xref: /openbmc/linux/drivers/crypto/hifn_795x.c (revision a1e58bbd)
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/crypto.h>
34 #include <linux/hw_random.h>
35 #include <linux/ktime.h>
36 
37 #include <crypto/algapi.h>
38 #include <crypto/des.h>
39 
40 #include <asm/kmap_types.h>
41 
42 #undef dprintk
43 
44 #define HIFN_TEST
45 //#define HIFN_DEBUG
46 
47 #ifdef HIFN_DEBUG
48 #define dprintk(f, a...) 	printk(f, ##a)
49 #else
50 #define dprintk(f, a...)	do {} while (0)
51 #endif
52 
53 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
54 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
55 MODULE_PARM_DESC(hifn_pll_ref,
56 		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
57 
58 static atomic_t hifn_dev_number;
59 
60 #define ACRYPTO_OP_DECRYPT	0
61 #define ACRYPTO_OP_ENCRYPT	1
62 #define ACRYPTO_OP_HMAC		2
63 #define ACRYPTO_OP_RNG		3
64 
65 #define ACRYPTO_MODE_ECB		0
66 #define ACRYPTO_MODE_CBC		1
67 #define ACRYPTO_MODE_CFB		2
68 #define ACRYPTO_MODE_OFB		3
69 
70 #define ACRYPTO_TYPE_AES_128	0
71 #define ACRYPTO_TYPE_AES_192	1
72 #define ACRYPTO_TYPE_AES_256	2
73 #define ACRYPTO_TYPE_3DES	3
74 #define ACRYPTO_TYPE_DES	4
75 
76 #define PCI_VENDOR_ID_HIFN		0x13A3
77 #define PCI_DEVICE_ID_HIFN_7955		0x0020
78 #define	PCI_DEVICE_ID_HIFN_7956		0x001d
79 
80 /* I/O region sizes */
81 
82 #define HIFN_BAR0_SIZE			0x1000
83 #define HIFN_BAR1_SIZE			0x2000
84 #define HIFN_BAR2_SIZE			0x8000
85 
86 /* DMA registres */
87 
88 #define HIFN_DMA_CRA 			0x0C	/* DMA Command Ring Address */
89 #define HIFN_DMA_SDRA 			0x1C	/* DMA Source Data Ring Address */
90 #define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
91 #define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
92 #define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
93 #define HIFN_DMA_INTREN 		0x44	/* DMA Interrupt Enable */
94 #define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
95 #define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
96 #define HIFN_CHIP_ID			0x98	/* Chip ID */
97 
98 /*
99  * Processing Unit Registers (offset from BASEREG0)
100  */
101 #define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
102 #define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
103 #define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
104 #define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
105 #define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
106 #define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
107 #define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
108 #define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
109 #define	HIFN_0_SPACESIZE	0x20	/* Register space size */
110 
111 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
112 #define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
113 #define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
114 #define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
115 #define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
116 #define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
117 
118 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
119 #define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
120 #define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
121 #define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
122 #define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
123 #define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
124 #define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
125 #define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
126 #define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
127 #define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
128 #define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
129 
130 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
131 #define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
132 #define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
133 #define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
134 #define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
135 #define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
136 #define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
137 #define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
138 #define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
139 #define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
140 #define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
141 #define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
142 #define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
143 #define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
144 #define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
145 #define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
146 #define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
147 #define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
148 #define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
149 #define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
150 #define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
151 #define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
152 #define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
153 #define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
154 
155 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
156 #define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
157 #define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
158 #define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
159 #define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
160 #define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
161 #define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
162 #define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
163 #define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
164 #define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
165 #define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
166 
167 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
168 #define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
169 #define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
170 #define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
171 #define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
172 #define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
173 #define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
174 #define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
175 #define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
176 #define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
177 #define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
178 #define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
179 #define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
180 #define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
181 #define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
182 #define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
183 #define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
184 #define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
185 
186 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
187 #define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
188 #define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
189 
190 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
191 #define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
192 
193 /*
194  * DMA Interface Registers (offset from BASEREG1)
195  */
196 #define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
197 #define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
198 #define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
199 #define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
200 #define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
201 #define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
202 #define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
203 #define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
204 #define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
205 #define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
206 #define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
207 #define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
208 #define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
209 #define	HIFN_1_REVID		0x98	/* Revision ID */
210 #define	HIFN_1_UNLOCK_SECRET1	0xf4
211 #define	HIFN_1_UNLOCK_SECRET2	0xfc
212 #define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
213 #define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
214 #define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
215 #define	HIFN_1_PUB_OP		0x308	/* Public Operand */
216 #define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
217 #define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
218 #define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
219 #define	HIFN_1_RNG_DATA		0x318	/* RNG data */
220 #define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
221 #define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
222 
223 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
224 #define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
225 #define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
226 #define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
227 #define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
228 #define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
229 #define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
230 #define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
231 #define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
232 #define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
233 #define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
234 #define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
235 #define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
236 #define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
237 #define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
238 #define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
239 #define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
240 #define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
241 #define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
242 #define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
243 #define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
244 #define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
245 #define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
246 #define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
247 #define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
248 #define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
249 #define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
250 #define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
251 #define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
252 #define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
253 #define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
254 #define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
255 #define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
256 #define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
257 #define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
258 #define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
259 #define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
260 #define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
261 #define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
262 
263 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
264 #define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
265 #define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
266 #define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
267 #define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
268 #define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
269 #define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
270 #define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
271 #define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
272 #define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
273 #define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
274 #define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
275 #define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
276 #define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
277 #define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
278 #define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
279 #define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
280 #define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
281 #define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
282 #define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
283 #define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
284 #define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
285 #define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
286 
287 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
288 #define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
289 #define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
290 #define	HIFN_DMACNFG_UNLOCK	0x00000800
291 #define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
292 #define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
293 #define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
294 #define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
295 #define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
296 
297 /* PLL configuration register */
298 #define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
299 #define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
300 #define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
301 #define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
302 #define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
303 #define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
304 #define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
305 #define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
306 #define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
307 #define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
308 #define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
309 #define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
310 #define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
311 #define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
312 #define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
313 #define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
314 #define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
315 
316 #define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
317 
318 /* Public key reset register (HIFN_1_PUB_RESET) */
319 #define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
320 
321 /* Public base address register (HIFN_1_PUB_BASE) */
322 #define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
323 
324 /* Public operand length register (HIFN_1_PUB_OPLEN) */
325 #define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
326 #define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
327 #define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
328 #define	HIFN_PUBOPLEN_EXP_S	7		/* exponent lenght shift */
329 #define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
330 #define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
331 
332 /* Public operation register (HIFN_1_PUB_OP) */
333 #define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
334 #define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
335 #define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
336 #define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
337 #define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
338 #define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
339 #define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
340 #define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
341 #define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
342 #define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
343 #define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
344 #define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
345 #define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
346 #define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
347 #define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
348 #define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
349 #define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
350 #define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
351 #define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
352 #define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
353 
354 /* Public status register (HIFN_1_PUB_STATUS) */
355 #define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
356 #define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
357 
358 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
359 #define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
360 
361 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
362 #define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
363 
364 #define HIFN_NAMESIZE			32
365 #define HIFN_MAX_RESULT_ORDER		5
366 
367 #define	HIFN_D_CMD_RSIZE		24*4
368 #define	HIFN_D_SRC_RSIZE		80*4
369 #define	HIFN_D_DST_RSIZE		80*4
370 #define	HIFN_D_RES_RSIZE		24*4
371 
372 #define HIFN_QUEUE_LENGTH		HIFN_D_CMD_RSIZE-5
373 
374 #define AES_MIN_KEY_SIZE		16
375 #define AES_MAX_KEY_SIZE		32
376 
377 #define HIFN_DES_KEY_LENGTH		8
378 #define HIFN_3DES_KEY_LENGTH		24
379 #define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
380 #define HIFN_IV_LENGTH			8
381 #define HIFN_AES_IV_LENGTH		16
382 #define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
383 
384 #define HIFN_MAC_KEY_LENGTH		64
385 #define HIFN_MD5_LENGTH			16
386 #define HIFN_SHA1_LENGTH		20
387 #define HIFN_MAC_TRUNC_LENGTH		12
388 
389 #define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
390 #define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
391 #define HIFN_USED_RESULT		12
392 
393 struct hifn_desc
394 {
395 	volatile __le32		l;
396 	volatile __le32		p;
397 };
398 
399 struct hifn_dma {
400 	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE+1];
401 	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE+1];
402 	struct hifn_desc	dstr[HIFN_D_DST_RSIZE+1];
403 	struct hifn_desc	resr[HIFN_D_RES_RSIZE+1];
404 
405 	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
406 	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
407 
408 	u64			test_src, test_dst;
409 
410 	/*
411 	 *  Our current positions for insertion and removal from the descriptor
412 	 *  rings.
413 	 */
414 	volatile int		cmdi, srci, dsti, resi;
415 	volatile int		cmdu, srcu, dstu, resu;
416 	int			cmdk, srck, dstk, resk;
417 };
418 
419 #define HIFN_FLAG_CMD_BUSY	(1<<0)
420 #define HIFN_FLAG_SRC_BUSY	(1<<1)
421 #define HIFN_FLAG_DST_BUSY	(1<<2)
422 #define HIFN_FLAG_RES_BUSY	(1<<3)
423 #define HIFN_FLAG_OLD_KEY	(1<<4)
424 
425 #define HIFN_DEFAULT_ACTIVE_NUM	5
426 
427 struct hifn_device
428 {
429 	char			name[HIFN_NAMESIZE];
430 
431 	int			irq;
432 
433 	struct pci_dev		*pdev;
434 	void __iomem		*bar[3];
435 
436 	unsigned long		result_mem;
437 	dma_addr_t		dst;
438 
439 	void			*desc_virt;
440 	dma_addr_t		desc_dma;
441 
442 	u32			dmareg;
443 
444 	void 			*sa[HIFN_D_RES_RSIZE];
445 
446 	spinlock_t		lock;
447 
448 	void 			*priv;
449 
450 	u32			flags;
451 	int			active, started;
452 	struct delayed_work	work;
453 	unsigned long		reset;
454 	unsigned long		success;
455 	unsigned long		prev_success;
456 
457 	u8			snum;
458 
459 	struct tasklet_struct	tasklet;
460 
461 	struct crypto_queue 	queue;
462 	struct list_head	alg_list;
463 
464 	unsigned int		pk_clk_freq;
465 
466 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
467 	unsigned int		rng_wait_time;
468 	ktime_t			rngtime;
469 	struct hwrng		rng;
470 #endif
471 };
472 
473 #define	HIFN_D_LENGTH			0x0000ffff
474 #define	HIFN_D_NOINVALID		0x01000000
475 #define	HIFN_D_MASKDONEIRQ		0x02000000
476 #define	HIFN_D_DESTOVER			0x04000000
477 #define	HIFN_D_OVER			0x08000000
478 #define	HIFN_D_LAST			0x20000000
479 #define	HIFN_D_JUMP			0x40000000
480 #define	HIFN_D_VALID			0x80000000
481 
482 struct hifn_base_command
483 {
484 	volatile __le16		masks;
485 	volatile __le16		session_num;
486 	volatile __le16		total_source_count;
487 	volatile __le16		total_dest_count;
488 };
489 
490 #define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
491 #define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
492 #define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
493 #define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
494 #define	HIFN_BASE_CMD_DECODE		0x2000
495 #define	HIFN_BASE_CMD_SRCLEN_M		0xc000
496 #define	HIFN_BASE_CMD_SRCLEN_S		14
497 #define	HIFN_BASE_CMD_DSTLEN_M		0x3000
498 #define	HIFN_BASE_CMD_DSTLEN_S		12
499 #define	HIFN_BASE_CMD_LENMASK_HI	0x30000
500 #define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
501 
502 /*
503  * Structure to help build up the command data structure.
504  */
505 struct hifn_crypt_command
506 {
507 	volatile __le16 		masks;
508 	volatile __le16 		header_skip;
509 	volatile __le16 		source_count;
510 	volatile __le16 		reserved;
511 };
512 
513 #define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
514 #define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
515 #define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
516 #define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
517 #define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
518 #define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
519 #define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
520 #define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
521 #define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
522 #define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
523 #define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
524 #define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
525 #define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
526 #define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
527 #define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
528 #define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
529 #define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
530 #define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
531 #define	HIFN_CRYPT_CMD_SRCLEN_S		14
532 
533 /*
534  * Structure to help build up the command data structure.
535  */
536 struct hifn_mac_command
537 {
538 	volatile u16 		masks;
539 	volatile u16 		header_skip;
540 	volatile u16 		source_count;
541 	volatile u16 		reserved;
542 };
543 
544 #define	HIFN_MAC_CMD_ALG_MASK		0x0001
545 #define	HIFN_MAC_CMD_ALG_SHA1		0x0000
546 #define	HIFN_MAC_CMD_ALG_MD5		0x0001
547 #define	HIFN_MAC_CMD_MODE_MASK		0x000c
548 #define	HIFN_MAC_CMD_MODE_HMAC		0x0000
549 #define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
550 #define	HIFN_MAC_CMD_MODE_HASH		0x0008
551 #define	HIFN_MAC_CMD_MODE_FULL		0x0004
552 #define	HIFN_MAC_CMD_TRUNC		0x0010
553 #define	HIFN_MAC_CMD_RESULT		0x0020
554 #define	HIFN_MAC_CMD_APPEND		0x0040
555 #define	HIFN_MAC_CMD_SRCLEN_M		0xc000
556 #define	HIFN_MAC_CMD_SRCLEN_S		14
557 
558 /*
559  * MAC POS IPsec initiates authentication after encryption on encodes
560  * and before decryption on decodes.
561  */
562 #define	HIFN_MAC_CMD_POS_IPSEC		0x0200
563 #define	HIFN_MAC_CMD_NEW_KEY		0x0800
564 
565 struct hifn_comp_command
566 {
567 	volatile u16 		masks;
568 	volatile u16 		header_skip;
569 	volatile u16 		source_count;
570 	volatile u16 		reserved;
571 };
572 
573 #define	HIFN_COMP_CMD_SRCLEN_M		0xc000
574 #define	HIFN_COMP_CMD_SRCLEN_S		14
575 #define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
576 #define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
577 #define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
578 #define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
579 #define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
580 #define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
581 #define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
582 #define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
583 
584 struct hifn_base_result
585 {
586 	volatile u16 		flags;
587 	volatile u16 		session;
588 	volatile u16 		src_cnt;		/* 15:0 of source count */
589 	volatile u16 		dst_cnt;		/* 15:0 of dest count */
590 };
591 
592 #define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
593 #define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
594 #define	HIFN_BASE_RES_SRCLEN_S		14
595 #define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
596 #define	HIFN_BASE_RES_DSTLEN_S		12
597 
598 struct hifn_comp_result
599 {
600 	volatile u16 		flags;
601 	volatile u16 		crc;
602 };
603 
604 #define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
605 #define	HIFN_COMP_RES_LCB_S		8
606 #define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
607 #define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
608 #define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
609 
610 struct hifn_mac_result
611 {
612 	volatile u16 		flags;
613 	volatile u16 		reserved;
614 	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
615 };
616 
617 #define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
618 #define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
619 
620 struct hifn_crypt_result
621 {
622 	volatile u16 		flags;
623 	volatile u16 		reserved;
624 };
625 
626 #define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
627 
628 #ifndef HIFN_POLL_FREQUENCY
629 #define	HIFN_POLL_FREQUENCY	0x1
630 #endif
631 
632 #ifndef HIFN_POLL_SCALAR
633 #define	HIFN_POLL_SCALAR	0x0
634 #endif
635 
636 #define	HIFN_MAX_SEGLEN 	0xffff		/* maximum dma segment len */
637 #define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
638 
639 struct hifn_crypto_alg
640 {
641 	struct list_head	entry;
642 	struct crypto_alg	alg;
643 	struct hifn_device	*dev;
644 };
645 
646 #define ASYNC_SCATTERLIST_CACHE	16
647 
648 #define ASYNC_FLAGS_MISALIGNED	(1<<0)
649 
650 struct ablkcipher_walk
651 {
652 	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
653 	u32			flags;
654 	int			num;
655 };
656 
657 struct hifn_context
658 {
659 	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv;
660 	struct hifn_device	*dev;
661 	unsigned int		keysize, ivsize;
662 	u8			op, type, mode, unused;
663 	struct ablkcipher_walk	walk;
664 	atomic_t		sg_num;
665 };
666 
667 #define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
668 
669 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
670 {
671 	u32 ret;
672 
673 	ret = readl(dev->bar[0] + reg);
674 
675 	return ret;
676 }
677 
678 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
679 {
680 	u32 ret;
681 
682 	ret = readl(dev->bar[1] + reg);
683 
684 	return ret;
685 }
686 
687 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
688 {
689 	writel(val, dev->bar[0] + reg);
690 }
691 
692 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
693 {
694 	writel(val, dev->bar[1] + reg);
695 }
696 
697 static void hifn_wait_puc(struct hifn_device *dev)
698 {
699 	int i;
700 	u32 ret;
701 
702 	for (i=10000; i > 0; --i) {
703 		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
704 		if (!(ret & HIFN_PUCTRL_RESET))
705 			break;
706 
707 		udelay(1);
708 	}
709 
710 	if (!i)
711 		dprintk("%s: Failed to reset PUC unit.\n", dev->name);
712 }
713 
714 static void hifn_reset_puc(struct hifn_device *dev)
715 {
716 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
717 	hifn_wait_puc(dev);
718 }
719 
720 static void hifn_stop_device(struct hifn_device *dev)
721 {
722 	hifn_write_1(dev, HIFN_1_DMA_CSR,
723 		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
724 		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
725 	hifn_write_0(dev, HIFN_0_PUIER, 0);
726 	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
727 }
728 
729 static void hifn_reset_dma(struct hifn_device *dev, int full)
730 {
731 	hifn_stop_device(dev);
732 
733 	/*
734 	 * Setting poll frequency and others to 0.
735 	 */
736 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
737 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
738 	mdelay(1);
739 
740 	/*
741 	 * Reset DMA.
742 	 */
743 	if (full) {
744 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
745 		mdelay(1);
746 	} else {
747 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
748 				HIFN_DMACNFG_MSTRESET);
749 		hifn_reset_puc(dev);
750 	}
751 
752 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
753 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
754 
755 	hifn_reset_puc(dev);
756 }
757 
758 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
759 {
760 	int i;
761 	u32 v;
762 
763 	for (i = 0; i < cnt; i++) {
764 
765 		/* get the parity */
766 		v = a & 0x80080125;
767 		v ^= v >> 16;
768 		v ^= v >> 8;
769 		v ^= v >> 4;
770 		v ^= v >> 2;
771 		v ^= v >> 1;
772 
773 		a = (v & 1) ^ (a << 1);
774 	}
775 
776 	return a;
777 }
778 
779 static struct pci2id {
780 	u_short		pci_vendor;
781 	u_short		pci_prod;
782 	char		card_id[13];
783 } pci2id[] = {
784 	{
785 		PCI_VENDOR_ID_HIFN,
786 		PCI_DEVICE_ID_HIFN_7955,
787 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
788 		  0x00, 0x00, 0x00, 0x00, 0x00 }
789 	},
790 	{
791 		PCI_VENDOR_ID_HIFN,
792 		PCI_DEVICE_ID_HIFN_7956,
793 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
794 		  0x00, 0x00, 0x00, 0x00, 0x00 }
795 	}
796 };
797 
798 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
799 static int hifn_rng_data_present(struct hwrng *rng, int wait)
800 {
801 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
802 	s64 nsec;
803 
804 	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
805 	nsec -= dev->rng_wait_time;
806 	if (nsec <= 0)
807 		return 1;
808 	if (!wait)
809 		return 0;
810 	ndelay(nsec);
811 	return 1;
812 }
813 
814 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
815 {
816 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
817 
818 	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
819 	dev->rngtime = ktime_get();
820 	return 4;
821 }
822 
823 static int hifn_register_rng(struct hifn_device *dev)
824 {
825 	/*
826 	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
827 	 */
828 	dev->rng_wait_time	= DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
829 				  256;
830 
831 	dev->rng.name		= dev->name;
832 	dev->rng.data_present	= hifn_rng_data_present,
833 	dev->rng.data_read	= hifn_rng_data_read,
834 	dev->rng.priv		= (unsigned long)dev;
835 
836 	return hwrng_register(&dev->rng);
837 }
838 
839 static void hifn_unregister_rng(struct hifn_device *dev)
840 {
841 	hwrng_unregister(&dev->rng);
842 }
843 #else
844 #define hifn_register_rng(dev)		0
845 #define hifn_unregister_rng(dev)
846 #endif
847 
848 static int hifn_init_pubrng(struct hifn_device *dev)
849 {
850 	int i;
851 
852 	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
853 			HIFN_PUBRST_RESET);
854 
855 	for (i=100; i > 0; --i) {
856 		mdelay(1);
857 
858 		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
859 			break;
860 	}
861 
862 	if (!i)
863 		dprintk("Chip %s: Failed to initialise public key engine.\n",
864 				dev->name);
865 	else {
866 		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
867 		dev->dmareg |= HIFN_DMAIER_PUBDONE;
868 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
869 
870 		dprintk("Chip %s: Public key engine has been sucessfully "
871 				"initialised.\n", dev->name);
872 	}
873 
874 	/*
875 	 * Enable RNG engine.
876 	 */
877 
878 	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
879 			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
880 	dprintk("Chip %s: RNG engine has been successfully initialised.\n",
881 			dev->name);
882 
883 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
884 	/* First value must be discarded */
885 	hifn_read_1(dev, HIFN_1_RNG_DATA);
886 	dev->rngtime = ktime_get();
887 #endif
888 	return 0;
889 }
890 
891 static int hifn_enable_crypto(struct hifn_device *dev)
892 {
893 	u32 dmacfg, addr;
894 	char *offtbl = NULL;
895 	int i;
896 
897 	for (i = 0; i < sizeof(pci2id)/sizeof(pci2id[0]); i++) {
898 		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
899 				pci2id[i].pci_prod == dev->pdev->device) {
900 			offtbl = pci2id[i].card_id;
901 			break;
902 		}
903 	}
904 
905 	if (offtbl == NULL) {
906 		dprintk("Chip %s: Unknown card!\n", dev->name);
907 		return -ENODEV;
908 	}
909 
910 	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
911 
912 	hifn_write_1(dev, HIFN_1_DMA_CNFG,
913 			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
914 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
915 	mdelay(1);
916 	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
917 	mdelay(1);
918 	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
919 	mdelay(1);
920 
921 	for (i=0; i<12; ++i) {
922 		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
923 		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
924 
925 		mdelay(1);
926 	}
927 	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
928 
929 	dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
930 
931 	return 0;
932 }
933 
934 static void hifn_init_dma(struct hifn_device *dev)
935 {
936 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
937 	u32 dptr = dev->desc_dma;
938 	int i;
939 
940 	for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
941 		dma->cmdr[i].p = __cpu_to_le32(dptr +
942 				offsetof(struct hifn_dma, command_bufs[i][0]));
943 	for (i=0; i<HIFN_D_RES_RSIZE; ++i)
944 		dma->resr[i].p = __cpu_to_le32(dptr +
945 				offsetof(struct hifn_dma, result_bufs[i][0]));
946 
947 	/*
948 	 * Setup LAST descriptors.
949 	 */
950 	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
951 			offsetof(struct hifn_dma, cmdr[0]));
952 	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
953 			offsetof(struct hifn_dma, srcr[0]));
954 	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
955 			offsetof(struct hifn_dma, dstr[0]));
956 	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
957 			offsetof(struct hifn_dma, resr[0]));
958 
959 	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
960 	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
961 	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
962 }
963 
964 /*
965  * Initialize the PLL. We need to know the frequency of the reference clock
966  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
967  * allows us to operate without the risk of overclocking the chip. If it
968  * actually uses 33MHz, the chip will operate at half the speed, this can be
969  * overriden by specifying the frequency as module parameter (pci33).
970  *
971  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
972  * stable clock and the PCI clock frequency may vary, so the default is the
973  * external clock. There is no way to find out its frequency, we default to
974  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
975  * has an external crystal populated at 66MHz.
976  */
977 static void hifn_init_pll(struct hifn_device *dev)
978 {
979 	unsigned int freq, m;
980 	u32 pllcfg;
981 
982 	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
983 
984 	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
985 		pllcfg |= HIFN_PLL_REF_CLK_PLL;
986 	else
987 		pllcfg |= HIFN_PLL_REF_CLK_HBI;
988 
989 	if (hifn_pll_ref[3] != '\0')
990 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
991 	else {
992 		freq = 66;
993 		printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
994 				 "override with hifn_pll_ref=%.3s<frequency>\n",
995 		       freq, hifn_pll_ref);
996 	}
997 
998 	m = HIFN_PLL_FCK_MAX / freq;
999 
1000 	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
1001 	if (m <= 8)
1002 		pllcfg |= HIFN_PLL_IS_1_8;
1003 	else
1004 		pllcfg |= HIFN_PLL_IS_9_12;
1005 
1006 	/* Select clock source and enable clock bypass */
1007 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1008 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1009 
1010 	/* Let the chip lock to the input clock */
1011 	mdelay(10);
1012 
1013 	/* Disable clock bypass */
1014 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1015 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1016 
1017 	/* Switch the engines to the PLL */
1018 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1019 		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1020 
1021 	/*
1022 	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
1023 	 * calculate the minimum time between two reads of the rng. Since 33MHz
1024 	 * is actually 33.333... we overestimate the frequency here, resulting
1025 	 * in slightly larger intervals.
1026 	 */
1027 	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1028 }
1029 
1030 static void hifn_init_registers(struct hifn_device *dev)
1031 {
1032 	u32 dptr = dev->desc_dma;
1033 
1034 	/* Initialization magic... */
1035 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1036 	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1037 	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1038 
1039 	/* write all 4 ring address registers */
1040 	hifn_write_1(dev, HIFN_1_DMA_CRAR, __cpu_to_le32(dptr +
1041 				offsetof(struct hifn_dma, cmdr[0])));
1042 	hifn_write_1(dev, HIFN_1_DMA_SRAR, __cpu_to_le32(dptr +
1043 				offsetof(struct hifn_dma, srcr[0])));
1044 	hifn_write_1(dev, HIFN_1_DMA_DRAR, __cpu_to_le32(dptr +
1045 				offsetof(struct hifn_dma, dstr[0])));
1046 	hifn_write_1(dev, HIFN_1_DMA_RRAR, __cpu_to_le32(dptr +
1047 				offsetof(struct hifn_dma, resr[0])));
1048 
1049 	mdelay(2);
1050 #if 0
1051 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1052 	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1053 	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1054 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1055 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1056 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1057 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1058 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1059 	    HIFN_DMACSR_S_WAIT |
1060 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1061 	    HIFN_DMACSR_C_WAIT |
1062 	    HIFN_DMACSR_ENGINE |
1063 	    HIFN_DMACSR_PUBDONE);
1064 #else
1065 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1066 	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1067 	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1068 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1069 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1070 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1071 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1072 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1073 	    HIFN_DMACSR_S_WAIT |
1074 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1075 	    HIFN_DMACSR_C_WAIT |
1076 	    HIFN_DMACSR_ENGINE |
1077 	    HIFN_DMACSR_PUBDONE);
1078 #endif
1079 	hifn_read_1(dev, HIFN_1_DMA_CSR);
1080 
1081 	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1082 	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1083 	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1084 	    HIFN_DMAIER_ENGINE;
1085 	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1086 
1087 	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1088 	hifn_read_1(dev, HIFN_1_DMA_IER);
1089 #if 0
1090 	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1091 		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1092 		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1093 		    HIFN_PUCNFG_DRAM);
1094 #else
1095 	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1096 #endif
1097 	hifn_init_pll(dev);
1098 
1099 	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1100 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1101 	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1102 	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1103 	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1104 }
1105 
1106 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1107 		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1108 {
1109 	struct hifn_base_command *base_cmd;
1110 	u8 *buf_pos = buf;
1111 
1112 	base_cmd = (struct hifn_base_command *)buf_pos;
1113 	base_cmd->masks = __cpu_to_le16(mask);
1114 	base_cmd->total_source_count =
1115 		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1116 	base_cmd->total_dest_count =
1117 		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1118 
1119 	dlen >>= 16;
1120 	slen >>= 16;
1121 	base_cmd->session_num = __cpu_to_le16(snum |
1122 	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1123 	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1124 
1125 	return sizeof(struct hifn_base_command);
1126 }
1127 
1128 static int hifn_setup_crypto_command(struct hifn_device *dev,
1129 		u8 *buf, unsigned dlen, unsigned slen,
1130 		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1131 {
1132 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1133 	struct hifn_crypt_command *cry_cmd;
1134 	u8 *buf_pos = buf;
1135 	u16 cmd_len;
1136 
1137 	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1138 
1139 	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1140 	dlen >>= 16;
1141 	cry_cmd->masks = __cpu_to_le16(mode |
1142 			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1143 			 HIFN_CRYPT_CMD_SRCLEN_M));
1144 	cry_cmd->header_skip = 0;
1145 	cry_cmd->reserved = 0;
1146 
1147 	buf_pos += sizeof(struct hifn_crypt_command);
1148 
1149 	dma->cmdu++;
1150 	if (dma->cmdu > 1) {
1151 		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1152 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1153 	}
1154 
1155 	if (keylen) {
1156 		memcpy(buf_pos, key, keylen);
1157 		buf_pos += keylen;
1158 	}
1159 	if (ivsize) {
1160 		memcpy(buf_pos, iv, ivsize);
1161 		buf_pos += ivsize;
1162 	}
1163 
1164 	cmd_len = buf_pos - buf;
1165 
1166 	return cmd_len;
1167 }
1168 
1169 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1170 		unsigned int offset, unsigned int size)
1171 {
1172 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1173 	int idx;
1174 	dma_addr_t addr;
1175 
1176 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1177 
1178 	idx = dma->srci;
1179 
1180 	dma->srcr[idx].p = __cpu_to_le32(addr);
1181 	dma->srcr[idx].l = __cpu_to_le32(size) | HIFN_D_VALID |
1182 			HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST;
1183 
1184 	if (++idx == HIFN_D_SRC_RSIZE) {
1185 		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1186 				HIFN_D_JUMP |
1187 				HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1188 		idx = 0;
1189 	}
1190 
1191 	dma->srci = idx;
1192 	dma->srcu++;
1193 
1194 	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1195 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1196 		dev->flags |= HIFN_FLAG_SRC_BUSY;
1197 	}
1198 
1199 	return size;
1200 }
1201 
1202 static void hifn_setup_res_desc(struct hifn_device *dev)
1203 {
1204 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1205 
1206 	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1207 			HIFN_D_VALID | HIFN_D_LAST);
1208 	/*
1209 	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1210 	 *					HIFN_D_LAST | HIFN_D_NOINVALID);
1211 	 */
1212 
1213 	if (++dma->resi == HIFN_D_RES_RSIZE) {
1214 		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1215 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1216 		dma->resi = 0;
1217 	}
1218 
1219 	dma->resu++;
1220 
1221 	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1222 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1223 		dev->flags |= HIFN_FLAG_RES_BUSY;
1224 	}
1225 }
1226 
1227 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1228 		unsigned offset, unsigned size)
1229 {
1230 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1231 	int idx;
1232 	dma_addr_t addr;
1233 
1234 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1235 
1236 	idx = dma->dsti;
1237 	dma->dstr[idx].p = __cpu_to_le32(addr);
1238 	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1239 			HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST);
1240 
1241 	if (++idx == HIFN_D_DST_RSIZE) {
1242 		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1243 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1244 				HIFN_D_LAST | HIFN_D_NOINVALID);
1245 		idx = 0;
1246 	}
1247 	dma->dsti = idx;
1248 	dma->dstu++;
1249 
1250 	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1251 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1252 		dev->flags |= HIFN_FLAG_DST_BUSY;
1253 	}
1254 }
1255 
1256 static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff,
1257 		struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv,
1258 		struct hifn_context *ctx)
1259 {
1260 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1261 	int cmd_len, sa_idx;
1262 	u8 *buf, *buf_pos;
1263 	u16 mask;
1264 
1265 	dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n",
1266 			dev->name, spage, soff, dpage, doff, nbytes, priv, ctx);
1267 
1268 	sa_idx = dma->resi;
1269 
1270 	hifn_setup_src_desc(dev, spage, soff, nbytes);
1271 
1272 	buf_pos = buf = dma->command_bufs[dma->cmdi];
1273 
1274 	mask = 0;
1275 	switch (ctx->op) {
1276 		case ACRYPTO_OP_DECRYPT:
1277 			mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1278 			break;
1279 		case ACRYPTO_OP_ENCRYPT:
1280 			mask = HIFN_BASE_CMD_CRYPT;
1281 			break;
1282 		case ACRYPTO_OP_HMAC:
1283 			mask = HIFN_BASE_CMD_MAC;
1284 			break;
1285 		default:
1286 			goto err_out;
1287 	}
1288 
1289 	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1290 			nbytes, mask, dev->snum);
1291 
1292 	if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) {
1293 		u16 md = 0;
1294 
1295 		if (ctx->keysize)
1296 			md |= HIFN_CRYPT_CMD_NEW_KEY;
1297 		if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB)
1298 			md |= HIFN_CRYPT_CMD_NEW_IV;
1299 
1300 		switch (ctx->mode) {
1301 			case ACRYPTO_MODE_ECB:
1302 				md |= HIFN_CRYPT_CMD_MODE_ECB;
1303 				break;
1304 			case ACRYPTO_MODE_CBC:
1305 				md |= HIFN_CRYPT_CMD_MODE_CBC;
1306 				break;
1307 			case ACRYPTO_MODE_CFB:
1308 				md |= HIFN_CRYPT_CMD_MODE_CFB;
1309 				break;
1310 			case ACRYPTO_MODE_OFB:
1311 				md |= HIFN_CRYPT_CMD_MODE_OFB;
1312 				break;
1313 			default:
1314 				goto err_out;
1315 		}
1316 
1317 		switch (ctx->type) {
1318 			case ACRYPTO_TYPE_AES_128:
1319 				if (ctx->keysize != 16)
1320 					goto err_out;
1321 				md |= HIFN_CRYPT_CMD_KSZ_128 |
1322 					HIFN_CRYPT_CMD_ALG_AES;
1323 				break;
1324 			case ACRYPTO_TYPE_AES_192:
1325 				if (ctx->keysize != 24)
1326 					goto err_out;
1327 				md |= HIFN_CRYPT_CMD_KSZ_192 |
1328 					HIFN_CRYPT_CMD_ALG_AES;
1329 				break;
1330 			case ACRYPTO_TYPE_AES_256:
1331 				if (ctx->keysize != 32)
1332 					goto err_out;
1333 				md |= HIFN_CRYPT_CMD_KSZ_256 |
1334 					HIFN_CRYPT_CMD_ALG_AES;
1335 				break;
1336 			case ACRYPTO_TYPE_3DES:
1337 				if (ctx->keysize != 24)
1338 					goto err_out;
1339 				md |= HIFN_CRYPT_CMD_ALG_3DES;
1340 				break;
1341 			case ACRYPTO_TYPE_DES:
1342 				if (ctx->keysize != 8)
1343 					goto err_out;
1344 				md |= HIFN_CRYPT_CMD_ALG_DES;
1345 				break;
1346 			default:
1347 				goto err_out;
1348 		}
1349 
1350 		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1351 				nbytes, nbytes, ctx->key, ctx->keysize,
1352 				ctx->iv, ctx->ivsize, md);
1353 	}
1354 
1355 	dev->sa[sa_idx] = priv;
1356 
1357 	cmd_len = buf_pos - buf;
1358 	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1359 			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1360 
1361 	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1362 		dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND |
1363 			HIFN_D_VALID | HIFN_D_LAST |
1364 			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1365 		dma->cmdi = 0;
1366 	} else
1367 		dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1368 
1369 	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1370 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1371 		dev->flags |= HIFN_FLAG_CMD_BUSY;
1372 	}
1373 
1374 	hifn_setup_dst_desc(dev, dpage, doff, nbytes);
1375 	hifn_setup_res_desc(dev);
1376 
1377 	return 0;
1378 
1379 err_out:
1380 	return -EINVAL;
1381 }
1382 
1383 static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1384 		int num, gfp_t gfp_flags)
1385 {
1386 	int i;
1387 
1388 	num = min(ASYNC_SCATTERLIST_CACHE, num);
1389 	sg_init_table(w->cache, num);
1390 
1391 	w->num = 0;
1392 	for (i=0; i<num; ++i) {
1393 		struct page *page = alloc_page(gfp_flags);
1394 		struct scatterlist *s;
1395 
1396 		if (!page)
1397 			break;
1398 
1399 		s = &w->cache[i];
1400 
1401 		sg_set_page(s, page, PAGE_SIZE, 0);
1402 		w->num++;
1403 	}
1404 
1405 	return i;
1406 }
1407 
1408 static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1409 {
1410 	int i;
1411 
1412 	for (i=0; i<w->num; ++i) {
1413 		struct scatterlist *s = &w->cache[i];
1414 
1415 		__free_page(sg_page(s));
1416 
1417 		s->length = 0;
1418 	}
1419 
1420 	w->num = 0;
1421 }
1422 
1423 static int ablkcipher_add(void *daddr, unsigned int *drestp, struct scatterlist *src,
1424 		unsigned int size, unsigned int *nbytesp)
1425 {
1426 	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1427 	int idx = 0;
1428 	void *saddr;
1429 
1430 	if (drest < size || size > nbytes)
1431 		return -EINVAL;
1432 
1433 	while (size) {
1434 		copy = min(drest, src->length);
1435 
1436 		saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1);
1437 		memcpy(daddr, saddr + src->offset, copy);
1438 		kunmap_atomic(saddr, KM_SOFTIRQ1);
1439 
1440 		size -= copy;
1441 		drest -= copy;
1442 		nbytes -= copy;
1443 		daddr += copy;
1444 
1445 		dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1446 				__func__, copy, size, drest, nbytes);
1447 
1448 		src++;
1449 		idx++;
1450 	}
1451 
1452 	*nbytesp = nbytes;
1453 	*drestp = drest;
1454 
1455 	return idx;
1456 }
1457 
1458 static int ablkcipher_walk(struct ablkcipher_request *req,
1459 		struct ablkcipher_walk *w)
1460 {
1461 	unsigned blocksize =
1462 		crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
1463 	unsigned alignmask =
1464 		crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
1465 	struct scatterlist *src, *dst, *t;
1466 	void *daddr;
1467 	unsigned int nbytes = req->nbytes, offset, copy, diff;
1468 	int idx, tidx, err;
1469 
1470 	tidx = idx = 0;
1471 	offset = 0;
1472 	while (nbytes) {
1473 		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1474 			return -EINVAL;
1475 
1476 		src = &req->src[idx];
1477 		dst = &req->dst[idx];
1478 
1479 		dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, "
1480 				"blocksize: %u, nbytes: %u.\n",
1481 				__func__, src->length, dst->length, src->offset,
1482 				dst->offset, offset, blocksize, nbytes);
1483 
1484 		if (src->length & (blocksize - 1) ||
1485 				src->offset & (alignmask - 1) ||
1486 				dst->length & (blocksize - 1) ||
1487 				dst->offset & (alignmask - 1) ||
1488 				offset) {
1489 			unsigned slen = src->length - offset;
1490 			unsigned dlen = PAGE_SIZE;
1491 
1492 			t = &w->cache[idx];
1493 
1494 			daddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
1495 			err = ablkcipher_add(daddr, &dlen, src, slen, &nbytes);
1496 			if (err < 0)
1497 				goto err_out_unmap;
1498 
1499 			idx += err;
1500 
1501 			copy = slen & ~(blocksize - 1);
1502 			diff = slen & (blocksize - 1);
1503 
1504 			if (dlen < nbytes) {
1505 				/*
1506 				 * Destination page does not have enough space
1507 				 * to put there additional blocksized chunk,
1508 				 * so we mark that page as containing only
1509 				 * blocksize aligned chunks:
1510 				 * 	t->length = (slen & ~(blocksize - 1));
1511 				 * and increase number of bytes to be processed
1512 				 * in next chunk:
1513 				 * 	nbytes += diff;
1514 				 */
1515 				nbytes += diff;
1516 
1517 				/*
1518 				 * Temporary of course...
1519 				 * Kick author if you will catch this one.
1520 				 */
1521 				printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1522 					"slen: %u, offset: %u.\n",
1523 					__func__, dlen, nbytes, slen, offset);
1524 				printk(KERN_ERR "%s: please contact author to fix this "
1525 					"issue, generally you should not catch "
1526 					"this path under any condition but who "
1527 					"knows how did you use crypto code.\n"
1528 					"Thank you.\n",	__func__);
1529 				BUG();
1530 			} else {
1531 				copy += diff + nbytes;
1532 
1533 				src = &req->src[idx];
1534 
1535 				err = ablkcipher_add(daddr + slen, &dlen, src, nbytes, &nbytes);
1536 				if (err < 0)
1537 					goto err_out_unmap;
1538 
1539 				idx += err;
1540 			}
1541 
1542 			t->length = copy;
1543 			t->offset = offset;
1544 
1545 			kunmap_atomic(daddr, KM_SOFTIRQ0);
1546 		} else {
1547 			nbytes -= src->length;
1548 			idx++;
1549 		}
1550 
1551 		tidx++;
1552 	}
1553 
1554 	return tidx;
1555 
1556 err_out_unmap:
1557 	kunmap_atomic(daddr, KM_SOFTIRQ0);
1558 	return err;
1559 }
1560 
1561 static int hifn_setup_session(struct ablkcipher_request *req)
1562 {
1563 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1564 	struct hifn_device *dev = ctx->dev;
1565 	struct page *spage, *dpage;
1566 	unsigned long soff, doff, flags;
1567 	unsigned int nbytes = req->nbytes, idx = 0, len;
1568 	int err = -EINVAL, sg_num;
1569 	struct scatterlist *src, *dst, *t;
1570 	unsigned blocksize =
1571 		crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
1572 	unsigned alignmask =
1573 		crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
1574 
1575 	if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB)
1576 		goto err_out_exit;
1577 
1578 	ctx->walk.flags = 0;
1579 
1580 	while (nbytes) {
1581 		src = &req->src[idx];
1582 		dst = &req->dst[idx];
1583 
1584 		if (src->length & (blocksize - 1) ||
1585 				src->offset & (alignmask - 1) ||
1586 				dst->length & (blocksize - 1) ||
1587 				dst->offset & (alignmask - 1)) {
1588 			ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1589 		}
1590 
1591 		nbytes -= src->length;
1592 		idx++;
1593 	}
1594 
1595 	if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1596 		err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC);
1597 		if (err < 0)
1598 			return err;
1599 	}
1600 
1601 	nbytes = req->nbytes;
1602 	idx = 0;
1603 
1604 	sg_num = ablkcipher_walk(req, &ctx->walk);
1605 
1606 	atomic_set(&ctx->sg_num, sg_num);
1607 
1608 	spin_lock_irqsave(&dev->lock, flags);
1609 	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1610 		err = -EAGAIN;
1611 		goto err_out;
1612 	}
1613 
1614 	dev->snum++;
1615 	dev->started += sg_num;
1616 
1617 	while (nbytes) {
1618 		src = &req->src[idx];
1619 		dst = &req->dst[idx];
1620 		t = &ctx->walk.cache[idx];
1621 
1622 		if (t->length) {
1623 			spage = dpage = sg_page(t);
1624 			soff = doff = 0;
1625 			len = t->length;
1626 		} else {
1627 			spage = sg_page(src);
1628 			soff = src->offset;
1629 
1630 			dpage = sg_page(dst);
1631 			doff = dst->offset;
1632 
1633 			len = dst->length;
1634 		}
1635 
1636 		idx++;
1637 
1638 		err = hifn_setup_dma(dev, spage, soff, dpage, doff, nbytes,
1639 				req, ctx);
1640 		if (err)
1641 			goto err_out;
1642 
1643 		nbytes -= len;
1644 	}
1645 
1646 	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1647 	spin_unlock_irqrestore(&dev->lock, flags);
1648 
1649 	return 0;
1650 
1651 err_out:
1652 	spin_unlock_irqrestore(&dev->lock, flags);
1653 err_out_exit:
1654 	if (err && printk_ratelimit())
1655 		dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1656 				"type: %u, err: %d.\n",
1657 			dev->name, ctx->iv, ctx->ivsize,
1658 			ctx->key, ctx->keysize,
1659 			ctx->mode, ctx->op, ctx->type, err);
1660 
1661 	return err;
1662 }
1663 
1664 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1665 {
1666 	int n, err;
1667 	u8 src[16];
1668 	struct hifn_context ctx;
1669 	u8 fips_aes_ecb_from_zero[16] = {
1670 		0x66, 0xE9, 0x4B, 0xD4,
1671 		0xEF, 0x8A, 0x2C, 0x3B,
1672 		0x88, 0x4C, 0xFA, 0x59,
1673 		0xCA, 0x34, 0x2B, 0x2E};
1674 
1675 	memset(src, 0, sizeof(src));
1676 	memset(ctx.key, 0, sizeof(ctx.key));
1677 
1678 	ctx.dev = dev;
1679 	ctx.keysize = 16;
1680 	ctx.ivsize = 0;
1681 	ctx.iv = NULL;
1682 	ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1683 	ctx.mode = ACRYPTO_MODE_ECB;
1684 	ctx.type = ACRYPTO_TYPE_AES_128;
1685 	atomic_set(&ctx.sg_num, 1);
1686 
1687 	err = hifn_setup_dma(dev,
1688 			virt_to_page(src), offset_in_page(src),
1689 			virt_to_page(src), offset_in_page(src),
1690 			sizeof(src), NULL, &ctx);
1691 	if (err)
1692 		goto err_out;
1693 
1694 	msleep(200);
1695 
1696 	dprintk("%s: decoded: ", dev->name);
1697 	for (n=0; n<sizeof(src); ++n)
1698 		dprintk("%02x ", src[n]);
1699 	dprintk("\n");
1700 	dprintk("%s: FIPS   : ", dev->name);
1701 	for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1702 		dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1703 	dprintk("\n");
1704 
1705 	if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1706 		printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1707 				"passed.\n", dev->name);
1708 		return 0;
1709 	}
1710 
1711 err_out:
1712 	printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1713 	return -1;
1714 }
1715 
1716 static int hifn_start_device(struct hifn_device *dev)
1717 {
1718 	int err;
1719 
1720 	hifn_reset_dma(dev, 1);
1721 
1722 	err = hifn_enable_crypto(dev);
1723 	if (err)
1724 		return err;
1725 
1726 	hifn_reset_puc(dev);
1727 
1728 	hifn_init_dma(dev);
1729 
1730 	hifn_init_registers(dev);
1731 
1732 	hifn_init_pubrng(dev);
1733 
1734 	return 0;
1735 }
1736 
1737 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1738 		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1739 {
1740 	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1741 	void *daddr;
1742 	int idx = 0;
1743 
1744 	if (srest < size || size > nbytes)
1745 		return -EINVAL;
1746 
1747 	while (size) {
1748 
1749 		copy = min(dst->length, srest);
1750 
1751 		daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1752 		memcpy(daddr + dst->offset + offset, saddr, copy);
1753 		kunmap_atomic(daddr, KM_IRQ0);
1754 
1755 		nbytes -= copy;
1756 		size -= copy;
1757 		srest -= copy;
1758 		saddr += copy;
1759 		offset = 0;
1760 
1761 		dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1762 				__func__, copy, size, srest, nbytes);
1763 
1764 		dst++;
1765 		idx++;
1766 	}
1767 
1768 	*nbytesp = nbytes;
1769 	*srestp = srest;
1770 
1771 	return idx;
1772 }
1773 
1774 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1775 {
1776 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1777 	struct hifn_device *dev;
1778 
1779 	dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx);
1780 
1781 	dev = ctx->dev;
1782 	dprintk("%s: req: %p, started: %d, sg_num: %d.\n",
1783 		__func__, req, dev->started, atomic_read(&ctx->sg_num));
1784 
1785 	if (--dev->started < 0)
1786 		BUG();
1787 
1788 	if (atomic_dec_and_test(&ctx->sg_num)) {
1789 		unsigned int nbytes = req->nbytes;
1790 		int idx = 0, err;
1791 		struct scatterlist *dst, *t;
1792 		void *saddr;
1793 
1794 		if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1795 			while (nbytes) {
1796 				t = &ctx->walk.cache[idx];
1797 				dst = &req->dst[idx];
1798 
1799 				dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1800 					"sg_page(dst): %p, dst->length: %u, "
1801 					"nbytes: %u.\n",
1802 					__func__, sg_page(t), t->length,
1803 					sg_page(dst), dst->length, nbytes);
1804 
1805 				if (!t->length) {
1806 					nbytes -= dst->length;
1807 					idx++;
1808 					continue;
1809 				}
1810 
1811 				saddr = kmap_atomic(sg_page(t), KM_IRQ1);
1812 
1813 				err = ablkcipher_get(saddr, &t->length, t->offset,
1814 						dst, nbytes, &nbytes);
1815 				if (err < 0) {
1816 					kunmap_atomic(saddr, KM_IRQ1);
1817 					break;
1818 				}
1819 
1820 				idx += err;
1821 				kunmap_atomic(saddr, KM_IRQ1);
1822 			}
1823 
1824 			ablkcipher_walk_exit(&ctx->walk);
1825 		}
1826 
1827 		req->base.complete(&req->base, error);
1828 	}
1829 }
1830 
1831 static void hifn_check_for_completion(struct hifn_device *dev, int error)
1832 {
1833 	int i;
1834 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1835 
1836 	for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1837 		struct hifn_desc *d = &dma->resr[i];
1838 
1839 		if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) {
1840 			dev->success++;
1841 			dev->reset = 0;
1842 			hifn_process_ready(dev->sa[i], error);
1843 			dev->sa[i] = NULL;
1844 		}
1845 
1846 		if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER))
1847 			if (printk_ratelimit())
1848 				printk("%s: overflow detected [d: %u, o: %u] "
1849 						"at %d resr: l: %08x, p: %08x.\n",
1850 					dev->name,
1851 					!!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)),
1852 					!!(d->l & __cpu_to_le32(HIFN_D_OVER)),
1853 					i, d->l, d->p);
1854 	}
1855 }
1856 
1857 static void hifn_clear_rings(struct hifn_device *dev)
1858 {
1859 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1860 	int i, u;
1861 
1862 	dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1863 			"k: %d.%d.%d.%d.\n",
1864 			dev->name,
1865 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1866 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1867 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1868 
1869 	i = dma->resk; u = dma->resu;
1870 	while (u != 0) {
1871 		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1872 			break;
1873 
1874 		if (i != HIFN_D_RES_RSIZE)
1875 			u--;
1876 
1877 		if (++i == (HIFN_D_RES_RSIZE + 1))
1878 			i = 0;
1879 	}
1880 	dma->resk = i; dma->resu = u;
1881 
1882 	i = dma->srck; u = dma->srcu;
1883 	while (u != 0) {
1884 		if (i == HIFN_D_SRC_RSIZE)
1885 			i = 0;
1886 		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1887 			break;
1888 		i++, u--;
1889 	}
1890 	dma->srck = i; dma->srcu = u;
1891 
1892 	i = dma->cmdk; u = dma->cmdu;
1893 	while (u != 0) {
1894 		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1895 			break;
1896 		if (i != HIFN_D_CMD_RSIZE)
1897 			u--;
1898 		if (++i == (HIFN_D_CMD_RSIZE + 1))
1899 			i = 0;
1900 	}
1901 	dma->cmdk = i; dma->cmdu = u;
1902 
1903 	i = dma->dstk; u = dma->dstu;
1904 	while (u != 0) {
1905 		if (i == HIFN_D_DST_RSIZE)
1906 			i = 0;
1907 		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1908 			break;
1909 		i++, u--;
1910 	}
1911 	dma->dstk = i; dma->dstu = u;
1912 
1913 	dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1914 			"k: %d.%d.%d.%d.\n",
1915 			dev->name,
1916 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1917 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1918 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1919 }
1920 
1921 static void hifn_work(struct work_struct *work)
1922 {
1923 	struct delayed_work *dw = container_of(work, struct delayed_work, work);
1924 	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1925 	unsigned long flags;
1926 	int reset = 0;
1927 	u32 r = 0;
1928 
1929 	spin_lock_irqsave(&dev->lock, flags);
1930 	if (dev->active == 0) {
1931 		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1932 
1933 		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1934 			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1935 			r |= HIFN_DMACSR_C_CTRL_DIS;
1936 		}
1937 		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1938 			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1939 			r |= HIFN_DMACSR_S_CTRL_DIS;
1940 		}
1941 		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1942 			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1943 			r |= HIFN_DMACSR_D_CTRL_DIS;
1944 		}
1945 		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1946 			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1947 			r |= HIFN_DMACSR_R_CTRL_DIS;
1948 		}
1949 		if (r)
1950 			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1951 	} else
1952 		dev->active--;
1953 
1954 	if (dev->prev_success == dev->success && dev->started)
1955 		reset = 1;
1956 	dev->prev_success = dev->success;
1957 	spin_unlock_irqrestore(&dev->lock, flags);
1958 
1959 	if (reset) {
1960 		dprintk("%s: r: %08x, active: %d, started: %d, "
1961 				"success: %lu: reset: %d.\n",
1962 			dev->name, r, dev->active, dev->started,
1963 			dev->success, reset);
1964 
1965 		if (++dev->reset >= 5) {
1966 			dprintk("%s: really hard reset.\n", dev->name);
1967 			hifn_reset_dma(dev, 1);
1968 			hifn_stop_device(dev);
1969 			hifn_start_device(dev);
1970 			dev->reset = 0;
1971 		}
1972 
1973 		spin_lock_irqsave(&dev->lock, flags);
1974 		hifn_check_for_completion(dev, -EBUSY);
1975 		hifn_clear_rings(dev);
1976 		dev->started = 0;
1977 		spin_unlock_irqrestore(&dev->lock, flags);
1978 	}
1979 
1980 	schedule_delayed_work(&dev->work, HZ);
1981 }
1982 
1983 static irqreturn_t hifn_interrupt(int irq, void *data)
1984 {
1985 	struct hifn_device *dev = (struct hifn_device *)data;
1986 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1987 	u32 dmacsr, restart;
1988 
1989 	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1990 
1991 	dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1992 			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1993 		dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1994 		dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1995 		dma->cmdi, dma->srci, dma->dsti, dma->resi);
1996 
1997 	if ((dmacsr & dev->dmareg) == 0)
1998 		return IRQ_NONE;
1999 
2000 	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
2001 
2002 	if (dmacsr & HIFN_DMACSR_ENGINE)
2003 		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
2004 	if (dmacsr & HIFN_DMACSR_PUBDONE)
2005 		hifn_write_1(dev, HIFN_1_PUB_STATUS,
2006 			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
2007 
2008 	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
2009 	if (restart) {
2010 		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
2011 
2012 		if (printk_ratelimit())
2013 			printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
2014 				dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
2015 				!!(dmacsr & HIFN_DMACSR_D_OVER),
2016 				puisr, !!(puisr & HIFN_PUISR_DSTOVER));
2017 		if (!!(puisr & HIFN_PUISR_DSTOVER))
2018 			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
2019 		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
2020 					HIFN_DMACSR_D_OVER));
2021 	}
2022 
2023 	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
2024 			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
2025 	if (restart) {
2026 		if (printk_ratelimit())
2027 			printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
2028 				dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
2029 				!!(dmacsr & HIFN_DMACSR_S_ABORT),
2030 				!!(dmacsr & HIFN_DMACSR_D_ABORT),
2031 				!!(dmacsr & HIFN_DMACSR_R_ABORT));
2032 		hifn_reset_dma(dev, 1);
2033 		hifn_init_dma(dev);
2034 		hifn_init_registers(dev);
2035 	}
2036 
2037 	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2038 		dprintk("%s: wait on command.\n", dev->name);
2039 		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2040 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2041 	}
2042 
2043 	tasklet_schedule(&dev->tasklet);
2044 	hifn_clear_rings(dev);
2045 
2046 	return IRQ_HANDLED;
2047 }
2048 
2049 static void hifn_flush(struct hifn_device *dev)
2050 {
2051 	unsigned long flags;
2052 	struct crypto_async_request *async_req;
2053 	struct hifn_context *ctx;
2054 	struct ablkcipher_request *req;
2055 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2056 	int i;
2057 
2058 	spin_lock_irqsave(&dev->lock, flags);
2059 	for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2060 		struct hifn_desc *d = &dma->resr[i];
2061 
2062 		if (dev->sa[i]) {
2063 			hifn_process_ready(dev->sa[i],
2064 				(d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2065 		}
2066 	}
2067 
2068 	while ((async_req = crypto_dequeue_request(&dev->queue))) {
2069 		ctx = crypto_tfm_ctx(async_req->tfm);
2070 		req = container_of(async_req, struct ablkcipher_request, base);
2071 
2072 		hifn_process_ready(req, -ENODEV);
2073 	}
2074 	spin_unlock_irqrestore(&dev->lock, flags);
2075 }
2076 
2077 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2078 		unsigned int len)
2079 {
2080 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2081 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2082 	struct hifn_device *dev = ctx->dev;
2083 
2084 	if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2085 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2086 		return -1;
2087 	}
2088 
2089 	if (len == HIFN_DES_KEY_LENGTH) {
2090 		u32 tmp[DES_EXPKEY_WORDS];
2091 		int ret = des_ekey(tmp, key);
2092 
2093 		if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2094 			tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2095 			return -EINVAL;
2096 		}
2097 	}
2098 
2099 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
2100 
2101 	memcpy(ctx->key, key, len);
2102 	ctx->keysize = len;
2103 
2104 	return 0;
2105 }
2106 
2107 static int hifn_handle_req(struct ablkcipher_request *req)
2108 {
2109 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2110 	struct hifn_device *dev = ctx->dev;
2111 	int err = -EAGAIN;
2112 
2113 	if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2114 		err = hifn_setup_session(req);
2115 
2116 	if (err == -EAGAIN) {
2117 		unsigned long flags;
2118 
2119 		spin_lock_irqsave(&dev->lock, flags);
2120 		err = ablkcipher_enqueue_request(&dev->queue, req);
2121 		spin_unlock_irqrestore(&dev->lock, flags);
2122 	}
2123 
2124 	return err;
2125 }
2126 
2127 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2128 		u8 type, u8 mode)
2129 {
2130 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2131 	unsigned ivsize;
2132 
2133 	ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2134 
2135 	if (req->info && mode != ACRYPTO_MODE_ECB) {
2136 		if (type == ACRYPTO_TYPE_AES_128)
2137 			ivsize = HIFN_AES_IV_LENGTH;
2138 		else if (type == ACRYPTO_TYPE_DES)
2139 			ivsize = HIFN_DES_KEY_LENGTH;
2140 		else if (type == ACRYPTO_TYPE_3DES)
2141 			ivsize = HIFN_3DES_KEY_LENGTH;
2142 	}
2143 
2144 	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2145 		if (ctx->keysize == 24)
2146 			type = ACRYPTO_TYPE_AES_192;
2147 		else if (ctx->keysize == 32)
2148 			type = ACRYPTO_TYPE_AES_256;
2149 	}
2150 
2151 	ctx->op = op;
2152 	ctx->mode = mode;
2153 	ctx->type = type;
2154 	ctx->iv = req->info;
2155 	ctx->ivsize = ivsize;
2156 
2157 	/*
2158 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2159 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2160 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2161 	 */
2162 
2163 	return hifn_handle_req(req);
2164 }
2165 
2166 static int hifn_process_queue(struct hifn_device *dev)
2167 {
2168 	struct crypto_async_request *async_req;
2169 	struct hifn_context *ctx;
2170 	struct ablkcipher_request *req;
2171 	unsigned long flags;
2172 	int err = 0;
2173 
2174 	while (dev->started < HIFN_QUEUE_LENGTH) {
2175 		spin_lock_irqsave(&dev->lock, flags);
2176 		async_req = crypto_dequeue_request(&dev->queue);
2177 		spin_unlock_irqrestore(&dev->lock, flags);
2178 
2179 		if (!async_req)
2180 			break;
2181 
2182 		ctx = crypto_tfm_ctx(async_req->tfm);
2183 		req = container_of(async_req, struct ablkcipher_request, base);
2184 
2185 		err = hifn_handle_req(req);
2186 		if (err)
2187 			break;
2188 	}
2189 
2190 	return err;
2191 }
2192 
2193 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2194 		u8 type, u8 mode)
2195 {
2196 	int err;
2197 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2198 	struct hifn_device *dev = ctx->dev;
2199 
2200 	err = hifn_setup_crypto_req(req, op, type, mode);
2201 	if (err)
2202 		return err;
2203 
2204 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2205 		err = hifn_process_queue(dev);
2206 
2207 	return err;
2208 }
2209 
2210 /*
2211  * AES ecryption functions.
2212  */
2213 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2214 {
2215 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2216 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2217 }
2218 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2219 {
2220 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2221 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2222 }
2223 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2224 {
2225 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2226 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2227 }
2228 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2229 {
2230 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2231 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2232 }
2233 
2234 /*
2235  * AES decryption functions.
2236  */
2237 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2238 {
2239 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2240 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2241 }
2242 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2243 {
2244 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2245 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2246 }
2247 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2248 {
2249 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2250 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2251 }
2252 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2253 {
2254 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2255 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2256 }
2257 
2258 /*
2259  * DES ecryption functions.
2260  */
2261 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2262 {
2263 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2264 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2265 }
2266 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2267 {
2268 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2269 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2270 }
2271 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2272 {
2273 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2274 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2275 }
2276 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2277 {
2278 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2279 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2280 }
2281 
2282 /*
2283  * DES decryption functions.
2284  */
2285 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2286 {
2287 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2288 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2289 }
2290 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2291 {
2292 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2293 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2294 }
2295 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2296 {
2297 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2298 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2299 }
2300 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2301 {
2302 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2303 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2304 }
2305 
2306 /*
2307  * 3DES ecryption functions.
2308  */
2309 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2310 {
2311 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2312 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2313 }
2314 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2315 {
2316 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2317 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2318 }
2319 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2320 {
2321 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2322 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2323 }
2324 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2325 {
2326 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2327 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2328 }
2329 
2330 /*
2331  * 3DES decryption functions.
2332  */
2333 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2334 {
2335 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2336 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2337 }
2338 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2339 {
2340 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2341 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2342 }
2343 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2344 {
2345 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2346 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2347 }
2348 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2349 {
2350 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2351 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2352 }
2353 
2354 struct hifn_alg_template
2355 {
2356 	char name[CRYPTO_MAX_ALG_NAME];
2357 	char drv_name[CRYPTO_MAX_ALG_NAME];
2358 	unsigned int bsize;
2359 	struct ablkcipher_alg ablkcipher;
2360 };
2361 
2362 static struct hifn_alg_template hifn_alg_templates[] = {
2363 	/*
2364 	 * 3DES ECB, CBC, CFB and OFB modes.
2365 	 */
2366 	{
2367 		.name = "cfb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2368 		.ablkcipher = {
2369 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2370 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2371 			.setkey		=	hifn_setkey,
2372 			.encrypt	=	hifn_encrypt_3des_cfb,
2373 			.decrypt	=	hifn_decrypt_3des_cfb,
2374 		},
2375 	},
2376 	{
2377 		.name = "ofb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2378 		.ablkcipher = {
2379 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2380 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2381 			.setkey		=	hifn_setkey,
2382 			.encrypt	=	hifn_encrypt_3des_ofb,
2383 			.decrypt	=	hifn_decrypt_3des_ofb,
2384 		},
2385 	},
2386 	{
2387 		.name = "cbc(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2388 		.ablkcipher = {
2389 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2390 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2391 			.setkey		=	hifn_setkey,
2392 			.encrypt	=	hifn_encrypt_3des_cbc,
2393 			.decrypt	=	hifn_decrypt_3des_cbc,
2394 		},
2395 	},
2396 	{
2397 		.name = "ecb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2398 		.ablkcipher = {
2399 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2400 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2401 			.setkey		=	hifn_setkey,
2402 			.encrypt	=	hifn_encrypt_3des_ecb,
2403 			.decrypt	=	hifn_decrypt_3des_ecb,
2404 		},
2405 	},
2406 
2407 	/*
2408 	 * DES ECB, CBC, CFB and OFB modes.
2409 	 */
2410 	{
2411 		.name = "cfb(des)", .drv_name = "hifn-des", .bsize = 8,
2412 		.ablkcipher = {
2413 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2414 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2415 			.setkey		=	hifn_setkey,
2416 			.encrypt	=	hifn_encrypt_des_cfb,
2417 			.decrypt	=	hifn_decrypt_des_cfb,
2418 		},
2419 	},
2420 	{
2421 		.name = "ofb(des)", .drv_name = "hifn-des", .bsize = 8,
2422 		.ablkcipher = {
2423 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2424 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2425 			.setkey		=	hifn_setkey,
2426 			.encrypt	=	hifn_encrypt_des_ofb,
2427 			.decrypt	=	hifn_decrypt_des_ofb,
2428 		},
2429 	},
2430 	{
2431 		.name = "cbc(des)", .drv_name = "hifn-des", .bsize = 8,
2432 		.ablkcipher = {
2433 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2434 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2435 			.setkey		=	hifn_setkey,
2436 			.encrypt	=	hifn_encrypt_des_cbc,
2437 			.decrypt	=	hifn_decrypt_des_cbc,
2438 		},
2439 	},
2440 	{
2441 		.name = "ecb(des)", .drv_name = "hifn-des", .bsize = 8,
2442 		.ablkcipher = {
2443 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2444 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2445 			.setkey		=	hifn_setkey,
2446 			.encrypt	=	hifn_encrypt_des_ecb,
2447 			.decrypt	=	hifn_decrypt_des_ecb,
2448 		},
2449 	},
2450 
2451 	/*
2452 	 * AES ECB, CBC, CFB and OFB modes.
2453 	 */
2454 	{
2455 		.name = "ecb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2456 		.ablkcipher = {
2457 			.min_keysize	=	AES_MIN_KEY_SIZE,
2458 			.max_keysize	=	AES_MAX_KEY_SIZE,
2459 			.setkey		=	hifn_setkey,
2460 			.encrypt	=	hifn_encrypt_aes_ecb,
2461 			.decrypt	=	hifn_decrypt_aes_ecb,
2462 		},
2463 	},
2464 	{
2465 		.name = "cbc(aes)", .drv_name = "hifn-aes", .bsize = 16,
2466 		.ablkcipher = {
2467 			.min_keysize	=	AES_MIN_KEY_SIZE,
2468 			.max_keysize	=	AES_MAX_KEY_SIZE,
2469 			.setkey		=	hifn_setkey,
2470 			.encrypt	=	hifn_encrypt_aes_cbc,
2471 			.decrypt	=	hifn_decrypt_aes_cbc,
2472 		},
2473 	},
2474 	{
2475 		.name = "cfb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2476 		.ablkcipher = {
2477 			.min_keysize	=	AES_MIN_KEY_SIZE,
2478 			.max_keysize	=	AES_MAX_KEY_SIZE,
2479 			.setkey		=	hifn_setkey,
2480 			.encrypt	=	hifn_encrypt_aes_cfb,
2481 			.decrypt	=	hifn_decrypt_aes_cfb,
2482 		},
2483 	},
2484 	{
2485 		.name = "ofb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2486 		.ablkcipher = {
2487 			.min_keysize	=	AES_MIN_KEY_SIZE,
2488 			.max_keysize	=	AES_MAX_KEY_SIZE,
2489 			.setkey		=	hifn_setkey,
2490 			.encrypt	=	hifn_encrypt_aes_ofb,
2491 			.decrypt	=	hifn_decrypt_aes_ofb,
2492 		},
2493 	},
2494 };
2495 
2496 static int hifn_cra_init(struct crypto_tfm *tfm)
2497 {
2498 	struct crypto_alg *alg = tfm->__crt_alg;
2499 	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2500 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2501 
2502 	ctx->dev = ha->dev;
2503 
2504 	return 0;
2505 }
2506 
2507 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2508 {
2509 	struct hifn_crypto_alg *alg;
2510 	int err;
2511 
2512 	alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2513 	if (!alg)
2514 		return -ENOMEM;
2515 
2516 	snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2517 	snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", t->drv_name);
2518 
2519 	alg->alg.cra_priority = 300;
2520 	alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
2521 	alg->alg.cra_blocksize = t->bsize;
2522 	alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2523 	alg->alg.cra_alignmask = 15;
2524 	if (t->bsize == 8)
2525 		alg->alg.cra_alignmask = 3;
2526 	alg->alg.cra_type = &crypto_ablkcipher_type;
2527 	alg->alg.cra_module = THIS_MODULE;
2528 	alg->alg.cra_u.ablkcipher = t->ablkcipher;
2529 	alg->alg.cra_init = hifn_cra_init;
2530 
2531 	alg->dev = dev;
2532 
2533 	list_add_tail(&alg->entry, &dev->alg_list);
2534 
2535 	err = crypto_register_alg(&alg->alg);
2536 	if (err) {
2537 		list_del(&alg->entry);
2538 		kfree(alg);
2539 	}
2540 
2541 	return err;
2542 }
2543 
2544 static void hifn_unregister_alg(struct hifn_device *dev)
2545 {
2546 	struct hifn_crypto_alg *a, *n;
2547 
2548 	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2549 		list_del(&a->entry);
2550 		crypto_unregister_alg(&a->alg);
2551 		kfree(a);
2552 	}
2553 }
2554 
2555 static int hifn_register_alg(struct hifn_device *dev)
2556 {
2557 	int i, err;
2558 
2559 	for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2560 		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2561 		if (err)
2562 			goto err_out_exit;
2563 	}
2564 
2565 	return 0;
2566 
2567 err_out_exit:
2568 	hifn_unregister_alg(dev);
2569 	return err;
2570 }
2571 
2572 static void hifn_tasklet_callback(unsigned long data)
2573 {
2574 	struct hifn_device *dev = (struct hifn_device *)data;
2575 
2576 	/*
2577 	 * This is ok to call this without lock being held,
2578 	 * althogh it modifies some parameters used in parallel,
2579 	 * (like dev->success), but they are used in process
2580 	 * context or update is atomic (like setting dev->sa[i] to NULL).
2581 	 */
2582 	hifn_check_for_completion(dev, 0);
2583 }
2584 
2585 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2586 {
2587 	int err, i;
2588 	struct hifn_device *dev;
2589 	char name[8];
2590 
2591 	err = pci_enable_device(pdev);
2592 	if (err)
2593 		return err;
2594 	pci_set_master(pdev);
2595 
2596 	err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2597 	if (err)
2598 		goto err_out_disable_pci_device;
2599 
2600 	snprintf(name, sizeof(name), "hifn%d",
2601 			atomic_inc_return(&hifn_dev_number)-1);
2602 
2603 	err = pci_request_regions(pdev, name);
2604 	if (err)
2605 		goto err_out_disable_pci_device;
2606 
2607 	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2608 	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2609 	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2610 		dprintk("%s: Broken hardware - I/O regions are too small.\n",
2611 				pci_name(pdev));
2612 		err = -ENODEV;
2613 		goto err_out_free_regions;
2614 	}
2615 
2616 	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2617 			GFP_KERNEL);
2618 	if (!dev) {
2619 		err = -ENOMEM;
2620 		goto err_out_free_regions;
2621 	}
2622 
2623 	INIT_LIST_HEAD(&dev->alg_list);
2624 
2625 	snprintf(dev->name, sizeof(dev->name), "%s", name);
2626 	spin_lock_init(&dev->lock);
2627 
2628 	for (i=0; i<3; ++i) {
2629 		unsigned long addr, size;
2630 
2631 		addr = pci_resource_start(pdev, i);
2632 		size = pci_resource_len(pdev, i);
2633 
2634 		dev->bar[i] = ioremap_nocache(addr, size);
2635 		if (!dev->bar[i])
2636 			goto err_out_unmap_bars;
2637 	}
2638 
2639 	dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER);
2640 	if (!dev->result_mem) {
2641 		dprintk("Failed to allocate %d pages for result_mem.\n",
2642 				HIFN_MAX_RESULT_ORDER);
2643 		goto err_out_unmap_bars;
2644 	}
2645 	memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER));
2646 
2647 	dev->dst = pci_map_single(pdev, (void *)dev->result_mem,
2648 			PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE);
2649 
2650 	dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2651 			&dev->desc_dma);
2652 	if (!dev->desc_virt) {
2653 		dprintk("Failed to allocate descriptor rings.\n");
2654 		goto err_out_free_result_pages;
2655 	}
2656 	memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2657 
2658 	dev->pdev = pdev;
2659 	dev->irq = pdev->irq;
2660 
2661 	for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2662 		dev->sa[i] = NULL;
2663 
2664 	pci_set_drvdata(pdev, dev);
2665 
2666 	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2667 
2668 	crypto_init_queue(&dev->queue, 1);
2669 
2670 	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2671 	if (err) {
2672 		dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2673 		dev->irq = 0;
2674 		goto err_out_free_desc;
2675 	}
2676 
2677 	err = hifn_start_device(dev);
2678 	if (err)
2679 		goto err_out_free_irq;
2680 
2681 	err = hifn_test(dev, 1, 0);
2682 	if (err)
2683 		goto err_out_stop_device;
2684 
2685 	err = hifn_register_rng(dev);
2686 	if (err)
2687 		goto err_out_stop_device;
2688 
2689 	err = hifn_register_alg(dev);
2690 	if (err)
2691 		goto err_out_unregister_rng;
2692 
2693 	INIT_DELAYED_WORK(&dev->work, hifn_work);
2694 	schedule_delayed_work(&dev->work, HZ);
2695 
2696 	dprintk("HIFN crypto accelerator card at %s has been "
2697 			"successfully registered as %s.\n",
2698 			pci_name(pdev), dev->name);
2699 
2700 	return 0;
2701 
2702 err_out_unregister_rng:
2703 	hifn_unregister_rng(dev);
2704 err_out_stop_device:
2705 	hifn_reset_dma(dev, 1);
2706 	hifn_stop_device(dev);
2707 err_out_free_irq:
2708 	free_irq(dev->irq, dev->name);
2709 	tasklet_kill(&dev->tasklet);
2710 err_out_free_desc:
2711 	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2712 			dev->desc_virt, dev->desc_dma);
2713 
2714 err_out_free_result_pages:
2715 	pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2716 			PCI_DMA_FROMDEVICE);
2717 	free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2718 
2719 err_out_unmap_bars:
2720 	for (i=0; i<3; ++i)
2721 		if (dev->bar[i])
2722 			iounmap(dev->bar[i]);
2723 
2724 err_out_free_regions:
2725 	pci_release_regions(pdev);
2726 
2727 err_out_disable_pci_device:
2728 	pci_disable_device(pdev);
2729 
2730 	return err;
2731 }
2732 
2733 static void hifn_remove(struct pci_dev *pdev)
2734 {
2735 	int i;
2736 	struct hifn_device *dev;
2737 
2738 	dev = pci_get_drvdata(pdev);
2739 
2740 	if (dev) {
2741 		cancel_delayed_work(&dev->work);
2742 		flush_scheduled_work();
2743 
2744 		hifn_unregister_rng(dev);
2745 		hifn_unregister_alg(dev);
2746 		hifn_reset_dma(dev, 1);
2747 		hifn_stop_device(dev);
2748 
2749 		free_irq(dev->irq, dev->name);
2750 		tasklet_kill(&dev->tasklet);
2751 
2752 		hifn_flush(dev);
2753 
2754 		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2755 				dev->desc_virt, dev->desc_dma);
2756 		pci_unmap_single(pdev, dev->dst,
2757 				PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2758 				PCI_DMA_FROMDEVICE);
2759 		free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2760 		for (i=0; i<3; ++i)
2761 			if (dev->bar[i])
2762 				iounmap(dev->bar[i]);
2763 
2764 		kfree(dev);
2765 	}
2766 
2767 	pci_release_regions(pdev);
2768 	pci_disable_device(pdev);
2769 }
2770 
2771 static struct pci_device_id hifn_pci_tbl[] = {
2772 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2773 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2774 	{ 0 }
2775 };
2776 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2777 
2778 static struct pci_driver hifn_pci_driver = {
2779 	.name     = "hifn795x",
2780 	.id_table = hifn_pci_tbl,
2781 	.probe    = hifn_probe,
2782 	.remove   = __devexit_p(hifn_remove),
2783 };
2784 
2785 static int __devinit hifn_init(void)
2786 {
2787 	unsigned int freq;
2788 	int err;
2789 
2790 	if (strncmp(hifn_pll_ref, "ext", 3) &&
2791 	    strncmp(hifn_pll_ref, "pci", 3)) {
2792 		printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2793 				"must be pci or ext");
2794 		return -EINVAL;
2795 	}
2796 
2797 	/*
2798 	 * For the 7955/7956 the reference clock frequency must be in the
2799 	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2800 	 * but this chip is currently not supported.
2801 	 */
2802 	if (hifn_pll_ref[3] != '\0') {
2803 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2804 		if (freq < 20 || freq > 100) {
2805 			printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2806 					"frequency, must be in the range "
2807 					"of 20-100");
2808 			return -EINVAL;
2809 		}
2810 	}
2811 
2812 	err = pci_register_driver(&hifn_pci_driver);
2813 	if (err < 0) {
2814 		dprintk("Failed to register PCI driver for %s device.\n",
2815 				hifn_pci_driver.name);
2816 		return -ENODEV;
2817 	}
2818 
2819 	printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2820 			"has been successfully registered.\n");
2821 
2822 	return 0;
2823 }
2824 
2825 static void __devexit hifn_fini(void)
2826 {
2827 	pci_unregister_driver(&hifn_pci_driver);
2828 
2829 	printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2830 			"has been successfully unregistered.\n");
2831 }
2832 
2833 module_init(hifn_init);
2834 module_exit(hifn_fini);
2835 
2836 MODULE_LICENSE("GPL");
2837 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2838 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2839