xref: /openbmc/linux/drivers/crypto/hifn_795x.c (revision abfbd895)
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/crypto.h>
33 #include <linux/hw_random.h>
34 #include <linux/ktime.h>
35 
36 #include <crypto/algapi.h>
37 #include <crypto/des.h>
38 
39 //#define HIFN_DEBUG
40 
41 #ifdef HIFN_DEBUG
42 #define dprintk(f, a...) 	printk(f, ##a)
43 #else
44 #define dprintk(f, a...)	do {} while (0)
45 #endif
46 
47 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
48 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
49 MODULE_PARM_DESC(hifn_pll_ref,
50 		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
51 
52 static atomic_t hifn_dev_number;
53 
54 #define ACRYPTO_OP_DECRYPT	0
55 #define ACRYPTO_OP_ENCRYPT	1
56 #define ACRYPTO_OP_HMAC		2
57 #define ACRYPTO_OP_RNG		3
58 
59 #define ACRYPTO_MODE_ECB		0
60 #define ACRYPTO_MODE_CBC		1
61 #define ACRYPTO_MODE_CFB		2
62 #define ACRYPTO_MODE_OFB		3
63 
64 #define ACRYPTO_TYPE_AES_128	0
65 #define ACRYPTO_TYPE_AES_192	1
66 #define ACRYPTO_TYPE_AES_256	2
67 #define ACRYPTO_TYPE_3DES	3
68 #define ACRYPTO_TYPE_DES	4
69 
70 #define PCI_VENDOR_ID_HIFN		0x13A3
71 #define PCI_DEVICE_ID_HIFN_7955		0x0020
72 #define	PCI_DEVICE_ID_HIFN_7956		0x001d
73 
74 /* I/O region sizes */
75 
76 #define HIFN_BAR0_SIZE			0x1000
77 #define HIFN_BAR1_SIZE			0x2000
78 #define HIFN_BAR2_SIZE			0x8000
79 
80 /* DMA registres */
81 
82 #define HIFN_DMA_CRA 			0x0C	/* DMA Command Ring Address */
83 #define HIFN_DMA_SDRA 			0x1C	/* DMA Source Data Ring Address */
84 #define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
85 #define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
86 #define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
87 #define HIFN_DMA_INTREN 		0x44	/* DMA Interrupt Enable */
88 #define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
89 #define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
90 #define HIFN_CHIP_ID			0x98	/* Chip ID */
91 
92 /*
93  * Processing Unit Registers (offset from BASEREG0)
94  */
95 #define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
96 #define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
97 #define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
98 #define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
99 #define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
100 #define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
101 #define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
102 #define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
103 #define	HIFN_0_SPACESIZE	0x20	/* Register space size */
104 
105 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
106 #define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
107 #define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
108 #define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
109 #define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
110 #define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
111 
112 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
113 #define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
114 #define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
115 #define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
116 #define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
117 #define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
118 #define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
119 #define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
120 #define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
121 #define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
122 #define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
123 
124 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
125 #define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
126 #define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
127 #define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
128 #define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
129 #define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
130 #define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
131 #define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
132 #define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
133 #define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
134 #define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
135 #define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
136 #define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
137 #define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
138 #define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
139 #define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
140 #define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
141 #define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
142 #define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
143 #define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
144 #define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
145 #define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
146 #define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
147 #define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
148 
149 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
150 #define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
151 #define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
152 #define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
153 #define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
154 #define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
155 #define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
156 #define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
157 #define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
158 #define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
159 #define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
160 
161 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
162 #define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
163 #define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
164 #define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
165 #define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
166 #define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
167 #define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
168 #define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
169 #define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
170 #define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
171 #define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
172 #define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
173 #define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
174 #define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
175 #define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
176 #define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
177 #define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
178 #define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
179 
180 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
181 #define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
182 #define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
183 
184 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
185 #define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
186 
187 /*
188  * DMA Interface Registers (offset from BASEREG1)
189  */
190 #define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
191 #define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
192 #define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
193 #define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
194 #define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
195 #define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
196 #define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
197 #define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
198 #define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
199 #define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
200 #define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
201 #define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
202 #define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
203 #define	HIFN_1_REVID		0x98	/* Revision ID */
204 #define	HIFN_1_UNLOCK_SECRET1	0xf4
205 #define	HIFN_1_UNLOCK_SECRET2	0xfc
206 #define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
207 #define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
208 #define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
209 #define	HIFN_1_PUB_OP		0x308	/* Public Operand */
210 #define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
211 #define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
212 #define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
213 #define	HIFN_1_RNG_DATA		0x318	/* RNG data */
214 #define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
215 #define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
216 
217 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
218 #define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
219 #define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
220 #define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
221 #define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
222 #define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
223 #define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
224 #define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
225 #define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
226 #define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
227 #define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
228 #define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
229 #define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
230 #define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
231 #define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
232 #define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
233 #define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
234 #define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
235 #define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
236 #define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
237 #define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
238 #define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
239 #define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
240 #define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
241 #define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
242 #define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
243 #define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
244 #define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
245 #define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
246 #define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
247 #define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
248 #define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
249 #define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
250 #define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
251 #define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
252 #define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
253 #define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
254 #define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
255 #define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
256 
257 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
258 #define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
259 #define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
260 #define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
261 #define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
262 #define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
263 #define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
264 #define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
265 #define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
266 #define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
267 #define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
268 #define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
269 #define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
270 #define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
271 #define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
272 #define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
273 #define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
274 #define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
275 #define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
276 #define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
277 #define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
278 #define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
279 #define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
280 
281 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
282 #define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
283 #define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
284 #define	HIFN_DMACNFG_UNLOCK	0x00000800
285 #define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
286 #define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
287 #define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
288 #define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
289 #define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
290 
291 /* PLL configuration register */
292 #define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
293 #define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
294 #define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
295 #define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
296 #define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
297 #define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
298 #define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
299 #define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
300 #define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
301 #define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
302 #define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
303 #define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
304 #define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
305 #define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
306 #define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
307 #define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
308 #define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
309 
310 #define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
311 
312 /* Public key reset register (HIFN_1_PUB_RESET) */
313 #define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
314 
315 /* Public base address register (HIFN_1_PUB_BASE) */
316 #define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
317 
318 /* Public operand length register (HIFN_1_PUB_OPLEN) */
319 #define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
320 #define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
321 #define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
322 #define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
323 #define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
324 #define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
325 
326 /* Public operation register (HIFN_1_PUB_OP) */
327 #define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
328 #define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
329 #define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
330 #define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
331 #define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
332 #define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
333 #define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
334 #define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
335 #define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
336 #define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
337 #define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
338 #define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
339 #define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
340 #define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
341 #define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
342 #define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
343 #define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
344 #define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
345 #define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
346 #define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
347 
348 /* Public status register (HIFN_1_PUB_STATUS) */
349 #define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
350 #define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
351 
352 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
353 #define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
354 
355 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
356 #define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
357 
358 #define HIFN_NAMESIZE			32
359 #define HIFN_MAX_RESULT_ORDER		5
360 
361 #define	HIFN_D_CMD_RSIZE		24*1
362 #define	HIFN_D_SRC_RSIZE		80*1
363 #define	HIFN_D_DST_RSIZE		80*1
364 #define	HIFN_D_RES_RSIZE		24*1
365 
366 #define HIFN_D_DST_DALIGN		4
367 
368 #define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
369 
370 #define AES_MIN_KEY_SIZE		16
371 #define AES_MAX_KEY_SIZE		32
372 
373 #define HIFN_DES_KEY_LENGTH		8
374 #define HIFN_3DES_KEY_LENGTH		24
375 #define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
376 #define HIFN_IV_LENGTH			8
377 #define HIFN_AES_IV_LENGTH		16
378 #define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
379 
380 #define HIFN_MAC_KEY_LENGTH		64
381 #define HIFN_MD5_LENGTH			16
382 #define HIFN_SHA1_LENGTH		20
383 #define HIFN_MAC_TRUNC_LENGTH		12
384 
385 #define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
386 #define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
387 #define HIFN_USED_RESULT		12
388 
389 struct hifn_desc
390 {
391 	volatile __le32		l;
392 	volatile __le32		p;
393 };
394 
395 struct hifn_dma {
396 	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE+1];
397 	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE+1];
398 	struct hifn_desc	dstr[HIFN_D_DST_RSIZE+1];
399 	struct hifn_desc	resr[HIFN_D_RES_RSIZE+1];
400 
401 	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
402 	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
403 
404 	/*
405 	 *  Our current positions for insertion and removal from the descriptor
406 	 *  rings.
407 	 */
408 	volatile int		cmdi, srci, dsti, resi;
409 	volatile int		cmdu, srcu, dstu, resu;
410 	int			cmdk, srck, dstk, resk;
411 };
412 
413 #define HIFN_FLAG_CMD_BUSY	(1<<0)
414 #define HIFN_FLAG_SRC_BUSY	(1<<1)
415 #define HIFN_FLAG_DST_BUSY	(1<<2)
416 #define HIFN_FLAG_RES_BUSY	(1<<3)
417 #define HIFN_FLAG_OLD_KEY	(1<<4)
418 
419 #define HIFN_DEFAULT_ACTIVE_NUM	5
420 
421 struct hifn_device
422 {
423 	char			name[HIFN_NAMESIZE];
424 
425 	int			irq;
426 
427 	struct pci_dev		*pdev;
428 	void __iomem		*bar[3];
429 
430 	void			*desc_virt;
431 	dma_addr_t		desc_dma;
432 
433 	u32			dmareg;
434 
435 	void 			*sa[HIFN_D_RES_RSIZE];
436 
437 	spinlock_t		lock;
438 
439 	u32			flags;
440 	int			active, started;
441 	struct delayed_work	work;
442 	unsigned long		reset;
443 	unsigned long		success;
444 	unsigned long		prev_success;
445 
446 	u8			snum;
447 
448 	struct tasklet_struct	tasklet;
449 
450 	struct crypto_queue 	queue;
451 	struct list_head	alg_list;
452 
453 	unsigned int		pk_clk_freq;
454 
455 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
456 	unsigned int		rng_wait_time;
457 	ktime_t			rngtime;
458 	struct hwrng		rng;
459 #endif
460 };
461 
462 #define	HIFN_D_LENGTH			0x0000ffff
463 #define	HIFN_D_NOINVALID		0x01000000
464 #define	HIFN_D_MASKDONEIRQ		0x02000000
465 #define	HIFN_D_DESTOVER			0x04000000
466 #define	HIFN_D_OVER			0x08000000
467 #define	HIFN_D_LAST			0x20000000
468 #define	HIFN_D_JUMP			0x40000000
469 #define	HIFN_D_VALID			0x80000000
470 
471 struct hifn_base_command
472 {
473 	volatile __le16		masks;
474 	volatile __le16		session_num;
475 	volatile __le16		total_source_count;
476 	volatile __le16		total_dest_count;
477 };
478 
479 #define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
480 #define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
481 #define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
482 #define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
483 #define	HIFN_BASE_CMD_DECODE		0x2000
484 #define	HIFN_BASE_CMD_SRCLEN_M		0xc000
485 #define	HIFN_BASE_CMD_SRCLEN_S		14
486 #define	HIFN_BASE_CMD_DSTLEN_M		0x3000
487 #define	HIFN_BASE_CMD_DSTLEN_S		12
488 #define	HIFN_BASE_CMD_LENMASK_HI	0x30000
489 #define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
490 
491 /*
492  * Structure to help build up the command data structure.
493  */
494 struct hifn_crypt_command
495 {
496 	volatile __le16 		masks;
497 	volatile __le16 		header_skip;
498 	volatile __le16 		source_count;
499 	volatile __le16 		reserved;
500 };
501 
502 #define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
503 #define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
504 #define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
505 #define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
506 #define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
507 #define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
508 #define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
509 #define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
510 #define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
511 #define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
512 #define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
513 #define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
514 #define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
515 #define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
516 #define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
517 #define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
518 #define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
519 #define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
520 #define	HIFN_CRYPT_CMD_SRCLEN_S		14
521 
522 /*
523  * Structure to help build up the command data structure.
524  */
525 struct hifn_mac_command
526 {
527 	volatile __le16 	masks;
528 	volatile __le16 	header_skip;
529 	volatile __le16 	source_count;
530 	volatile __le16 	reserved;
531 };
532 
533 #define	HIFN_MAC_CMD_ALG_MASK		0x0001
534 #define	HIFN_MAC_CMD_ALG_SHA1		0x0000
535 #define	HIFN_MAC_CMD_ALG_MD5		0x0001
536 #define	HIFN_MAC_CMD_MODE_MASK		0x000c
537 #define	HIFN_MAC_CMD_MODE_HMAC		0x0000
538 #define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
539 #define	HIFN_MAC_CMD_MODE_HASH		0x0008
540 #define	HIFN_MAC_CMD_MODE_FULL		0x0004
541 #define	HIFN_MAC_CMD_TRUNC		0x0010
542 #define	HIFN_MAC_CMD_RESULT		0x0020
543 #define	HIFN_MAC_CMD_APPEND		0x0040
544 #define	HIFN_MAC_CMD_SRCLEN_M		0xc000
545 #define	HIFN_MAC_CMD_SRCLEN_S		14
546 
547 /*
548  * MAC POS IPsec initiates authentication after encryption on encodes
549  * and before decryption on decodes.
550  */
551 #define	HIFN_MAC_CMD_POS_IPSEC		0x0200
552 #define	HIFN_MAC_CMD_NEW_KEY		0x0800
553 
554 struct hifn_comp_command
555 {
556 	volatile __le16 	masks;
557 	volatile __le16 	header_skip;
558 	volatile __le16 	source_count;
559 	volatile __le16 	reserved;
560 };
561 
562 #define	HIFN_COMP_CMD_SRCLEN_M		0xc000
563 #define	HIFN_COMP_CMD_SRCLEN_S		14
564 #define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
565 #define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
566 #define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
567 #define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
568 #define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
569 #define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
570 #define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
571 #define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
572 
573 struct hifn_base_result
574 {
575 	volatile __le16 	flags;
576 	volatile __le16 	session;
577 	volatile __le16 	src_cnt;		/* 15:0 of source count */
578 	volatile __le16 	dst_cnt;		/* 15:0 of dest count */
579 };
580 
581 #define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
582 #define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
583 #define	HIFN_BASE_RES_SRCLEN_S		14
584 #define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
585 #define	HIFN_BASE_RES_DSTLEN_S		12
586 
587 struct hifn_comp_result
588 {
589 	volatile __le16		flags;
590 	volatile __le16		crc;
591 };
592 
593 #define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
594 #define	HIFN_COMP_RES_LCB_S		8
595 #define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
596 #define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
597 #define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
598 
599 struct hifn_mac_result
600 {
601 	volatile __le16 	flags;
602 	volatile __le16 	reserved;
603 	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
604 };
605 
606 #define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
607 #define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
608 
609 struct hifn_crypt_result
610 {
611 	volatile __le16		flags;
612 	volatile __le16		reserved;
613 };
614 
615 #define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
616 
617 #ifndef HIFN_POLL_FREQUENCY
618 #define	HIFN_POLL_FREQUENCY	0x1
619 #endif
620 
621 #ifndef HIFN_POLL_SCALAR
622 #define	HIFN_POLL_SCALAR	0x0
623 #endif
624 
625 #define	HIFN_MAX_SEGLEN 	0xffff		/* maximum dma segment len */
626 #define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
627 
628 struct hifn_crypto_alg
629 {
630 	struct list_head	entry;
631 	struct crypto_alg	alg;
632 	struct hifn_device	*dev;
633 };
634 
635 #define ASYNC_SCATTERLIST_CACHE	16
636 
637 #define ASYNC_FLAGS_MISALIGNED	(1<<0)
638 
639 struct hifn_cipher_walk
640 {
641 	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
642 	u32			flags;
643 	int			num;
644 };
645 
646 struct hifn_context
647 {
648 	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
649 	struct hifn_device	*dev;
650 	unsigned int		keysize;
651 };
652 
653 struct hifn_request_context
654 {
655 	u8			*iv;
656 	unsigned int		ivsize;
657 	u8			op, type, mode, unused;
658 	struct hifn_cipher_walk	walk;
659 };
660 
661 #define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
662 
663 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
664 {
665 	u32 ret;
666 
667 	ret = readl(dev->bar[0] + reg);
668 
669 	return ret;
670 }
671 
672 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
673 {
674 	u32 ret;
675 
676 	ret = readl(dev->bar[1] + reg);
677 
678 	return ret;
679 }
680 
681 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
682 {
683 	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
684 }
685 
686 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
687 {
688 	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
689 }
690 
691 static void hifn_wait_puc(struct hifn_device *dev)
692 {
693 	int i;
694 	u32 ret;
695 
696 	for (i=10000; i > 0; --i) {
697 		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
698 		if (!(ret & HIFN_PUCTRL_RESET))
699 			break;
700 
701 		udelay(1);
702 	}
703 
704 	if (!i)
705 		dprintk("%s: Failed to reset PUC unit.\n", dev->name);
706 }
707 
708 static void hifn_reset_puc(struct hifn_device *dev)
709 {
710 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
711 	hifn_wait_puc(dev);
712 }
713 
714 static void hifn_stop_device(struct hifn_device *dev)
715 {
716 	hifn_write_1(dev, HIFN_1_DMA_CSR,
717 		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
718 		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
719 	hifn_write_0(dev, HIFN_0_PUIER, 0);
720 	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
721 }
722 
723 static void hifn_reset_dma(struct hifn_device *dev, int full)
724 {
725 	hifn_stop_device(dev);
726 
727 	/*
728 	 * Setting poll frequency and others to 0.
729 	 */
730 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
731 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
732 	mdelay(1);
733 
734 	/*
735 	 * Reset DMA.
736 	 */
737 	if (full) {
738 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
739 		mdelay(1);
740 	} else {
741 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
742 				HIFN_DMACNFG_MSTRESET);
743 		hifn_reset_puc(dev);
744 	}
745 
746 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
747 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
748 
749 	hifn_reset_puc(dev);
750 }
751 
752 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
753 {
754 	int i;
755 	u32 v;
756 
757 	for (i = 0; i < cnt; i++) {
758 
759 		/* get the parity */
760 		v = a & 0x80080125;
761 		v ^= v >> 16;
762 		v ^= v >> 8;
763 		v ^= v >> 4;
764 		v ^= v >> 2;
765 		v ^= v >> 1;
766 
767 		a = (v & 1) ^ (a << 1);
768 	}
769 
770 	return a;
771 }
772 
773 static struct pci2id {
774 	u_short		pci_vendor;
775 	u_short		pci_prod;
776 	char		card_id[13];
777 } pci2id[] = {
778 	{
779 		PCI_VENDOR_ID_HIFN,
780 		PCI_DEVICE_ID_HIFN_7955,
781 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
782 		  0x00, 0x00, 0x00, 0x00, 0x00 }
783 	},
784 	{
785 		PCI_VENDOR_ID_HIFN,
786 		PCI_DEVICE_ID_HIFN_7956,
787 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
788 		  0x00, 0x00, 0x00, 0x00, 0x00 }
789 	}
790 };
791 
792 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
793 static int hifn_rng_data_present(struct hwrng *rng, int wait)
794 {
795 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
796 	s64 nsec;
797 
798 	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
799 	nsec -= dev->rng_wait_time;
800 	if (nsec <= 0)
801 		return 1;
802 	if (!wait)
803 		return 0;
804 	ndelay(nsec);
805 	return 1;
806 }
807 
808 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
809 {
810 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
811 
812 	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
813 	dev->rngtime = ktime_get();
814 	return 4;
815 }
816 
817 static int hifn_register_rng(struct hifn_device *dev)
818 {
819 	/*
820 	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
821 	 */
822 	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
823 						   dev->pk_clk_freq) * 256;
824 
825 	dev->rng.name		= dev->name;
826 	dev->rng.data_present	= hifn_rng_data_present,
827 	dev->rng.data_read	= hifn_rng_data_read,
828 	dev->rng.priv		= (unsigned long)dev;
829 
830 	return hwrng_register(&dev->rng);
831 }
832 
833 static void hifn_unregister_rng(struct hifn_device *dev)
834 {
835 	hwrng_unregister(&dev->rng);
836 }
837 #else
838 #define hifn_register_rng(dev)		0
839 #define hifn_unregister_rng(dev)
840 #endif
841 
842 static int hifn_init_pubrng(struct hifn_device *dev)
843 {
844 	int i;
845 
846 	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
847 			HIFN_PUBRST_RESET);
848 
849 	for (i=100; i > 0; --i) {
850 		mdelay(1);
851 
852 		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
853 			break;
854 	}
855 
856 	if (!i)
857 		dprintk("Chip %s: Failed to initialise public key engine.\n",
858 				dev->name);
859 	else {
860 		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
861 		dev->dmareg |= HIFN_DMAIER_PUBDONE;
862 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
863 
864 		dprintk("Chip %s: Public key engine has been successfully "
865 				"initialised.\n", dev->name);
866 	}
867 
868 	/*
869 	 * Enable RNG engine.
870 	 */
871 
872 	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
873 			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
874 	dprintk("Chip %s: RNG engine has been successfully initialised.\n",
875 			dev->name);
876 
877 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
878 	/* First value must be discarded */
879 	hifn_read_1(dev, HIFN_1_RNG_DATA);
880 	dev->rngtime = ktime_get();
881 #endif
882 	return 0;
883 }
884 
885 static int hifn_enable_crypto(struct hifn_device *dev)
886 {
887 	u32 dmacfg, addr;
888 	char *offtbl = NULL;
889 	int i;
890 
891 	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
892 		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
893 				pci2id[i].pci_prod == dev->pdev->device) {
894 			offtbl = pci2id[i].card_id;
895 			break;
896 		}
897 	}
898 
899 	if (offtbl == NULL) {
900 		dprintk("Chip %s: Unknown card!\n", dev->name);
901 		return -ENODEV;
902 	}
903 
904 	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
905 
906 	hifn_write_1(dev, HIFN_1_DMA_CNFG,
907 			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
908 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
909 	mdelay(1);
910 	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
911 	mdelay(1);
912 	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
913 	mdelay(1);
914 
915 	for (i=0; i<12; ++i) {
916 		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
917 		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
918 
919 		mdelay(1);
920 	}
921 	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
922 
923 	dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
924 
925 	return 0;
926 }
927 
928 static void hifn_init_dma(struct hifn_device *dev)
929 {
930 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
931 	u32 dptr = dev->desc_dma;
932 	int i;
933 
934 	for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
935 		dma->cmdr[i].p = __cpu_to_le32(dptr +
936 				offsetof(struct hifn_dma, command_bufs[i][0]));
937 	for (i=0; i<HIFN_D_RES_RSIZE; ++i)
938 		dma->resr[i].p = __cpu_to_le32(dptr +
939 				offsetof(struct hifn_dma, result_bufs[i][0]));
940 
941 	/*
942 	 * Setup LAST descriptors.
943 	 */
944 	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
945 			offsetof(struct hifn_dma, cmdr[0]));
946 	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
947 			offsetof(struct hifn_dma, srcr[0]));
948 	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
949 			offsetof(struct hifn_dma, dstr[0]));
950 	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
951 			offsetof(struct hifn_dma, resr[0]));
952 
953 	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
954 	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
955 	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
956 }
957 
958 /*
959  * Initialize the PLL. We need to know the frequency of the reference clock
960  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
961  * allows us to operate without the risk of overclocking the chip. If it
962  * actually uses 33MHz, the chip will operate at half the speed, this can be
963  * overriden by specifying the frequency as module parameter (pci33).
964  *
965  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
966  * stable clock and the PCI clock frequency may vary, so the default is the
967  * external clock. There is no way to find out its frequency, we default to
968  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
969  * has an external crystal populated at 66MHz.
970  */
971 static void hifn_init_pll(struct hifn_device *dev)
972 {
973 	unsigned int freq, m;
974 	u32 pllcfg;
975 
976 	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
977 
978 	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
979 		pllcfg |= HIFN_PLL_REF_CLK_PLL;
980 	else
981 		pllcfg |= HIFN_PLL_REF_CLK_HBI;
982 
983 	if (hifn_pll_ref[3] != '\0')
984 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
985 	else {
986 		freq = 66;
987 		printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
988 				 "override with hifn_pll_ref=%.3s<frequency>\n",
989 		       freq, hifn_pll_ref);
990 	}
991 
992 	m = HIFN_PLL_FCK_MAX / freq;
993 
994 	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
995 	if (m <= 8)
996 		pllcfg |= HIFN_PLL_IS_1_8;
997 	else
998 		pllcfg |= HIFN_PLL_IS_9_12;
999 
1000 	/* Select clock source and enable clock bypass */
1001 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1002 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1003 
1004 	/* Let the chip lock to the input clock */
1005 	mdelay(10);
1006 
1007 	/* Disable clock bypass */
1008 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1009 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1010 
1011 	/* Switch the engines to the PLL */
1012 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1013 		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1014 
1015 	/*
1016 	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
1017 	 * calculate the minimum time between two reads of the rng. Since 33MHz
1018 	 * is actually 33.333... we overestimate the frequency here, resulting
1019 	 * in slightly larger intervals.
1020 	 */
1021 	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1022 }
1023 
1024 static void hifn_init_registers(struct hifn_device *dev)
1025 {
1026 	u32 dptr = dev->desc_dma;
1027 
1028 	/* Initialization magic... */
1029 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1030 	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1031 	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1032 
1033 	/* write all 4 ring address registers */
1034 	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1035 				offsetof(struct hifn_dma, cmdr[0]));
1036 	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1037 				offsetof(struct hifn_dma, srcr[0]));
1038 	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1039 				offsetof(struct hifn_dma, dstr[0]));
1040 	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1041 				offsetof(struct hifn_dma, resr[0]));
1042 
1043 	mdelay(2);
1044 #if 0
1045 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1046 	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1047 	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1048 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1049 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1050 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1051 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1052 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1053 	    HIFN_DMACSR_S_WAIT |
1054 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1055 	    HIFN_DMACSR_C_WAIT |
1056 	    HIFN_DMACSR_ENGINE |
1057 	    HIFN_DMACSR_PUBDONE);
1058 #else
1059 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1060 	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1061 	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1062 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1063 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1064 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1065 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1066 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1067 	    HIFN_DMACSR_S_WAIT |
1068 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1069 	    HIFN_DMACSR_C_WAIT |
1070 	    HIFN_DMACSR_ENGINE |
1071 	    HIFN_DMACSR_PUBDONE);
1072 #endif
1073 	hifn_read_1(dev, HIFN_1_DMA_CSR);
1074 
1075 	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1076 	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1077 	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1078 	    HIFN_DMAIER_ENGINE;
1079 	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1080 
1081 	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1082 	hifn_read_1(dev, HIFN_1_DMA_IER);
1083 #if 0
1084 	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1085 		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1086 		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1087 		    HIFN_PUCNFG_DRAM);
1088 #else
1089 	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1090 #endif
1091 	hifn_init_pll(dev);
1092 
1093 	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1094 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1095 	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1096 	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1097 	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1098 }
1099 
1100 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1101 		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1102 {
1103 	struct hifn_base_command *base_cmd;
1104 	u8 *buf_pos = buf;
1105 
1106 	base_cmd = (struct hifn_base_command *)buf_pos;
1107 	base_cmd->masks = __cpu_to_le16(mask);
1108 	base_cmd->total_source_count =
1109 		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1110 	base_cmd->total_dest_count =
1111 		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1112 
1113 	dlen >>= 16;
1114 	slen >>= 16;
1115 	base_cmd->session_num = __cpu_to_le16(snum |
1116 	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1117 	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1118 
1119 	return sizeof(struct hifn_base_command);
1120 }
1121 
1122 static int hifn_setup_crypto_command(struct hifn_device *dev,
1123 		u8 *buf, unsigned dlen, unsigned slen,
1124 		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1125 {
1126 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1127 	struct hifn_crypt_command *cry_cmd;
1128 	u8 *buf_pos = buf;
1129 	u16 cmd_len;
1130 
1131 	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1132 
1133 	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1134 	dlen >>= 16;
1135 	cry_cmd->masks = __cpu_to_le16(mode |
1136 			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1137 			 HIFN_CRYPT_CMD_SRCLEN_M));
1138 	cry_cmd->header_skip = 0;
1139 	cry_cmd->reserved = 0;
1140 
1141 	buf_pos += sizeof(struct hifn_crypt_command);
1142 
1143 	dma->cmdu++;
1144 	if (dma->cmdu > 1) {
1145 		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1146 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1147 	}
1148 
1149 	if (keylen) {
1150 		memcpy(buf_pos, key, keylen);
1151 		buf_pos += keylen;
1152 	}
1153 	if (ivsize) {
1154 		memcpy(buf_pos, iv, ivsize);
1155 		buf_pos += ivsize;
1156 	}
1157 
1158 	cmd_len = buf_pos - buf;
1159 
1160 	return cmd_len;
1161 }
1162 
1163 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1164 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1165 		void *priv, unsigned int nbytes)
1166 {
1167 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1168 	int cmd_len, sa_idx;
1169 	u8 *buf, *buf_pos;
1170 	u16 mask;
1171 
1172 	sa_idx = dma->cmdi;
1173 	buf_pos = buf = dma->command_bufs[dma->cmdi];
1174 
1175 	mask = 0;
1176 	switch (rctx->op) {
1177 		case ACRYPTO_OP_DECRYPT:
1178 			mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1179 			break;
1180 		case ACRYPTO_OP_ENCRYPT:
1181 			mask = HIFN_BASE_CMD_CRYPT;
1182 			break;
1183 		case ACRYPTO_OP_HMAC:
1184 			mask = HIFN_BASE_CMD_MAC;
1185 			break;
1186 		default:
1187 			goto err_out;
1188 	}
1189 
1190 	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1191 			nbytes, mask, dev->snum);
1192 
1193 	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1194 		u16 md = 0;
1195 
1196 		if (ctx->keysize)
1197 			md |= HIFN_CRYPT_CMD_NEW_KEY;
1198 		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1199 			md |= HIFN_CRYPT_CMD_NEW_IV;
1200 
1201 		switch (rctx->mode) {
1202 			case ACRYPTO_MODE_ECB:
1203 				md |= HIFN_CRYPT_CMD_MODE_ECB;
1204 				break;
1205 			case ACRYPTO_MODE_CBC:
1206 				md |= HIFN_CRYPT_CMD_MODE_CBC;
1207 				break;
1208 			case ACRYPTO_MODE_CFB:
1209 				md |= HIFN_CRYPT_CMD_MODE_CFB;
1210 				break;
1211 			case ACRYPTO_MODE_OFB:
1212 				md |= HIFN_CRYPT_CMD_MODE_OFB;
1213 				break;
1214 			default:
1215 				goto err_out;
1216 		}
1217 
1218 		switch (rctx->type) {
1219 			case ACRYPTO_TYPE_AES_128:
1220 				if (ctx->keysize != 16)
1221 					goto err_out;
1222 				md |= HIFN_CRYPT_CMD_KSZ_128 |
1223 					HIFN_CRYPT_CMD_ALG_AES;
1224 				break;
1225 			case ACRYPTO_TYPE_AES_192:
1226 				if (ctx->keysize != 24)
1227 					goto err_out;
1228 				md |= HIFN_CRYPT_CMD_KSZ_192 |
1229 					HIFN_CRYPT_CMD_ALG_AES;
1230 				break;
1231 			case ACRYPTO_TYPE_AES_256:
1232 				if (ctx->keysize != 32)
1233 					goto err_out;
1234 				md |= HIFN_CRYPT_CMD_KSZ_256 |
1235 					HIFN_CRYPT_CMD_ALG_AES;
1236 				break;
1237 			case ACRYPTO_TYPE_3DES:
1238 				if (ctx->keysize != 24)
1239 					goto err_out;
1240 				md |= HIFN_CRYPT_CMD_ALG_3DES;
1241 				break;
1242 			case ACRYPTO_TYPE_DES:
1243 				if (ctx->keysize != 8)
1244 					goto err_out;
1245 				md |= HIFN_CRYPT_CMD_ALG_DES;
1246 				break;
1247 			default:
1248 				goto err_out;
1249 		}
1250 
1251 		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1252 				nbytes, nbytes, ctx->key, ctx->keysize,
1253 				rctx->iv, rctx->ivsize, md);
1254 	}
1255 
1256 	dev->sa[sa_idx] = priv;
1257 	dev->started++;
1258 
1259 	cmd_len = buf_pos - buf;
1260 	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1261 			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1262 
1263 	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1264 		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1265 			HIFN_D_VALID | HIFN_D_LAST |
1266 			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1267 		dma->cmdi = 0;
1268 	} else
1269 		dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1270 
1271 	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1272 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1273 		dev->flags |= HIFN_FLAG_CMD_BUSY;
1274 	}
1275 	return 0;
1276 
1277 err_out:
1278 	return -EINVAL;
1279 }
1280 
1281 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1282 		unsigned int offset, unsigned int size, int last)
1283 {
1284 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1285 	int idx;
1286 	dma_addr_t addr;
1287 
1288 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1289 
1290 	idx = dma->srci;
1291 
1292 	dma->srcr[idx].p = __cpu_to_le32(addr);
1293 	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1294 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1295 
1296 	if (++idx == HIFN_D_SRC_RSIZE) {
1297 		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1298 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1299 				(last ? HIFN_D_LAST : 0));
1300 		idx = 0;
1301 	}
1302 
1303 	dma->srci = idx;
1304 	dma->srcu++;
1305 
1306 	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1307 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1308 		dev->flags |= HIFN_FLAG_SRC_BUSY;
1309 	}
1310 
1311 	return size;
1312 }
1313 
1314 static void hifn_setup_res_desc(struct hifn_device *dev)
1315 {
1316 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1317 
1318 	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1319 			HIFN_D_VALID | HIFN_D_LAST);
1320 	/*
1321 	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1322 	 *					HIFN_D_LAST);
1323 	 */
1324 
1325 	if (++dma->resi == HIFN_D_RES_RSIZE) {
1326 		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1327 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1328 		dma->resi = 0;
1329 	}
1330 
1331 	dma->resu++;
1332 
1333 	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1334 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1335 		dev->flags |= HIFN_FLAG_RES_BUSY;
1336 	}
1337 }
1338 
1339 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1340 		unsigned offset, unsigned size, int last)
1341 {
1342 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1343 	int idx;
1344 	dma_addr_t addr;
1345 
1346 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1347 
1348 	idx = dma->dsti;
1349 	dma->dstr[idx].p = __cpu_to_le32(addr);
1350 	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1351 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1352 
1353 	if (++idx == HIFN_D_DST_RSIZE) {
1354 		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1355 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1356 				(last ? HIFN_D_LAST : 0));
1357 		idx = 0;
1358 	}
1359 	dma->dsti = idx;
1360 	dma->dstu++;
1361 
1362 	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1363 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1364 		dev->flags |= HIFN_FLAG_DST_BUSY;
1365 	}
1366 }
1367 
1368 static int hifn_setup_dma(struct hifn_device *dev,
1369 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1370 		struct scatterlist *src, struct scatterlist *dst,
1371 		unsigned int nbytes, void *priv)
1372 {
1373 	struct scatterlist *t;
1374 	struct page *spage, *dpage;
1375 	unsigned int soff, doff;
1376 	unsigned int n, len;
1377 
1378 	n = nbytes;
1379 	while (n) {
1380 		spage = sg_page(src);
1381 		soff = src->offset;
1382 		len = min(src->length, n);
1383 
1384 		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1385 
1386 		src++;
1387 		n -= len;
1388 	}
1389 
1390 	t = &rctx->walk.cache[0];
1391 	n = nbytes;
1392 	while (n) {
1393 		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1394 			BUG_ON(!sg_page(t));
1395 			dpage = sg_page(t);
1396 			doff = 0;
1397 			len = t->length;
1398 		} else {
1399 			BUG_ON(!sg_page(dst));
1400 			dpage = sg_page(dst);
1401 			doff = dst->offset;
1402 			len = dst->length;
1403 		}
1404 		len = min(len, n);
1405 
1406 		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1407 
1408 		dst++;
1409 		t++;
1410 		n -= len;
1411 	}
1412 
1413 	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1414 	hifn_setup_res_desc(dev);
1415 	return 0;
1416 }
1417 
1418 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1419 		int num, gfp_t gfp_flags)
1420 {
1421 	int i;
1422 
1423 	num = min(ASYNC_SCATTERLIST_CACHE, num);
1424 	sg_init_table(w->cache, num);
1425 
1426 	w->num = 0;
1427 	for (i=0; i<num; ++i) {
1428 		struct page *page = alloc_page(gfp_flags);
1429 		struct scatterlist *s;
1430 
1431 		if (!page)
1432 			break;
1433 
1434 		s = &w->cache[i];
1435 
1436 		sg_set_page(s, page, PAGE_SIZE, 0);
1437 		w->num++;
1438 	}
1439 
1440 	return i;
1441 }
1442 
1443 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1444 {
1445 	int i;
1446 
1447 	for (i=0; i<w->num; ++i) {
1448 		struct scatterlist *s = &w->cache[i];
1449 
1450 		__free_page(sg_page(s));
1451 
1452 		s->length = 0;
1453 	}
1454 
1455 	w->num = 0;
1456 }
1457 
1458 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1459 		unsigned int size, unsigned int *nbytesp)
1460 {
1461 	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1462 	int idx = 0;
1463 
1464 	if (drest < size || size > nbytes)
1465 		return -EINVAL;
1466 
1467 	while (size) {
1468 		copy = min3(drest, size, dst->length);
1469 
1470 		size -= copy;
1471 		drest -= copy;
1472 		nbytes -= copy;
1473 
1474 		dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1475 				__func__, copy, size, drest, nbytes);
1476 
1477 		dst++;
1478 		idx++;
1479 	}
1480 
1481 	*nbytesp = nbytes;
1482 	*drestp = drest;
1483 
1484 	return idx;
1485 }
1486 
1487 static int hifn_cipher_walk(struct ablkcipher_request *req,
1488 		struct hifn_cipher_walk *w)
1489 {
1490 	struct scatterlist *dst, *t;
1491 	unsigned int nbytes = req->nbytes, offset, copy, diff;
1492 	int idx, tidx, err;
1493 
1494 	tidx = idx = 0;
1495 	offset = 0;
1496 	while (nbytes) {
1497 		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1498 			return -EINVAL;
1499 
1500 		dst = &req->dst[idx];
1501 
1502 		dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1503 			__func__, dst->length, dst->offset, offset, nbytes);
1504 
1505 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1506 		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1507 		    offset) {
1508 			unsigned slen = min(dst->length - offset, nbytes);
1509 			unsigned dlen = PAGE_SIZE;
1510 
1511 			t = &w->cache[idx];
1512 
1513 			err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1514 			if (err < 0)
1515 				return err;
1516 
1517 			idx += err;
1518 
1519 			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1520 			diff = slen & (HIFN_D_DST_DALIGN - 1);
1521 
1522 			if (dlen < nbytes) {
1523 				/*
1524 				 * Destination page does not have enough space
1525 				 * to put there additional blocksized chunk,
1526 				 * so we mark that page as containing only
1527 				 * blocksize aligned chunks:
1528 				 * 	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1529 				 * and increase number of bytes to be processed
1530 				 * in next chunk:
1531 				 * 	nbytes += diff;
1532 				 */
1533 				nbytes += diff;
1534 
1535 				/*
1536 				 * Temporary of course...
1537 				 * Kick author if you will catch this one.
1538 				 */
1539 				printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1540 					"slen: %u, offset: %u.\n",
1541 					__func__, dlen, nbytes, slen, offset);
1542 				printk(KERN_ERR "%s: please contact author to fix this "
1543 					"issue, generally you should not catch "
1544 					"this path under any condition but who "
1545 					"knows how did you use crypto code.\n"
1546 					"Thank you.\n",	__func__);
1547 				BUG();
1548 			} else {
1549 				copy += diff + nbytes;
1550 
1551 				dst = &req->dst[idx];
1552 
1553 				err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1554 				if (err < 0)
1555 					return err;
1556 
1557 				idx += err;
1558 			}
1559 
1560 			t->length = copy;
1561 			t->offset = offset;
1562 		} else {
1563 			nbytes -= min(dst->length, nbytes);
1564 			idx++;
1565 		}
1566 
1567 		tidx++;
1568 	}
1569 
1570 	return tidx;
1571 }
1572 
1573 static int hifn_setup_session(struct ablkcipher_request *req)
1574 {
1575 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1576 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1577 	struct hifn_device *dev = ctx->dev;
1578 	unsigned long dlen, flags;
1579 	unsigned int nbytes = req->nbytes, idx = 0;
1580 	int err = -EINVAL, sg_num;
1581 	struct scatterlist *dst;
1582 
1583 	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1584 		goto err_out_exit;
1585 
1586 	rctx->walk.flags = 0;
1587 
1588 	while (nbytes) {
1589 		dst = &req->dst[idx];
1590 		dlen = min(dst->length, nbytes);
1591 
1592 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1593 		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1594 			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1595 
1596 		nbytes -= dlen;
1597 		idx++;
1598 	}
1599 
1600 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1601 		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1602 		if (err < 0)
1603 			return err;
1604 	}
1605 
1606 	sg_num = hifn_cipher_walk(req, &rctx->walk);
1607 	if (sg_num < 0) {
1608 		err = sg_num;
1609 		goto err_out_exit;
1610 	}
1611 
1612 	spin_lock_irqsave(&dev->lock, flags);
1613 	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1614 		err = -EAGAIN;
1615 		goto err_out;
1616 	}
1617 
1618 	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1619 	if (err)
1620 		goto err_out;
1621 
1622 	dev->snum++;
1623 
1624 	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1625 	spin_unlock_irqrestore(&dev->lock, flags);
1626 
1627 	return 0;
1628 
1629 err_out:
1630 	spin_unlock_irqrestore(&dev->lock, flags);
1631 err_out_exit:
1632 	if (err) {
1633 		printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1634 				"type: %u, err: %d.\n",
1635 			dev->name, rctx->iv, rctx->ivsize,
1636 			ctx->key, ctx->keysize,
1637 			rctx->mode, rctx->op, rctx->type, err);
1638 	}
1639 
1640 	return err;
1641 }
1642 
1643 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1644 {
1645 	int n, err;
1646 	u8 src[16];
1647 	struct hifn_context ctx;
1648 	struct hifn_request_context rctx;
1649 	u8 fips_aes_ecb_from_zero[16] = {
1650 		0x66, 0xE9, 0x4B, 0xD4,
1651 		0xEF, 0x8A, 0x2C, 0x3B,
1652 		0x88, 0x4C, 0xFA, 0x59,
1653 		0xCA, 0x34, 0x2B, 0x2E};
1654 	struct scatterlist sg;
1655 
1656 	memset(src, 0, sizeof(src));
1657 	memset(ctx.key, 0, sizeof(ctx.key));
1658 
1659 	ctx.dev = dev;
1660 	ctx.keysize = 16;
1661 	rctx.ivsize = 0;
1662 	rctx.iv = NULL;
1663 	rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1664 	rctx.mode = ACRYPTO_MODE_ECB;
1665 	rctx.type = ACRYPTO_TYPE_AES_128;
1666 	rctx.walk.cache[0].length = 0;
1667 
1668 	sg_init_one(&sg, &src, sizeof(src));
1669 
1670 	err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
1671 	if (err)
1672 		goto err_out;
1673 
1674 	dev->started = 0;
1675 	msleep(200);
1676 
1677 	dprintk("%s: decoded: ", dev->name);
1678 	for (n=0; n<sizeof(src); ++n)
1679 		dprintk("%02x ", src[n]);
1680 	dprintk("\n");
1681 	dprintk("%s: FIPS   : ", dev->name);
1682 	for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1683 		dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1684 	dprintk("\n");
1685 
1686 	if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1687 		printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1688 				"passed.\n", dev->name);
1689 		return 0;
1690 	}
1691 
1692 err_out:
1693 	printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1694 	return -1;
1695 }
1696 
1697 static int hifn_start_device(struct hifn_device *dev)
1698 {
1699 	int err;
1700 
1701 	dev->started = dev->active = 0;
1702 	hifn_reset_dma(dev, 1);
1703 
1704 	err = hifn_enable_crypto(dev);
1705 	if (err)
1706 		return err;
1707 
1708 	hifn_reset_puc(dev);
1709 
1710 	hifn_init_dma(dev);
1711 
1712 	hifn_init_registers(dev);
1713 
1714 	hifn_init_pubrng(dev);
1715 
1716 	return 0;
1717 }
1718 
1719 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1720 		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1721 {
1722 	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1723 	void *daddr;
1724 	int idx = 0;
1725 
1726 	if (srest < size || size > nbytes)
1727 		return -EINVAL;
1728 
1729 	while (size) {
1730 		copy = min3(srest, dst->length, size);
1731 
1732 		daddr = kmap_atomic(sg_page(dst));
1733 		memcpy(daddr + dst->offset + offset, saddr, copy);
1734 		kunmap_atomic(daddr);
1735 
1736 		nbytes -= copy;
1737 		size -= copy;
1738 		srest -= copy;
1739 		saddr += copy;
1740 		offset = 0;
1741 
1742 		dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1743 				__func__, copy, size, srest, nbytes);
1744 
1745 		dst++;
1746 		idx++;
1747 	}
1748 
1749 	*nbytesp = nbytes;
1750 	*srestp = srest;
1751 
1752 	return idx;
1753 }
1754 
1755 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1756 {
1757 	unsigned long flags;
1758 
1759 	spin_lock_irqsave(&dev->lock, flags);
1760 	dev->sa[i] = NULL;
1761 	dev->started--;
1762 	if (dev->started < 0)
1763 		printk("%s: started: %d.\n", __func__, dev->started);
1764 	spin_unlock_irqrestore(&dev->lock, flags);
1765 	BUG_ON(dev->started < 0);
1766 }
1767 
1768 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1769 {
1770 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1771 
1772 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1773 		unsigned int nbytes = req->nbytes;
1774 		int idx = 0, err;
1775 		struct scatterlist *dst, *t;
1776 		void *saddr;
1777 
1778 		while (nbytes) {
1779 			t = &rctx->walk.cache[idx];
1780 			dst = &req->dst[idx];
1781 
1782 			dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1783 				"sg_page(dst): %p, dst->length: %u, "
1784 				"nbytes: %u.\n",
1785 				__func__, sg_page(t), t->length,
1786 				sg_page(dst), dst->length, nbytes);
1787 
1788 			if (!t->length) {
1789 				nbytes -= min(dst->length, nbytes);
1790 				idx++;
1791 				continue;
1792 			}
1793 
1794 			saddr = kmap_atomic(sg_page(t));
1795 
1796 			err = ablkcipher_get(saddr, &t->length, t->offset,
1797 					dst, nbytes, &nbytes);
1798 			if (err < 0) {
1799 				kunmap_atomic(saddr);
1800 				break;
1801 			}
1802 
1803 			idx += err;
1804 			kunmap_atomic(saddr);
1805 		}
1806 
1807 		hifn_cipher_walk_exit(&rctx->walk);
1808 	}
1809 
1810 	req->base.complete(&req->base, error);
1811 }
1812 
1813 static void hifn_clear_rings(struct hifn_device *dev, int error)
1814 {
1815 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1816 	int i, u;
1817 
1818 	dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1819 			"k: %d.%d.%d.%d.\n",
1820 			dev->name,
1821 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1822 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1823 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1824 
1825 	i = dma->resk; u = dma->resu;
1826 	while (u != 0) {
1827 		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1828 			break;
1829 
1830 		if (dev->sa[i]) {
1831 			dev->success++;
1832 			dev->reset = 0;
1833 			hifn_process_ready(dev->sa[i], error);
1834 			hifn_complete_sa(dev, i);
1835 		}
1836 
1837 		if (++i == HIFN_D_RES_RSIZE)
1838 			i = 0;
1839 		u--;
1840 	}
1841 	dma->resk = i; dma->resu = u;
1842 
1843 	i = dma->srck; u = dma->srcu;
1844 	while (u != 0) {
1845 		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1846 			break;
1847 		if (++i == HIFN_D_SRC_RSIZE)
1848 			i = 0;
1849 		u--;
1850 	}
1851 	dma->srck = i; dma->srcu = u;
1852 
1853 	i = dma->cmdk; u = dma->cmdu;
1854 	while (u != 0) {
1855 		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1856 			break;
1857 		if (++i == HIFN_D_CMD_RSIZE)
1858 			i = 0;
1859 		u--;
1860 	}
1861 	dma->cmdk = i; dma->cmdu = u;
1862 
1863 	i = dma->dstk; u = dma->dstu;
1864 	while (u != 0) {
1865 		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1866 			break;
1867 		if (++i == HIFN_D_DST_RSIZE)
1868 			i = 0;
1869 		u--;
1870 	}
1871 	dma->dstk = i; dma->dstu = u;
1872 
1873 	dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1874 			"k: %d.%d.%d.%d.\n",
1875 			dev->name,
1876 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1877 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1878 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1879 }
1880 
1881 static void hifn_work(struct work_struct *work)
1882 {
1883 	struct delayed_work *dw = to_delayed_work(work);
1884 	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1885 	unsigned long flags;
1886 	int reset = 0;
1887 	u32 r = 0;
1888 
1889 	spin_lock_irqsave(&dev->lock, flags);
1890 	if (dev->active == 0) {
1891 		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1892 
1893 		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1894 			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1895 			r |= HIFN_DMACSR_C_CTRL_DIS;
1896 		}
1897 		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1898 			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1899 			r |= HIFN_DMACSR_S_CTRL_DIS;
1900 		}
1901 		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1902 			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1903 			r |= HIFN_DMACSR_D_CTRL_DIS;
1904 		}
1905 		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1906 			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1907 			r |= HIFN_DMACSR_R_CTRL_DIS;
1908 		}
1909 		if (r)
1910 			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1911 	} else
1912 		dev->active--;
1913 
1914 	if ((dev->prev_success == dev->success) && dev->started)
1915 		reset = 1;
1916 	dev->prev_success = dev->success;
1917 	spin_unlock_irqrestore(&dev->lock, flags);
1918 
1919 	if (reset) {
1920 		if (++dev->reset >= 5) {
1921 			int i;
1922 			struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1923 
1924 			printk("%s: r: %08x, active: %d, started: %d, "
1925 				"success: %lu: qlen: %u/%u, reset: %d.\n",
1926 				dev->name, r, dev->active, dev->started,
1927 				dev->success, dev->queue.qlen, dev->queue.max_qlen,
1928 				reset);
1929 
1930 			printk("%s: res: ", __func__);
1931 			for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1932 				printk("%x.%p ", dma->resr[i].l, dev->sa[i]);
1933 				if (dev->sa[i]) {
1934 					hifn_process_ready(dev->sa[i], -ENODEV);
1935 					hifn_complete_sa(dev, i);
1936 				}
1937 			}
1938 			printk("\n");
1939 
1940 			hifn_reset_dma(dev, 1);
1941 			hifn_stop_device(dev);
1942 			hifn_start_device(dev);
1943 			dev->reset = 0;
1944 		}
1945 
1946 		tasklet_schedule(&dev->tasklet);
1947 	}
1948 
1949 	schedule_delayed_work(&dev->work, HZ);
1950 }
1951 
1952 static irqreturn_t hifn_interrupt(int irq, void *data)
1953 {
1954 	struct hifn_device *dev = (struct hifn_device *)data;
1955 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1956 	u32 dmacsr, restart;
1957 
1958 	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1959 
1960 	dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1961 			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1962 		dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1963 		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1964 		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1965 
1966 	if ((dmacsr & dev->dmareg) == 0)
1967 		return IRQ_NONE;
1968 
1969 	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1970 
1971 	if (dmacsr & HIFN_DMACSR_ENGINE)
1972 		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1973 	if (dmacsr & HIFN_DMACSR_PUBDONE)
1974 		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1975 			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1976 
1977 	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1978 	if (restart) {
1979 		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1980 
1981 		printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1982 			dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
1983 			!!(dmacsr & HIFN_DMACSR_D_OVER),
1984 			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1985 		if (!!(puisr & HIFN_PUISR_DSTOVER))
1986 			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1987 		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1988 					HIFN_DMACSR_D_OVER));
1989 	}
1990 
1991 	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1992 			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1993 	if (restart) {
1994 		printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
1995 			dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
1996 			!!(dmacsr & HIFN_DMACSR_S_ABORT),
1997 			!!(dmacsr & HIFN_DMACSR_D_ABORT),
1998 			!!(dmacsr & HIFN_DMACSR_R_ABORT));
1999 		hifn_reset_dma(dev, 1);
2000 		hifn_init_dma(dev);
2001 		hifn_init_registers(dev);
2002 	}
2003 
2004 	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2005 		dprintk("%s: wait on command.\n", dev->name);
2006 		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2007 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2008 	}
2009 
2010 	tasklet_schedule(&dev->tasklet);
2011 
2012 	return IRQ_HANDLED;
2013 }
2014 
2015 static void hifn_flush(struct hifn_device *dev)
2016 {
2017 	unsigned long flags;
2018 	struct crypto_async_request *async_req;
2019 	struct ablkcipher_request *req;
2020 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2021 	int i;
2022 
2023 	for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2024 		struct hifn_desc *d = &dma->resr[i];
2025 
2026 		if (dev->sa[i]) {
2027 			hifn_process_ready(dev->sa[i],
2028 				(d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2029 			hifn_complete_sa(dev, i);
2030 		}
2031 	}
2032 
2033 	spin_lock_irqsave(&dev->lock, flags);
2034 	while ((async_req = crypto_dequeue_request(&dev->queue))) {
2035 		req = container_of(async_req, struct ablkcipher_request, base);
2036 		spin_unlock_irqrestore(&dev->lock, flags);
2037 
2038 		hifn_process_ready(req, -ENODEV);
2039 
2040 		spin_lock_irqsave(&dev->lock, flags);
2041 	}
2042 	spin_unlock_irqrestore(&dev->lock, flags);
2043 }
2044 
2045 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2046 		unsigned int len)
2047 {
2048 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2049 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2050 	struct hifn_device *dev = ctx->dev;
2051 
2052 	if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2053 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2054 		return -1;
2055 	}
2056 
2057 	if (len == HIFN_DES_KEY_LENGTH) {
2058 		u32 tmp[DES_EXPKEY_WORDS];
2059 		int ret = des_ekey(tmp, key);
2060 
2061 		if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2062 			tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2063 			return -EINVAL;
2064 		}
2065 	}
2066 
2067 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
2068 
2069 	memcpy(ctx->key, key, len);
2070 	ctx->keysize = len;
2071 
2072 	return 0;
2073 }
2074 
2075 static int hifn_handle_req(struct ablkcipher_request *req)
2076 {
2077 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2078 	struct hifn_device *dev = ctx->dev;
2079 	int err = -EAGAIN;
2080 
2081 	if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2082 		err = hifn_setup_session(req);
2083 
2084 	if (err == -EAGAIN) {
2085 		unsigned long flags;
2086 
2087 		spin_lock_irqsave(&dev->lock, flags);
2088 		err = ablkcipher_enqueue_request(&dev->queue, req);
2089 		spin_unlock_irqrestore(&dev->lock, flags);
2090 	}
2091 
2092 	return err;
2093 }
2094 
2095 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2096 		u8 type, u8 mode)
2097 {
2098 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2099 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2100 	unsigned ivsize;
2101 
2102 	ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2103 
2104 	if (req->info && mode != ACRYPTO_MODE_ECB) {
2105 		if (type == ACRYPTO_TYPE_AES_128)
2106 			ivsize = HIFN_AES_IV_LENGTH;
2107 		else if (type == ACRYPTO_TYPE_DES)
2108 			ivsize = HIFN_DES_KEY_LENGTH;
2109 		else if (type == ACRYPTO_TYPE_3DES)
2110 			ivsize = HIFN_3DES_KEY_LENGTH;
2111 	}
2112 
2113 	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2114 		if (ctx->keysize == 24)
2115 			type = ACRYPTO_TYPE_AES_192;
2116 		else if (ctx->keysize == 32)
2117 			type = ACRYPTO_TYPE_AES_256;
2118 	}
2119 
2120 	rctx->op = op;
2121 	rctx->mode = mode;
2122 	rctx->type = type;
2123 	rctx->iv = req->info;
2124 	rctx->ivsize = ivsize;
2125 
2126 	/*
2127 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2128 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2129 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2130 	 */
2131 
2132 	return hifn_handle_req(req);
2133 }
2134 
2135 static int hifn_process_queue(struct hifn_device *dev)
2136 {
2137 	struct crypto_async_request *async_req, *backlog;
2138 	struct ablkcipher_request *req;
2139 	unsigned long flags;
2140 	int err = 0;
2141 
2142 	while (dev->started < HIFN_QUEUE_LENGTH) {
2143 		spin_lock_irqsave(&dev->lock, flags);
2144 		backlog = crypto_get_backlog(&dev->queue);
2145 		async_req = crypto_dequeue_request(&dev->queue);
2146 		spin_unlock_irqrestore(&dev->lock, flags);
2147 
2148 		if (!async_req)
2149 			break;
2150 
2151 		if (backlog)
2152 			backlog->complete(backlog, -EINPROGRESS);
2153 
2154 		req = container_of(async_req, struct ablkcipher_request, base);
2155 
2156 		err = hifn_handle_req(req);
2157 		if (err)
2158 			break;
2159 	}
2160 
2161 	return err;
2162 }
2163 
2164 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2165 		u8 type, u8 mode)
2166 {
2167 	int err;
2168 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2169 	struct hifn_device *dev = ctx->dev;
2170 
2171 	err = hifn_setup_crypto_req(req, op, type, mode);
2172 	if (err)
2173 		return err;
2174 
2175 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2176 		hifn_process_queue(dev);
2177 
2178 	return -EINPROGRESS;
2179 }
2180 
2181 /*
2182  * AES ecryption functions.
2183  */
2184 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2185 {
2186 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2187 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2188 }
2189 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2190 {
2191 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2192 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2193 }
2194 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2195 {
2196 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2197 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2198 }
2199 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2200 {
2201 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2202 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2203 }
2204 
2205 /*
2206  * AES decryption functions.
2207  */
2208 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2209 {
2210 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2211 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2212 }
2213 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2214 {
2215 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2216 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2217 }
2218 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2219 {
2220 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2221 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2222 }
2223 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2224 {
2225 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2226 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2227 }
2228 
2229 /*
2230  * DES ecryption functions.
2231  */
2232 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2233 {
2234 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2235 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2236 }
2237 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2238 {
2239 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2240 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2241 }
2242 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2243 {
2244 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2245 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2246 }
2247 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2248 {
2249 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2250 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2251 }
2252 
2253 /*
2254  * DES decryption functions.
2255  */
2256 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2257 {
2258 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2259 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2260 }
2261 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2262 {
2263 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2264 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2265 }
2266 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2267 {
2268 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2269 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2270 }
2271 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2272 {
2273 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2274 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2275 }
2276 
2277 /*
2278  * 3DES ecryption functions.
2279  */
2280 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2281 {
2282 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2283 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2284 }
2285 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2286 {
2287 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2288 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2289 }
2290 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2291 {
2292 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2293 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2294 }
2295 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2296 {
2297 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2298 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2299 }
2300 
2301 /*
2302  * 3DES decryption functions.
2303  */
2304 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2305 {
2306 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2307 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2308 }
2309 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2310 {
2311 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2312 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2313 }
2314 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2315 {
2316 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2317 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2318 }
2319 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2320 {
2321 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2322 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2323 }
2324 
2325 struct hifn_alg_template
2326 {
2327 	char name[CRYPTO_MAX_ALG_NAME];
2328 	char drv_name[CRYPTO_MAX_ALG_NAME];
2329 	unsigned int bsize;
2330 	struct ablkcipher_alg ablkcipher;
2331 };
2332 
2333 static struct hifn_alg_template hifn_alg_templates[] = {
2334 	/*
2335 	 * 3DES ECB, CBC, CFB and OFB modes.
2336 	 */
2337 	{
2338 		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2339 		.ablkcipher = {
2340 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2341 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2342 			.setkey		=	hifn_setkey,
2343 			.encrypt	=	hifn_encrypt_3des_cfb,
2344 			.decrypt	=	hifn_decrypt_3des_cfb,
2345 		},
2346 	},
2347 	{
2348 		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2349 		.ablkcipher = {
2350 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2351 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2352 			.setkey		=	hifn_setkey,
2353 			.encrypt	=	hifn_encrypt_3des_ofb,
2354 			.decrypt	=	hifn_decrypt_3des_ofb,
2355 		},
2356 	},
2357 	{
2358 		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2359 		.ablkcipher = {
2360 			.ivsize		=	HIFN_IV_LENGTH,
2361 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2362 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2363 			.setkey		=	hifn_setkey,
2364 			.encrypt	=	hifn_encrypt_3des_cbc,
2365 			.decrypt	=	hifn_decrypt_3des_cbc,
2366 		},
2367 	},
2368 	{
2369 		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2370 		.ablkcipher = {
2371 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2372 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2373 			.setkey		=	hifn_setkey,
2374 			.encrypt	=	hifn_encrypt_3des_ecb,
2375 			.decrypt	=	hifn_decrypt_3des_ecb,
2376 		},
2377 	},
2378 
2379 	/*
2380 	 * DES ECB, CBC, CFB and OFB modes.
2381 	 */
2382 	{
2383 		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2384 		.ablkcipher = {
2385 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2386 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2387 			.setkey		=	hifn_setkey,
2388 			.encrypt	=	hifn_encrypt_des_cfb,
2389 			.decrypt	=	hifn_decrypt_des_cfb,
2390 		},
2391 	},
2392 	{
2393 		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2394 		.ablkcipher = {
2395 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2396 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2397 			.setkey		=	hifn_setkey,
2398 			.encrypt	=	hifn_encrypt_des_ofb,
2399 			.decrypt	=	hifn_decrypt_des_ofb,
2400 		},
2401 	},
2402 	{
2403 		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2404 		.ablkcipher = {
2405 			.ivsize		=	HIFN_IV_LENGTH,
2406 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2407 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2408 			.setkey		=	hifn_setkey,
2409 			.encrypt	=	hifn_encrypt_des_cbc,
2410 			.decrypt	=	hifn_decrypt_des_cbc,
2411 		},
2412 	},
2413 	{
2414 		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2415 		.ablkcipher = {
2416 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2417 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2418 			.setkey		=	hifn_setkey,
2419 			.encrypt	=	hifn_encrypt_des_ecb,
2420 			.decrypt	=	hifn_decrypt_des_ecb,
2421 		},
2422 	},
2423 
2424 	/*
2425 	 * AES ECB, CBC, CFB and OFB modes.
2426 	 */
2427 	{
2428 		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2429 		.ablkcipher = {
2430 			.min_keysize	=	AES_MIN_KEY_SIZE,
2431 			.max_keysize	=	AES_MAX_KEY_SIZE,
2432 			.setkey		=	hifn_setkey,
2433 			.encrypt	=	hifn_encrypt_aes_ecb,
2434 			.decrypt	=	hifn_decrypt_aes_ecb,
2435 		},
2436 	},
2437 	{
2438 		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2439 		.ablkcipher = {
2440 			.ivsize		=	HIFN_AES_IV_LENGTH,
2441 			.min_keysize	=	AES_MIN_KEY_SIZE,
2442 			.max_keysize	=	AES_MAX_KEY_SIZE,
2443 			.setkey		=	hifn_setkey,
2444 			.encrypt	=	hifn_encrypt_aes_cbc,
2445 			.decrypt	=	hifn_decrypt_aes_cbc,
2446 		},
2447 	},
2448 	{
2449 		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2450 		.ablkcipher = {
2451 			.min_keysize	=	AES_MIN_KEY_SIZE,
2452 			.max_keysize	=	AES_MAX_KEY_SIZE,
2453 			.setkey		=	hifn_setkey,
2454 			.encrypt	=	hifn_encrypt_aes_cfb,
2455 			.decrypt	=	hifn_decrypt_aes_cfb,
2456 		},
2457 	},
2458 	{
2459 		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2460 		.ablkcipher = {
2461 			.min_keysize	=	AES_MIN_KEY_SIZE,
2462 			.max_keysize	=	AES_MAX_KEY_SIZE,
2463 			.setkey		=	hifn_setkey,
2464 			.encrypt	=	hifn_encrypt_aes_ofb,
2465 			.decrypt	=	hifn_decrypt_aes_ofb,
2466 		},
2467 	},
2468 };
2469 
2470 static int hifn_cra_init(struct crypto_tfm *tfm)
2471 {
2472 	struct crypto_alg *alg = tfm->__crt_alg;
2473 	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2474 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2475 
2476 	ctx->dev = ha->dev;
2477 	tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2478 	return 0;
2479 }
2480 
2481 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2482 {
2483 	struct hifn_crypto_alg *alg;
2484 	int err;
2485 
2486 	alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2487 	if (!alg)
2488 		return -ENOMEM;
2489 
2490 	snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2491 	snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2492 		 t->drv_name, dev->name);
2493 
2494 	alg->alg.cra_priority = 300;
2495 	alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2496 				CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2497 	alg->alg.cra_blocksize = t->bsize;
2498 	alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2499 	alg->alg.cra_alignmask = 0;
2500 	alg->alg.cra_type = &crypto_ablkcipher_type;
2501 	alg->alg.cra_module = THIS_MODULE;
2502 	alg->alg.cra_u.ablkcipher = t->ablkcipher;
2503 	alg->alg.cra_init = hifn_cra_init;
2504 
2505 	alg->dev = dev;
2506 
2507 	list_add_tail(&alg->entry, &dev->alg_list);
2508 
2509 	err = crypto_register_alg(&alg->alg);
2510 	if (err) {
2511 		list_del(&alg->entry);
2512 		kfree(alg);
2513 	}
2514 
2515 	return err;
2516 }
2517 
2518 static void hifn_unregister_alg(struct hifn_device *dev)
2519 {
2520 	struct hifn_crypto_alg *a, *n;
2521 
2522 	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2523 		list_del(&a->entry);
2524 		crypto_unregister_alg(&a->alg);
2525 		kfree(a);
2526 	}
2527 }
2528 
2529 static int hifn_register_alg(struct hifn_device *dev)
2530 {
2531 	int i, err;
2532 
2533 	for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2534 		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2535 		if (err)
2536 			goto err_out_exit;
2537 	}
2538 
2539 	return 0;
2540 
2541 err_out_exit:
2542 	hifn_unregister_alg(dev);
2543 	return err;
2544 }
2545 
2546 static void hifn_tasklet_callback(unsigned long data)
2547 {
2548 	struct hifn_device *dev = (struct hifn_device *)data;
2549 
2550 	/*
2551 	 * This is ok to call this without lock being held,
2552 	 * althogh it modifies some parameters used in parallel,
2553 	 * (like dev->success), but they are used in process
2554 	 * context or update is atomic (like setting dev->sa[i] to NULL).
2555 	 */
2556 	hifn_clear_rings(dev, 0);
2557 
2558 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2559 		hifn_process_queue(dev);
2560 }
2561 
2562 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2563 {
2564 	int err, i;
2565 	struct hifn_device *dev;
2566 	char name[8];
2567 
2568 	err = pci_enable_device(pdev);
2569 	if (err)
2570 		return err;
2571 	pci_set_master(pdev);
2572 
2573 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2574 	if (err)
2575 		goto err_out_disable_pci_device;
2576 
2577 	snprintf(name, sizeof(name), "hifn%d",
2578 			atomic_inc_return(&hifn_dev_number)-1);
2579 
2580 	err = pci_request_regions(pdev, name);
2581 	if (err)
2582 		goto err_out_disable_pci_device;
2583 
2584 	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2585 	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2586 	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2587 		dprintk("%s: Broken hardware - I/O regions are too small.\n",
2588 				pci_name(pdev));
2589 		err = -ENODEV;
2590 		goto err_out_free_regions;
2591 	}
2592 
2593 	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2594 			GFP_KERNEL);
2595 	if (!dev) {
2596 		err = -ENOMEM;
2597 		goto err_out_free_regions;
2598 	}
2599 
2600 	INIT_LIST_HEAD(&dev->alg_list);
2601 
2602 	snprintf(dev->name, sizeof(dev->name), "%s", name);
2603 	spin_lock_init(&dev->lock);
2604 
2605 	for (i=0; i<3; ++i) {
2606 		unsigned long addr, size;
2607 
2608 		addr = pci_resource_start(pdev, i);
2609 		size = pci_resource_len(pdev, i);
2610 
2611 		dev->bar[i] = ioremap_nocache(addr, size);
2612 		if (!dev->bar[i]) {
2613 			err = -ENOMEM;
2614 			goto err_out_unmap_bars;
2615 		}
2616 	}
2617 
2618 	dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2619 					       &dev->desc_dma);
2620 	if (!dev->desc_virt) {
2621 		dprintk("Failed to allocate descriptor rings.\n");
2622 		err = -ENOMEM;
2623 		goto err_out_unmap_bars;
2624 	}
2625 
2626 	dev->pdev = pdev;
2627 	dev->irq = pdev->irq;
2628 
2629 	for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2630 		dev->sa[i] = NULL;
2631 
2632 	pci_set_drvdata(pdev, dev);
2633 
2634 	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2635 
2636 	crypto_init_queue(&dev->queue, 1);
2637 
2638 	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2639 	if (err) {
2640 		dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2641 		dev->irq = 0;
2642 		goto err_out_free_desc;
2643 	}
2644 
2645 	err = hifn_start_device(dev);
2646 	if (err)
2647 		goto err_out_free_irq;
2648 
2649 	err = hifn_test(dev, 1, 0);
2650 	if (err)
2651 		goto err_out_stop_device;
2652 
2653 	err = hifn_register_rng(dev);
2654 	if (err)
2655 		goto err_out_stop_device;
2656 
2657 	err = hifn_register_alg(dev);
2658 	if (err)
2659 		goto err_out_unregister_rng;
2660 
2661 	INIT_DELAYED_WORK(&dev->work, hifn_work);
2662 	schedule_delayed_work(&dev->work, HZ);
2663 
2664 	dprintk("HIFN crypto accelerator card at %s has been "
2665 			"successfully registered as %s.\n",
2666 			pci_name(pdev), dev->name);
2667 
2668 	return 0;
2669 
2670 err_out_unregister_rng:
2671 	hifn_unregister_rng(dev);
2672 err_out_stop_device:
2673 	hifn_reset_dma(dev, 1);
2674 	hifn_stop_device(dev);
2675 err_out_free_irq:
2676 	free_irq(dev->irq, dev);
2677 	tasklet_kill(&dev->tasklet);
2678 err_out_free_desc:
2679 	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2680 			dev->desc_virt, dev->desc_dma);
2681 
2682 err_out_unmap_bars:
2683 	for (i=0; i<3; ++i)
2684 		if (dev->bar[i])
2685 			iounmap(dev->bar[i]);
2686 
2687 err_out_free_regions:
2688 	pci_release_regions(pdev);
2689 
2690 err_out_disable_pci_device:
2691 	pci_disable_device(pdev);
2692 
2693 	return err;
2694 }
2695 
2696 static void hifn_remove(struct pci_dev *pdev)
2697 {
2698 	int i;
2699 	struct hifn_device *dev;
2700 
2701 	dev = pci_get_drvdata(pdev);
2702 
2703 	if (dev) {
2704 		cancel_delayed_work_sync(&dev->work);
2705 
2706 		hifn_unregister_rng(dev);
2707 		hifn_unregister_alg(dev);
2708 		hifn_reset_dma(dev, 1);
2709 		hifn_stop_device(dev);
2710 
2711 		free_irq(dev->irq, dev);
2712 		tasklet_kill(&dev->tasklet);
2713 
2714 		hifn_flush(dev);
2715 
2716 		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2717 				dev->desc_virt, dev->desc_dma);
2718 		for (i=0; i<3; ++i)
2719 			if (dev->bar[i])
2720 				iounmap(dev->bar[i]);
2721 
2722 		kfree(dev);
2723 	}
2724 
2725 	pci_release_regions(pdev);
2726 	pci_disable_device(pdev);
2727 }
2728 
2729 static struct pci_device_id hifn_pci_tbl[] = {
2730 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2731 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2732 	{ 0 }
2733 };
2734 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2735 
2736 static struct pci_driver hifn_pci_driver = {
2737 	.name     = "hifn795x",
2738 	.id_table = hifn_pci_tbl,
2739 	.probe    = hifn_probe,
2740 	.remove   = hifn_remove,
2741 };
2742 
2743 static int __init hifn_init(void)
2744 {
2745 	unsigned int freq;
2746 	int err;
2747 
2748 	/* HIFN supports only 32-bit addresses */
2749 	BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2750 
2751 	if (strncmp(hifn_pll_ref, "ext", 3) &&
2752 	    strncmp(hifn_pll_ref, "pci", 3)) {
2753 		printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2754 				"must be pci or ext");
2755 		return -EINVAL;
2756 	}
2757 
2758 	/*
2759 	 * For the 7955/7956 the reference clock frequency must be in the
2760 	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2761 	 * but this chip is currently not supported.
2762 	 */
2763 	if (hifn_pll_ref[3] != '\0') {
2764 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2765 		if (freq < 20 || freq > 100) {
2766 			printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2767 					"frequency, must be in the range "
2768 					"of 20-100");
2769 			return -EINVAL;
2770 		}
2771 	}
2772 
2773 	err = pci_register_driver(&hifn_pci_driver);
2774 	if (err < 0) {
2775 		dprintk("Failed to register PCI driver for %s device.\n",
2776 				hifn_pci_driver.name);
2777 		return -ENODEV;
2778 	}
2779 
2780 	printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2781 			"has been successfully registered.\n");
2782 
2783 	return 0;
2784 }
2785 
2786 static void __exit hifn_fini(void)
2787 {
2788 	pci_unregister_driver(&hifn_pci_driver);
2789 
2790 	printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2791 			"has been successfully unregistered.\n");
2792 }
2793 
2794 module_init(hifn_init);
2795 module_exit(hifn_fini);
2796 
2797 MODULE_LICENSE("GPL");
2798 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2799 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2800