xref: /openbmc/linux/drivers/crypto/hifn_795x.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4  * All rights reserved.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22 
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 #include <crypto/internal/skcipher.h>
26 
27 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29 MODULE_PARM_DESC(hifn_pll_ref,
30 		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
31 
32 static atomic_t hifn_dev_number;
33 
34 #define ACRYPTO_OP_DECRYPT	0
35 #define ACRYPTO_OP_ENCRYPT	1
36 #define ACRYPTO_OP_HMAC		2
37 #define ACRYPTO_OP_RNG		3
38 
39 #define ACRYPTO_MODE_ECB		0
40 #define ACRYPTO_MODE_CBC		1
41 #define ACRYPTO_MODE_CFB		2
42 #define ACRYPTO_MODE_OFB		3
43 
44 #define ACRYPTO_TYPE_AES_128	0
45 #define ACRYPTO_TYPE_AES_192	1
46 #define ACRYPTO_TYPE_AES_256	2
47 #define ACRYPTO_TYPE_3DES	3
48 #define ACRYPTO_TYPE_DES	4
49 
50 #define PCI_VENDOR_ID_HIFN		0x13A3
51 #define PCI_DEVICE_ID_HIFN_7955		0x0020
52 #define	PCI_DEVICE_ID_HIFN_7956		0x001d
53 
54 /* I/O region sizes */
55 
56 #define HIFN_BAR0_SIZE			0x1000
57 #define HIFN_BAR1_SIZE			0x2000
58 #define HIFN_BAR2_SIZE			0x8000
59 
60 /* DMA registres */
61 
62 #define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
63 #define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
64 #define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
65 #define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
66 #define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
67 #define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
68 #define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
69 #define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
70 #define HIFN_CHIP_ID			0x98	/* Chip ID */
71 
72 /*
73  * Processing Unit Registers (offset from BASEREG0)
74  */
75 #define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
76 #define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
77 #define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
78 #define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
79 #define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
80 #define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
81 #define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
82 #define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
83 #define	HIFN_0_SPACESIZE	0x20	/* Register space size */
84 
85 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
86 #define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
87 #define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
88 #define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
89 #define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
90 #define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
91 
92 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93 #define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
94 #define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
95 #define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
96 #define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
97 #define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
98 #define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
99 #define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
100 #define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
101 #define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
102 #define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
103 
104 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105 #define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
106 #define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
107 #define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
108 #define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
109 #define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
110 #define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
111 #define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
112 #define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
113 #define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
114 #define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
115 #define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
116 #define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
117 #define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
118 #define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
119 #define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
120 #define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
121 #define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
122 #define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
123 #define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
124 #define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
125 #define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
126 #define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
127 #define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
128 
129 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130 #define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
131 #define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
132 #define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
133 #define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
134 #define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
135 #define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
136 #define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
137 #define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
138 #define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
139 #define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
140 
141 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142 #define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
143 #define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
144 #define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
145 #define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
146 #define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
147 #define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
148 #define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
149 #define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
150 #define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
151 #define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
152 #define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
153 #define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
154 #define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
155 #define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
156 #define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
157 #define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
158 #define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
159 
160 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
161 #define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
162 #define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
163 
164 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165 #define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
166 
167 /*
168  * DMA Interface Registers (offset from BASEREG1)
169  */
170 #define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
171 #define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
172 #define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
173 #define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
174 #define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
175 #define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
176 #define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
177 #define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
178 #define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
179 #define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
180 #define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
181 #define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
182 #define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
183 #define	HIFN_1_REVID		0x98	/* Revision ID */
184 #define	HIFN_1_UNLOCK_SECRET1	0xf4
185 #define	HIFN_1_UNLOCK_SECRET2	0xfc
186 #define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
187 #define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
188 #define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
189 #define	HIFN_1_PUB_OP		0x308	/* Public Operand */
190 #define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
191 #define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
192 #define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
193 #define	HIFN_1_RNG_DATA		0x318	/* RNG data */
194 #define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
195 #define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
196 
197 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198 #define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
199 #define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
200 #define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
201 #define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
202 #define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
203 #define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
204 #define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
205 #define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
206 #define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
207 #define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
208 #define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
209 #define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
210 #define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
211 #define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
212 #define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
213 #define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
214 #define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
215 #define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
216 #define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
217 #define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
218 #define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
219 #define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
220 #define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
221 #define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
222 #define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
223 #define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
224 #define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
225 #define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
226 #define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
227 #define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
228 #define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
229 #define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
230 #define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
231 #define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
232 #define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
233 #define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
234 #define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
235 #define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
236 
237 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238 #define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
239 #define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
240 #define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
241 #define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
242 #define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
243 #define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
244 #define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
245 #define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
246 #define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
247 #define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
248 #define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
249 #define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
250 #define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
251 #define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
252 #define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
253 #define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
254 #define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
255 #define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
256 #define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
257 #define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
258 #define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
259 #define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
260 
261 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262 #define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
263 #define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
264 #define	HIFN_DMACNFG_UNLOCK	0x00000800
265 #define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
266 #define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
267 #define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
268 #define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
269 #define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
270 
271 /* PLL configuration register */
272 #define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
273 #define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
274 #define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
275 #define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
276 #define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
277 #define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
278 #define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
279 #define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
280 #define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
281 #define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
282 #define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
283 #define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
284 #define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
285 #define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
286 #define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
287 #define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
288 #define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
289 
290 #define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
291 
292 /* Public key reset register (HIFN_1_PUB_RESET) */
293 #define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
294 
295 /* Public base address register (HIFN_1_PUB_BASE) */
296 #define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
297 
298 /* Public operand length register (HIFN_1_PUB_OPLEN) */
299 #define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
300 #define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
301 #define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
302 #define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
303 #define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
304 #define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
305 
306 /* Public operation register (HIFN_1_PUB_OP) */
307 #define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
308 #define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
309 #define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
310 #define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
311 #define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
312 #define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
313 #define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
314 #define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
315 #define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
316 #define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
317 #define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
318 #define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
319 #define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
320 #define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
321 #define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
322 #define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
323 #define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
324 #define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
325 #define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
326 #define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
327 
328 /* Public status register (HIFN_1_PUB_STATUS) */
329 #define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
330 #define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
331 
332 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
333 #define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
334 
335 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
336 #define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
337 
338 #define HIFN_NAMESIZE			32
339 #define HIFN_MAX_RESULT_ORDER		5
340 
341 #define	HIFN_D_CMD_RSIZE		(24 * 1)
342 #define	HIFN_D_SRC_RSIZE		(80 * 1)
343 #define	HIFN_D_DST_RSIZE		(80 * 1)
344 #define	HIFN_D_RES_RSIZE		(24 * 1)
345 
346 #define HIFN_D_DST_DALIGN		4
347 
348 #define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
349 
350 #define AES_MIN_KEY_SIZE		16
351 #define AES_MAX_KEY_SIZE		32
352 
353 #define HIFN_DES_KEY_LENGTH		8
354 #define HIFN_3DES_KEY_LENGTH		24
355 #define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
356 #define HIFN_IV_LENGTH			8
357 #define HIFN_AES_IV_LENGTH		16
358 #define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
359 
360 #define HIFN_MAC_KEY_LENGTH		64
361 #define HIFN_MD5_LENGTH			16
362 #define HIFN_SHA1_LENGTH		20
363 #define HIFN_MAC_TRUNC_LENGTH		12
364 
365 #define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
366 #define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
367 #define HIFN_USED_RESULT		12
368 
369 struct hifn_desc {
370 	volatile __le32		l;
371 	volatile __le32		p;
372 };
373 
374 struct hifn_dma {
375 	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
376 	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
377 	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
378 	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
379 
380 	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381 	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382 
383 	/*
384 	 *  Our current positions for insertion and removal from the descriptor
385 	 *  rings.
386 	 */
387 	volatile int		cmdi, srci, dsti, resi;
388 	volatile int		cmdu, srcu, dstu, resu;
389 	int			cmdk, srck, dstk, resk;
390 };
391 
392 #define HIFN_FLAG_CMD_BUSY	(1 << 0)
393 #define HIFN_FLAG_SRC_BUSY	(1 << 1)
394 #define HIFN_FLAG_DST_BUSY	(1 << 2)
395 #define HIFN_FLAG_RES_BUSY	(1 << 3)
396 #define HIFN_FLAG_OLD_KEY	(1 << 4)
397 
398 #define HIFN_DEFAULT_ACTIVE_NUM	5
399 
400 struct hifn_device {
401 	char			name[HIFN_NAMESIZE];
402 
403 	int			irq;
404 
405 	struct pci_dev		*pdev;
406 	void __iomem		*bar[3];
407 
408 	void			*desc_virt;
409 	dma_addr_t		desc_dma;
410 
411 	u32			dmareg;
412 
413 	void			*sa[HIFN_D_RES_RSIZE];
414 
415 	spinlock_t		lock;
416 
417 	u32			flags;
418 	int			active, started;
419 	struct delayed_work	work;
420 	unsigned long		reset;
421 	unsigned long		success;
422 	unsigned long		prev_success;
423 
424 	u8			snum;
425 
426 	struct tasklet_struct	tasklet;
427 
428 	struct crypto_queue	queue;
429 	struct list_head	alg_list;
430 
431 	unsigned int		pk_clk_freq;
432 
433 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434 	unsigned int		rng_wait_time;
435 	ktime_t			rngtime;
436 	struct hwrng		rng;
437 #endif
438 };
439 
440 #define	HIFN_D_LENGTH			0x0000ffff
441 #define	HIFN_D_NOINVALID		0x01000000
442 #define	HIFN_D_MASKDONEIRQ		0x02000000
443 #define	HIFN_D_DESTOVER			0x04000000
444 #define	HIFN_D_OVER			0x08000000
445 #define	HIFN_D_LAST			0x20000000
446 #define	HIFN_D_JUMP			0x40000000
447 #define	HIFN_D_VALID			0x80000000
448 
449 struct hifn_base_command {
450 	volatile __le16		masks;
451 	volatile __le16		session_num;
452 	volatile __le16		total_source_count;
453 	volatile __le16		total_dest_count;
454 };
455 
456 #define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
457 #define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
458 #define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
459 #define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
460 #define	HIFN_BASE_CMD_DECODE		0x2000
461 #define	HIFN_BASE_CMD_SRCLEN_M		0xc000
462 #define	HIFN_BASE_CMD_SRCLEN_S		14
463 #define	HIFN_BASE_CMD_DSTLEN_M		0x3000
464 #define	HIFN_BASE_CMD_DSTLEN_S		12
465 #define	HIFN_BASE_CMD_LENMASK_HI	0x30000
466 #define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
467 
468 /*
469  * Structure to help build up the command data structure.
470  */
471 struct hifn_crypt_command {
472 	volatile __le16		masks;
473 	volatile __le16		header_skip;
474 	volatile __le16		source_count;
475 	volatile __le16		reserved;
476 };
477 
478 #define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
479 #define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
480 #define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
481 #define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
482 #define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
483 #define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
484 #define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
485 #define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
486 #define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
487 #define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
488 #define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
489 #define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
490 #define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
491 #define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
492 #define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
493 #define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
494 #define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
495 #define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
496 #define	HIFN_CRYPT_CMD_SRCLEN_S		14
497 
498 /*
499  * Structure to help build up the command data structure.
500  */
501 struct hifn_mac_command {
502 	volatile __le16	masks;
503 	volatile __le16	header_skip;
504 	volatile __le16	source_count;
505 	volatile __le16	reserved;
506 };
507 
508 #define	HIFN_MAC_CMD_ALG_MASK		0x0001
509 #define	HIFN_MAC_CMD_ALG_SHA1		0x0000
510 #define	HIFN_MAC_CMD_ALG_MD5		0x0001
511 #define	HIFN_MAC_CMD_MODE_MASK		0x000c
512 #define	HIFN_MAC_CMD_MODE_HMAC		0x0000
513 #define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
514 #define	HIFN_MAC_CMD_MODE_HASH		0x0008
515 #define	HIFN_MAC_CMD_MODE_FULL		0x0004
516 #define	HIFN_MAC_CMD_TRUNC		0x0010
517 #define	HIFN_MAC_CMD_RESULT		0x0020
518 #define	HIFN_MAC_CMD_APPEND		0x0040
519 #define	HIFN_MAC_CMD_SRCLEN_M		0xc000
520 #define	HIFN_MAC_CMD_SRCLEN_S		14
521 
522 /*
523  * MAC POS IPsec initiates authentication after encryption on encodes
524  * and before decryption on decodes.
525  */
526 #define	HIFN_MAC_CMD_POS_IPSEC		0x0200
527 #define	HIFN_MAC_CMD_NEW_KEY		0x0800
528 
529 struct hifn_comp_command {
530 	volatile __le16		masks;
531 	volatile __le16		header_skip;
532 	volatile __le16		source_count;
533 	volatile __le16		reserved;
534 };
535 
536 #define	HIFN_COMP_CMD_SRCLEN_M		0xc000
537 #define	HIFN_COMP_CMD_SRCLEN_S		14
538 #define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
539 #define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
540 #define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
541 #define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
542 #define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
543 #define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
544 #define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
545 #define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
546 
547 struct hifn_base_result {
548 	volatile __le16		flags;
549 	volatile __le16		session;
550 	volatile __le16		src_cnt;		/* 15:0 of source count */
551 	volatile __le16		dst_cnt;		/* 15:0 of dest count */
552 };
553 
554 #define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
555 #define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
556 #define	HIFN_BASE_RES_SRCLEN_S		14
557 #define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
558 #define	HIFN_BASE_RES_DSTLEN_S		12
559 
560 struct hifn_comp_result {
561 	volatile __le16		flags;
562 	volatile __le16		crc;
563 };
564 
565 #define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
566 #define	HIFN_COMP_RES_LCB_S		8
567 #define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
568 #define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
569 #define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
570 
571 struct hifn_mac_result {
572 	volatile __le16		flags;
573 	volatile __le16		reserved;
574 	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
575 };
576 
577 #define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
578 #define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
579 
580 struct hifn_crypt_result {
581 	volatile __le16		flags;
582 	volatile __le16		reserved;
583 };
584 
585 #define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
586 
587 #ifndef HIFN_POLL_FREQUENCY
588 #define	HIFN_POLL_FREQUENCY	0x1
589 #endif
590 
591 #ifndef HIFN_POLL_SCALAR
592 #define	HIFN_POLL_SCALAR	0x0
593 #endif
594 
595 #define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
596 #define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
597 
598 struct hifn_crypto_alg {
599 	struct list_head	entry;
600 	struct skcipher_alg	alg;
601 	struct hifn_device	*dev;
602 };
603 
604 #define ASYNC_SCATTERLIST_CACHE	16
605 
606 #define ASYNC_FLAGS_MISALIGNED	(1 << 0)
607 
608 struct hifn_cipher_walk {
609 	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
610 	u32			flags;
611 	int			num;
612 };
613 
614 struct hifn_context {
615 	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
616 	struct hifn_device	*dev;
617 	unsigned int		keysize;
618 };
619 
620 struct hifn_request_context {
621 	u8			*iv;
622 	unsigned int		ivsize;
623 	u8			op, type, mode, unused;
624 	struct hifn_cipher_walk	walk;
625 };
626 
627 #define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
628 
629 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
630 {
631 	return readl(dev->bar[0] + reg);
632 }
633 
634 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
635 {
636 	return readl(dev->bar[1] + reg);
637 }
638 
639 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
640 {
641 	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
642 }
643 
644 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
645 {
646 	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
647 }
648 
649 static void hifn_wait_puc(struct hifn_device *dev)
650 {
651 	int i;
652 	u32 ret;
653 
654 	for (i = 10000; i > 0; --i) {
655 		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
656 		if (!(ret & HIFN_PUCTRL_RESET))
657 			break;
658 
659 		udelay(1);
660 	}
661 
662 	if (!i)
663 		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
664 }
665 
666 static void hifn_reset_puc(struct hifn_device *dev)
667 {
668 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
669 	hifn_wait_puc(dev);
670 }
671 
672 static void hifn_stop_device(struct hifn_device *dev)
673 {
674 	hifn_write_1(dev, HIFN_1_DMA_CSR,
675 		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
676 		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
677 	hifn_write_0(dev, HIFN_0_PUIER, 0);
678 	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
679 }
680 
681 static void hifn_reset_dma(struct hifn_device *dev, int full)
682 {
683 	hifn_stop_device(dev);
684 
685 	/*
686 	 * Setting poll frequency and others to 0.
687 	 */
688 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
689 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
690 	mdelay(1);
691 
692 	/*
693 	 * Reset DMA.
694 	 */
695 	if (full) {
696 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
697 		mdelay(1);
698 	} else {
699 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
700 				HIFN_DMACNFG_MSTRESET);
701 		hifn_reset_puc(dev);
702 	}
703 
704 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
705 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
706 
707 	hifn_reset_puc(dev);
708 }
709 
710 static u32 hifn_next_signature(u32 a, u_int cnt)
711 {
712 	int i;
713 	u32 v;
714 
715 	for (i = 0; i < cnt; i++) {
716 		/* get the parity */
717 		v = a & 0x80080125;
718 		v ^= v >> 16;
719 		v ^= v >> 8;
720 		v ^= v >> 4;
721 		v ^= v >> 2;
722 		v ^= v >> 1;
723 
724 		a = (v & 1) ^ (a << 1);
725 	}
726 
727 	return a;
728 }
729 
730 static struct pci2id {
731 	u_short		pci_vendor;
732 	u_short		pci_prod;
733 	char		card_id[13];
734 } pci2id[] = {
735 	{
736 		PCI_VENDOR_ID_HIFN,
737 		PCI_DEVICE_ID_HIFN_7955,
738 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
739 		  0x00, 0x00, 0x00, 0x00, 0x00 }
740 	},
741 	{
742 		PCI_VENDOR_ID_HIFN,
743 		PCI_DEVICE_ID_HIFN_7956,
744 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
745 		  0x00, 0x00, 0x00, 0x00, 0x00 }
746 	}
747 };
748 
749 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
750 static int hifn_rng_data_present(struct hwrng *rng, int wait)
751 {
752 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
753 	s64 nsec;
754 
755 	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
756 	nsec -= dev->rng_wait_time;
757 	if (nsec <= 0)
758 		return 1;
759 	if (!wait)
760 		return 0;
761 	ndelay(nsec);
762 	return 1;
763 }
764 
765 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
766 {
767 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
768 
769 	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
770 	dev->rngtime = ktime_get();
771 	return 4;
772 }
773 
774 static int hifn_register_rng(struct hifn_device *dev)
775 {
776 	/*
777 	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
778 	 */
779 	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
780 						   dev->pk_clk_freq) * 256;
781 
782 	dev->rng.name		= dev->name;
783 	dev->rng.data_present	= hifn_rng_data_present;
784 	dev->rng.data_read	= hifn_rng_data_read;
785 	dev->rng.priv		= (unsigned long)dev;
786 
787 	return hwrng_register(&dev->rng);
788 }
789 
790 static void hifn_unregister_rng(struct hifn_device *dev)
791 {
792 	hwrng_unregister(&dev->rng);
793 }
794 #else
795 #define hifn_register_rng(dev)		0
796 #define hifn_unregister_rng(dev)
797 #endif
798 
799 static int hifn_init_pubrng(struct hifn_device *dev)
800 {
801 	int i;
802 
803 	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
804 			HIFN_PUBRST_RESET);
805 
806 	for (i = 100; i > 0; --i) {
807 		mdelay(1);
808 
809 		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
810 			break;
811 	}
812 
813 	if (!i) {
814 		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
815 	} else {
816 		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
817 		dev->dmareg |= HIFN_DMAIER_PUBDONE;
818 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
819 
820 		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
821 	}
822 
823 	/* Enable RNG engine. */
824 
825 	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
826 			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
827 	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
828 
829 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
830 	/* First value must be discarded */
831 	hifn_read_1(dev, HIFN_1_RNG_DATA);
832 	dev->rngtime = ktime_get();
833 #endif
834 	return 0;
835 }
836 
837 static int hifn_enable_crypto(struct hifn_device *dev)
838 {
839 	u32 dmacfg, addr;
840 	char *offtbl = NULL;
841 	int i;
842 
843 	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
844 		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
845 				pci2id[i].pci_prod == dev->pdev->device) {
846 			offtbl = pci2id[i].card_id;
847 			break;
848 		}
849 	}
850 
851 	if (!offtbl) {
852 		dev_err(&dev->pdev->dev, "Unknown card!\n");
853 		return -ENODEV;
854 	}
855 
856 	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
857 
858 	hifn_write_1(dev, HIFN_1_DMA_CNFG,
859 			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
860 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
861 	mdelay(1);
862 	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
863 	mdelay(1);
864 	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
865 	mdelay(1);
866 
867 	for (i = 0; i < 12; ++i) {
868 		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
869 		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
870 
871 		mdelay(1);
872 	}
873 	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
874 
875 	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
876 
877 	return 0;
878 }
879 
880 static void hifn_init_dma(struct hifn_device *dev)
881 {
882 	struct hifn_dma *dma = dev->desc_virt;
883 	u32 dptr = dev->desc_dma;
884 	int i;
885 
886 	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
887 		dma->cmdr[i].p = __cpu_to_le32(dptr +
888 				offsetof(struct hifn_dma, command_bufs[i][0]));
889 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
890 		dma->resr[i].p = __cpu_to_le32(dptr +
891 				offsetof(struct hifn_dma, result_bufs[i][0]));
892 
893 	/* Setup LAST descriptors. */
894 	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
895 			offsetof(struct hifn_dma, cmdr[0]));
896 	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
897 			offsetof(struct hifn_dma, srcr[0]));
898 	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
899 			offsetof(struct hifn_dma, dstr[0]));
900 	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
901 			offsetof(struct hifn_dma, resr[0]));
902 
903 	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
904 	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
905 	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
906 }
907 
908 /*
909  * Initialize the PLL. We need to know the frequency of the reference clock
910  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
911  * allows us to operate without the risk of overclocking the chip. If it
912  * actually uses 33MHz, the chip will operate at half the speed, this can be
913  * overridden by specifying the frequency as module parameter (pci33).
914  *
915  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
916  * stable clock and the PCI clock frequency may vary, so the default is the
917  * external clock. There is no way to find out its frequency, we default to
918  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
919  * has an external crystal populated at 66MHz.
920  */
921 static void hifn_init_pll(struct hifn_device *dev)
922 {
923 	unsigned int freq, m;
924 	u32 pllcfg;
925 
926 	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
927 
928 	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
929 		pllcfg |= HIFN_PLL_REF_CLK_PLL;
930 	else
931 		pllcfg |= HIFN_PLL_REF_CLK_HBI;
932 
933 	if (hifn_pll_ref[3] != '\0')
934 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
935 	else {
936 		freq = 66;
937 		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
938 			 freq, hifn_pll_ref);
939 	}
940 
941 	m = HIFN_PLL_FCK_MAX / freq;
942 
943 	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
944 	if (m <= 8)
945 		pllcfg |= HIFN_PLL_IS_1_8;
946 	else
947 		pllcfg |= HIFN_PLL_IS_9_12;
948 
949 	/* Select clock source and enable clock bypass */
950 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
951 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
952 
953 	/* Let the chip lock to the input clock */
954 	mdelay(10);
955 
956 	/* Disable clock bypass */
957 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
958 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
959 
960 	/* Switch the engines to the PLL */
961 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
962 		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
963 
964 	/*
965 	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
966 	 * calculate the minimum time between two reads of the rng. Since 33MHz
967 	 * is actually 33.333... we overestimate the frequency here, resulting
968 	 * in slightly larger intervals.
969 	 */
970 	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
971 }
972 
973 static void hifn_init_registers(struct hifn_device *dev)
974 {
975 	u32 dptr = dev->desc_dma;
976 
977 	/* Initialization magic... */
978 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
979 	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
980 	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
981 
982 	/* write all 4 ring address registers */
983 	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
984 				offsetof(struct hifn_dma, cmdr[0]));
985 	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
986 				offsetof(struct hifn_dma, srcr[0]));
987 	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
988 				offsetof(struct hifn_dma, dstr[0]));
989 	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
990 				offsetof(struct hifn_dma, resr[0]));
991 
992 	mdelay(2);
993 #if 0
994 	hifn_write_1(dev, HIFN_1_DMA_CSR,
995 	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
996 	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
997 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
998 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
999 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1000 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1001 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1002 	    HIFN_DMACSR_S_WAIT |
1003 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1004 	    HIFN_DMACSR_C_WAIT |
1005 	    HIFN_DMACSR_ENGINE |
1006 	    HIFN_DMACSR_PUBDONE);
1007 #else
1008 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1009 	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1010 	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1011 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1012 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1013 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1014 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1015 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1016 	    HIFN_DMACSR_S_WAIT |
1017 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1018 	    HIFN_DMACSR_C_WAIT |
1019 	    HIFN_DMACSR_ENGINE |
1020 	    HIFN_DMACSR_PUBDONE);
1021 #endif
1022 	hifn_read_1(dev, HIFN_1_DMA_CSR);
1023 
1024 	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1025 	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1026 	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1027 	    HIFN_DMAIER_ENGINE;
1028 	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1029 
1030 	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1031 	hifn_read_1(dev, HIFN_1_DMA_IER);
1032 #if 0
1033 	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1034 		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1035 		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1036 		    HIFN_PUCNFG_DRAM);
1037 #else
1038 	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1039 #endif
1040 	hifn_init_pll(dev);
1041 
1042 	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1043 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1044 	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1045 	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1046 	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1047 }
1048 
1049 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1050 		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1051 {
1052 	struct hifn_base_command *base_cmd;
1053 	u8 *buf_pos = buf;
1054 
1055 	base_cmd = (struct hifn_base_command *)buf_pos;
1056 	base_cmd->masks = __cpu_to_le16(mask);
1057 	base_cmd->total_source_count =
1058 		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1059 	base_cmd->total_dest_count =
1060 		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1061 
1062 	dlen >>= 16;
1063 	slen >>= 16;
1064 	base_cmd->session_num = __cpu_to_le16(snum |
1065 	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1066 	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1067 
1068 	return sizeof(struct hifn_base_command);
1069 }
1070 
1071 static int hifn_setup_crypto_command(struct hifn_device *dev,
1072 		u8 *buf, unsigned dlen, unsigned slen,
1073 		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1074 {
1075 	struct hifn_dma *dma = dev->desc_virt;
1076 	struct hifn_crypt_command *cry_cmd;
1077 	u8 *buf_pos = buf;
1078 	u16 cmd_len;
1079 
1080 	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1081 
1082 	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1083 	dlen >>= 16;
1084 	cry_cmd->masks = __cpu_to_le16(mode |
1085 			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1086 			 HIFN_CRYPT_CMD_SRCLEN_M));
1087 	cry_cmd->header_skip = 0;
1088 	cry_cmd->reserved = 0;
1089 
1090 	buf_pos += sizeof(struct hifn_crypt_command);
1091 
1092 	dma->cmdu++;
1093 	if (dma->cmdu > 1) {
1094 		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1095 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1096 	}
1097 
1098 	if (keylen) {
1099 		memcpy(buf_pos, key, keylen);
1100 		buf_pos += keylen;
1101 	}
1102 	if (ivsize) {
1103 		memcpy(buf_pos, iv, ivsize);
1104 		buf_pos += ivsize;
1105 	}
1106 
1107 	cmd_len = buf_pos - buf;
1108 
1109 	return cmd_len;
1110 }
1111 
1112 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1113 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1114 		void *priv, unsigned int nbytes)
1115 {
1116 	struct hifn_dma *dma = dev->desc_virt;
1117 	int cmd_len, sa_idx;
1118 	u8 *buf, *buf_pos;
1119 	u16 mask;
1120 
1121 	sa_idx = dma->cmdi;
1122 	buf_pos = buf = dma->command_bufs[dma->cmdi];
1123 
1124 	mask = 0;
1125 	switch (rctx->op) {
1126 	case ACRYPTO_OP_DECRYPT:
1127 		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1128 		break;
1129 	case ACRYPTO_OP_ENCRYPT:
1130 		mask = HIFN_BASE_CMD_CRYPT;
1131 		break;
1132 	case ACRYPTO_OP_HMAC:
1133 		mask = HIFN_BASE_CMD_MAC;
1134 		break;
1135 	default:
1136 		goto err_out;
1137 	}
1138 
1139 	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1140 			nbytes, mask, dev->snum);
1141 
1142 	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1143 		u16 md = 0;
1144 
1145 		if (ctx->keysize)
1146 			md |= HIFN_CRYPT_CMD_NEW_KEY;
1147 		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1148 			md |= HIFN_CRYPT_CMD_NEW_IV;
1149 
1150 		switch (rctx->mode) {
1151 		case ACRYPTO_MODE_ECB:
1152 			md |= HIFN_CRYPT_CMD_MODE_ECB;
1153 			break;
1154 		case ACRYPTO_MODE_CBC:
1155 			md |= HIFN_CRYPT_CMD_MODE_CBC;
1156 			break;
1157 		case ACRYPTO_MODE_CFB:
1158 			md |= HIFN_CRYPT_CMD_MODE_CFB;
1159 			break;
1160 		case ACRYPTO_MODE_OFB:
1161 			md |= HIFN_CRYPT_CMD_MODE_OFB;
1162 			break;
1163 		default:
1164 			goto err_out;
1165 		}
1166 
1167 		switch (rctx->type) {
1168 		case ACRYPTO_TYPE_AES_128:
1169 			if (ctx->keysize != 16)
1170 				goto err_out;
1171 			md |= HIFN_CRYPT_CMD_KSZ_128 |
1172 				HIFN_CRYPT_CMD_ALG_AES;
1173 			break;
1174 		case ACRYPTO_TYPE_AES_192:
1175 			if (ctx->keysize != 24)
1176 				goto err_out;
1177 			md |= HIFN_CRYPT_CMD_KSZ_192 |
1178 				HIFN_CRYPT_CMD_ALG_AES;
1179 			break;
1180 		case ACRYPTO_TYPE_AES_256:
1181 			if (ctx->keysize != 32)
1182 				goto err_out;
1183 			md |= HIFN_CRYPT_CMD_KSZ_256 |
1184 				HIFN_CRYPT_CMD_ALG_AES;
1185 			break;
1186 		case ACRYPTO_TYPE_3DES:
1187 			if (ctx->keysize != 24)
1188 				goto err_out;
1189 			md |= HIFN_CRYPT_CMD_ALG_3DES;
1190 			break;
1191 		case ACRYPTO_TYPE_DES:
1192 			if (ctx->keysize != 8)
1193 				goto err_out;
1194 			md |= HIFN_CRYPT_CMD_ALG_DES;
1195 			break;
1196 		default:
1197 			goto err_out;
1198 		}
1199 
1200 		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1201 				nbytes, nbytes, ctx->key, ctx->keysize,
1202 				rctx->iv, rctx->ivsize, md);
1203 	}
1204 
1205 	dev->sa[sa_idx] = priv;
1206 	dev->started++;
1207 
1208 	cmd_len = buf_pos - buf;
1209 	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1210 			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1211 
1212 	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1213 		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1214 			HIFN_D_VALID | HIFN_D_LAST |
1215 			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1216 		dma->cmdi = 0;
1217 	} else {
1218 		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1219 	}
1220 
1221 	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1222 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1223 		dev->flags |= HIFN_FLAG_CMD_BUSY;
1224 	}
1225 	return 0;
1226 
1227 err_out:
1228 	return -EINVAL;
1229 }
1230 
1231 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1232 		unsigned int offset, unsigned int size, int last)
1233 {
1234 	struct hifn_dma *dma = dev->desc_virt;
1235 	int idx;
1236 	dma_addr_t addr;
1237 
1238 	addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1239 			    DMA_TO_DEVICE);
1240 
1241 	idx = dma->srci;
1242 
1243 	dma->srcr[idx].p = __cpu_to_le32(addr);
1244 	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1245 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1246 
1247 	if (++idx == HIFN_D_SRC_RSIZE) {
1248 		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1249 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1250 				(last ? HIFN_D_LAST : 0));
1251 		idx = 0;
1252 	}
1253 
1254 	dma->srci = idx;
1255 	dma->srcu++;
1256 
1257 	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1258 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1259 		dev->flags |= HIFN_FLAG_SRC_BUSY;
1260 	}
1261 
1262 	return size;
1263 }
1264 
1265 static void hifn_setup_res_desc(struct hifn_device *dev)
1266 {
1267 	struct hifn_dma *dma = dev->desc_virt;
1268 
1269 	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1270 			HIFN_D_VALID | HIFN_D_LAST);
1271 	/*
1272 	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1273 	 *					HIFN_D_LAST);
1274 	 */
1275 
1276 	if (++dma->resi == HIFN_D_RES_RSIZE) {
1277 		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1278 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1279 		dma->resi = 0;
1280 	}
1281 
1282 	dma->resu++;
1283 
1284 	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1285 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1286 		dev->flags |= HIFN_FLAG_RES_BUSY;
1287 	}
1288 }
1289 
1290 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1291 		unsigned offset, unsigned size, int last)
1292 {
1293 	struct hifn_dma *dma = dev->desc_virt;
1294 	int idx;
1295 	dma_addr_t addr;
1296 
1297 	addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1298 			    DMA_FROM_DEVICE);
1299 
1300 	idx = dma->dsti;
1301 	dma->dstr[idx].p = __cpu_to_le32(addr);
1302 	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1303 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1304 
1305 	if (++idx == HIFN_D_DST_RSIZE) {
1306 		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1307 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1308 				(last ? HIFN_D_LAST : 0));
1309 		idx = 0;
1310 	}
1311 	dma->dsti = idx;
1312 	dma->dstu++;
1313 
1314 	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1315 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1316 		dev->flags |= HIFN_FLAG_DST_BUSY;
1317 	}
1318 }
1319 
1320 static int hifn_setup_dma(struct hifn_device *dev,
1321 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1322 		struct scatterlist *src, struct scatterlist *dst,
1323 		unsigned int nbytes, void *priv)
1324 {
1325 	struct scatterlist *t;
1326 	struct page *spage, *dpage;
1327 	unsigned int soff, doff;
1328 	unsigned int n, len;
1329 
1330 	n = nbytes;
1331 	while (n) {
1332 		spage = sg_page(src);
1333 		soff = src->offset;
1334 		len = min(src->length, n);
1335 
1336 		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1337 
1338 		src++;
1339 		n -= len;
1340 	}
1341 
1342 	t = &rctx->walk.cache[0];
1343 	n = nbytes;
1344 	while (n) {
1345 		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1346 			BUG_ON(!sg_page(t));
1347 			dpage = sg_page(t);
1348 			doff = 0;
1349 			len = t->length;
1350 		} else {
1351 			BUG_ON(!sg_page(dst));
1352 			dpage = sg_page(dst);
1353 			doff = dst->offset;
1354 			len = dst->length;
1355 		}
1356 		len = min(len, n);
1357 
1358 		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1359 
1360 		dst++;
1361 		t++;
1362 		n -= len;
1363 	}
1364 
1365 	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1366 	hifn_setup_res_desc(dev);
1367 	return 0;
1368 }
1369 
1370 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1371 		int num, gfp_t gfp_flags)
1372 {
1373 	int i;
1374 
1375 	num = min(ASYNC_SCATTERLIST_CACHE, num);
1376 	sg_init_table(w->cache, num);
1377 
1378 	w->num = 0;
1379 	for (i = 0; i < num; ++i) {
1380 		struct page *page = alloc_page(gfp_flags);
1381 		struct scatterlist *s;
1382 
1383 		if (!page)
1384 			break;
1385 
1386 		s = &w->cache[i];
1387 
1388 		sg_set_page(s, page, PAGE_SIZE, 0);
1389 		w->num++;
1390 	}
1391 
1392 	return i;
1393 }
1394 
1395 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1396 {
1397 	int i;
1398 
1399 	for (i = 0; i < w->num; ++i) {
1400 		struct scatterlist *s = &w->cache[i];
1401 
1402 		__free_page(sg_page(s));
1403 
1404 		s->length = 0;
1405 	}
1406 
1407 	w->num = 0;
1408 }
1409 
1410 static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1411 		unsigned int size, unsigned int *nbytesp)
1412 {
1413 	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1414 	int idx = 0;
1415 
1416 	if (drest < size || size > nbytes)
1417 		return -EINVAL;
1418 
1419 	while (size) {
1420 		copy = min3(drest, size, dst->length);
1421 
1422 		size -= copy;
1423 		drest -= copy;
1424 		nbytes -= copy;
1425 
1426 		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1427 			 __func__, copy, size, drest, nbytes);
1428 
1429 		dst++;
1430 		idx++;
1431 	}
1432 
1433 	*nbytesp = nbytes;
1434 	*drestp = drest;
1435 
1436 	return idx;
1437 }
1438 
1439 static int hifn_cipher_walk(struct skcipher_request *req,
1440 		struct hifn_cipher_walk *w)
1441 {
1442 	struct scatterlist *dst, *t;
1443 	unsigned int nbytes = req->cryptlen, offset, copy, diff;
1444 	int idx, tidx, err;
1445 
1446 	tidx = idx = 0;
1447 	offset = 0;
1448 	while (nbytes) {
1449 		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1450 			return -EINVAL;
1451 
1452 		dst = &req->dst[idx];
1453 
1454 		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1455 			 __func__, dst->length, dst->offset, offset, nbytes);
1456 
1457 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1458 		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1459 		    offset) {
1460 			unsigned slen = min(dst->length - offset, nbytes);
1461 			unsigned dlen = PAGE_SIZE;
1462 
1463 			t = &w->cache[idx];
1464 
1465 			err = skcipher_add(&dlen, dst, slen, &nbytes);
1466 			if (err < 0)
1467 				return err;
1468 
1469 			idx += err;
1470 
1471 			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1472 			diff = slen & (HIFN_D_DST_DALIGN - 1);
1473 
1474 			if (dlen < nbytes) {
1475 				/*
1476 				 * Destination page does not have enough space
1477 				 * to put there additional blocksized chunk,
1478 				 * so we mark that page as containing only
1479 				 * blocksize aligned chunks:
1480 				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1481 				 * and increase number of bytes to be processed
1482 				 * in next chunk:
1483 				 *	nbytes += diff;
1484 				 */
1485 				nbytes += diff;
1486 
1487 				/*
1488 				 * Temporary of course...
1489 				 * Kick author if you will catch this one.
1490 				 */
1491 				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1492 				       __func__, dlen, nbytes, slen, offset);
1493 				pr_err("%s: please contact author to fix this "
1494 				       "issue, generally you should not catch "
1495 				       "this path under any condition but who "
1496 				       "knows how did you use crypto code.\n"
1497 				       "Thank you.\n",	__func__);
1498 				BUG();
1499 			} else {
1500 				copy += diff + nbytes;
1501 
1502 				dst = &req->dst[idx];
1503 
1504 				err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1505 				if (err < 0)
1506 					return err;
1507 
1508 				idx += err;
1509 			}
1510 
1511 			t->length = copy;
1512 			t->offset = offset;
1513 		} else {
1514 			nbytes -= min(dst->length, nbytes);
1515 			idx++;
1516 		}
1517 
1518 		tidx++;
1519 	}
1520 
1521 	return tidx;
1522 }
1523 
1524 static int hifn_setup_session(struct skcipher_request *req)
1525 {
1526 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1527 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1528 	struct hifn_device *dev = ctx->dev;
1529 	unsigned long dlen, flags;
1530 	unsigned int nbytes = req->cryptlen, idx = 0;
1531 	int err = -EINVAL, sg_num;
1532 	struct scatterlist *dst;
1533 
1534 	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1535 		goto err_out_exit;
1536 
1537 	rctx->walk.flags = 0;
1538 
1539 	while (nbytes) {
1540 		dst = &req->dst[idx];
1541 		dlen = min(dst->length, nbytes);
1542 
1543 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1544 		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1545 			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1546 
1547 		nbytes -= dlen;
1548 		idx++;
1549 	}
1550 
1551 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1552 		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1553 		if (err < 0)
1554 			return err;
1555 	}
1556 
1557 	sg_num = hifn_cipher_walk(req, &rctx->walk);
1558 	if (sg_num < 0) {
1559 		err = sg_num;
1560 		goto err_out_exit;
1561 	}
1562 
1563 	spin_lock_irqsave(&dev->lock, flags);
1564 	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1565 		err = -EAGAIN;
1566 		goto err_out;
1567 	}
1568 
1569 	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1570 	if (err)
1571 		goto err_out;
1572 
1573 	dev->snum++;
1574 
1575 	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1576 	spin_unlock_irqrestore(&dev->lock, flags);
1577 
1578 	return 0;
1579 
1580 err_out:
1581 	spin_unlock_irqrestore(&dev->lock, flags);
1582 err_out_exit:
1583 	if (err) {
1584 		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1585 			 "type: %u, err: %d.\n",
1586 			 rctx->iv, rctx->ivsize,
1587 			 ctx->key, ctx->keysize,
1588 			 rctx->mode, rctx->op, rctx->type, err);
1589 	}
1590 
1591 	return err;
1592 }
1593 
1594 static int hifn_start_device(struct hifn_device *dev)
1595 {
1596 	int err;
1597 
1598 	dev->started = dev->active = 0;
1599 	hifn_reset_dma(dev, 1);
1600 
1601 	err = hifn_enable_crypto(dev);
1602 	if (err)
1603 		return err;
1604 
1605 	hifn_reset_puc(dev);
1606 
1607 	hifn_init_dma(dev);
1608 
1609 	hifn_init_registers(dev);
1610 
1611 	hifn_init_pubrng(dev);
1612 
1613 	return 0;
1614 }
1615 
1616 static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1617 		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1618 {
1619 	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1620 	void *daddr;
1621 	int idx = 0;
1622 
1623 	if (srest < size || size > nbytes)
1624 		return -EINVAL;
1625 
1626 	while (size) {
1627 		copy = min3(srest, dst->length, size);
1628 
1629 		daddr = kmap_atomic(sg_page(dst));
1630 		memcpy(daddr + dst->offset + offset, saddr, copy);
1631 		kunmap_atomic(daddr);
1632 
1633 		nbytes -= copy;
1634 		size -= copy;
1635 		srest -= copy;
1636 		saddr += copy;
1637 		offset = 0;
1638 
1639 		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1640 			 __func__, copy, size, srest, nbytes);
1641 
1642 		dst++;
1643 		idx++;
1644 	}
1645 
1646 	*nbytesp = nbytes;
1647 	*srestp = srest;
1648 
1649 	return idx;
1650 }
1651 
1652 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1653 {
1654 	unsigned long flags;
1655 
1656 	spin_lock_irqsave(&dev->lock, flags);
1657 	dev->sa[i] = NULL;
1658 	dev->started--;
1659 	if (dev->started < 0)
1660 		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1661 			 dev->started);
1662 	spin_unlock_irqrestore(&dev->lock, flags);
1663 	BUG_ON(dev->started < 0);
1664 }
1665 
1666 static void hifn_process_ready(struct skcipher_request *req, int error)
1667 {
1668 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1669 
1670 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1671 		unsigned int nbytes = req->cryptlen;
1672 		int idx = 0, err;
1673 		struct scatterlist *dst, *t;
1674 		void *saddr;
1675 
1676 		while (nbytes) {
1677 			t = &rctx->walk.cache[idx];
1678 			dst = &req->dst[idx];
1679 
1680 			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1681 				"sg_page(dst): %p, dst->length: %u, "
1682 				"nbytes: %u.\n",
1683 				__func__, sg_page(t), t->length,
1684 				sg_page(dst), dst->length, nbytes);
1685 
1686 			if (!t->length) {
1687 				nbytes -= min(dst->length, nbytes);
1688 				idx++;
1689 				continue;
1690 			}
1691 
1692 			saddr = kmap_atomic(sg_page(t));
1693 
1694 			err = skcipher_get(saddr, &t->length, t->offset,
1695 					dst, nbytes, &nbytes);
1696 			if (err < 0) {
1697 				kunmap_atomic(saddr);
1698 				break;
1699 			}
1700 
1701 			idx += err;
1702 			kunmap_atomic(saddr);
1703 		}
1704 
1705 		hifn_cipher_walk_exit(&rctx->walk);
1706 	}
1707 
1708 	skcipher_request_complete(req, error);
1709 }
1710 
1711 static void hifn_clear_rings(struct hifn_device *dev, int error)
1712 {
1713 	struct hifn_dma *dma = dev->desc_virt;
1714 	int i, u;
1715 
1716 	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1717 			"k: %d.%d.%d.%d.\n",
1718 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1719 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1720 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1721 
1722 	i = dma->resk; u = dma->resu;
1723 	while (u != 0) {
1724 		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1725 			break;
1726 
1727 		if (dev->sa[i]) {
1728 			dev->success++;
1729 			dev->reset = 0;
1730 			hifn_process_ready(dev->sa[i], error);
1731 			hifn_complete_sa(dev, i);
1732 		}
1733 
1734 		if (++i == HIFN_D_RES_RSIZE)
1735 			i = 0;
1736 		u--;
1737 	}
1738 	dma->resk = i; dma->resu = u;
1739 
1740 	i = dma->srck; u = dma->srcu;
1741 	while (u != 0) {
1742 		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1743 			break;
1744 		if (++i == HIFN_D_SRC_RSIZE)
1745 			i = 0;
1746 		u--;
1747 	}
1748 	dma->srck = i; dma->srcu = u;
1749 
1750 	i = dma->cmdk; u = dma->cmdu;
1751 	while (u != 0) {
1752 		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1753 			break;
1754 		if (++i == HIFN_D_CMD_RSIZE)
1755 			i = 0;
1756 		u--;
1757 	}
1758 	dma->cmdk = i; dma->cmdu = u;
1759 
1760 	i = dma->dstk; u = dma->dstu;
1761 	while (u != 0) {
1762 		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1763 			break;
1764 		if (++i == HIFN_D_DST_RSIZE)
1765 			i = 0;
1766 		u--;
1767 	}
1768 	dma->dstk = i; dma->dstu = u;
1769 
1770 	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1771 			"k: %d.%d.%d.%d.\n",
1772 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1773 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1774 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1775 }
1776 
1777 static void hifn_work(struct work_struct *work)
1778 {
1779 	struct delayed_work *dw = to_delayed_work(work);
1780 	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1781 	unsigned long flags;
1782 	int reset = 0;
1783 	u32 r = 0;
1784 
1785 	spin_lock_irqsave(&dev->lock, flags);
1786 	if (dev->active == 0) {
1787 		struct hifn_dma *dma = dev->desc_virt;
1788 
1789 		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1790 			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1791 			r |= HIFN_DMACSR_C_CTRL_DIS;
1792 		}
1793 		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1794 			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1795 			r |= HIFN_DMACSR_S_CTRL_DIS;
1796 		}
1797 		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1798 			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1799 			r |= HIFN_DMACSR_D_CTRL_DIS;
1800 		}
1801 		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1802 			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1803 			r |= HIFN_DMACSR_R_CTRL_DIS;
1804 		}
1805 		if (r)
1806 			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1807 	} else
1808 		dev->active--;
1809 
1810 	if ((dev->prev_success == dev->success) && dev->started)
1811 		reset = 1;
1812 	dev->prev_success = dev->success;
1813 	spin_unlock_irqrestore(&dev->lock, flags);
1814 
1815 	if (reset) {
1816 		if (++dev->reset >= 5) {
1817 			int i;
1818 			struct hifn_dma *dma = dev->desc_virt;
1819 
1820 			dev_info(&dev->pdev->dev,
1821 				 "r: %08x, active: %d, started: %d, "
1822 				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1823 				 r, dev->active, dev->started,
1824 				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1825 				 reset);
1826 
1827 			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1828 			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1829 				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1830 				if (dev->sa[i]) {
1831 					hifn_process_ready(dev->sa[i], -ENODEV);
1832 					hifn_complete_sa(dev, i);
1833 				}
1834 			}
1835 			pr_info("\n");
1836 
1837 			hifn_reset_dma(dev, 1);
1838 			hifn_stop_device(dev);
1839 			hifn_start_device(dev);
1840 			dev->reset = 0;
1841 		}
1842 
1843 		tasklet_schedule(&dev->tasklet);
1844 	}
1845 
1846 	schedule_delayed_work(&dev->work, HZ);
1847 }
1848 
1849 static irqreturn_t hifn_interrupt(int irq, void *data)
1850 {
1851 	struct hifn_device *dev = data;
1852 	struct hifn_dma *dma = dev->desc_virt;
1853 	u32 dmacsr, restart;
1854 
1855 	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1856 
1857 	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1858 			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1859 		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1860 		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1861 		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1862 
1863 	if ((dmacsr & dev->dmareg) == 0)
1864 		return IRQ_NONE;
1865 
1866 	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1867 
1868 	if (dmacsr & HIFN_DMACSR_ENGINE)
1869 		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1870 	if (dmacsr & HIFN_DMACSR_PUBDONE)
1871 		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1872 			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1873 
1874 	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1875 	if (restart) {
1876 		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1877 
1878 		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1879 			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1880 			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1881 			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1882 		if (!!(puisr & HIFN_PUISR_DSTOVER))
1883 			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1884 		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1885 					HIFN_DMACSR_D_OVER));
1886 	}
1887 
1888 	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1889 			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1890 	if (restart) {
1891 		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1892 			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1893 			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1894 			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1895 			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1896 		hifn_reset_dma(dev, 1);
1897 		hifn_init_dma(dev);
1898 		hifn_init_registers(dev);
1899 	}
1900 
1901 	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1902 		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1903 		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1904 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1905 	}
1906 
1907 	tasklet_schedule(&dev->tasklet);
1908 
1909 	return IRQ_HANDLED;
1910 }
1911 
1912 static void hifn_flush(struct hifn_device *dev)
1913 {
1914 	unsigned long flags;
1915 	struct crypto_async_request *async_req;
1916 	struct skcipher_request *req;
1917 	struct hifn_dma *dma = dev->desc_virt;
1918 	int i;
1919 
1920 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1921 		struct hifn_desc *d = &dma->resr[i];
1922 
1923 		if (dev->sa[i]) {
1924 			hifn_process_ready(dev->sa[i],
1925 				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1926 			hifn_complete_sa(dev, i);
1927 		}
1928 	}
1929 
1930 	spin_lock_irqsave(&dev->lock, flags);
1931 	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1932 		req = skcipher_request_cast(async_req);
1933 		spin_unlock_irqrestore(&dev->lock, flags);
1934 
1935 		hifn_process_ready(req, -ENODEV);
1936 
1937 		spin_lock_irqsave(&dev->lock, flags);
1938 	}
1939 	spin_unlock_irqrestore(&dev->lock, flags);
1940 }
1941 
1942 static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1943 		unsigned int len)
1944 {
1945 	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1946 	struct hifn_device *dev = ctx->dev;
1947 	int err;
1948 
1949 	err = verify_skcipher_des_key(cipher, key);
1950 	if (err)
1951 		return err;
1952 
1953 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1954 
1955 	memcpy(ctx->key, key, len);
1956 	ctx->keysize = len;
1957 
1958 	return 0;
1959 }
1960 
1961 static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1962 			    unsigned int len)
1963 {
1964 	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1965 	struct hifn_device *dev = ctx->dev;
1966 	int err;
1967 
1968 	err = verify_skcipher_des3_key(cipher, key);
1969 	if (err)
1970 		return err;
1971 
1972 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1973 
1974 	memcpy(ctx->key, key, len);
1975 	ctx->keysize = len;
1976 
1977 	return 0;
1978 }
1979 
1980 static int hifn_handle_req(struct skcipher_request *req)
1981 {
1982 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1983 	struct hifn_device *dev = ctx->dev;
1984 	int err = -EAGAIN;
1985 
1986 	if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1987 		err = hifn_setup_session(req);
1988 
1989 	if (err == -EAGAIN) {
1990 		unsigned long flags;
1991 
1992 		spin_lock_irqsave(&dev->lock, flags);
1993 		err = crypto_enqueue_request(&dev->queue, &req->base);
1994 		spin_unlock_irqrestore(&dev->lock, flags);
1995 	}
1996 
1997 	return err;
1998 }
1999 
2000 static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
2001 		u8 type, u8 mode)
2002 {
2003 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2004 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
2005 	unsigned ivsize;
2006 
2007 	ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
2008 
2009 	if (req->iv && mode != ACRYPTO_MODE_ECB) {
2010 		if (type == ACRYPTO_TYPE_AES_128)
2011 			ivsize = HIFN_AES_IV_LENGTH;
2012 		else if (type == ACRYPTO_TYPE_DES)
2013 			ivsize = HIFN_DES_KEY_LENGTH;
2014 		else if (type == ACRYPTO_TYPE_3DES)
2015 			ivsize = HIFN_3DES_KEY_LENGTH;
2016 	}
2017 
2018 	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2019 		if (ctx->keysize == 24)
2020 			type = ACRYPTO_TYPE_AES_192;
2021 		else if (ctx->keysize == 32)
2022 			type = ACRYPTO_TYPE_AES_256;
2023 	}
2024 
2025 	rctx->op = op;
2026 	rctx->mode = mode;
2027 	rctx->type = type;
2028 	rctx->iv = req->iv;
2029 	rctx->ivsize = ivsize;
2030 
2031 	/*
2032 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2034 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2035 	 */
2036 
2037 	return hifn_handle_req(req);
2038 }
2039 
2040 static int hifn_process_queue(struct hifn_device *dev)
2041 {
2042 	struct crypto_async_request *async_req, *backlog;
2043 	struct skcipher_request *req;
2044 	unsigned long flags;
2045 	int err = 0;
2046 
2047 	while (dev->started < HIFN_QUEUE_LENGTH) {
2048 		spin_lock_irqsave(&dev->lock, flags);
2049 		backlog = crypto_get_backlog(&dev->queue);
2050 		async_req = crypto_dequeue_request(&dev->queue);
2051 		spin_unlock_irqrestore(&dev->lock, flags);
2052 
2053 		if (!async_req)
2054 			break;
2055 
2056 		if (backlog)
2057 			crypto_request_complete(backlog, -EINPROGRESS);
2058 
2059 		req = skcipher_request_cast(async_req);
2060 
2061 		err = hifn_handle_req(req);
2062 		if (err)
2063 			break;
2064 	}
2065 
2066 	return err;
2067 }
2068 
2069 static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2070 		u8 type, u8 mode)
2071 {
2072 	int err;
2073 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2074 	struct hifn_device *dev = ctx->dev;
2075 
2076 	err = hifn_setup_crypto_req(req, op, type, mode);
2077 	if (err)
2078 		return err;
2079 
2080 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2081 		hifn_process_queue(dev);
2082 
2083 	return -EINPROGRESS;
2084 }
2085 
2086 /*
2087  * AES ecryption functions.
2088  */
2089 static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2090 {
2091 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2092 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2093 }
2094 static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2095 {
2096 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2097 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2098 }
2099 static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req)
2100 {
2101 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2102 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2103 }
2104 static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req)
2105 {
2106 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2107 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2108 }
2109 
2110 /*
2111  * AES decryption functions.
2112  */
2113 static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2114 {
2115 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2116 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2117 }
2118 static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2119 {
2120 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2121 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2122 }
2123 static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req)
2124 {
2125 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2126 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2127 }
2128 static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req)
2129 {
2130 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2131 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2132 }
2133 
2134 /*
2135  * DES ecryption functions.
2136  */
2137 static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2138 {
2139 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2140 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2141 }
2142 static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2143 {
2144 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2145 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2146 }
2147 static inline int hifn_encrypt_des_cfb(struct skcipher_request *req)
2148 {
2149 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2150 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2151 }
2152 static inline int hifn_encrypt_des_ofb(struct skcipher_request *req)
2153 {
2154 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2155 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2156 }
2157 
2158 /*
2159  * DES decryption functions.
2160  */
2161 static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2162 {
2163 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2164 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2165 }
2166 static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2167 {
2168 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2169 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2170 }
2171 static inline int hifn_decrypt_des_cfb(struct skcipher_request *req)
2172 {
2173 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2174 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2175 }
2176 static inline int hifn_decrypt_des_ofb(struct skcipher_request *req)
2177 {
2178 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2179 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2180 }
2181 
2182 /*
2183  * 3DES ecryption functions.
2184  */
2185 static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2186 {
2187 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2188 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2189 }
2190 static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2191 {
2192 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2193 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2194 }
2195 static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req)
2196 {
2197 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2198 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2199 }
2200 static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req)
2201 {
2202 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2203 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2204 }
2205 
2206 /* 3DES decryption functions. */
2207 static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2208 {
2209 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2210 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2211 }
2212 static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2213 {
2214 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2215 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2216 }
2217 static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req)
2218 {
2219 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2220 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2221 }
2222 static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req)
2223 {
2224 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2225 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2226 }
2227 
2228 struct hifn_alg_template {
2229 	char name[CRYPTO_MAX_ALG_NAME];
2230 	char drv_name[CRYPTO_MAX_ALG_NAME];
2231 	unsigned int bsize;
2232 	struct skcipher_alg skcipher;
2233 };
2234 
2235 static const struct hifn_alg_template hifn_alg_templates[] = {
2236 	/*
2237 	 * 3DES ECB, CBC, CFB and OFB modes.
2238 	 */
2239 	{
2240 		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2241 		.skcipher = {
2242 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2243 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2244 			.setkey		=	hifn_des3_setkey,
2245 			.encrypt	=	hifn_encrypt_3des_cfb,
2246 			.decrypt	=	hifn_decrypt_3des_cfb,
2247 		},
2248 	},
2249 	{
2250 		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2251 		.skcipher = {
2252 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2253 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2254 			.setkey		=	hifn_des3_setkey,
2255 			.encrypt	=	hifn_encrypt_3des_ofb,
2256 			.decrypt	=	hifn_decrypt_3des_ofb,
2257 		},
2258 	},
2259 	{
2260 		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2261 		.skcipher = {
2262 			.ivsize		=	HIFN_IV_LENGTH,
2263 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2264 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2265 			.setkey		=	hifn_des3_setkey,
2266 			.encrypt	=	hifn_encrypt_3des_cbc,
2267 			.decrypt	=	hifn_decrypt_3des_cbc,
2268 		},
2269 	},
2270 	{
2271 		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2272 		.skcipher = {
2273 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2274 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2275 			.setkey		=	hifn_des3_setkey,
2276 			.encrypt	=	hifn_encrypt_3des_ecb,
2277 			.decrypt	=	hifn_decrypt_3des_ecb,
2278 		},
2279 	},
2280 
2281 	/*
2282 	 * DES ECB, CBC, CFB and OFB modes.
2283 	 */
2284 	{
2285 		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2286 		.skcipher = {
2287 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2288 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2289 			.setkey		=	hifn_setkey,
2290 			.encrypt	=	hifn_encrypt_des_cfb,
2291 			.decrypt	=	hifn_decrypt_des_cfb,
2292 		},
2293 	},
2294 	{
2295 		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2296 		.skcipher = {
2297 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2298 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2299 			.setkey		=	hifn_setkey,
2300 			.encrypt	=	hifn_encrypt_des_ofb,
2301 			.decrypt	=	hifn_decrypt_des_ofb,
2302 		},
2303 	},
2304 	{
2305 		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2306 		.skcipher = {
2307 			.ivsize		=	HIFN_IV_LENGTH,
2308 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2309 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2310 			.setkey		=	hifn_setkey,
2311 			.encrypt	=	hifn_encrypt_des_cbc,
2312 			.decrypt	=	hifn_decrypt_des_cbc,
2313 		},
2314 	},
2315 	{
2316 		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2317 		.skcipher = {
2318 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2319 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2320 			.setkey		=	hifn_setkey,
2321 			.encrypt	=	hifn_encrypt_des_ecb,
2322 			.decrypt	=	hifn_decrypt_des_ecb,
2323 		},
2324 	},
2325 
2326 	/*
2327 	 * AES ECB, CBC, CFB and OFB modes.
2328 	 */
2329 	{
2330 		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2331 		.skcipher = {
2332 			.min_keysize	=	AES_MIN_KEY_SIZE,
2333 			.max_keysize	=	AES_MAX_KEY_SIZE,
2334 			.setkey		=	hifn_setkey,
2335 			.encrypt	=	hifn_encrypt_aes_ecb,
2336 			.decrypt	=	hifn_decrypt_aes_ecb,
2337 		},
2338 	},
2339 	{
2340 		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2341 		.skcipher = {
2342 			.ivsize		=	HIFN_AES_IV_LENGTH,
2343 			.min_keysize	=	AES_MIN_KEY_SIZE,
2344 			.max_keysize	=	AES_MAX_KEY_SIZE,
2345 			.setkey		=	hifn_setkey,
2346 			.encrypt	=	hifn_encrypt_aes_cbc,
2347 			.decrypt	=	hifn_decrypt_aes_cbc,
2348 		},
2349 	},
2350 	{
2351 		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2352 		.skcipher = {
2353 			.min_keysize	=	AES_MIN_KEY_SIZE,
2354 			.max_keysize	=	AES_MAX_KEY_SIZE,
2355 			.setkey		=	hifn_setkey,
2356 			.encrypt	=	hifn_encrypt_aes_cfb,
2357 			.decrypt	=	hifn_decrypt_aes_cfb,
2358 		},
2359 	},
2360 	{
2361 		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2362 		.skcipher = {
2363 			.min_keysize	=	AES_MIN_KEY_SIZE,
2364 			.max_keysize	=	AES_MAX_KEY_SIZE,
2365 			.setkey		=	hifn_setkey,
2366 			.encrypt	=	hifn_encrypt_aes_ofb,
2367 			.decrypt	=	hifn_decrypt_aes_ofb,
2368 		},
2369 	},
2370 };
2371 
2372 static int hifn_init_tfm(struct crypto_skcipher *tfm)
2373 {
2374 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2375 	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2376 	struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2377 
2378 	ctx->dev = ha->dev;
2379 	crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2380 
2381 	return 0;
2382 }
2383 
2384 static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2385 {
2386 	struct hifn_crypto_alg *alg;
2387 	int err;
2388 
2389 	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2390 	if (!alg)
2391 		return -ENOMEM;
2392 
2393 	alg->alg = t->skcipher;
2394 	alg->alg.init = hifn_init_tfm;
2395 
2396 	snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2397 	snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2398 		 t->drv_name, dev->name);
2399 
2400 	alg->alg.base.cra_priority = 300;
2401 	alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2402 	alg->alg.base.cra_blocksize = t->bsize;
2403 	alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2404 	alg->alg.base.cra_alignmask = 0;
2405 	alg->alg.base.cra_module = THIS_MODULE;
2406 
2407 	alg->dev = dev;
2408 
2409 	list_add_tail(&alg->entry, &dev->alg_list);
2410 
2411 	err = crypto_register_skcipher(&alg->alg);
2412 	if (err) {
2413 		list_del(&alg->entry);
2414 		kfree(alg);
2415 	}
2416 
2417 	return err;
2418 }
2419 
2420 static void hifn_unregister_alg(struct hifn_device *dev)
2421 {
2422 	struct hifn_crypto_alg *a, *n;
2423 
2424 	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2425 		list_del(&a->entry);
2426 		crypto_unregister_skcipher(&a->alg);
2427 		kfree(a);
2428 	}
2429 }
2430 
2431 static int hifn_register_alg(struct hifn_device *dev)
2432 {
2433 	int i, err;
2434 
2435 	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2436 		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2437 		if (err)
2438 			goto err_out_exit;
2439 	}
2440 
2441 	return 0;
2442 
2443 err_out_exit:
2444 	hifn_unregister_alg(dev);
2445 	return err;
2446 }
2447 
2448 static void hifn_tasklet_callback(unsigned long data)
2449 {
2450 	struct hifn_device *dev = (struct hifn_device *)data;
2451 
2452 	/*
2453 	 * This is ok to call this without lock being held,
2454 	 * althogh it modifies some parameters used in parallel,
2455 	 * (like dev->success), but they are used in process
2456 	 * context or update is atomic (like setting dev->sa[i] to NULL).
2457 	 */
2458 	hifn_clear_rings(dev, 0);
2459 
2460 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2461 		hifn_process_queue(dev);
2462 }
2463 
2464 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2465 {
2466 	int err, i;
2467 	struct hifn_device *dev;
2468 	char name[8];
2469 
2470 	err = pci_enable_device(pdev);
2471 	if (err)
2472 		return err;
2473 	pci_set_master(pdev);
2474 
2475 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2476 	if (err)
2477 		goto err_out_disable_pci_device;
2478 
2479 	snprintf(name, sizeof(name), "hifn%d",
2480 			atomic_inc_return(&hifn_dev_number) - 1);
2481 
2482 	err = pci_request_regions(pdev, name);
2483 	if (err)
2484 		goto err_out_disable_pci_device;
2485 
2486 	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2487 	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2488 	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2489 		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2490 		err = -ENODEV;
2491 		goto err_out_free_regions;
2492 	}
2493 
2494 	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2495 			GFP_KERNEL);
2496 	if (!dev) {
2497 		err = -ENOMEM;
2498 		goto err_out_free_regions;
2499 	}
2500 
2501 	INIT_LIST_HEAD(&dev->alg_list);
2502 
2503 	snprintf(dev->name, sizeof(dev->name), "%s", name);
2504 	spin_lock_init(&dev->lock);
2505 
2506 	for (i = 0; i < 3; ++i) {
2507 		unsigned long addr, size;
2508 
2509 		addr = pci_resource_start(pdev, i);
2510 		size = pci_resource_len(pdev, i);
2511 
2512 		dev->bar[i] = ioremap(addr, size);
2513 		if (!dev->bar[i]) {
2514 			err = -ENOMEM;
2515 			goto err_out_unmap_bars;
2516 		}
2517 	}
2518 
2519 	dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2520 					    sizeof(struct hifn_dma),
2521 					    &dev->desc_dma, GFP_KERNEL);
2522 	if (!dev->desc_virt) {
2523 		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2524 		err = -ENOMEM;
2525 		goto err_out_unmap_bars;
2526 	}
2527 
2528 	dev->pdev = pdev;
2529 	dev->irq = pdev->irq;
2530 
2531 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2532 		dev->sa[i] = NULL;
2533 
2534 	pci_set_drvdata(pdev, dev);
2535 
2536 	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2537 
2538 	crypto_init_queue(&dev->queue, 1);
2539 
2540 	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2541 	if (err) {
2542 		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2543 			dev->irq, err);
2544 		dev->irq = 0;
2545 		goto err_out_free_desc;
2546 	}
2547 
2548 	err = hifn_start_device(dev);
2549 	if (err)
2550 		goto err_out_free_irq;
2551 
2552 	err = hifn_register_rng(dev);
2553 	if (err)
2554 		goto err_out_stop_device;
2555 
2556 	err = hifn_register_alg(dev);
2557 	if (err)
2558 		goto err_out_unregister_rng;
2559 
2560 	INIT_DELAYED_WORK(&dev->work, hifn_work);
2561 	schedule_delayed_work(&dev->work, HZ);
2562 
2563 	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2564 		"successfully registered as %s.\n",
2565 		pci_name(pdev), dev->name);
2566 
2567 	return 0;
2568 
2569 err_out_unregister_rng:
2570 	hifn_unregister_rng(dev);
2571 err_out_stop_device:
2572 	hifn_reset_dma(dev, 1);
2573 	hifn_stop_device(dev);
2574 err_out_free_irq:
2575 	free_irq(dev->irq, dev);
2576 	tasklet_kill(&dev->tasklet);
2577 err_out_free_desc:
2578 	dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2579 			  dev->desc_dma);
2580 
2581 err_out_unmap_bars:
2582 	for (i = 0; i < 3; ++i)
2583 		if (dev->bar[i])
2584 			iounmap(dev->bar[i]);
2585 	kfree(dev);
2586 
2587 err_out_free_regions:
2588 	pci_release_regions(pdev);
2589 
2590 err_out_disable_pci_device:
2591 	pci_disable_device(pdev);
2592 
2593 	return err;
2594 }
2595 
2596 static void hifn_remove(struct pci_dev *pdev)
2597 {
2598 	int i;
2599 	struct hifn_device *dev;
2600 
2601 	dev = pci_get_drvdata(pdev);
2602 
2603 	if (dev) {
2604 		cancel_delayed_work_sync(&dev->work);
2605 
2606 		hifn_unregister_rng(dev);
2607 		hifn_unregister_alg(dev);
2608 		hifn_reset_dma(dev, 1);
2609 		hifn_stop_device(dev);
2610 
2611 		free_irq(dev->irq, dev);
2612 		tasklet_kill(&dev->tasklet);
2613 
2614 		hifn_flush(dev);
2615 
2616 		dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2617 				  dev->desc_virt, dev->desc_dma);
2618 		for (i = 0; i < 3; ++i)
2619 			if (dev->bar[i])
2620 				iounmap(dev->bar[i]);
2621 
2622 		kfree(dev);
2623 	}
2624 
2625 	pci_release_regions(pdev);
2626 	pci_disable_device(pdev);
2627 }
2628 
2629 static struct pci_device_id hifn_pci_tbl[] = {
2630 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2631 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2632 	{ 0 }
2633 };
2634 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2635 
2636 static struct pci_driver hifn_pci_driver = {
2637 	.name     = "hifn795x",
2638 	.id_table = hifn_pci_tbl,
2639 	.probe    = hifn_probe,
2640 	.remove   = hifn_remove,
2641 };
2642 
2643 static int __init hifn_init(void)
2644 {
2645 	unsigned int freq;
2646 	int err;
2647 
2648 	if (strncmp(hifn_pll_ref, "ext", 3) &&
2649 	    strncmp(hifn_pll_ref, "pci", 3)) {
2650 		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2651 		return -EINVAL;
2652 	}
2653 
2654 	/*
2655 	 * For the 7955/7956 the reference clock frequency must be in the
2656 	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2657 	 * but this chip is currently not supported.
2658 	 */
2659 	if (hifn_pll_ref[3] != '\0') {
2660 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2661 		if (freq < 20 || freq > 100) {
2662 			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2663 			       "be in the range of 20-100");
2664 			return -EINVAL;
2665 		}
2666 	}
2667 
2668 	err = pci_register_driver(&hifn_pci_driver);
2669 	if (err < 0) {
2670 		pr_err("Failed to register PCI driver for %s device.\n",
2671 		       hifn_pci_driver.name);
2672 		return -ENODEV;
2673 	}
2674 
2675 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2676 		"has been successfully registered.\n");
2677 
2678 	return 0;
2679 }
2680 
2681 static void __exit hifn_fini(void)
2682 {
2683 	pci_unregister_driver(&hifn_pci_driver);
2684 
2685 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2686 		"has been successfully unregistered.\n");
2687 }
2688 
2689 module_init(hifn_init);
2690 module_exit(hifn_fini);
2691 
2692 MODULE_LICENSE("GPL");
2693 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2694 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2695