1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru> 4 * All rights reserved. 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/moduleparam.h> 10 #include <linux/mod_devicetable.h> 11 #include <linux/interrupt.h> 12 #include <linux/pci.h> 13 #include <linux/slab.h> 14 #include <linux/delay.h> 15 #include <linux/mm.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/scatterlist.h> 18 #include <linux/highmem.h> 19 #include <linux/crypto.h> 20 #include <linux/hw_random.h> 21 #include <linux/ktime.h> 22 23 #include <crypto/algapi.h> 24 #include <crypto/des.h> 25 26 static char hifn_pll_ref[sizeof("extNNN")] = "ext"; 27 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444); 28 MODULE_PARM_DESC(hifn_pll_ref, 29 "PLL reference clock (pci[freq] or ext[freq], default ext)"); 30 31 static atomic_t hifn_dev_number; 32 33 #define ACRYPTO_OP_DECRYPT 0 34 #define ACRYPTO_OP_ENCRYPT 1 35 #define ACRYPTO_OP_HMAC 2 36 #define ACRYPTO_OP_RNG 3 37 38 #define ACRYPTO_MODE_ECB 0 39 #define ACRYPTO_MODE_CBC 1 40 #define ACRYPTO_MODE_CFB 2 41 #define ACRYPTO_MODE_OFB 3 42 43 #define ACRYPTO_TYPE_AES_128 0 44 #define ACRYPTO_TYPE_AES_192 1 45 #define ACRYPTO_TYPE_AES_256 2 46 #define ACRYPTO_TYPE_3DES 3 47 #define ACRYPTO_TYPE_DES 4 48 49 #define PCI_VENDOR_ID_HIFN 0x13A3 50 #define PCI_DEVICE_ID_HIFN_7955 0x0020 51 #define PCI_DEVICE_ID_HIFN_7956 0x001d 52 53 /* I/O region sizes */ 54 55 #define HIFN_BAR0_SIZE 0x1000 56 #define HIFN_BAR1_SIZE 0x2000 57 #define HIFN_BAR2_SIZE 0x8000 58 59 /* DMA registres */ 60 61 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */ 62 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */ 63 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */ 64 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */ 65 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */ 66 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */ 67 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */ 68 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */ 69 #define HIFN_CHIP_ID 0x98 /* Chip ID */ 70 71 /* 72 * Processing Unit Registers (offset from BASEREG0) 73 */ 74 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */ 75 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */ 76 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */ 77 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */ 78 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */ 79 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */ 80 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */ 81 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */ 82 #define HIFN_0_SPACESIZE 0x20 /* Register space size */ 83 84 /* Processing Unit Control Register (HIFN_0_PUCTRL) */ 85 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */ 86 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */ 87 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */ 88 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */ 89 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */ 90 91 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */ 92 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */ 93 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */ 94 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 95 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 96 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */ 97 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */ 98 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */ 99 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */ 100 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */ 101 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */ 102 103 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */ 104 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */ 105 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */ 106 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */ 107 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */ 108 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */ 109 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */ 110 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */ 111 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */ 112 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */ 113 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */ 114 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */ 115 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */ 116 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */ 117 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */ 118 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */ 119 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */ 120 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */ 121 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */ 122 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */ 123 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */ 124 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */ 125 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */ 126 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */ 127 128 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */ 129 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */ 130 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */ 131 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 132 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 133 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */ 134 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */ 135 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */ 136 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */ 137 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */ 138 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */ 139 140 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */ 141 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */ 142 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */ 143 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 144 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 145 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */ 146 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */ 147 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */ 148 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */ 149 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */ 150 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */ 151 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */ 152 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */ 153 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */ 154 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */ 155 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */ 156 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */ 157 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */ 158 159 /* FIFO Status Register (HIFN_0_FIFOSTAT) */ 160 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */ 161 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */ 162 163 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */ 164 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */ 165 166 /* 167 * DMA Interface Registers (offset from BASEREG1) 168 */ 169 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */ 170 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */ 171 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */ 172 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */ 173 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */ 174 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */ 175 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */ 176 #define HIFN_1_PLL 0x4c /* 795x: PLL config */ 177 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */ 178 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */ 179 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */ 180 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */ 181 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */ 182 #define HIFN_1_REVID 0x98 /* Revision ID */ 183 #define HIFN_1_UNLOCK_SECRET1 0xf4 184 #define HIFN_1_UNLOCK_SECRET2 0xfc 185 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */ 186 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */ 187 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */ 188 #define HIFN_1_PUB_OP 0x308 /* Public Operand */ 189 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */ 190 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */ 191 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */ 192 #define HIFN_1_RNG_DATA 0x318 /* RNG data */ 193 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */ 194 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */ 195 196 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */ 197 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */ 198 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */ 199 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */ 200 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */ 201 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */ 202 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */ 203 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */ 204 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */ 205 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */ 206 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */ 207 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */ 208 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */ 209 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */ 210 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 211 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */ 212 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */ 213 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */ 214 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */ 215 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */ 216 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */ 217 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */ 218 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */ 219 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 220 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */ 221 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */ 222 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */ 223 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */ 224 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */ 225 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */ 226 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */ 227 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */ 228 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */ 229 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 230 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */ 231 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */ 232 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */ 233 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */ 234 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */ 235 236 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */ 237 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */ 238 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */ 239 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */ 240 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */ 241 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */ 242 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 243 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */ 244 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */ 245 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */ 246 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */ 247 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 248 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */ 249 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */ 250 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */ 251 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */ 252 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */ 253 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 254 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */ 255 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */ 256 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */ 257 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */ 258 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */ 259 260 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */ 261 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */ 262 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */ 263 #define HIFN_DMACNFG_UNLOCK 0x00000800 264 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */ 265 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */ 266 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */ 267 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */ 268 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */ 269 270 /* PLL configuration register */ 271 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */ 272 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */ 273 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */ 274 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */ 275 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */ 276 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */ 277 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */ 278 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */ 279 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */ 280 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */ 281 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */ 282 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */ 283 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */ 284 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */ 285 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */ 286 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */ 287 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */ 288 289 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */ 290 291 /* Public key reset register (HIFN_1_PUB_RESET) */ 292 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */ 293 294 /* Public base address register (HIFN_1_PUB_BASE) */ 295 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */ 296 297 /* Public operand length register (HIFN_1_PUB_OPLEN) */ 298 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */ 299 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */ 300 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */ 301 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */ 302 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */ 303 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */ 304 305 /* Public operation register (HIFN_1_PUB_OP) */ 306 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */ 307 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */ 308 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */ 309 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */ 310 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */ 311 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */ 312 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */ 313 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */ 314 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */ 315 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */ 316 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */ 317 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */ 318 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */ 319 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */ 320 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */ 321 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */ 322 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */ 323 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */ 324 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */ 325 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */ 326 327 /* Public status register (HIFN_1_PUB_STATUS) */ 328 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */ 329 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */ 330 331 /* Public interrupt enable register (HIFN_1_PUB_IEN) */ 332 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */ 333 334 /* Random number generator config register (HIFN_1_RNG_CONFIG) */ 335 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */ 336 337 #define HIFN_NAMESIZE 32 338 #define HIFN_MAX_RESULT_ORDER 5 339 340 #define HIFN_D_CMD_RSIZE (24 * 1) 341 #define HIFN_D_SRC_RSIZE (80 * 1) 342 #define HIFN_D_DST_RSIZE (80 * 1) 343 #define HIFN_D_RES_RSIZE (24 * 1) 344 345 #define HIFN_D_DST_DALIGN 4 346 347 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1) 348 349 #define AES_MIN_KEY_SIZE 16 350 #define AES_MAX_KEY_SIZE 32 351 352 #define HIFN_DES_KEY_LENGTH 8 353 #define HIFN_3DES_KEY_LENGTH 24 354 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE 355 #define HIFN_IV_LENGTH 8 356 #define HIFN_AES_IV_LENGTH 16 357 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH 358 359 #define HIFN_MAC_KEY_LENGTH 64 360 #define HIFN_MD5_LENGTH 16 361 #define HIFN_SHA1_LENGTH 20 362 #define HIFN_MAC_TRUNC_LENGTH 12 363 364 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260) 365 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4) 366 #define HIFN_USED_RESULT 12 367 368 struct hifn_desc { 369 volatile __le32 l; 370 volatile __le32 p; 371 }; 372 373 struct hifn_dma { 374 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1]; 375 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1]; 376 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1]; 377 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1]; 378 379 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND]; 380 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT]; 381 382 /* 383 * Our current positions for insertion and removal from the descriptor 384 * rings. 385 */ 386 volatile int cmdi, srci, dsti, resi; 387 volatile int cmdu, srcu, dstu, resu; 388 int cmdk, srck, dstk, resk; 389 }; 390 391 #define HIFN_FLAG_CMD_BUSY (1 << 0) 392 #define HIFN_FLAG_SRC_BUSY (1 << 1) 393 #define HIFN_FLAG_DST_BUSY (1 << 2) 394 #define HIFN_FLAG_RES_BUSY (1 << 3) 395 #define HIFN_FLAG_OLD_KEY (1 << 4) 396 397 #define HIFN_DEFAULT_ACTIVE_NUM 5 398 399 struct hifn_device { 400 char name[HIFN_NAMESIZE]; 401 402 int irq; 403 404 struct pci_dev *pdev; 405 void __iomem *bar[3]; 406 407 void *desc_virt; 408 dma_addr_t desc_dma; 409 410 u32 dmareg; 411 412 void *sa[HIFN_D_RES_RSIZE]; 413 414 spinlock_t lock; 415 416 u32 flags; 417 int active, started; 418 struct delayed_work work; 419 unsigned long reset; 420 unsigned long success; 421 unsigned long prev_success; 422 423 u8 snum; 424 425 struct tasklet_struct tasklet; 426 427 struct crypto_queue queue; 428 struct list_head alg_list; 429 430 unsigned int pk_clk_freq; 431 432 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 433 unsigned int rng_wait_time; 434 ktime_t rngtime; 435 struct hwrng rng; 436 #endif 437 }; 438 439 #define HIFN_D_LENGTH 0x0000ffff 440 #define HIFN_D_NOINVALID 0x01000000 441 #define HIFN_D_MASKDONEIRQ 0x02000000 442 #define HIFN_D_DESTOVER 0x04000000 443 #define HIFN_D_OVER 0x08000000 444 #define HIFN_D_LAST 0x20000000 445 #define HIFN_D_JUMP 0x40000000 446 #define HIFN_D_VALID 0x80000000 447 448 struct hifn_base_command { 449 volatile __le16 masks; 450 volatile __le16 session_num; 451 volatile __le16 total_source_count; 452 volatile __le16 total_dest_count; 453 }; 454 455 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */ 456 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */ 457 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */ 458 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */ 459 #define HIFN_BASE_CMD_DECODE 0x2000 460 #define HIFN_BASE_CMD_SRCLEN_M 0xc000 461 #define HIFN_BASE_CMD_SRCLEN_S 14 462 #define HIFN_BASE_CMD_DSTLEN_M 0x3000 463 #define HIFN_BASE_CMD_DSTLEN_S 12 464 #define HIFN_BASE_CMD_LENMASK_HI 0x30000 465 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff 466 467 /* 468 * Structure to help build up the command data structure. 469 */ 470 struct hifn_crypt_command { 471 volatile __le16 masks; 472 volatile __le16 header_skip; 473 volatile __le16 source_count; 474 volatile __le16 reserved; 475 }; 476 477 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */ 478 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */ 479 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */ 480 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */ 481 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */ 482 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */ 483 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */ 484 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */ 485 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */ 486 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */ 487 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */ 488 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */ 489 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */ 490 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */ 491 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */ 492 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */ 493 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */ 494 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000 495 #define HIFN_CRYPT_CMD_SRCLEN_S 14 496 497 /* 498 * Structure to help build up the command data structure. 499 */ 500 struct hifn_mac_command { 501 volatile __le16 masks; 502 volatile __le16 header_skip; 503 volatile __le16 source_count; 504 volatile __le16 reserved; 505 }; 506 507 #define HIFN_MAC_CMD_ALG_MASK 0x0001 508 #define HIFN_MAC_CMD_ALG_SHA1 0x0000 509 #define HIFN_MAC_CMD_ALG_MD5 0x0001 510 #define HIFN_MAC_CMD_MODE_MASK 0x000c 511 #define HIFN_MAC_CMD_MODE_HMAC 0x0000 512 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004 513 #define HIFN_MAC_CMD_MODE_HASH 0x0008 514 #define HIFN_MAC_CMD_MODE_FULL 0x0004 515 #define HIFN_MAC_CMD_TRUNC 0x0010 516 #define HIFN_MAC_CMD_RESULT 0x0020 517 #define HIFN_MAC_CMD_APPEND 0x0040 518 #define HIFN_MAC_CMD_SRCLEN_M 0xc000 519 #define HIFN_MAC_CMD_SRCLEN_S 14 520 521 /* 522 * MAC POS IPsec initiates authentication after encryption on encodes 523 * and before decryption on decodes. 524 */ 525 #define HIFN_MAC_CMD_POS_IPSEC 0x0200 526 #define HIFN_MAC_CMD_NEW_KEY 0x0800 527 528 struct hifn_comp_command { 529 volatile __le16 masks; 530 volatile __le16 header_skip; 531 volatile __le16 source_count; 532 volatile __le16 reserved; 533 }; 534 535 #define HIFN_COMP_CMD_SRCLEN_M 0xc000 536 #define HIFN_COMP_CMD_SRCLEN_S 14 537 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */ 538 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */ 539 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */ 540 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */ 541 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */ 542 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */ 543 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */ 544 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */ 545 546 struct hifn_base_result { 547 volatile __le16 flags; 548 volatile __le16 session; 549 volatile __le16 src_cnt; /* 15:0 of source count */ 550 volatile __le16 dst_cnt; /* 15:0 of dest count */ 551 }; 552 553 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */ 554 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */ 555 #define HIFN_BASE_RES_SRCLEN_S 14 556 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */ 557 #define HIFN_BASE_RES_DSTLEN_S 12 558 559 struct hifn_comp_result { 560 volatile __le16 flags; 561 volatile __le16 crc; 562 }; 563 564 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */ 565 #define HIFN_COMP_RES_LCB_S 8 566 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */ 567 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */ 568 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */ 569 570 struct hifn_mac_result { 571 volatile __le16 flags; 572 volatile __le16 reserved; 573 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */ 574 }; 575 576 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */ 577 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */ 578 579 struct hifn_crypt_result { 580 volatile __le16 flags; 581 volatile __le16 reserved; 582 }; 583 584 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */ 585 586 #ifndef HIFN_POLL_FREQUENCY 587 #define HIFN_POLL_FREQUENCY 0x1 588 #endif 589 590 #ifndef HIFN_POLL_SCALAR 591 #define HIFN_POLL_SCALAR 0x0 592 #endif 593 594 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */ 595 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */ 596 597 struct hifn_crypto_alg { 598 struct list_head entry; 599 struct crypto_alg alg; 600 struct hifn_device *dev; 601 }; 602 603 #define ASYNC_SCATTERLIST_CACHE 16 604 605 #define ASYNC_FLAGS_MISALIGNED (1 << 0) 606 607 struct hifn_cipher_walk { 608 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE]; 609 u32 flags; 610 int num; 611 }; 612 613 struct hifn_context { 614 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH]; 615 struct hifn_device *dev; 616 unsigned int keysize; 617 }; 618 619 struct hifn_request_context { 620 u8 *iv; 621 unsigned int ivsize; 622 u8 op, type, mode, unused; 623 struct hifn_cipher_walk walk; 624 }; 625 626 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg) 627 628 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg) 629 { 630 return readl(dev->bar[0] + reg); 631 } 632 633 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg) 634 { 635 return readl(dev->bar[1] + reg); 636 } 637 638 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val) 639 { 640 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg); 641 } 642 643 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val) 644 { 645 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg); 646 } 647 648 static void hifn_wait_puc(struct hifn_device *dev) 649 { 650 int i; 651 u32 ret; 652 653 for (i = 10000; i > 0; --i) { 654 ret = hifn_read_0(dev, HIFN_0_PUCTRL); 655 if (!(ret & HIFN_PUCTRL_RESET)) 656 break; 657 658 udelay(1); 659 } 660 661 if (!i) 662 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n"); 663 } 664 665 static void hifn_reset_puc(struct hifn_device *dev) 666 { 667 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 668 hifn_wait_puc(dev); 669 } 670 671 static void hifn_stop_device(struct hifn_device *dev) 672 { 673 hifn_write_1(dev, HIFN_1_DMA_CSR, 674 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 675 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS); 676 hifn_write_0(dev, HIFN_0_PUIER, 0); 677 hifn_write_1(dev, HIFN_1_DMA_IER, 0); 678 } 679 680 static void hifn_reset_dma(struct hifn_device *dev, int full) 681 { 682 hifn_stop_device(dev); 683 684 /* 685 * Setting poll frequency and others to 0. 686 */ 687 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 688 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 689 mdelay(1); 690 691 /* 692 * Reset DMA. 693 */ 694 if (full) { 695 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE); 696 mdelay(1); 697 } else { 698 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE | 699 HIFN_DMACNFG_MSTRESET); 700 hifn_reset_puc(dev); 701 } 702 703 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 704 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 705 706 hifn_reset_puc(dev); 707 } 708 709 static u32 hifn_next_signature(u32 a, u_int cnt) 710 { 711 int i; 712 u32 v; 713 714 for (i = 0; i < cnt; i++) { 715 /* get the parity */ 716 v = a & 0x80080125; 717 v ^= v >> 16; 718 v ^= v >> 8; 719 v ^= v >> 4; 720 v ^= v >> 2; 721 v ^= v >> 1; 722 723 a = (v & 1) ^ (a << 1); 724 } 725 726 return a; 727 } 728 729 static struct pci2id { 730 u_short pci_vendor; 731 u_short pci_prod; 732 char card_id[13]; 733 } pci2id[] = { 734 { 735 PCI_VENDOR_ID_HIFN, 736 PCI_DEVICE_ID_HIFN_7955, 737 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 738 0x00, 0x00, 0x00, 0x00, 0x00 } 739 }, 740 { 741 PCI_VENDOR_ID_HIFN, 742 PCI_DEVICE_ID_HIFN_7956, 743 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 744 0x00, 0x00, 0x00, 0x00, 0x00 } 745 } 746 }; 747 748 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 749 static int hifn_rng_data_present(struct hwrng *rng, int wait) 750 { 751 struct hifn_device *dev = (struct hifn_device *)rng->priv; 752 s64 nsec; 753 754 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime)); 755 nsec -= dev->rng_wait_time; 756 if (nsec <= 0) 757 return 1; 758 if (!wait) 759 return 0; 760 ndelay(nsec); 761 return 1; 762 } 763 764 static int hifn_rng_data_read(struct hwrng *rng, u32 *data) 765 { 766 struct hifn_device *dev = (struct hifn_device *)rng->priv; 767 768 *data = hifn_read_1(dev, HIFN_1_RNG_DATA); 769 dev->rngtime = ktime_get(); 770 return 4; 771 } 772 773 static int hifn_register_rng(struct hifn_device *dev) 774 { 775 /* 776 * We must wait at least 256 Pk_clk cycles between two reads of the rng. 777 */ 778 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC, 779 dev->pk_clk_freq) * 256; 780 781 dev->rng.name = dev->name; 782 dev->rng.data_present = hifn_rng_data_present, 783 dev->rng.data_read = hifn_rng_data_read, 784 dev->rng.priv = (unsigned long)dev; 785 786 return hwrng_register(&dev->rng); 787 } 788 789 static void hifn_unregister_rng(struct hifn_device *dev) 790 { 791 hwrng_unregister(&dev->rng); 792 } 793 #else 794 #define hifn_register_rng(dev) 0 795 #define hifn_unregister_rng(dev) 796 #endif 797 798 static int hifn_init_pubrng(struct hifn_device *dev) 799 { 800 int i; 801 802 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) | 803 HIFN_PUBRST_RESET); 804 805 for (i = 100; i > 0; --i) { 806 mdelay(1); 807 808 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0) 809 break; 810 } 811 812 if (!i) { 813 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n"); 814 } else { 815 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE); 816 dev->dmareg |= HIFN_DMAIER_PUBDONE; 817 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 818 819 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n"); 820 } 821 822 /* Enable RNG engine. */ 823 824 hifn_write_1(dev, HIFN_1_RNG_CONFIG, 825 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA); 826 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n"); 827 828 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 829 /* First value must be discarded */ 830 hifn_read_1(dev, HIFN_1_RNG_DATA); 831 dev->rngtime = ktime_get(); 832 #endif 833 return 0; 834 } 835 836 static int hifn_enable_crypto(struct hifn_device *dev) 837 { 838 u32 dmacfg, addr; 839 char *offtbl = NULL; 840 int i; 841 842 for (i = 0; i < ARRAY_SIZE(pci2id); i++) { 843 if (pci2id[i].pci_vendor == dev->pdev->vendor && 844 pci2id[i].pci_prod == dev->pdev->device) { 845 offtbl = pci2id[i].card_id; 846 break; 847 } 848 } 849 850 if (!offtbl) { 851 dev_err(&dev->pdev->dev, "Unknown card!\n"); 852 return -ENODEV; 853 } 854 855 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG); 856 857 hifn_write_1(dev, HIFN_1_DMA_CNFG, 858 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET | 859 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 860 mdelay(1); 861 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1); 862 mdelay(1); 863 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0); 864 mdelay(1); 865 866 for (i = 0; i < 12; ++i) { 867 addr = hifn_next_signature(addr, offtbl[i] + 0x101); 868 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr); 869 870 mdelay(1); 871 } 872 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg); 873 874 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev)); 875 876 return 0; 877 } 878 879 static void hifn_init_dma(struct hifn_device *dev) 880 { 881 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 882 u32 dptr = dev->desc_dma; 883 int i; 884 885 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i) 886 dma->cmdr[i].p = __cpu_to_le32(dptr + 887 offsetof(struct hifn_dma, command_bufs[i][0])); 888 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) 889 dma->resr[i].p = __cpu_to_le32(dptr + 890 offsetof(struct hifn_dma, result_bufs[i][0])); 891 892 /* Setup LAST descriptors. */ 893 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr + 894 offsetof(struct hifn_dma, cmdr[0])); 895 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr + 896 offsetof(struct hifn_dma, srcr[0])); 897 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr + 898 offsetof(struct hifn_dma, dstr[0])); 899 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr + 900 offsetof(struct hifn_dma, resr[0])); 901 902 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0; 903 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0; 904 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0; 905 } 906 907 /* 908 * Initialize the PLL. We need to know the frequency of the reference clock 909 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that 910 * allows us to operate without the risk of overclocking the chip. If it 911 * actually uses 33MHz, the chip will operate at half the speed, this can be 912 * overridden by specifying the frequency as module parameter (pci33). 913 * 914 * Unfortunately the PCI clock is not very suitable since the HIFN needs a 915 * stable clock and the PCI clock frequency may vary, so the default is the 916 * external clock. There is no way to find out its frequency, we default to 917 * 66MHz since according to Mike Ham of HiFn, almost every board in existence 918 * has an external crystal populated at 66MHz. 919 */ 920 static void hifn_init_pll(struct hifn_device *dev) 921 { 922 unsigned int freq, m; 923 u32 pllcfg; 924 925 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1; 926 927 if (strncmp(hifn_pll_ref, "ext", 3) == 0) 928 pllcfg |= HIFN_PLL_REF_CLK_PLL; 929 else 930 pllcfg |= HIFN_PLL_REF_CLK_HBI; 931 932 if (hifn_pll_ref[3] != '\0') 933 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); 934 else { 935 freq = 66; 936 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n", 937 freq, hifn_pll_ref); 938 } 939 940 m = HIFN_PLL_FCK_MAX / freq; 941 942 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT; 943 if (m <= 8) 944 pllcfg |= HIFN_PLL_IS_1_8; 945 else 946 pllcfg |= HIFN_PLL_IS_9_12; 947 948 /* Select clock source and enable clock bypass */ 949 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 950 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP); 951 952 /* Let the chip lock to the input clock */ 953 mdelay(10); 954 955 /* Disable clock bypass */ 956 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 957 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI); 958 959 /* Switch the engines to the PLL */ 960 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 961 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL); 962 963 /* 964 * The Fpk_clk runs at half the total speed. Its frequency is needed to 965 * calculate the minimum time between two reads of the rng. Since 33MHz 966 * is actually 33.333... we overestimate the frequency here, resulting 967 * in slightly larger intervals. 968 */ 969 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2; 970 } 971 972 static void hifn_init_registers(struct hifn_device *dev) 973 { 974 u32 dptr = dev->desc_dma; 975 976 /* Initialization magic... */ 977 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 978 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD); 979 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER); 980 981 /* write all 4 ring address registers */ 982 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr + 983 offsetof(struct hifn_dma, cmdr[0])); 984 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr + 985 offsetof(struct hifn_dma, srcr[0])); 986 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr + 987 offsetof(struct hifn_dma, dstr[0])); 988 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr + 989 offsetof(struct hifn_dma, resr[0])); 990 991 mdelay(2); 992 #if 0 993 hifn_write_1(dev, HIFN_1_DMA_CSR, 994 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 995 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS | 996 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 997 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 998 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 999 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 1000 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 1001 HIFN_DMACSR_S_WAIT | 1002 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 1003 HIFN_DMACSR_C_WAIT | 1004 HIFN_DMACSR_ENGINE | 1005 HIFN_DMACSR_PUBDONE); 1006 #else 1007 hifn_write_1(dev, HIFN_1_DMA_CSR, 1008 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA | 1009 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA | 1010 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 1011 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 1012 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 1013 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 1014 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 1015 HIFN_DMACSR_S_WAIT | 1016 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 1017 HIFN_DMACSR_C_WAIT | 1018 HIFN_DMACSR_ENGINE | 1019 HIFN_DMACSR_PUBDONE); 1020 #endif 1021 hifn_read_1(dev, HIFN_1_DMA_CSR); 1022 1023 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT | 1024 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER | 1025 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT | 1026 HIFN_DMAIER_ENGINE; 1027 dev->dmareg &= ~HIFN_DMAIER_C_WAIT; 1028 1029 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1030 hifn_read_1(dev, HIFN_1_DMA_IER); 1031 #if 0 1032 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG | 1033 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES | 1034 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 | 1035 HIFN_PUCNFG_DRAM); 1036 #else 1037 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342); 1038 #endif 1039 hifn_init_pll(dev); 1040 1041 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 1042 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 1043 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST | 1044 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) | 1045 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL)); 1046 } 1047 1048 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf, 1049 unsigned dlen, unsigned slen, u16 mask, u8 snum) 1050 { 1051 struct hifn_base_command *base_cmd; 1052 u8 *buf_pos = buf; 1053 1054 base_cmd = (struct hifn_base_command *)buf_pos; 1055 base_cmd->masks = __cpu_to_le16(mask); 1056 base_cmd->total_source_count = 1057 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO); 1058 base_cmd->total_dest_count = 1059 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO); 1060 1061 dlen >>= 16; 1062 slen >>= 16; 1063 base_cmd->session_num = __cpu_to_le16(snum | 1064 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) | 1065 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M)); 1066 1067 return sizeof(struct hifn_base_command); 1068 } 1069 1070 static int hifn_setup_crypto_command(struct hifn_device *dev, 1071 u8 *buf, unsigned dlen, unsigned slen, 1072 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode) 1073 { 1074 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1075 struct hifn_crypt_command *cry_cmd; 1076 u8 *buf_pos = buf; 1077 u16 cmd_len; 1078 1079 cry_cmd = (struct hifn_crypt_command *)buf_pos; 1080 1081 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff); 1082 dlen >>= 16; 1083 cry_cmd->masks = __cpu_to_le16(mode | 1084 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & 1085 HIFN_CRYPT_CMD_SRCLEN_M)); 1086 cry_cmd->header_skip = 0; 1087 cry_cmd->reserved = 0; 1088 1089 buf_pos += sizeof(struct hifn_crypt_command); 1090 1091 dma->cmdu++; 1092 if (dma->cmdu > 1) { 1093 dev->dmareg |= HIFN_DMAIER_C_WAIT; 1094 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1095 } 1096 1097 if (keylen) { 1098 memcpy(buf_pos, key, keylen); 1099 buf_pos += keylen; 1100 } 1101 if (ivsize) { 1102 memcpy(buf_pos, iv, ivsize); 1103 buf_pos += ivsize; 1104 } 1105 1106 cmd_len = buf_pos - buf; 1107 1108 return cmd_len; 1109 } 1110 1111 static int hifn_setup_cmd_desc(struct hifn_device *dev, 1112 struct hifn_context *ctx, struct hifn_request_context *rctx, 1113 void *priv, unsigned int nbytes) 1114 { 1115 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1116 int cmd_len, sa_idx; 1117 u8 *buf, *buf_pos; 1118 u16 mask; 1119 1120 sa_idx = dma->cmdi; 1121 buf_pos = buf = dma->command_bufs[dma->cmdi]; 1122 1123 mask = 0; 1124 switch (rctx->op) { 1125 case ACRYPTO_OP_DECRYPT: 1126 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE; 1127 break; 1128 case ACRYPTO_OP_ENCRYPT: 1129 mask = HIFN_BASE_CMD_CRYPT; 1130 break; 1131 case ACRYPTO_OP_HMAC: 1132 mask = HIFN_BASE_CMD_MAC; 1133 break; 1134 default: 1135 goto err_out; 1136 } 1137 1138 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes, 1139 nbytes, mask, dev->snum); 1140 1141 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) { 1142 u16 md = 0; 1143 1144 if (ctx->keysize) 1145 md |= HIFN_CRYPT_CMD_NEW_KEY; 1146 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB) 1147 md |= HIFN_CRYPT_CMD_NEW_IV; 1148 1149 switch (rctx->mode) { 1150 case ACRYPTO_MODE_ECB: 1151 md |= HIFN_CRYPT_CMD_MODE_ECB; 1152 break; 1153 case ACRYPTO_MODE_CBC: 1154 md |= HIFN_CRYPT_CMD_MODE_CBC; 1155 break; 1156 case ACRYPTO_MODE_CFB: 1157 md |= HIFN_CRYPT_CMD_MODE_CFB; 1158 break; 1159 case ACRYPTO_MODE_OFB: 1160 md |= HIFN_CRYPT_CMD_MODE_OFB; 1161 break; 1162 default: 1163 goto err_out; 1164 } 1165 1166 switch (rctx->type) { 1167 case ACRYPTO_TYPE_AES_128: 1168 if (ctx->keysize != 16) 1169 goto err_out; 1170 md |= HIFN_CRYPT_CMD_KSZ_128 | 1171 HIFN_CRYPT_CMD_ALG_AES; 1172 break; 1173 case ACRYPTO_TYPE_AES_192: 1174 if (ctx->keysize != 24) 1175 goto err_out; 1176 md |= HIFN_CRYPT_CMD_KSZ_192 | 1177 HIFN_CRYPT_CMD_ALG_AES; 1178 break; 1179 case ACRYPTO_TYPE_AES_256: 1180 if (ctx->keysize != 32) 1181 goto err_out; 1182 md |= HIFN_CRYPT_CMD_KSZ_256 | 1183 HIFN_CRYPT_CMD_ALG_AES; 1184 break; 1185 case ACRYPTO_TYPE_3DES: 1186 if (ctx->keysize != 24) 1187 goto err_out; 1188 md |= HIFN_CRYPT_CMD_ALG_3DES; 1189 break; 1190 case ACRYPTO_TYPE_DES: 1191 if (ctx->keysize != 8) 1192 goto err_out; 1193 md |= HIFN_CRYPT_CMD_ALG_DES; 1194 break; 1195 default: 1196 goto err_out; 1197 } 1198 1199 buf_pos += hifn_setup_crypto_command(dev, buf_pos, 1200 nbytes, nbytes, ctx->key, ctx->keysize, 1201 rctx->iv, rctx->ivsize, md); 1202 } 1203 1204 dev->sa[sa_idx] = priv; 1205 dev->started++; 1206 1207 cmd_len = buf_pos - buf; 1208 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID | 1209 HIFN_D_LAST | HIFN_D_MASKDONEIRQ); 1210 1211 if (++dma->cmdi == HIFN_D_CMD_RSIZE) { 1212 dma->cmdr[dma->cmdi].l = __cpu_to_le32( 1213 HIFN_D_VALID | HIFN_D_LAST | 1214 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP); 1215 dma->cmdi = 0; 1216 } else { 1217 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID); 1218 } 1219 1220 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) { 1221 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA); 1222 dev->flags |= HIFN_FLAG_CMD_BUSY; 1223 } 1224 return 0; 1225 1226 err_out: 1227 return -EINVAL; 1228 } 1229 1230 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page, 1231 unsigned int offset, unsigned int size, int last) 1232 { 1233 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1234 int idx; 1235 dma_addr_t addr; 1236 1237 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE); 1238 1239 idx = dma->srci; 1240 1241 dma->srcr[idx].p = __cpu_to_le32(addr); 1242 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1243 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); 1244 1245 if (++idx == HIFN_D_SRC_RSIZE) { 1246 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1247 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | 1248 (last ? HIFN_D_LAST : 0)); 1249 idx = 0; 1250 } 1251 1252 dma->srci = idx; 1253 dma->srcu++; 1254 1255 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) { 1256 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA); 1257 dev->flags |= HIFN_FLAG_SRC_BUSY; 1258 } 1259 1260 return size; 1261 } 1262 1263 static void hifn_setup_res_desc(struct hifn_device *dev) 1264 { 1265 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1266 1267 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT | 1268 HIFN_D_VALID | HIFN_D_LAST); 1269 /* 1270 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID | 1271 * HIFN_D_LAST); 1272 */ 1273 1274 if (++dma->resi == HIFN_D_RES_RSIZE) { 1275 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID | 1276 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST); 1277 dma->resi = 0; 1278 } 1279 1280 dma->resu++; 1281 1282 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) { 1283 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA); 1284 dev->flags |= HIFN_FLAG_RES_BUSY; 1285 } 1286 } 1287 1288 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page, 1289 unsigned offset, unsigned size, int last) 1290 { 1291 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1292 int idx; 1293 dma_addr_t addr; 1294 1295 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE); 1296 1297 idx = dma->dsti; 1298 dma->dstr[idx].p = __cpu_to_le32(addr); 1299 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1300 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); 1301 1302 if (++idx == HIFN_D_DST_RSIZE) { 1303 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1304 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | 1305 (last ? HIFN_D_LAST : 0)); 1306 idx = 0; 1307 } 1308 dma->dsti = idx; 1309 dma->dstu++; 1310 1311 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) { 1312 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA); 1313 dev->flags |= HIFN_FLAG_DST_BUSY; 1314 } 1315 } 1316 1317 static int hifn_setup_dma(struct hifn_device *dev, 1318 struct hifn_context *ctx, struct hifn_request_context *rctx, 1319 struct scatterlist *src, struct scatterlist *dst, 1320 unsigned int nbytes, void *priv) 1321 { 1322 struct scatterlist *t; 1323 struct page *spage, *dpage; 1324 unsigned int soff, doff; 1325 unsigned int n, len; 1326 1327 n = nbytes; 1328 while (n) { 1329 spage = sg_page(src); 1330 soff = src->offset; 1331 len = min(src->length, n); 1332 1333 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0); 1334 1335 src++; 1336 n -= len; 1337 } 1338 1339 t = &rctx->walk.cache[0]; 1340 n = nbytes; 1341 while (n) { 1342 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1343 BUG_ON(!sg_page(t)); 1344 dpage = sg_page(t); 1345 doff = 0; 1346 len = t->length; 1347 } else { 1348 BUG_ON(!sg_page(dst)); 1349 dpage = sg_page(dst); 1350 doff = dst->offset; 1351 len = dst->length; 1352 } 1353 len = min(len, n); 1354 1355 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0); 1356 1357 dst++; 1358 t++; 1359 n -= len; 1360 } 1361 1362 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes); 1363 hifn_setup_res_desc(dev); 1364 return 0; 1365 } 1366 1367 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w, 1368 int num, gfp_t gfp_flags) 1369 { 1370 int i; 1371 1372 num = min(ASYNC_SCATTERLIST_CACHE, num); 1373 sg_init_table(w->cache, num); 1374 1375 w->num = 0; 1376 for (i = 0; i < num; ++i) { 1377 struct page *page = alloc_page(gfp_flags); 1378 struct scatterlist *s; 1379 1380 if (!page) 1381 break; 1382 1383 s = &w->cache[i]; 1384 1385 sg_set_page(s, page, PAGE_SIZE, 0); 1386 w->num++; 1387 } 1388 1389 return i; 1390 } 1391 1392 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w) 1393 { 1394 int i; 1395 1396 for (i = 0; i < w->num; ++i) { 1397 struct scatterlist *s = &w->cache[i]; 1398 1399 __free_page(sg_page(s)); 1400 1401 s->length = 0; 1402 } 1403 1404 w->num = 0; 1405 } 1406 1407 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst, 1408 unsigned int size, unsigned int *nbytesp) 1409 { 1410 unsigned int copy, drest = *drestp, nbytes = *nbytesp; 1411 int idx = 0; 1412 1413 if (drest < size || size > nbytes) 1414 return -EINVAL; 1415 1416 while (size) { 1417 copy = min3(drest, size, dst->length); 1418 1419 size -= copy; 1420 drest -= copy; 1421 nbytes -= copy; 1422 1423 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n", 1424 __func__, copy, size, drest, nbytes); 1425 1426 dst++; 1427 idx++; 1428 } 1429 1430 *nbytesp = nbytes; 1431 *drestp = drest; 1432 1433 return idx; 1434 } 1435 1436 static int hifn_cipher_walk(struct ablkcipher_request *req, 1437 struct hifn_cipher_walk *w) 1438 { 1439 struct scatterlist *dst, *t; 1440 unsigned int nbytes = req->nbytes, offset, copy, diff; 1441 int idx, tidx, err; 1442 1443 tidx = idx = 0; 1444 offset = 0; 1445 while (nbytes) { 1446 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED)) 1447 return -EINVAL; 1448 1449 dst = &req->dst[idx]; 1450 1451 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n", 1452 __func__, dst->length, dst->offset, offset, nbytes); 1453 1454 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || 1455 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) || 1456 offset) { 1457 unsigned slen = min(dst->length - offset, nbytes); 1458 unsigned dlen = PAGE_SIZE; 1459 1460 t = &w->cache[idx]; 1461 1462 err = ablkcipher_add(&dlen, dst, slen, &nbytes); 1463 if (err < 0) 1464 return err; 1465 1466 idx += err; 1467 1468 copy = slen & ~(HIFN_D_DST_DALIGN - 1); 1469 diff = slen & (HIFN_D_DST_DALIGN - 1); 1470 1471 if (dlen < nbytes) { 1472 /* 1473 * Destination page does not have enough space 1474 * to put there additional blocksized chunk, 1475 * so we mark that page as containing only 1476 * blocksize aligned chunks: 1477 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1)); 1478 * and increase number of bytes to be processed 1479 * in next chunk: 1480 * nbytes += diff; 1481 */ 1482 nbytes += diff; 1483 1484 /* 1485 * Temporary of course... 1486 * Kick author if you will catch this one. 1487 */ 1488 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n", 1489 __func__, dlen, nbytes, slen, offset); 1490 pr_err("%s: please contact author to fix this " 1491 "issue, generally you should not catch " 1492 "this path under any condition but who " 1493 "knows how did you use crypto code.\n" 1494 "Thank you.\n", __func__); 1495 BUG(); 1496 } else { 1497 copy += diff + nbytes; 1498 1499 dst = &req->dst[idx]; 1500 1501 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes); 1502 if (err < 0) 1503 return err; 1504 1505 idx += err; 1506 } 1507 1508 t->length = copy; 1509 t->offset = offset; 1510 } else { 1511 nbytes -= min(dst->length, nbytes); 1512 idx++; 1513 } 1514 1515 tidx++; 1516 } 1517 1518 return tidx; 1519 } 1520 1521 static int hifn_setup_session(struct ablkcipher_request *req) 1522 { 1523 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1524 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 1525 struct hifn_device *dev = ctx->dev; 1526 unsigned long dlen, flags; 1527 unsigned int nbytes = req->nbytes, idx = 0; 1528 int err = -EINVAL, sg_num; 1529 struct scatterlist *dst; 1530 1531 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB) 1532 goto err_out_exit; 1533 1534 rctx->walk.flags = 0; 1535 1536 while (nbytes) { 1537 dst = &req->dst[idx]; 1538 dlen = min(dst->length, nbytes); 1539 1540 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || 1541 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN)) 1542 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED; 1543 1544 nbytes -= dlen; 1545 idx++; 1546 } 1547 1548 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1549 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC); 1550 if (err < 0) 1551 return err; 1552 } 1553 1554 sg_num = hifn_cipher_walk(req, &rctx->walk); 1555 if (sg_num < 0) { 1556 err = sg_num; 1557 goto err_out_exit; 1558 } 1559 1560 spin_lock_irqsave(&dev->lock, flags); 1561 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) { 1562 err = -EAGAIN; 1563 goto err_out; 1564 } 1565 1566 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req); 1567 if (err) 1568 goto err_out; 1569 1570 dev->snum++; 1571 1572 dev->active = HIFN_DEFAULT_ACTIVE_NUM; 1573 spin_unlock_irqrestore(&dev->lock, flags); 1574 1575 return 0; 1576 1577 err_out: 1578 spin_unlock_irqrestore(&dev->lock, flags); 1579 err_out_exit: 1580 if (err) { 1581 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, " 1582 "type: %u, err: %d.\n", 1583 rctx->iv, rctx->ivsize, 1584 ctx->key, ctx->keysize, 1585 rctx->mode, rctx->op, rctx->type, err); 1586 } 1587 1588 return err; 1589 } 1590 1591 static int hifn_start_device(struct hifn_device *dev) 1592 { 1593 int err; 1594 1595 dev->started = dev->active = 0; 1596 hifn_reset_dma(dev, 1); 1597 1598 err = hifn_enable_crypto(dev); 1599 if (err) 1600 return err; 1601 1602 hifn_reset_puc(dev); 1603 1604 hifn_init_dma(dev); 1605 1606 hifn_init_registers(dev); 1607 1608 hifn_init_pubrng(dev); 1609 1610 return 0; 1611 } 1612 1613 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset, 1614 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp) 1615 { 1616 unsigned int srest = *srestp, nbytes = *nbytesp, copy; 1617 void *daddr; 1618 int idx = 0; 1619 1620 if (srest < size || size > nbytes) 1621 return -EINVAL; 1622 1623 while (size) { 1624 copy = min3(srest, dst->length, size); 1625 1626 daddr = kmap_atomic(sg_page(dst)); 1627 memcpy(daddr + dst->offset + offset, saddr, copy); 1628 kunmap_atomic(daddr); 1629 1630 nbytes -= copy; 1631 size -= copy; 1632 srest -= copy; 1633 saddr += copy; 1634 offset = 0; 1635 1636 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n", 1637 __func__, copy, size, srest, nbytes); 1638 1639 dst++; 1640 idx++; 1641 } 1642 1643 *nbytesp = nbytes; 1644 *srestp = srest; 1645 1646 return idx; 1647 } 1648 1649 static inline void hifn_complete_sa(struct hifn_device *dev, int i) 1650 { 1651 unsigned long flags; 1652 1653 spin_lock_irqsave(&dev->lock, flags); 1654 dev->sa[i] = NULL; 1655 dev->started--; 1656 if (dev->started < 0) 1657 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__, 1658 dev->started); 1659 spin_unlock_irqrestore(&dev->lock, flags); 1660 BUG_ON(dev->started < 0); 1661 } 1662 1663 static void hifn_process_ready(struct ablkcipher_request *req, int error) 1664 { 1665 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 1666 1667 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1668 unsigned int nbytes = req->nbytes; 1669 int idx = 0, err; 1670 struct scatterlist *dst, *t; 1671 void *saddr; 1672 1673 while (nbytes) { 1674 t = &rctx->walk.cache[idx]; 1675 dst = &req->dst[idx]; 1676 1677 pr_debug("\n%s: sg_page(t): %p, t->length: %u, " 1678 "sg_page(dst): %p, dst->length: %u, " 1679 "nbytes: %u.\n", 1680 __func__, sg_page(t), t->length, 1681 sg_page(dst), dst->length, nbytes); 1682 1683 if (!t->length) { 1684 nbytes -= min(dst->length, nbytes); 1685 idx++; 1686 continue; 1687 } 1688 1689 saddr = kmap_atomic(sg_page(t)); 1690 1691 err = ablkcipher_get(saddr, &t->length, t->offset, 1692 dst, nbytes, &nbytes); 1693 if (err < 0) { 1694 kunmap_atomic(saddr); 1695 break; 1696 } 1697 1698 idx += err; 1699 kunmap_atomic(saddr); 1700 } 1701 1702 hifn_cipher_walk_exit(&rctx->walk); 1703 } 1704 1705 req->base.complete(&req->base, error); 1706 } 1707 1708 static void hifn_clear_rings(struct hifn_device *dev, int error) 1709 { 1710 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1711 int i, u; 1712 1713 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1714 "k: %d.%d.%d.%d.\n", 1715 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1716 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1717 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1718 1719 i = dma->resk; u = dma->resu; 1720 while (u != 0) { 1721 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1722 break; 1723 1724 if (dev->sa[i]) { 1725 dev->success++; 1726 dev->reset = 0; 1727 hifn_process_ready(dev->sa[i], error); 1728 hifn_complete_sa(dev, i); 1729 } 1730 1731 if (++i == HIFN_D_RES_RSIZE) 1732 i = 0; 1733 u--; 1734 } 1735 dma->resk = i; dma->resu = u; 1736 1737 i = dma->srck; u = dma->srcu; 1738 while (u != 0) { 1739 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1740 break; 1741 if (++i == HIFN_D_SRC_RSIZE) 1742 i = 0; 1743 u--; 1744 } 1745 dma->srck = i; dma->srcu = u; 1746 1747 i = dma->cmdk; u = dma->cmdu; 1748 while (u != 0) { 1749 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1750 break; 1751 if (++i == HIFN_D_CMD_RSIZE) 1752 i = 0; 1753 u--; 1754 } 1755 dma->cmdk = i; dma->cmdu = u; 1756 1757 i = dma->dstk; u = dma->dstu; 1758 while (u != 0) { 1759 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1760 break; 1761 if (++i == HIFN_D_DST_RSIZE) 1762 i = 0; 1763 u--; 1764 } 1765 dma->dstk = i; dma->dstu = u; 1766 1767 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1768 "k: %d.%d.%d.%d.\n", 1769 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1770 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1771 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1772 } 1773 1774 static void hifn_work(struct work_struct *work) 1775 { 1776 struct delayed_work *dw = to_delayed_work(work); 1777 struct hifn_device *dev = container_of(dw, struct hifn_device, work); 1778 unsigned long flags; 1779 int reset = 0; 1780 u32 r = 0; 1781 1782 spin_lock_irqsave(&dev->lock, flags); 1783 if (dev->active == 0) { 1784 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1785 1786 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) { 1787 dev->flags &= ~HIFN_FLAG_CMD_BUSY; 1788 r |= HIFN_DMACSR_C_CTRL_DIS; 1789 } 1790 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) { 1791 dev->flags &= ~HIFN_FLAG_SRC_BUSY; 1792 r |= HIFN_DMACSR_S_CTRL_DIS; 1793 } 1794 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) { 1795 dev->flags &= ~HIFN_FLAG_DST_BUSY; 1796 r |= HIFN_DMACSR_D_CTRL_DIS; 1797 } 1798 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) { 1799 dev->flags &= ~HIFN_FLAG_RES_BUSY; 1800 r |= HIFN_DMACSR_R_CTRL_DIS; 1801 } 1802 if (r) 1803 hifn_write_1(dev, HIFN_1_DMA_CSR, r); 1804 } else 1805 dev->active--; 1806 1807 if ((dev->prev_success == dev->success) && dev->started) 1808 reset = 1; 1809 dev->prev_success = dev->success; 1810 spin_unlock_irqrestore(&dev->lock, flags); 1811 1812 if (reset) { 1813 if (++dev->reset >= 5) { 1814 int i; 1815 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1816 1817 dev_info(&dev->pdev->dev, 1818 "r: %08x, active: %d, started: %d, " 1819 "success: %lu: qlen: %u/%u, reset: %d.\n", 1820 r, dev->active, dev->started, 1821 dev->success, dev->queue.qlen, dev->queue.max_qlen, 1822 reset); 1823 1824 dev_info(&dev->pdev->dev, "%s: res: ", __func__); 1825 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) { 1826 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]); 1827 if (dev->sa[i]) { 1828 hifn_process_ready(dev->sa[i], -ENODEV); 1829 hifn_complete_sa(dev, i); 1830 } 1831 } 1832 pr_info("\n"); 1833 1834 hifn_reset_dma(dev, 1); 1835 hifn_stop_device(dev); 1836 hifn_start_device(dev); 1837 dev->reset = 0; 1838 } 1839 1840 tasklet_schedule(&dev->tasklet); 1841 } 1842 1843 schedule_delayed_work(&dev->work, HZ); 1844 } 1845 1846 static irqreturn_t hifn_interrupt(int irq, void *data) 1847 { 1848 struct hifn_device *dev = (struct hifn_device *)data; 1849 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1850 u32 dmacsr, restart; 1851 1852 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR); 1853 1854 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], " 1855 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n", 1856 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi, 1857 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1858 dma->cmdu, dma->srcu, dma->dstu, dma->resu); 1859 1860 if ((dmacsr & dev->dmareg) == 0) 1861 return IRQ_NONE; 1862 1863 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg); 1864 1865 if (dmacsr & HIFN_DMACSR_ENGINE) 1866 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR)); 1867 if (dmacsr & HIFN_DMACSR_PUBDONE) 1868 hifn_write_1(dev, HIFN_1_PUB_STATUS, 1869 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE); 1870 1871 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER); 1872 if (restart) { 1873 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR); 1874 1875 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n", 1876 !!(dmacsr & HIFN_DMACSR_R_OVER), 1877 !!(dmacsr & HIFN_DMACSR_D_OVER), 1878 puisr, !!(puisr & HIFN_PUISR_DSTOVER)); 1879 if (!!(puisr & HIFN_PUISR_DSTOVER)) 1880 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 1881 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER | 1882 HIFN_DMACSR_D_OVER)); 1883 } 1884 1885 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT | 1886 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT); 1887 if (restart) { 1888 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n", 1889 !!(dmacsr & HIFN_DMACSR_C_ABORT), 1890 !!(dmacsr & HIFN_DMACSR_S_ABORT), 1891 !!(dmacsr & HIFN_DMACSR_D_ABORT), 1892 !!(dmacsr & HIFN_DMACSR_R_ABORT)); 1893 hifn_reset_dma(dev, 1); 1894 hifn_init_dma(dev); 1895 hifn_init_registers(dev); 1896 } 1897 1898 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) { 1899 dev_dbg(&dev->pdev->dev, "wait on command.\n"); 1900 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT); 1901 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1902 } 1903 1904 tasklet_schedule(&dev->tasklet); 1905 1906 return IRQ_HANDLED; 1907 } 1908 1909 static void hifn_flush(struct hifn_device *dev) 1910 { 1911 unsigned long flags; 1912 struct crypto_async_request *async_req; 1913 struct ablkcipher_request *req; 1914 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1915 int i; 1916 1917 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) { 1918 struct hifn_desc *d = &dma->resr[i]; 1919 1920 if (dev->sa[i]) { 1921 hifn_process_ready(dev->sa[i], 1922 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0); 1923 hifn_complete_sa(dev, i); 1924 } 1925 } 1926 1927 spin_lock_irqsave(&dev->lock, flags); 1928 while ((async_req = crypto_dequeue_request(&dev->queue))) { 1929 req = ablkcipher_request_cast(async_req); 1930 spin_unlock_irqrestore(&dev->lock, flags); 1931 1932 hifn_process_ready(req, -ENODEV); 1933 1934 spin_lock_irqsave(&dev->lock, flags); 1935 } 1936 spin_unlock_irqrestore(&dev->lock, flags); 1937 } 1938 1939 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1940 unsigned int len) 1941 { 1942 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 1943 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 1944 struct hifn_device *dev = ctx->dev; 1945 1946 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) { 1947 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 1948 return -1; 1949 } 1950 1951 if (len == HIFN_DES_KEY_LENGTH) { 1952 u32 tmp[DES_EXPKEY_WORDS]; 1953 int ret = des_ekey(tmp, key); 1954 1955 if (unlikely(ret == 0) && 1956 (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) { 1957 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; 1958 return -EINVAL; 1959 } 1960 } 1961 1962 dev->flags &= ~HIFN_FLAG_OLD_KEY; 1963 1964 memcpy(ctx->key, key, len); 1965 ctx->keysize = len; 1966 1967 return 0; 1968 } 1969 1970 static int hifn_des3_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1971 unsigned int len) 1972 { 1973 struct hifn_context *ctx = crypto_ablkcipher_ctx(cipher); 1974 struct hifn_device *dev = ctx->dev; 1975 u32 flags; 1976 int err; 1977 1978 flags = crypto_ablkcipher_get_flags(cipher); 1979 err = __des3_verify_key(&flags, key); 1980 if (unlikely(err)) { 1981 crypto_ablkcipher_set_flags(cipher, flags); 1982 return err; 1983 } 1984 1985 dev->flags &= ~HIFN_FLAG_OLD_KEY; 1986 1987 memcpy(ctx->key, key, len); 1988 ctx->keysize = len; 1989 1990 return 0; 1991 } 1992 1993 static int hifn_handle_req(struct ablkcipher_request *req) 1994 { 1995 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1996 struct hifn_device *dev = ctx->dev; 1997 int err = -EAGAIN; 1998 1999 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH) 2000 err = hifn_setup_session(req); 2001 2002 if (err == -EAGAIN) { 2003 unsigned long flags; 2004 2005 spin_lock_irqsave(&dev->lock, flags); 2006 err = ablkcipher_enqueue_request(&dev->queue, req); 2007 spin_unlock_irqrestore(&dev->lock, flags); 2008 } 2009 2010 return err; 2011 } 2012 2013 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op, 2014 u8 type, u8 mode) 2015 { 2016 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2017 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 2018 unsigned ivsize; 2019 2020 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); 2021 2022 if (req->info && mode != ACRYPTO_MODE_ECB) { 2023 if (type == ACRYPTO_TYPE_AES_128) 2024 ivsize = HIFN_AES_IV_LENGTH; 2025 else if (type == ACRYPTO_TYPE_DES) 2026 ivsize = HIFN_DES_KEY_LENGTH; 2027 else if (type == ACRYPTO_TYPE_3DES) 2028 ivsize = HIFN_3DES_KEY_LENGTH; 2029 } 2030 2031 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) { 2032 if (ctx->keysize == 24) 2033 type = ACRYPTO_TYPE_AES_192; 2034 else if (ctx->keysize == 32) 2035 type = ACRYPTO_TYPE_AES_256; 2036 } 2037 2038 rctx->op = op; 2039 rctx->mode = mode; 2040 rctx->type = type; 2041 rctx->iv = req->info; 2042 rctx->ivsize = ivsize; 2043 2044 /* 2045 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2046 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2047 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2048 */ 2049 2050 return hifn_handle_req(req); 2051 } 2052 2053 static int hifn_process_queue(struct hifn_device *dev) 2054 { 2055 struct crypto_async_request *async_req, *backlog; 2056 struct ablkcipher_request *req; 2057 unsigned long flags; 2058 int err = 0; 2059 2060 while (dev->started < HIFN_QUEUE_LENGTH) { 2061 spin_lock_irqsave(&dev->lock, flags); 2062 backlog = crypto_get_backlog(&dev->queue); 2063 async_req = crypto_dequeue_request(&dev->queue); 2064 spin_unlock_irqrestore(&dev->lock, flags); 2065 2066 if (!async_req) 2067 break; 2068 2069 if (backlog) 2070 backlog->complete(backlog, -EINPROGRESS); 2071 2072 req = ablkcipher_request_cast(async_req); 2073 2074 err = hifn_handle_req(req); 2075 if (err) 2076 break; 2077 } 2078 2079 return err; 2080 } 2081 2082 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op, 2083 u8 type, u8 mode) 2084 { 2085 int err; 2086 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2087 struct hifn_device *dev = ctx->dev; 2088 2089 err = hifn_setup_crypto_req(req, op, type, mode); 2090 if (err) 2091 return err; 2092 2093 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) 2094 hifn_process_queue(dev); 2095 2096 return -EINPROGRESS; 2097 } 2098 2099 /* 2100 * AES ecryption functions. 2101 */ 2102 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req) 2103 { 2104 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2105 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2106 } 2107 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req) 2108 { 2109 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2110 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2111 } 2112 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req) 2113 { 2114 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2115 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2116 } 2117 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req) 2118 { 2119 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2120 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2121 } 2122 2123 /* 2124 * AES decryption functions. 2125 */ 2126 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req) 2127 { 2128 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2129 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2130 } 2131 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req) 2132 { 2133 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2134 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2135 } 2136 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req) 2137 { 2138 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2139 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2140 } 2141 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req) 2142 { 2143 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2144 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2145 } 2146 2147 /* 2148 * DES ecryption functions. 2149 */ 2150 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req) 2151 { 2152 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2153 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2154 } 2155 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req) 2156 { 2157 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2158 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2159 } 2160 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req) 2161 { 2162 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2163 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2164 } 2165 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req) 2166 { 2167 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2168 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2169 } 2170 2171 /* 2172 * DES decryption functions. 2173 */ 2174 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req) 2175 { 2176 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2177 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2178 } 2179 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req) 2180 { 2181 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2182 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2183 } 2184 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req) 2185 { 2186 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2187 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2188 } 2189 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req) 2190 { 2191 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2192 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2193 } 2194 2195 /* 2196 * 3DES ecryption functions. 2197 */ 2198 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req) 2199 { 2200 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2201 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2202 } 2203 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req) 2204 { 2205 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2206 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2207 } 2208 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req) 2209 { 2210 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2211 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2212 } 2213 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req) 2214 { 2215 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2216 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2217 } 2218 2219 /* 3DES decryption functions. */ 2220 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req) 2221 { 2222 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2223 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2224 } 2225 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req) 2226 { 2227 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2228 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2229 } 2230 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req) 2231 { 2232 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2233 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2234 } 2235 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req) 2236 { 2237 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2238 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2239 } 2240 2241 struct hifn_alg_template { 2242 char name[CRYPTO_MAX_ALG_NAME]; 2243 char drv_name[CRYPTO_MAX_ALG_NAME]; 2244 unsigned int bsize; 2245 struct ablkcipher_alg ablkcipher; 2246 }; 2247 2248 static struct hifn_alg_template hifn_alg_templates[] = { 2249 /* 2250 * 3DES ECB, CBC, CFB and OFB modes. 2251 */ 2252 { 2253 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8, 2254 .ablkcipher = { 2255 .min_keysize = HIFN_3DES_KEY_LENGTH, 2256 .max_keysize = HIFN_3DES_KEY_LENGTH, 2257 .setkey = hifn_des3_setkey, 2258 .encrypt = hifn_encrypt_3des_cfb, 2259 .decrypt = hifn_decrypt_3des_cfb, 2260 }, 2261 }, 2262 { 2263 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8, 2264 .ablkcipher = { 2265 .min_keysize = HIFN_3DES_KEY_LENGTH, 2266 .max_keysize = HIFN_3DES_KEY_LENGTH, 2267 .setkey = hifn_des3_setkey, 2268 .encrypt = hifn_encrypt_3des_ofb, 2269 .decrypt = hifn_decrypt_3des_ofb, 2270 }, 2271 }, 2272 { 2273 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8, 2274 .ablkcipher = { 2275 .ivsize = HIFN_IV_LENGTH, 2276 .min_keysize = HIFN_3DES_KEY_LENGTH, 2277 .max_keysize = HIFN_3DES_KEY_LENGTH, 2278 .setkey = hifn_des3_setkey, 2279 .encrypt = hifn_encrypt_3des_cbc, 2280 .decrypt = hifn_decrypt_3des_cbc, 2281 }, 2282 }, 2283 { 2284 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8, 2285 .ablkcipher = { 2286 .min_keysize = HIFN_3DES_KEY_LENGTH, 2287 .max_keysize = HIFN_3DES_KEY_LENGTH, 2288 .setkey = hifn_des3_setkey, 2289 .encrypt = hifn_encrypt_3des_ecb, 2290 .decrypt = hifn_decrypt_3des_ecb, 2291 }, 2292 }, 2293 2294 /* 2295 * DES ECB, CBC, CFB and OFB modes. 2296 */ 2297 { 2298 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8, 2299 .ablkcipher = { 2300 .min_keysize = HIFN_DES_KEY_LENGTH, 2301 .max_keysize = HIFN_DES_KEY_LENGTH, 2302 .setkey = hifn_setkey, 2303 .encrypt = hifn_encrypt_des_cfb, 2304 .decrypt = hifn_decrypt_des_cfb, 2305 }, 2306 }, 2307 { 2308 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8, 2309 .ablkcipher = { 2310 .min_keysize = HIFN_DES_KEY_LENGTH, 2311 .max_keysize = HIFN_DES_KEY_LENGTH, 2312 .setkey = hifn_setkey, 2313 .encrypt = hifn_encrypt_des_ofb, 2314 .decrypt = hifn_decrypt_des_ofb, 2315 }, 2316 }, 2317 { 2318 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8, 2319 .ablkcipher = { 2320 .ivsize = HIFN_IV_LENGTH, 2321 .min_keysize = HIFN_DES_KEY_LENGTH, 2322 .max_keysize = HIFN_DES_KEY_LENGTH, 2323 .setkey = hifn_setkey, 2324 .encrypt = hifn_encrypt_des_cbc, 2325 .decrypt = hifn_decrypt_des_cbc, 2326 }, 2327 }, 2328 { 2329 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8, 2330 .ablkcipher = { 2331 .min_keysize = HIFN_DES_KEY_LENGTH, 2332 .max_keysize = HIFN_DES_KEY_LENGTH, 2333 .setkey = hifn_setkey, 2334 .encrypt = hifn_encrypt_des_ecb, 2335 .decrypt = hifn_decrypt_des_ecb, 2336 }, 2337 }, 2338 2339 /* 2340 * AES ECB, CBC, CFB and OFB modes. 2341 */ 2342 { 2343 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16, 2344 .ablkcipher = { 2345 .min_keysize = AES_MIN_KEY_SIZE, 2346 .max_keysize = AES_MAX_KEY_SIZE, 2347 .setkey = hifn_setkey, 2348 .encrypt = hifn_encrypt_aes_ecb, 2349 .decrypt = hifn_decrypt_aes_ecb, 2350 }, 2351 }, 2352 { 2353 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16, 2354 .ablkcipher = { 2355 .ivsize = HIFN_AES_IV_LENGTH, 2356 .min_keysize = AES_MIN_KEY_SIZE, 2357 .max_keysize = AES_MAX_KEY_SIZE, 2358 .setkey = hifn_setkey, 2359 .encrypt = hifn_encrypt_aes_cbc, 2360 .decrypt = hifn_decrypt_aes_cbc, 2361 }, 2362 }, 2363 { 2364 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16, 2365 .ablkcipher = { 2366 .min_keysize = AES_MIN_KEY_SIZE, 2367 .max_keysize = AES_MAX_KEY_SIZE, 2368 .setkey = hifn_setkey, 2369 .encrypt = hifn_encrypt_aes_cfb, 2370 .decrypt = hifn_decrypt_aes_cfb, 2371 }, 2372 }, 2373 { 2374 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16, 2375 .ablkcipher = { 2376 .min_keysize = AES_MIN_KEY_SIZE, 2377 .max_keysize = AES_MAX_KEY_SIZE, 2378 .setkey = hifn_setkey, 2379 .encrypt = hifn_encrypt_aes_ofb, 2380 .decrypt = hifn_decrypt_aes_ofb, 2381 }, 2382 }, 2383 }; 2384 2385 static int hifn_cra_init(struct crypto_tfm *tfm) 2386 { 2387 struct crypto_alg *alg = tfm->__crt_alg; 2388 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg); 2389 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 2390 2391 ctx->dev = ha->dev; 2392 tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context); 2393 return 0; 2394 } 2395 2396 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t) 2397 { 2398 struct hifn_crypto_alg *alg; 2399 int err; 2400 2401 alg = kzalloc(sizeof(*alg), GFP_KERNEL); 2402 if (!alg) 2403 return -ENOMEM; 2404 2405 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name); 2406 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s", 2407 t->drv_name, dev->name); 2408 2409 alg->alg.cra_priority = 300; 2410 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | 2411 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC; 2412 alg->alg.cra_blocksize = t->bsize; 2413 alg->alg.cra_ctxsize = sizeof(struct hifn_context); 2414 alg->alg.cra_alignmask = 0; 2415 alg->alg.cra_type = &crypto_ablkcipher_type; 2416 alg->alg.cra_module = THIS_MODULE; 2417 alg->alg.cra_u.ablkcipher = t->ablkcipher; 2418 alg->alg.cra_init = hifn_cra_init; 2419 2420 alg->dev = dev; 2421 2422 list_add_tail(&alg->entry, &dev->alg_list); 2423 2424 err = crypto_register_alg(&alg->alg); 2425 if (err) { 2426 list_del(&alg->entry); 2427 kfree(alg); 2428 } 2429 2430 return err; 2431 } 2432 2433 static void hifn_unregister_alg(struct hifn_device *dev) 2434 { 2435 struct hifn_crypto_alg *a, *n; 2436 2437 list_for_each_entry_safe(a, n, &dev->alg_list, entry) { 2438 list_del(&a->entry); 2439 crypto_unregister_alg(&a->alg); 2440 kfree(a); 2441 } 2442 } 2443 2444 static int hifn_register_alg(struct hifn_device *dev) 2445 { 2446 int i, err; 2447 2448 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) { 2449 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]); 2450 if (err) 2451 goto err_out_exit; 2452 } 2453 2454 return 0; 2455 2456 err_out_exit: 2457 hifn_unregister_alg(dev); 2458 return err; 2459 } 2460 2461 static void hifn_tasklet_callback(unsigned long data) 2462 { 2463 struct hifn_device *dev = (struct hifn_device *)data; 2464 2465 /* 2466 * This is ok to call this without lock being held, 2467 * althogh it modifies some parameters used in parallel, 2468 * (like dev->success), but they are used in process 2469 * context or update is atomic (like setting dev->sa[i] to NULL). 2470 */ 2471 hifn_clear_rings(dev, 0); 2472 2473 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) 2474 hifn_process_queue(dev); 2475 } 2476 2477 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2478 { 2479 int err, i; 2480 struct hifn_device *dev; 2481 char name[8]; 2482 2483 err = pci_enable_device(pdev); 2484 if (err) 2485 return err; 2486 pci_set_master(pdev); 2487 2488 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2489 if (err) 2490 goto err_out_disable_pci_device; 2491 2492 snprintf(name, sizeof(name), "hifn%d", 2493 atomic_inc_return(&hifn_dev_number) - 1); 2494 2495 err = pci_request_regions(pdev, name); 2496 if (err) 2497 goto err_out_disable_pci_device; 2498 2499 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE || 2500 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE || 2501 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) { 2502 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n"); 2503 err = -ENODEV; 2504 goto err_out_free_regions; 2505 } 2506 2507 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg), 2508 GFP_KERNEL); 2509 if (!dev) { 2510 err = -ENOMEM; 2511 goto err_out_free_regions; 2512 } 2513 2514 INIT_LIST_HEAD(&dev->alg_list); 2515 2516 snprintf(dev->name, sizeof(dev->name), "%s", name); 2517 spin_lock_init(&dev->lock); 2518 2519 for (i = 0; i < 3; ++i) { 2520 unsigned long addr, size; 2521 2522 addr = pci_resource_start(pdev, i); 2523 size = pci_resource_len(pdev, i); 2524 2525 dev->bar[i] = ioremap_nocache(addr, size); 2526 if (!dev->bar[i]) { 2527 err = -ENOMEM; 2528 goto err_out_unmap_bars; 2529 } 2530 } 2531 2532 dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma), 2533 &dev->desc_dma); 2534 if (!dev->desc_virt) { 2535 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n"); 2536 err = -ENOMEM; 2537 goto err_out_unmap_bars; 2538 } 2539 2540 dev->pdev = pdev; 2541 dev->irq = pdev->irq; 2542 2543 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) 2544 dev->sa[i] = NULL; 2545 2546 pci_set_drvdata(pdev, dev); 2547 2548 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev); 2549 2550 crypto_init_queue(&dev->queue, 1); 2551 2552 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev); 2553 if (err) { 2554 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n", 2555 dev->irq, err); 2556 dev->irq = 0; 2557 goto err_out_free_desc; 2558 } 2559 2560 err = hifn_start_device(dev); 2561 if (err) 2562 goto err_out_free_irq; 2563 2564 err = hifn_register_rng(dev); 2565 if (err) 2566 goto err_out_stop_device; 2567 2568 err = hifn_register_alg(dev); 2569 if (err) 2570 goto err_out_unregister_rng; 2571 2572 INIT_DELAYED_WORK(&dev->work, hifn_work); 2573 schedule_delayed_work(&dev->work, HZ); 2574 2575 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been " 2576 "successfully registered as %s.\n", 2577 pci_name(pdev), dev->name); 2578 2579 return 0; 2580 2581 err_out_unregister_rng: 2582 hifn_unregister_rng(dev); 2583 err_out_stop_device: 2584 hifn_reset_dma(dev, 1); 2585 hifn_stop_device(dev); 2586 err_out_free_irq: 2587 free_irq(dev->irq, dev); 2588 tasklet_kill(&dev->tasklet); 2589 err_out_free_desc: 2590 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2591 dev->desc_virt, dev->desc_dma); 2592 2593 err_out_unmap_bars: 2594 for (i = 0; i < 3; ++i) 2595 if (dev->bar[i]) 2596 iounmap(dev->bar[i]); 2597 kfree(dev); 2598 2599 err_out_free_regions: 2600 pci_release_regions(pdev); 2601 2602 err_out_disable_pci_device: 2603 pci_disable_device(pdev); 2604 2605 return err; 2606 } 2607 2608 static void hifn_remove(struct pci_dev *pdev) 2609 { 2610 int i; 2611 struct hifn_device *dev; 2612 2613 dev = pci_get_drvdata(pdev); 2614 2615 if (dev) { 2616 cancel_delayed_work_sync(&dev->work); 2617 2618 hifn_unregister_rng(dev); 2619 hifn_unregister_alg(dev); 2620 hifn_reset_dma(dev, 1); 2621 hifn_stop_device(dev); 2622 2623 free_irq(dev->irq, dev); 2624 tasklet_kill(&dev->tasklet); 2625 2626 hifn_flush(dev); 2627 2628 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2629 dev->desc_virt, dev->desc_dma); 2630 for (i = 0; i < 3; ++i) 2631 if (dev->bar[i]) 2632 iounmap(dev->bar[i]); 2633 2634 kfree(dev); 2635 } 2636 2637 pci_release_regions(pdev); 2638 pci_disable_device(pdev); 2639 } 2640 2641 static struct pci_device_id hifn_pci_tbl[] = { 2642 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) }, 2643 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) }, 2644 { 0 } 2645 }; 2646 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl); 2647 2648 static struct pci_driver hifn_pci_driver = { 2649 .name = "hifn795x", 2650 .id_table = hifn_pci_tbl, 2651 .probe = hifn_probe, 2652 .remove = hifn_remove, 2653 }; 2654 2655 static int __init hifn_init(void) 2656 { 2657 unsigned int freq; 2658 int err; 2659 2660 /* HIFN supports only 32-bit addresses */ 2661 BUILD_BUG_ON(sizeof(dma_addr_t) != 4); 2662 2663 if (strncmp(hifn_pll_ref, "ext", 3) && 2664 strncmp(hifn_pll_ref, "pci", 3)) { 2665 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext"); 2666 return -EINVAL; 2667 } 2668 2669 /* 2670 * For the 7955/7956 the reference clock frequency must be in the 2671 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz, 2672 * but this chip is currently not supported. 2673 */ 2674 if (hifn_pll_ref[3] != '\0') { 2675 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); 2676 if (freq < 20 || freq > 100) { 2677 pr_err("hifn795x: invalid hifn_pll_ref frequency, must" 2678 "be in the range of 20-100"); 2679 return -EINVAL; 2680 } 2681 } 2682 2683 err = pci_register_driver(&hifn_pci_driver); 2684 if (err < 0) { 2685 pr_err("Failed to register PCI driver for %s device.\n", 2686 hifn_pci_driver.name); 2687 return -ENODEV; 2688 } 2689 2690 pr_info("Driver for HIFN 795x crypto accelerator chip " 2691 "has been successfully registered.\n"); 2692 2693 return 0; 2694 } 2695 2696 static void __exit hifn_fini(void) 2697 { 2698 pci_unregister_driver(&hifn_pci_driver); 2699 2700 pr_info("Driver for HIFN 795x crypto accelerator chip " 2701 "has been successfully unregistered.\n"); 2702 } 2703 2704 module_init(hifn_init); 2705 module_exit(hifn_fini); 2706 2707 MODULE_LICENSE("GPL"); 2708 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>"); 2709 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip."); 2710