 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5088 return 0; 5089 5090 irq_vector = val & QM_IRQ_VECTOR_MASK; 5091 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5092 if (ret) 5093 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5094 5095 return ret; 5096 } 5097 5098 static void qm_irqs_unregister(struct hisi_qm *qm) 5099 { 5100 qm_unregister_mb_cmd_irq(qm); 5101 qm_unregister_abnormal_irq(qm); 5102 qm_unregister_aeq_irq(qm); 5103 qm_unregister_eq_irq(qm); 5104 } 5105 5106 static int qm_irqs_register(struct hisi_qm *qm) 5107 { 5108 int ret; 5109 5110 ret = qm_register_eq_irq(qm); 5111 if (ret) 5112 return ret; 5113 5114 ret = qm_register_aeq_irq(qm); 5115 if (ret) 5116 goto free_eq_irq; 5117 5118 ret = qm_register_abnormal_irq(qm); 5119 if (ret) 5120 goto free_aeq_irq; 5121 5122 ret = qm_register_mb_cmd_irq(qm); 5123 if (ret) 5124 goto free_abnormal_irq; 5125 5126 return 0; 5127 5128 free_abnormal_irq: 5129 qm_unregister_abnormal_irq(qm); 5130 free_aeq_irq: 5131 qm_unregister_aeq_irq(qm); 5132 free_eq_irq: 5133 qm_unregister_eq_irq(qm); 5134 return ret; 5135 } 5136 5137 static int qm_get_qp_num(struct hisi_qm *qm) 5138 { 5139 struct device *dev = &qm->pdev->dev; 5140 bool is_db_isolation; 5141 5142 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5143 if (qm->fun_type == QM_HW_VF) { 5144 if (qm->ver != QM_HW_V1) 5145 /* v2 starts to support get vft by mailbox */ 5146 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5147 5148 return 0; 5149 } 5150 5151 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5152 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5153 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5154 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5155 5156 if (qm->qp_num <= qm->max_qp_num) 5157 return 0; 5158 5159 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5160 /* Check whether the set qp number is valid */ 5161 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5162 qm->qp_num, qm->max_qp_num); 5163 return -EINVAL; 5164 } 5165 5166 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5167 qm->qp_num, qm->max_qp_num); 5168 qm->qp_num = qm->max_qp_num; 5169 qm->debug.curr_qm_qp_num = qm->qp_num; 5170 5171 return 0; 5172 } 5173 5174 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm) 5175 { 5176 struct hisi_qm_cap_record *qm_cap; 5177 struct pci_dev *pdev = qm->pdev; 5178 size_t i, size; 5179 5180 size = ARRAY_SIZE(qm_pre_store_caps); 5181 qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL); 5182 if (!qm_cap) 5183 return -ENOMEM; 5184 5185 for (i = 0; i < size; i++) { 5186 qm_cap[i].type = qm_pre_store_caps[i]; 5187 qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info, 5188 qm_pre_store_caps[i], qm->cap_ver); 5189 } 5190 5191 qm->cap_tables.qm_cap_table = qm_cap; 5192 5193 return 0; 5194 } 5195 5196 static int qm_get_hw_caps(struct hisi_qm *qm) 5197 { 5198 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5199 qm_cap_info_pf : qm_cap_info_vf; 5200 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5201 ARRAY_SIZE(qm_cap_info_vf); 5202 u32 val, i; 5203 5204 /* Doorbell isolate register is a independent register. */ 5205 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5206 if (val) 5207 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5208 5209 if (qm->ver >= QM_HW_V3) { 5210 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5211 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5212 } 5213 5214 /* Get PF/VF common capbility */ 5215 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5216 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5217 if (val) 5218 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5219 } 5220 5221 /* Get PF/VF different capbility */ 5222 for (i = 0; i < size; i++) { 5223 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5224 if (val) 5225 set_bit(cap_info[i].type, &qm->caps); 5226 } 5227 5228 /* Fetch and save the value of irq type related capability registers */ 5229 return qm_pre_store_irq_type_caps(qm); 5230 } 5231 5232 static int qm_get_pci_res(struct hisi_qm *qm) 5233 { 5234 struct pci_dev *pdev = qm->pdev; 5235 struct device *dev = &pdev->dev; 5236 int ret; 5237 5238 ret = pci_request_mem_regions(pdev, qm->dev_name); 5239 if (ret < 0) { 5240 dev_err(dev, "Failed to request mem regions!\n"); 5241 return ret; 5242 } 5243 5244 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5245 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5246 if (!qm->io_base) { 5247 ret = -EIO; 5248 goto err_request_mem_regions; 5249 } 5250 5251 ret = qm_get_hw_caps(qm); 5252 if (ret) 5253 goto err_ioremap; 5254 5255 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5256 qm->db_interval = QM_QP_DB_INTERVAL; 5257 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5258 qm->db_io_base = ioremap(qm->db_phys_base, 5259 pci_resource_len(pdev, PCI_BAR_4)); 5260 if (!qm->db_io_base) { 5261 ret = -EIO; 5262 goto err_ioremap; 5263 } 5264 } else { 5265 qm->db_phys_base = qm->phys_base; 5266 qm->db_io_base = qm->io_base; 5267 qm->db_interval = 0; 5268 } 5269 5270 ret = qm_get_qp_num(qm); 5271 if (ret) 5272 goto err_db_ioremap; 5273 5274 return 0; 5275 5276 err_db_ioremap: 5277 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5278 iounmap(qm->db_io_base); 5279 err_ioremap: 5280 iounmap(qm->io_base); 5281 err_request_mem_regions: 5282 pci_release_mem_regions(pdev); 5283 return ret; 5284 } 5285 5286 static int qm_clear_device(struct hisi_qm *qm) 5287 { 5288 acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev); 5289 int ret; 5290 5291 if (qm->fun_type == QM_HW_VF) 5292 return 0; 5293 5294 /* Device does not support reset, return */ 5295 if (!qm->err_ini->err_info_init) 5296 return 0; 5297 qm->err_ini->err_info_init(qm); 5298 5299 if (!handle) 5300 return 0; 5301 5302 /* No reset method, return */ 5303 if (!acpi_has_method(handle, qm->err_info.acpi_rst)) 5304 return 0; 5305 5306 ret = qm_master_ooo_check(qm); 5307 if (ret) { 5308 writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5309 return ret; 5310 } 5311 5312 return qm_reset_device(qm); 5313 } 5314 5315 static int hisi_qm_pci_init(struct hisi_qm *qm) 5316 { 5317 struct pci_dev *pdev = qm->pdev; 5318 struct device *dev = &pdev->dev; 5319 unsigned int num_vec; 5320 int ret; 5321 5322 ret = pci_enable_device_mem(pdev); 5323 if (ret < 0) { 5324 dev_err(dev, "Failed to enable device mem!\n"); 5325 return ret; 5326 } 5327 5328 ret = qm_get_pci_res(qm); 5329 if (ret) 5330 goto err_disable_pcidev; 5331 5332 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5333 if (ret < 0) 5334 goto err_get_pci_res; 5335 pci_set_master(pdev); 5336 5337 num_vec = qm_get_irq_num(qm); 5338 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5339 if (ret < 0) { 5340 dev_err(dev, "Failed to enable MSI vectors!\n"); 5341 goto err_get_pci_res; 5342 } 5343 5344 ret = qm_clear_device(qm); 5345 if (ret) 5346 goto err_free_vectors; 5347 5348 return 0; 5349 5350 err_free_vectors: 5351 pci_free_irq_vectors(pdev); 5352 err_get_pci_res: 5353 qm_put_pci_res(qm); 5354 err_disable_pcidev: 5355 pci_disable_device(pdev); 5356 return ret; 5357 } 5358 5359 static int hisi_qm_init_work(struct hisi_qm *qm) 5360 { 5361 int i; 5362 5363 for (i = 0; i < qm->qp_num; i++) 5364 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5365 5366 if (qm->fun_type == QM_HW_PF) 5367 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5368 5369 if (qm->ver > QM_HW_V2) 5370 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5371 5372 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5373 WQ_UNBOUND, num_online_cpus(), 5374 pci_name(qm->pdev)); 5375 if (!qm->wq) { 5376 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5377 return -ENOMEM; 5378 } 5379 5380 return 0; 5381 } 5382 5383 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5384 { 5385 struct device *dev = &qm->pdev->dev; 5386 u16 sq_depth, cq_depth; 5387 size_t qp_dma_size; 5388 int i, ret; 5389 5390 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5391 if (!qm->qp_array) 5392 return -ENOMEM; 5393 5394 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5395 if (!qm->poll_data) { 5396 kfree(qm->qp_array); 5397 return -ENOMEM; 5398 } 5399 5400 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5401 5402 /* one more page for device or qp statuses */ 5403 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5404 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5405 for (i = 0; i < qm->qp_num; i++) { 5406 qm->poll_data[i].qm = qm; 5407 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5408 if (ret) 5409 goto err_init_qp_mem; 5410 5411 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5412 } 5413 5414 return 0; 5415 err_init_qp_mem: 5416 hisi_qp_memory_uninit(qm, i); 5417 5418 return ret; 5419 } 5420 5421 static int hisi_qm_memory_init(struct hisi_qm *qm) 5422 { 5423 struct device *dev = &qm->pdev->dev; 5424 int ret, total_func; 5425 size_t off = 0; 5426 5427 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5428 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5429 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5430 if (!qm->factor) 5431 return -ENOMEM; 5432 5433 /* Only the PF value needs to be initialized */ 5434 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5435 } 5436 5437 #define QM_INIT_BUF(qm, type, num) do { \ 5438 (qm)->type = ((qm)->qdma.va + (off)); \ 5439 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5440 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5441 } while (0) 5442 5443 idr_init(&qm->qp_idr); 5444 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5445 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5446 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5447 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5448 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5449 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5450 GFP_ATOMIC); 5451 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5452 if (!qm->qdma.va) { 5453 ret = -ENOMEM; 5454 goto err_destroy_idr; 5455 } 5456 5457 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5458 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5459 QM_INIT_BUF(qm, sqc, qm->qp_num); 5460 QM_INIT_BUF(qm, cqc, qm->qp_num); 5461 5462 ret = hisi_qp_alloc_memory(qm); 5463 if (ret) 5464 goto err_alloc_qp_array; 5465 5466 return 0; 5467 5468 err_alloc_qp_array: 5469 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5470 err_destroy_idr: 5471 idr_destroy(&qm->qp_idr); 5472 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5473 kfree(qm->factor); 5474 5475 return ret; 5476 } 5477 5478 /** 5479 * hisi_qm_init() - Initialize configures about qm. 5480 * @qm: The qm needing init. 5481 * 5482 * This function init qm, then we can call hisi_qm_start to put qm into work. 5483 */ 5484 int hisi_qm_init(struct hisi_qm *qm) 5485 { 5486 struct pci_dev *pdev = qm->pdev; 5487 struct device *dev = &pdev->dev; 5488 int ret; 5489 5490 hisi_qm_pre_init(qm); 5491 5492 ret = hisi_qm_pci_init(qm); 5493 if (ret) 5494 return ret; 5495 5496 ret = qm_irqs_register(qm); 5497 if (ret) 5498 goto err_pci_init; 5499 5500 if (qm->fun_type == QM_HW_PF) { 5501 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5502 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5503 qm_disable_clock_gate(qm); 5504 ret = qm_dev_mem_reset(qm); 5505 if (ret) { 5506 dev_err(dev, "failed to reset device memory\n"); 5507 goto err_irq_register; 5508 } 5509 } 5510 5511 if (qm->mode == UACCE_MODE_SVA) { 5512 ret = qm_alloc_uacce(qm); 5513 if (ret < 0) 5514 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5515 } 5516 5517 ret = hisi_qm_memory_init(qm); 5518 if (ret) 5519 goto err_alloc_uacce; 5520 5521 ret = hisi_qm_init_work(qm); 5522 if (ret) 5523 goto err_free_qm_memory; 5524 5525 qm_cmd_init(qm); 5526 atomic_set(&qm->status.flags, QM_INIT); 5527 5528 return 0; 5529 5530 err_free_qm_memory: 5531 hisi_qm_memory_uninit(qm); 5532 err_alloc_uacce: 5533 qm_remove_uacce(qm); 5534 err_irq_register: 5535 qm_irqs_unregister(qm); 5536 err_pci_init: 5537 hisi_qm_pci_uninit(qm); 5538 return ret; 5539 } 5540 EXPORT_SYMBOL_GPL(hisi_qm_init); 5541 5542 /** 5543 * hisi_qm_get_dfx_access() - Try to get dfx access. 5544 * @qm: pointer to accelerator device. 5545 * 5546 * Try to get dfx access, then user can get message. 5547 * 5548 * If device is in suspended, return failure, otherwise 5549 * bump up the runtime PM usage counter. 5550 */ 5551 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5552 { 5553 struct device *dev = &qm->pdev->dev; 5554 5555 if (pm_runtime_suspended(dev)) { 5556 dev_info(dev, "can not read/write - device in suspended.\n"); 5557 return -EAGAIN; 5558 } 5559 5560 return qm_pm_get_sync(qm); 5561 } 5562 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5563 5564 /** 5565 * hisi_qm_put_dfx_access() - Put dfx access. 5566 * @qm: pointer to accelerator device. 5567 * 5568 * Put dfx access, drop runtime PM usage counter. 5569 */ 5570 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5571 { 5572 qm_pm_put_sync(qm); 5573 } 5574 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5575 5576 /** 5577 * hisi_qm_pm_init() - Initialize qm runtime PM. 5578 * @qm: pointer to accelerator device. 5579 * 5580 * Function that initialize qm runtime PM. 5581 */ 5582 void hisi_qm_pm_init(struct hisi_qm *qm) 5583 { 5584 struct device *dev = &qm->pdev->dev; 5585 5586 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5587 return; 5588 5589 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5590 pm_runtime_use_autosuspend(dev); 5591 pm_runtime_put_noidle(dev); 5592 } 5593 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5594 5595 /** 5596 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5597 * @qm: pointer to accelerator device. 5598 * 5599 * Function that uninitialize qm runtime PM. 5600 */ 5601 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5602 { 5603 struct device *dev = &qm->pdev->dev; 5604 5605 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5606 return; 5607 5608 pm_runtime_get_noresume(dev); 5609 pm_runtime_dont_use_autosuspend(dev); 5610 } 5611 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5612 5613 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5614 { 5615 struct pci_dev *pdev = qm->pdev; 5616 int ret; 5617 5618 ret = qm->ops->set_msi(qm, false); 5619 if (ret) { 5620 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5621 return ret; 5622 } 5623 5624 ret = qm_master_ooo_check(qm); 5625 if (ret) 5626 return ret; 5627 5628 ret = qm_set_pf_mse(qm, false); 5629 if (ret) 5630 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5631 5632 return ret; 5633 } 5634 5635 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5636 { 5637 struct pci_dev *pdev = qm->pdev; 5638 int ret; 5639 5640 ret = qm_set_pf_mse(qm, true); 5641 if (ret) { 5642 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5643 return ret; 5644 } 5645 5646 ret = qm->ops->set_msi(qm, true); 5647 if (ret) { 5648 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5649 return ret; 5650 } 5651 5652 ret = qm_dev_hw_init(qm); 5653 if (ret) { 5654 pci_err(pdev, "failed to init device after resuming\n"); 5655 return ret; 5656 } 5657 5658 qm_cmd_init(qm); 5659 hisi_qm_dev_err_init(qm); 5660 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5661 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5662 qm_disable_clock_gate(qm); 5663 ret = qm_dev_mem_reset(qm); 5664 if (ret) 5665 pci_err(pdev, "failed to reset device memory\n"); 5666 5667 return ret; 5668 } 5669 5670 /** 5671 * hisi_qm_suspend() - Runtime suspend of given device. 5672 * @dev: device to suspend. 5673 * 5674 * Function that suspend the device. 5675 */ 5676 int hisi_qm_suspend(struct device *dev) 5677 { 5678 struct pci_dev *pdev = to_pci_dev(dev); 5679 struct hisi_qm *qm = pci_get_drvdata(pdev); 5680 int ret; 5681 5682 pci_info(pdev, "entering suspended state\n"); 5683 5684 ret = hisi_qm_stop(qm, QM_NORMAL); 5685 if (ret) { 5686 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5687 return ret; 5688 } 5689 5690 ret = qm_prepare_for_suspend(qm); 5691 if (ret) 5692 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5693 5694 return ret; 5695 } 5696 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5697 5698 /** 5699 * hisi_qm_resume() - Runtime resume of given device. 5700 * @dev: device to resume. 5701 * 5702 * Function that resume the device. 5703 */ 5704 int hisi_qm_resume(struct device *dev) 5705 { 5706 struct pci_dev *pdev = to_pci_dev(dev); 5707 struct hisi_qm *qm = pci_get_drvdata(pdev); 5708 int ret; 5709 5710 pci_info(pdev, "resuming from suspend state\n"); 5711 5712 ret = qm_rebuild_for_resume(qm); 5713 if (ret) { 5714 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5715 return ret; 5716 } 5717 5718 ret = hisi_qm_start(qm); 5719 if (ret) { 5720 if (qm_check_dev_error(qm)) { 5721 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5722 return 0; 5723 } 5724 5725 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5726 } 5727 5728 return ret; 5729 } 5730 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5731 5732 MODULE_LICENSE("GPL v2"); 5733 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5734 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5735