1 /* 2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru> 3 * All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/interrupt.h> 25 #include <linux/pci.h> 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/mm.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/scatterlist.h> 31 #include <linux/highmem.h> 32 #include <linux/crypto.h> 33 #include <linux/hw_random.h> 34 #include <linux/ktime.h> 35 36 #include <crypto/algapi.h> 37 #include <crypto/des.h> 38 39 #include <asm/kmap_types.h> 40 41 //#define HIFN_DEBUG 42 43 #ifdef HIFN_DEBUG 44 #define dprintk(f, a...) printk(f, ##a) 45 #else 46 #define dprintk(f, a...) do {} while (0) 47 #endif 48 49 static char hifn_pll_ref[sizeof("extNNN")] = "ext"; 50 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444); 51 MODULE_PARM_DESC(hifn_pll_ref, 52 "PLL reference clock (pci[freq] or ext[freq], default ext)"); 53 54 static atomic_t hifn_dev_number; 55 56 #define ACRYPTO_OP_DECRYPT 0 57 #define ACRYPTO_OP_ENCRYPT 1 58 #define ACRYPTO_OP_HMAC 2 59 #define ACRYPTO_OP_RNG 3 60 61 #define ACRYPTO_MODE_ECB 0 62 #define ACRYPTO_MODE_CBC 1 63 #define ACRYPTO_MODE_CFB 2 64 #define ACRYPTO_MODE_OFB 3 65 66 #define ACRYPTO_TYPE_AES_128 0 67 #define ACRYPTO_TYPE_AES_192 1 68 #define ACRYPTO_TYPE_AES_256 2 69 #define ACRYPTO_TYPE_3DES 3 70 #define ACRYPTO_TYPE_DES 4 71 72 #define PCI_VENDOR_ID_HIFN 0x13A3 73 #define PCI_DEVICE_ID_HIFN_7955 0x0020 74 #define PCI_DEVICE_ID_HIFN_7956 0x001d 75 76 /* I/O region sizes */ 77 78 #define HIFN_BAR0_SIZE 0x1000 79 #define HIFN_BAR1_SIZE 0x2000 80 #define HIFN_BAR2_SIZE 0x8000 81 82 /* DMA registres */ 83 84 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */ 85 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */ 86 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */ 87 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */ 88 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */ 89 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */ 90 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */ 91 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */ 92 #define HIFN_CHIP_ID 0x98 /* Chip ID */ 93 94 /* 95 * Processing Unit Registers (offset from BASEREG0) 96 */ 97 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */ 98 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */ 99 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */ 100 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */ 101 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */ 102 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */ 103 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */ 104 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */ 105 #define HIFN_0_SPACESIZE 0x20 /* Register space size */ 106 107 /* Processing Unit Control Register (HIFN_0_PUCTRL) */ 108 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */ 109 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */ 110 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */ 111 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */ 112 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */ 113 114 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */ 115 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */ 116 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */ 117 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 118 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 119 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */ 120 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */ 121 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */ 122 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */ 123 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */ 124 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */ 125 126 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */ 127 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */ 128 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */ 129 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */ 130 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */ 131 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */ 132 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */ 133 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */ 134 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */ 135 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */ 136 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */ 137 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */ 138 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */ 139 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */ 140 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */ 141 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */ 142 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */ 143 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */ 144 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */ 145 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */ 146 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */ 147 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */ 148 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */ 149 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */ 150 151 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */ 152 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */ 153 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */ 154 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 155 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 156 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */ 157 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */ 158 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */ 159 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */ 160 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */ 161 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */ 162 163 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */ 164 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */ 165 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */ 166 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 167 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 168 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */ 169 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */ 170 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */ 171 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */ 172 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */ 173 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */ 174 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */ 175 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */ 176 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */ 177 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */ 178 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */ 179 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */ 180 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */ 181 182 /* FIFO Status Register (HIFN_0_FIFOSTAT) */ 183 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */ 184 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */ 185 186 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */ 187 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */ 188 189 /* 190 * DMA Interface Registers (offset from BASEREG1) 191 */ 192 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */ 193 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */ 194 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */ 195 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */ 196 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */ 197 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */ 198 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */ 199 #define HIFN_1_PLL 0x4c /* 795x: PLL config */ 200 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */ 201 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */ 202 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */ 203 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */ 204 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */ 205 #define HIFN_1_REVID 0x98 /* Revision ID */ 206 #define HIFN_1_UNLOCK_SECRET1 0xf4 207 #define HIFN_1_UNLOCK_SECRET2 0xfc 208 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */ 209 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */ 210 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */ 211 #define HIFN_1_PUB_OP 0x308 /* Public Operand */ 212 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */ 213 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */ 214 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */ 215 #define HIFN_1_RNG_DATA 0x318 /* RNG data */ 216 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */ 217 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */ 218 219 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */ 220 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */ 221 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */ 222 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */ 223 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */ 224 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */ 225 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */ 226 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */ 227 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */ 228 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */ 229 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */ 230 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */ 231 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */ 232 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */ 233 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 234 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */ 235 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */ 236 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */ 237 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */ 238 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */ 239 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */ 240 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */ 241 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */ 242 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 243 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */ 244 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */ 245 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */ 246 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */ 247 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */ 248 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */ 249 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */ 250 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */ 251 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */ 252 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 253 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */ 254 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */ 255 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */ 256 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */ 257 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */ 258 259 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */ 260 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */ 261 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */ 262 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */ 263 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */ 264 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */ 265 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 266 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */ 267 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */ 268 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */ 269 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */ 270 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 271 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */ 272 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */ 273 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */ 274 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */ 275 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */ 276 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 277 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */ 278 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */ 279 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */ 280 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */ 281 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */ 282 283 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */ 284 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */ 285 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */ 286 #define HIFN_DMACNFG_UNLOCK 0x00000800 287 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */ 288 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */ 289 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */ 290 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */ 291 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */ 292 293 /* PLL configuration register */ 294 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */ 295 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */ 296 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */ 297 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */ 298 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */ 299 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */ 300 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */ 301 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */ 302 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */ 303 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */ 304 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */ 305 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */ 306 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */ 307 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */ 308 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */ 309 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */ 310 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */ 311 312 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */ 313 314 /* Public key reset register (HIFN_1_PUB_RESET) */ 315 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */ 316 317 /* Public base address register (HIFN_1_PUB_BASE) */ 318 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */ 319 320 /* Public operand length register (HIFN_1_PUB_OPLEN) */ 321 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */ 322 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */ 323 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */ 324 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent lenght shift */ 325 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */ 326 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */ 327 328 /* Public operation register (HIFN_1_PUB_OP) */ 329 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */ 330 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */ 331 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */ 332 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */ 333 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */ 334 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */ 335 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */ 336 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */ 337 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */ 338 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */ 339 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */ 340 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */ 341 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */ 342 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */ 343 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */ 344 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */ 345 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */ 346 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */ 347 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */ 348 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */ 349 350 /* Public status register (HIFN_1_PUB_STATUS) */ 351 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */ 352 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */ 353 354 /* Public interrupt enable register (HIFN_1_PUB_IEN) */ 355 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */ 356 357 /* Random number generator config register (HIFN_1_RNG_CONFIG) */ 358 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */ 359 360 #define HIFN_NAMESIZE 32 361 #define HIFN_MAX_RESULT_ORDER 5 362 363 #define HIFN_D_CMD_RSIZE 24*1 364 #define HIFN_D_SRC_RSIZE 80*1 365 #define HIFN_D_DST_RSIZE 80*1 366 #define HIFN_D_RES_RSIZE 24*1 367 368 #define HIFN_D_DST_DALIGN 4 369 370 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1) 371 372 #define AES_MIN_KEY_SIZE 16 373 #define AES_MAX_KEY_SIZE 32 374 375 #define HIFN_DES_KEY_LENGTH 8 376 #define HIFN_3DES_KEY_LENGTH 24 377 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE 378 #define HIFN_IV_LENGTH 8 379 #define HIFN_AES_IV_LENGTH 16 380 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH 381 382 #define HIFN_MAC_KEY_LENGTH 64 383 #define HIFN_MD5_LENGTH 16 384 #define HIFN_SHA1_LENGTH 20 385 #define HIFN_MAC_TRUNC_LENGTH 12 386 387 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260) 388 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4) 389 #define HIFN_USED_RESULT 12 390 391 struct hifn_desc 392 { 393 volatile __le32 l; 394 volatile __le32 p; 395 }; 396 397 struct hifn_dma { 398 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1]; 399 struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1]; 400 struct hifn_desc dstr[HIFN_D_DST_RSIZE+1]; 401 struct hifn_desc resr[HIFN_D_RES_RSIZE+1]; 402 403 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND]; 404 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT]; 405 406 /* 407 * Our current positions for insertion and removal from the descriptor 408 * rings. 409 */ 410 volatile int cmdi, srci, dsti, resi; 411 volatile int cmdu, srcu, dstu, resu; 412 int cmdk, srck, dstk, resk; 413 }; 414 415 #define HIFN_FLAG_CMD_BUSY (1<<0) 416 #define HIFN_FLAG_SRC_BUSY (1<<1) 417 #define HIFN_FLAG_DST_BUSY (1<<2) 418 #define HIFN_FLAG_RES_BUSY (1<<3) 419 #define HIFN_FLAG_OLD_KEY (1<<4) 420 421 #define HIFN_DEFAULT_ACTIVE_NUM 5 422 423 struct hifn_device 424 { 425 char name[HIFN_NAMESIZE]; 426 427 int irq; 428 429 struct pci_dev *pdev; 430 void __iomem *bar[3]; 431 432 void *desc_virt; 433 dma_addr_t desc_dma; 434 435 u32 dmareg; 436 437 void *sa[HIFN_D_RES_RSIZE]; 438 439 spinlock_t lock; 440 441 u32 flags; 442 int active, started; 443 struct delayed_work work; 444 unsigned long reset; 445 unsigned long success; 446 unsigned long prev_success; 447 448 u8 snum; 449 450 struct tasklet_struct tasklet; 451 452 struct crypto_queue queue; 453 struct list_head alg_list; 454 455 unsigned int pk_clk_freq; 456 457 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 458 unsigned int rng_wait_time; 459 ktime_t rngtime; 460 struct hwrng rng; 461 #endif 462 }; 463 464 #define HIFN_D_LENGTH 0x0000ffff 465 #define HIFN_D_NOINVALID 0x01000000 466 #define HIFN_D_MASKDONEIRQ 0x02000000 467 #define HIFN_D_DESTOVER 0x04000000 468 #define HIFN_D_OVER 0x08000000 469 #define HIFN_D_LAST 0x20000000 470 #define HIFN_D_JUMP 0x40000000 471 #define HIFN_D_VALID 0x80000000 472 473 struct hifn_base_command 474 { 475 volatile __le16 masks; 476 volatile __le16 session_num; 477 volatile __le16 total_source_count; 478 volatile __le16 total_dest_count; 479 }; 480 481 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */ 482 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */ 483 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */ 484 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */ 485 #define HIFN_BASE_CMD_DECODE 0x2000 486 #define HIFN_BASE_CMD_SRCLEN_M 0xc000 487 #define HIFN_BASE_CMD_SRCLEN_S 14 488 #define HIFN_BASE_CMD_DSTLEN_M 0x3000 489 #define HIFN_BASE_CMD_DSTLEN_S 12 490 #define HIFN_BASE_CMD_LENMASK_HI 0x30000 491 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff 492 493 /* 494 * Structure to help build up the command data structure. 495 */ 496 struct hifn_crypt_command 497 { 498 volatile __le16 masks; 499 volatile __le16 header_skip; 500 volatile __le16 source_count; 501 volatile __le16 reserved; 502 }; 503 504 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */ 505 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */ 506 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */ 507 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */ 508 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */ 509 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */ 510 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */ 511 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */ 512 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */ 513 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */ 514 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */ 515 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */ 516 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */ 517 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */ 518 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */ 519 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */ 520 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */ 521 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000 522 #define HIFN_CRYPT_CMD_SRCLEN_S 14 523 524 /* 525 * Structure to help build up the command data structure. 526 */ 527 struct hifn_mac_command 528 { 529 volatile __le16 masks; 530 volatile __le16 header_skip; 531 volatile __le16 source_count; 532 volatile __le16 reserved; 533 }; 534 535 #define HIFN_MAC_CMD_ALG_MASK 0x0001 536 #define HIFN_MAC_CMD_ALG_SHA1 0x0000 537 #define HIFN_MAC_CMD_ALG_MD5 0x0001 538 #define HIFN_MAC_CMD_MODE_MASK 0x000c 539 #define HIFN_MAC_CMD_MODE_HMAC 0x0000 540 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004 541 #define HIFN_MAC_CMD_MODE_HASH 0x0008 542 #define HIFN_MAC_CMD_MODE_FULL 0x0004 543 #define HIFN_MAC_CMD_TRUNC 0x0010 544 #define HIFN_MAC_CMD_RESULT 0x0020 545 #define HIFN_MAC_CMD_APPEND 0x0040 546 #define HIFN_MAC_CMD_SRCLEN_M 0xc000 547 #define HIFN_MAC_CMD_SRCLEN_S 14 548 549 /* 550 * MAC POS IPsec initiates authentication after encryption on encodes 551 * and before decryption on decodes. 552 */ 553 #define HIFN_MAC_CMD_POS_IPSEC 0x0200 554 #define HIFN_MAC_CMD_NEW_KEY 0x0800 555 556 struct hifn_comp_command 557 { 558 volatile __le16 masks; 559 volatile __le16 header_skip; 560 volatile __le16 source_count; 561 volatile __le16 reserved; 562 }; 563 564 #define HIFN_COMP_CMD_SRCLEN_M 0xc000 565 #define HIFN_COMP_CMD_SRCLEN_S 14 566 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */ 567 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */ 568 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */ 569 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */ 570 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */ 571 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */ 572 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */ 573 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */ 574 575 struct hifn_base_result 576 { 577 volatile __le16 flags; 578 volatile __le16 session; 579 volatile __le16 src_cnt; /* 15:0 of source count */ 580 volatile __le16 dst_cnt; /* 15:0 of dest count */ 581 }; 582 583 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */ 584 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */ 585 #define HIFN_BASE_RES_SRCLEN_S 14 586 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */ 587 #define HIFN_BASE_RES_DSTLEN_S 12 588 589 struct hifn_comp_result 590 { 591 volatile __le16 flags; 592 volatile __le16 crc; 593 }; 594 595 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */ 596 #define HIFN_COMP_RES_LCB_S 8 597 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */ 598 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */ 599 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */ 600 601 struct hifn_mac_result 602 { 603 volatile __le16 flags; 604 volatile __le16 reserved; 605 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */ 606 }; 607 608 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */ 609 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */ 610 611 struct hifn_crypt_result 612 { 613 volatile __le16 flags; 614 volatile __le16 reserved; 615 }; 616 617 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */ 618 619 #ifndef HIFN_POLL_FREQUENCY 620 #define HIFN_POLL_FREQUENCY 0x1 621 #endif 622 623 #ifndef HIFN_POLL_SCALAR 624 #define HIFN_POLL_SCALAR 0x0 625 #endif 626 627 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */ 628 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */ 629 630 struct hifn_crypto_alg 631 { 632 struct list_head entry; 633 struct crypto_alg alg; 634 struct hifn_device *dev; 635 }; 636 637 #define ASYNC_SCATTERLIST_CACHE 16 638 639 #define ASYNC_FLAGS_MISALIGNED (1<<0) 640 641 struct ablkcipher_walk 642 { 643 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE]; 644 u32 flags; 645 int num; 646 }; 647 648 struct hifn_context 649 { 650 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH]; 651 struct hifn_device *dev; 652 unsigned int keysize; 653 }; 654 655 struct hifn_request_context 656 { 657 u8 *iv; 658 unsigned int ivsize; 659 u8 op, type, mode, unused; 660 struct ablkcipher_walk walk; 661 }; 662 663 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg) 664 665 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg) 666 { 667 u32 ret; 668 669 ret = readl(dev->bar[0] + reg); 670 671 return ret; 672 } 673 674 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg) 675 { 676 u32 ret; 677 678 ret = readl(dev->bar[1] + reg); 679 680 return ret; 681 } 682 683 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val) 684 { 685 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg); 686 } 687 688 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val) 689 { 690 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg); 691 } 692 693 static void hifn_wait_puc(struct hifn_device *dev) 694 { 695 int i; 696 u32 ret; 697 698 for (i=10000; i > 0; --i) { 699 ret = hifn_read_0(dev, HIFN_0_PUCTRL); 700 if (!(ret & HIFN_PUCTRL_RESET)) 701 break; 702 703 udelay(1); 704 } 705 706 if (!i) 707 dprintk("%s: Failed to reset PUC unit.\n", dev->name); 708 } 709 710 static void hifn_reset_puc(struct hifn_device *dev) 711 { 712 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 713 hifn_wait_puc(dev); 714 } 715 716 static void hifn_stop_device(struct hifn_device *dev) 717 { 718 hifn_write_1(dev, HIFN_1_DMA_CSR, 719 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 720 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS); 721 hifn_write_0(dev, HIFN_0_PUIER, 0); 722 hifn_write_1(dev, HIFN_1_DMA_IER, 0); 723 } 724 725 static void hifn_reset_dma(struct hifn_device *dev, int full) 726 { 727 hifn_stop_device(dev); 728 729 /* 730 * Setting poll frequency and others to 0. 731 */ 732 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 733 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 734 mdelay(1); 735 736 /* 737 * Reset DMA. 738 */ 739 if (full) { 740 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE); 741 mdelay(1); 742 } else { 743 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE | 744 HIFN_DMACNFG_MSTRESET); 745 hifn_reset_puc(dev); 746 } 747 748 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 749 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 750 751 hifn_reset_puc(dev); 752 } 753 754 static u32 hifn_next_signature(u_int32_t a, u_int cnt) 755 { 756 int i; 757 u32 v; 758 759 for (i = 0; i < cnt; i++) { 760 761 /* get the parity */ 762 v = a & 0x80080125; 763 v ^= v >> 16; 764 v ^= v >> 8; 765 v ^= v >> 4; 766 v ^= v >> 2; 767 v ^= v >> 1; 768 769 a = (v & 1) ^ (a << 1); 770 } 771 772 return a; 773 } 774 775 static struct pci2id { 776 u_short pci_vendor; 777 u_short pci_prod; 778 char card_id[13]; 779 } pci2id[] = { 780 { 781 PCI_VENDOR_ID_HIFN, 782 PCI_DEVICE_ID_HIFN_7955, 783 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 784 0x00, 0x00, 0x00, 0x00, 0x00 } 785 }, 786 { 787 PCI_VENDOR_ID_HIFN, 788 PCI_DEVICE_ID_HIFN_7956, 789 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 790 0x00, 0x00, 0x00, 0x00, 0x00 } 791 } 792 }; 793 794 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 795 static int hifn_rng_data_present(struct hwrng *rng, int wait) 796 { 797 struct hifn_device *dev = (struct hifn_device *)rng->priv; 798 s64 nsec; 799 800 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime)); 801 nsec -= dev->rng_wait_time; 802 if (nsec <= 0) 803 return 1; 804 if (!wait) 805 return 0; 806 ndelay(nsec); 807 return 1; 808 } 809 810 static int hifn_rng_data_read(struct hwrng *rng, u32 *data) 811 { 812 struct hifn_device *dev = (struct hifn_device *)rng->priv; 813 814 *data = hifn_read_1(dev, HIFN_1_RNG_DATA); 815 dev->rngtime = ktime_get(); 816 return 4; 817 } 818 819 static int hifn_register_rng(struct hifn_device *dev) 820 { 821 /* 822 * We must wait at least 256 Pk_clk cycles between two reads of the rng. 823 */ 824 dev->rng_wait_time = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) * 825 256; 826 827 dev->rng.name = dev->name; 828 dev->rng.data_present = hifn_rng_data_present, 829 dev->rng.data_read = hifn_rng_data_read, 830 dev->rng.priv = (unsigned long)dev; 831 832 return hwrng_register(&dev->rng); 833 } 834 835 static void hifn_unregister_rng(struct hifn_device *dev) 836 { 837 hwrng_unregister(&dev->rng); 838 } 839 #else 840 #define hifn_register_rng(dev) 0 841 #define hifn_unregister_rng(dev) 842 #endif 843 844 static int hifn_init_pubrng(struct hifn_device *dev) 845 { 846 int i; 847 848 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) | 849 HIFN_PUBRST_RESET); 850 851 for (i=100; i > 0; --i) { 852 mdelay(1); 853 854 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0) 855 break; 856 } 857 858 if (!i) 859 dprintk("Chip %s: Failed to initialise public key engine.\n", 860 dev->name); 861 else { 862 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE); 863 dev->dmareg |= HIFN_DMAIER_PUBDONE; 864 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 865 866 dprintk("Chip %s: Public key engine has been successfully " 867 "initialised.\n", dev->name); 868 } 869 870 /* 871 * Enable RNG engine. 872 */ 873 874 hifn_write_1(dev, HIFN_1_RNG_CONFIG, 875 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA); 876 dprintk("Chip %s: RNG engine has been successfully initialised.\n", 877 dev->name); 878 879 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 880 /* First value must be discarded */ 881 hifn_read_1(dev, HIFN_1_RNG_DATA); 882 dev->rngtime = ktime_get(); 883 #endif 884 return 0; 885 } 886 887 static int hifn_enable_crypto(struct hifn_device *dev) 888 { 889 u32 dmacfg, addr; 890 char *offtbl = NULL; 891 int i; 892 893 for (i = 0; i < ARRAY_SIZE(pci2id); i++) { 894 if (pci2id[i].pci_vendor == dev->pdev->vendor && 895 pci2id[i].pci_prod == dev->pdev->device) { 896 offtbl = pci2id[i].card_id; 897 break; 898 } 899 } 900 901 if (offtbl == NULL) { 902 dprintk("Chip %s: Unknown card!\n", dev->name); 903 return -ENODEV; 904 } 905 906 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG); 907 908 hifn_write_1(dev, HIFN_1_DMA_CNFG, 909 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET | 910 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 911 mdelay(1); 912 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1); 913 mdelay(1); 914 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0); 915 mdelay(1); 916 917 for (i=0; i<12; ++i) { 918 addr = hifn_next_signature(addr, offtbl[i] + 0x101); 919 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr); 920 921 mdelay(1); 922 } 923 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg); 924 925 dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev)); 926 927 return 0; 928 } 929 930 static void hifn_init_dma(struct hifn_device *dev) 931 { 932 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 933 u32 dptr = dev->desc_dma; 934 int i; 935 936 for (i=0; i<HIFN_D_CMD_RSIZE; ++i) 937 dma->cmdr[i].p = __cpu_to_le32(dptr + 938 offsetof(struct hifn_dma, command_bufs[i][0])); 939 for (i=0; i<HIFN_D_RES_RSIZE; ++i) 940 dma->resr[i].p = __cpu_to_le32(dptr + 941 offsetof(struct hifn_dma, result_bufs[i][0])); 942 943 /* 944 * Setup LAST descriptors. 945 */ 946 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr + 947 offsetof(struct hifn_dma, cmdr[0])); 948 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr + 949 offsetof(struct hifn_dma, srcr[0])); 950 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr + 951 offsetof(struct hifn_dma, dstr[0])); 952 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr + 953 offsetof(struct hifn_dma, resr[0])); 954 955 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0; 956 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0; 957 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0; 958 } 959 960 /* 961 * Initialize the PLL. We need to know the frequency of the reference clock 962 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that 963 * allows us to operate without the risk of overclocking the chip. If it 964 * actually uses 33MHz, the chip will operate at half the speed, this can be 965 * overriden by specifying the frequency as module parameter (pci33). 966 * 967 * Unfortunately the PCI clock is not very suitable since the HIFN needs a 968 * stable clock and the PCI clock frequency may vary, so the default is the 969 * external clock. There is no way to find out its frequency, we default to 970 * 66MHz since according to Mike Ham of HiFn, almost every board in existence 971 * has an external crystal populated at 66MHz. 972 */ 973 static void hifn_init_pll(struct hifn_device *dev) 974 { 975 unsigned int freq, m; 976 u32 pllcfg; 977 978 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1; 979 980 if (strncmp(hifn_pll_ref, "ext", 3) == 0) 981 pllcfg |= HIFN_PLL_REF_CLK_PLL; 982 else 983 pllcfg |= HIFN_PLL_REF_CLK_HBI; 984 985 if (hifn_pll_ref[3] != '\0') 986 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); 987 else { 988 freq = 66; 989 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, " 990 "override with hifn_pll_ref=%.3s<frequency>\n", 991 freq, hifn_pll_ref); 992 } 993 994 m = HIFN_PLL_FCK_MAX / freq; 995 996 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT; 997 if (m <= 8) 998 pllcfg |= HIFN_PLL_IS_1_8; 999 else 1000 pllcfg |= HIFN_PLL_IS_9_12; 1001 1002 /* Select clock source and enable clock bypass */ 1003 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 1004 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP); 1005 1006 /* Let the chip lock to the input clock */ 1007 mdelay(10); 1008 1009 /* Disable clock bypass */ 1010 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 1011 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI); 1012 1013 /* Switch the engines to the PLL */ 1014 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 1015 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL); 1016 1017 /* 1018 * The Fpk_clk runs at half the total speed. Its frequency is needed to 1019 * calculate the minimum time between two reads of the rng. Since 33MHz 1020 * is actually 33.333... we overestimate the frequency here, resulting 1021 * in slightly larger intervals. 1022 */ 1023 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2; 1024 } 1025 1026 static void hifn_init_registers(struct hifn_device *dev) 1027 { 1028 u32 dptr = dev->desc_dma; 1029 1030 /* Initialization magic... */ 1031 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 1032 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD); 1033 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER); 1034 1035 /* write all 4 ring address registers */ 1036 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr + 1037 offsetof(struct hifn_dma, cmdr[0])); 1038 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr + 1039 offsetof(struct hifn_dma, srcr[0])); 1040 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr + 1041 offsetof(struct hifn_dma, dstr[0])); 1042 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr + 1043 offsetof(struct hifn_dma, resr[0])); 1044 1045 mdelay(2); 1046 #if 0 1047 hifn_write_1(dev, HIFN_1_DMA_CSR, 1048 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 1049 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS | 1050 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 1051 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 1052 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 1053 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 1054 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 1055 HIFN_DMACSR_S_WAIT | 1056 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 1057 HIFN_DMACSR_C_WAIT | 1058 HIFN_DMACSR_ENGINE | 1059 HIFN_DMACSR_PUBDONE); 1060 #else 1061 hifn_write_1(dev, HIFN_1_DMA_CSR, 1062 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA | 1063 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA | 1064 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 1065 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 1066 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 1067 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 1068 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 1069 HIFN_DMACSR_S_WAIT | 1070 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 1071 HIFN_DMACSR_C_WAIT | 1072 HIFN_DMACSR_ENGINE | 1073 HIFN_DMACSR_PUBDONE); 1074 #endif 1075 hifn_read_1(dev, HIFN_1_DMA_CSR); 1076 1077 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT | 1078 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER | 1079 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT | 1080 HIFN_DMAIER_ENGINE; 1081 dev->dmareg &= ~HIFN_DMAIER_C_WAIT; 1082 1083 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1084 hifn_read_1(dev, HIFN_1_DMA_IER); 1085 #if 0 1086 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG | 1087 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES | 1088 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 | 1089 HIFN_PUCNFG_DRAM); 1090 #else 1091 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342); 1092 #endif 1093 hifn_init_pll(dev); 1094 1095 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 1096 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 1097 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST | 1098 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) | 1099 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL)); 1100 } 1101 1102 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf, 1103 unsigned dlen, unsigned slen, u16 mask, u8 snum) 1104 { 1105 struct hifn_base_command *base_cmd; 1106 u8 *buf_pos = buf; 1107 1108 base_cmd = (struct hifn_base_command *)buf_pos; 1109 base_cmd->masks = __cpu_to_le16(mask); 1110 base_cmd->total_source_count = 1111 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO); 1112 base_cmd->total_dest_count = 1113 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO); 1114 1115 dlen >>= 16; 1116 slen >>= 16; 1117 base_cmd->session_num = __cpu_to_le16(snum | 1118 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) | 1119 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M)); 1120 1121 return sizeof(struct hifn_base_command); 1122 } 1123 1124 static int hifn_setup_crypto_command(struct hifn_device *dev, 1125 u8 *buf, unsigned dlen, unsigned slen, 1126 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode) 1127 { 1128 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1129 struct hifn_crypt_command *cry_cmd; 1130 u8 *buf_pos = buf; 1131 u16 cmd_len; 1132 1133 cry_cmd = (struct hifn_crypt_command *)buf_pos; 1134 1135 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff); 1136 dlen >>= 16; 1137 cry_cmd->masks = __cpu_to_le16(mode | 1138 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & 1139 HIFN_CRYPT_CMD_SRCLEN_M)); 1140 cry_cmd->header_skip = 0; 1141 cry_cmd->reserved = 0; 1142 1143 buf_pos += sizeof(struct hifn_crypt_command); 1144 1145 dma->cmdu++; 1146 if (dma->cmdu > 1) { 1147 dev->dmareg |= HIFN_DMAIER_C_WAIT; 1148 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1149 } 1150 1151 if (keylen) { 1152 memcpy(buf_pos, key, keylen); 1153 buf_pos += keylen; 1154 } 1155 if (ivsize) { 1156 memcpy(buf_pos, iv, ivsize); 1157 buf_pos += ivsize; 1158 } 1159 1160 cmd_len = buf_pos - buf; 1161 1162 return cmd_len; 1163 } 1164 1165 static int hifn_setup_cmd_desc(struct hifn_device *dev, 1166 struct hifn_context *ctx, struct hifn_request_context *rctx, 1167 void *priv, unsigned int nbytes) 1168 { 1169 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1170 int cmd_len, sa_idx; 1171 u8 *buf, *buf_pos; 1172 u16 mask; 1173 1174 sa_idx = dma->cmdi; 1175 buf_pos = buf = dma->command_bufs[dma->cmdi]; 1176 1177 mask = 0; 1178 switch (rctx->op) { 1179 case ACRYPTO_OP_DECRYPT: 1180 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE; 1181 break; 1182 case ACRYPTO_OP_ENCRYPT: 1183 mask = HIFN_BASE_CMD_CRYPT; 1184 break; 1185 case ACRYPTO_OP_HMAC: 1186 mask = HIFN_BASE_CMD_MAC; 1187 break; 1188 default: 1189 goto err_out; 1190 } 1191 1192 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes, 1193 nbytes, mask, dev->snum); 1194 1195 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) { 1196 u16 md = 0; 1197 1198 if (ctx->keysize) 1199 md |= HIFN_CRYPT_CMD_NEW_KEY; 1200 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB) 1201 md |= HIFN_CRYPT_CMD_NEW_IV; 1202 1203 switch (rctx->mode) { 1204 case ACRYPTO_MODE_ECB: 1205 md |= HIFN_CRYPT_CMD_MODE_ECB; 1206 break; 1207 case ACRYPTO_MODE_CBC: 1208 md |= HIFN_CRYPT_CMD_MODE_CBC; 1209 break; 1210 case ACRYPTO_MODE_CFB: 1211 md |= HIFN_CRYPT_CMD_MODE_CFB; 1212 break; 1213 case ACRYPTO_MODE_OFB: 1214 md |= HIFN_CRYPT_CMD_MODE_OFB; 1215 break; 1216 default: 1217 goto err_out; 1218 } 1219 1220 switch (rctx->type) { 1221 case ACRYPTO_TYPE_AES_128: 1222 if (ctx->keysize != 16) 1223 goto err_out; 1224 md |= HIFN_CRYPT_CMD_KSZ_128 | 1225 HIFN_CRYPT_CMD_ALG_AES; 1226 break; 1227 case ACRYPTO_TYPE_AES_192: 1228 if (ctx->keysize != 24) 1229 goto err_out; 1230 md |= HIFN_CRYPT_CMD_KSZ_192 | 1231 HIFN_CRYPT_CMD_ALG_AES; 1232 break; 1233 case ACRYPTO_TYPE_AES_256: 1234 if (ctx->keysize != 32) 1235 goto err_out; 1236 md |= HIFN_CRYPT_CMD_KSZ_256 | 1237 HIFN_CRYPT_CMD_ALG_AES; 1238 break; 1239 case ACRYPTO_TYPE_3DES: 1240 if (ctx->keysize != 24) 1241 goto err_out; 1242 md |= HIFN_CRYPT_CMD_ALG_3DES; 1243 break; 1244 case ACRYPTO_TYPE_DES: 1245 if (ctx->keysize != 8) 1246 goto err_out; 1247 md |= HIFN_CRYPT_CMD_ALG_DES; 1248 break; 1249 default: 1250 goto err_out; 1251 } 1252 1253 buf_pos += hifn_setup_crypto_command(dev, buf_pos, 1254 nbytes, nbytes, ctx->key, ctx->keysize, 1255 rctx->iv, rctx->ivsize, md); 1256 } 1257 1258 dev->sa[sa_idx] = priv; 1259 dev->started++; 1260 1261 cmd_len = buf_pos - buf; 1262 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID | 1263 HIFN_D_LAST | HIFN_D_MASKDONEIRQ); 1264 1265 if (++dma->cmdi == HIFN_D_CMD_RSIZE) { 1266 dma->cmdr[dma->cmdi].l = __cpu_to_le32( 1267 HIFN_D_VALID | HIFN_D_LAST | 1268 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP); 1269 dma->cmdi = 0; 1270 } else 1271 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID); 1272 1273 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) { 1274 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA); 1275 dev->flags |= HIFN_FLAG_CMD_BUSY; 1276 } 1277 return 0; 1278 1279 err_out: 1280 return -EINVAL; 1281 } 1282 1283 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page, 1284 unsigned int offset, unsigned int size, int last) 1285 { 1286 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1287 int idx; 1288 dma_addr_t addr; 1289 1290 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE); 1291 1292 idx = dma->srci; 1293 1294 dma->srcr[idx].p = __cpu_to_le32(addr); 1295 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1296 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); 1297 1298 if (++idx == HIFN_D_SRC_RSIZE) { 1299 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1300 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | 1301 (last ? HIFN_D_LAST : 0)); 1302 idx = 0; 1303 } 1304 1305 dma->srci = idx; 1306 dma->srcu++; 1307 1308 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) { 1309 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA); 1310 dev->flags |= HIFN_FLAG_SRC_BUSY; 1311 } 1312 1313 return size; 1314 } 1315 1316 static void hifn_setup_res_desc(struct hifn_device *dev) 1317 { 1318 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1319 1320 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT | 1321 HIFN_D_VALID | HIFN_D_LAST); 1322 /* 1323 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID | 1324 * HIFN_D_LAST); 1325 */ 1326 1327 if (++dma->resi == HIFN_D_RES_RSIZE) { 1328 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID | 1329 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST); 1330 dma->resi = 0; 1331 } 1332 1333 dma->resu++; 1334 1335 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) { 1336 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA); 1337 dev->flags |= HIFN_FLAG_RES_BUSY; 1338 } 1339 } 1340 1341 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page, 1342 unsigned offset, unsigned size, int last) 1343 { 1344 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1345 int idx; 1346 dma_addr_t addr; 1347 1348 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE); 1349 1350 idx = dma->dsti; 1351 dma->dstr[idx].p = __cpu_to_le32(addr); 1352 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1353 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); 1354 1355 if (++idx == HIFN_D_DST_RSIZE) { 1356 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1357 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | 1358 (last ? HIFN_D_LAST : 0)); 1359 idx = 0; 1360 } 1361 dma->dsti = idx; 1362 dma->dstu++; 1363 1364 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) { 1365 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA); 1366 dev->flags |= HIFN_FLAG_DST_BUSY; 1367 } 1368 } 1369 1370 static int hifn_setup_dma(struct hifn_device *dev, 1371 struct hifn_context *ctx, struct hifn_request_context *rctx, 1372 struct scatterlist *src, struct scatterlist *dst, 1373 unsigned int nbytes, void *priv) 1374 { 1375 struct scatterlist *t; 1376 struct page *spage, *dpage; 1377 unsigned int soff, doff; 1378 unsigned int n, len; 1379 1380 n = nbytes; 1381 while (n) { 1382 spage = sg_page(src); 1383 soff = src->offset; 1384 len = min(src->length, n); 1385 1386 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0); 1387 1388 src++; 1389 n -= len; 1390 } 1391 1392 t = &rctx->walk.cache[0]; 1393 n = nbytes; 1394 while (n) { 1395 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1396 BUG_ON(!sg_page(t)); 1397 dpage = sg_page(t); 1398 doff = 0; 1399 len = t->length; 1400 } else { 1401 BUG_ON(!sg_page(dst)); 1402 dpage = sg_page(dst); 1403 doff = dst->offset; 1404 len = dst->length; 1405 } 1406 len = min(len, n); 1407 1408 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0); 1409 1410 dst++; 1411 t++; 1412 n -= len; 1413 } 1414 1415 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes); 1416 hifn_setup_res_desc(dev); 1417 return 0; 1418 } 1419 1420 static int ablkcipher_walk_init(struct ablkcipher_walk *w, 1421 int num, gfp_t gfp_flags) 1422 { 1423 int i; 1424 1425 num = min(ASYNC_SCATTERLIST_CACHE, num); 1426 sg_init_table(w->cache, num); 1427 1428 w->num = 0; 1429 for (i=0; i<num; ++i) { 1430 struct page *page = alloc_page(gfp_flags); 1431 struct scatterlist *s; 1432 1433 if (!page) 1434 break; 1435 1436 s = &w->cache[i]; 1437 1438 sg_set_page(s, page, PAGE_SIZE, 0); 1439 w->num++; 1440 } 1441 1442 return i; 1443 } 1444 1445 static void ablkcipher_walk_exit(struct ablkcipher_walk *w) 1446 { 1447 int i; 1448 1449 for (i=0; i<w->num; ++i) { 1450 struct scatterlist *s = &w->cache[i]; 1451 1452 __free_page(sg_page(s)); 1453 1454 s->length = 0; 1455 } 1456 1457 w->num = 0; 1458 } 1459 1460 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst, 1461 unsigned int size, unsigned int *nbytesp) 1462 { 1463 unsigned int copy, drest = *drestp, nbytes = *nbytesp; 1464 int idx = 0; 1465 1466 if (drest < size || size > nbytes) 1467 return -EINVAL; 1468 1469 while (size) { 1470 copy = min(drest, min(size, dst->length)); 1471 1472 size -= copy; 1473 drest -= copy; 1474 nbytes -= copy; 1475 1476 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n", 1477 __func__, copy, size, drest, nbytes); 1478 1479 dst++; 1480 idx++; 1481 } 1482 1483 *nbytesp = nbytes; 1484 *drestp = drest; 1485 1486 return idx; 1487 } 1488 1489 static int ablkcipher_walk(struct ablkcipher_request *req, 1490 struct ablkcipher_walk *w) 1491 { 1492 struct scatterlist *dst, *t; 1493 unsigned int nbytes = req->nbytes, offset, copy, diff; 1494 int idx, tidx, err; 1495 1496 tidx = idx = 0; 1497 offset = 0; 1498 while (nbytes) { 1499 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED)) 1500 return -EINVAL; 1501 1502 dst = &req->dst[idx]; 1503 1504 dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n", 1505 __func__, dst->length, dst->offset, offset, nbytes); 1506 1507 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || 1508 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) || 1509 offset) { 1510 unsigned slen = min(dst->length - offset, nbytes); 1511 unsigned dlen = PAGE_SIZE; 1512 1513 t = &w->cache[idx]; 1514 1515 err = ablkcipher_add(&dlen, dst, slen, &nbytes); 1516 if (err < 0) 1517 return err; 1518 1519 idx += err; 1520 1521 copy = slen & ~(HIFN_D_DST_DALIGN - 1); 1522 diff = slen & (HIFN_D_DST_DALIGN - 1); 1523 1524 if (dlen < nbytes) { 1525 /* 1526 * Destination page does not have enough space 1527 * to put there additional blocksized chunk, 1528 * so we mark that page as containing only 1529 * blocksize aligned chunks: 1530 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1)); 1531 * and increase number of bytes to be processed 1532 * in next chunk: 1533 * nbytes += diff; 1534 */ 1535 nbytes += diff; 1536 1537 /* 1538 * Temporary of course... 1539 * Kick author if you will catch this one. 1540 */ 1541 printk(KERN_ERR "%s: dlen: %u, nbytes: %u," 1542 "slen: %u, offset: %u.\n", 1543 __func__, dlen, nbytes, slen, offset); 1544 printk(KERN_ERR "%s: please contact author to fix this " 1545 "issue, generally you should not catch " 1546 "this path under any condition but who " 1547 "knows how did you use crypto code.\n" 1548 "Thank you.\n", __func__); 1549 BUG(); 1550 } else { 1551 copy += diff + nbytes; 1552 1553 dst = &req->dst[idx]; 1554 1555 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes); 1556 if (err < 0) 1557 return err; 1558 1559 idx += err; 1560 } 1561 1562 t->length = copy; 1563 t->offset = offset; 1564 } else { 1565 nbytes -= min(dst->length, nbytes); 1566 idx++; 1567 } 1568 1569 tidx++; 1570 } 1571 1572 return tidx; 1573 } 1574 1575 static int hifn_setup_session(struct ablkcipher_request *req) 1576 { 1577 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1578 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 1579 struct hifn_device *dev = ctx->dev; 1580 unsigned long dlen, flags; 1581 unsigned int nbytes = req->nbytes, idx = 0; 1582 int err = -EINVAL, sg_num; 1583 struct scatterlist *dst; 1584 1585 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB) 1586 goto err_out_exit; 1587 1588 rctx->walk.flags = 0; 1589 1590 while (nbytes) { 1591 dst = &req->dst[idx]; 1592 dlen = min(dst->length, nbytes); 1593 1594 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || 1595 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN)) 1596 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED; 1597 1598 nbytes -= dlen; 1599 idx++; 1600 } 1601 1602 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1603 err = ablkcipher_walk_init(&rctx->walk, idx, GFP_ATOMIC); 1604 if (err < 0) 1605 return err; 1606 } 1607 1608 sg_num = ablkcipher_walk(req, &rctx->walk); 1609 if (sg_num < 0) { 1610 err = sg_num; 1611 goto err_out_exit; 1612 } 1613 1614 spin_lock_irqsave(&dev->lock, flags); 1615 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) { 1616 err = -EAGAIN; 1617 goto err_out; 1618 } 1619 1620 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req); 1621 if (err) 1622 goto err_out; 1623 1624 dev->snum++; 1625 1626 dev->active = HIFN_DEFAULT_ACTIVE_NUM; 1627 spin_unlock_irqrestore(&dev->lock, flags); 1628 1629 return 0; 1630 1631 err_out: 1632 spin_unlock_irqrestore(&dev->lock, flags); 1633 err_out_exit: 1634 if (err) { 1635 printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, " 1636 "type: %u, err: %d.\n", 1637 dev->name, rctx->iv, rctx->ivsize, 1638 ctx->key, ctx->keysize, 1639 rctx->mode, rctx->op, rctx->type, err); 1640 } 1641 1642 return err; 1643 } 1644 1645 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum) 1646 { 1647 int n, err; 1648 u8 src[16]; 1649 struct hifn_context ctx; 1650 struct hifn_request_context rctx; 1651 u8 fips_aes_ecb_from_zero[16] = { 1652 0x66, 0xE9, 0x4B, 0xD4, 1653 0xEF, 0x8A, 0x2C, 0x3B, 1654 0x88, 0x4C, 0xFA, 0x59, 1655 0xCA, 0x34, 0x2B, 0x2E}; 1656 struct scatterlist sg; 1657 1658 memset(src, 0, sizeof(src)); 1659 memset(ctx.key, 0, sizeof(ctx.key)); 1660 1661 ctx.dev = dev; 1662 ctx.keysize = 16; 1663 rctx.ivsize = 0; 1664 rctx.iv = NULL; 1665 rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT; 1666 rctx.mode = ACRYPTO_MODE_ECB; 1667 rctx.type = ACRYPTO_TYPE_AES_128; 1668 rctx.walk.cache[0].length = 0; 1669 1670 sg_init_one(&sg, &src, sizeof(src)); 1671 1672 err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL); 1673 if (err) 1674 goto err_out; 1675 1676 dev->started = 0; 1677 msleep(200); 1678 1679 dprintk("%s: decoded: ", dev->name); 1680 for (n=0; n<sizeof(src); ++n) 1681 dprintk("%02x ", src[n]); 1682 dprintk("\n"); 1683 dprintk("%s: FIPS : ", dev->name); 1684 for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n) 1685 dprintk("%02x ", fips_aes_ecb_from_zero[n]); 1686 dprintk("\n"); 1687 1688 if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) { 1689 printk(KERN_INFO "%s: AES 128 ECB test has been successfully " 1690 "passed.\n", dev->name); 1691 return 0; 1692 } 1693 1694 err_out: 1695 printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name); 1696 return -1; 1697 } 1698 1699 static int hifn_start_device(struct hifn_device *dev) 1700 { 1701 int err; 1702 1703 dev->started = dev->active = 0; 1704 hifn_reset_dma(dev, 1); 1705 1706 err = hifn_enable_crypto(dev); 1707 if (err) 1708 return err; 1709 1710 hifn_reset_puc(dev); 1711 1712 hifn_init_dma(dev); 1713 1714 hifn_init_registers(dev); 1715 1716 hifn_init_pubrng(dev); 1717 1718 return 0; 1719 } 1720 1721 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset, 1722 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp) 1723 { 1724 unsigned int srest = *srestp, nbytes = *nbytesp, copy; 1725 void *daddr; 1726 int idx = 0; 1727 1728 if (srest < size || size > nbytes) 1729 return -EINVAL; 1730 1731 while (size) { 1732 copy = min(srest, min(dst->length, size)); 1733 1734 daddr = kmap_atomic(sg_page(dst), KM_IRQ0); 1735 memcpy(daddr + dst->offset + offset, saddr, copy); 1736 kunmap_atomic(daddr, KM_IRQ0); 1737 1738 nbytes -= copy; 1739 size -= copy; 1740 srest -= copy; 1741 saddr += copy; 1742 offset = 0; 1743 1744 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n", 1745 __func__, copy, size, srest, nbytes); 1746 1747 dst++; 1748 idx++; 1749 } 1750 1751 *nbytesp = nbytes; 1752 *srestp = srest; 1753 1754 return idx; 1755 } 1756 1757 static inline void hifn_complete_sa(struct hifn_device *dev, int i) 1758 { 1759 unsigned long flags; 1760 1761 spin_lock_irqsave(&dev->lock, flags); 1762 dev->sa[i] = NULL; 1763 dev->started--; 1764 if (dev->started < 0) 1765 printk("%s: started: %d.\n", __func__, dev->started); 1766 spin_unlock_irqrestore(&dev->lock, flags); 1767 BUG_ON(dev->started < 0); 1768 } 1769 1770 static void hifn_process_ready(struct ablkcipher_request *req, int error) 1771 { 1772 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 1773 1774 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1775 unsigned int nbytes = req->nbytes; 1776 int idx = 0, err; 1777 struct scatterlist *dst, *t; 1778 void *saddr; 1779 1780 while (nbytes) { 1781 t = &rctx->walk.cache[idx]; 1782 dst = &req->dst[idx]; 1783 1784 dprintk("\n%s: sg_page(t): %p, t->length: %u, " 1785 "sg_page(dst): %p, dst->length: %u, " 1786 "nbytes: %u.\n", 1787 __func__, sg_page(t), t->length, 1788 sg_page(dst), dst->length, nbytes); 1789 1790 if (!t->length) { 1791 nbytes -= min(dst->length, nbytes); 1792 idx++; 1793 continue; 1794 } 1795 1796 saddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0); 1797 1798 err = ablkcipher_get(saddr, &t->length, t->offset, 1799 dst, nbytes, &nbytes); 1800 if (err < 0) { 1801 kunmap_atomic(saddr, KM_SOFTIRQ0); 1802 break; 1803 } 1804 1805 idx += err; 1806 kunmap_atomic(saddr, KM_SOFTIRQ0); 1807 } 1808 1809 ablkcipher_walk_exit(&rctx->walk); 1810 } 1811 1812 req->base.complete(&req->base, error); 1813 } 1814 1815 static void hifn_clear_rings(struct hifn_device *dev, int error) 1816 { 1817 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1818 int i, u; 1819 1820 dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1821 "k: %d.%d.%d.%d.\n", 1822 dev->name, 1823 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1824 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1825 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1826 1827 i = dma->resk; u = dma->resu; 1828 while (u != 0) { 1829 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1830 break; 1831 1832 if (dev->sa[i]) { 1833 dev->success++; 1834 dev->reset = 0; 1835 hifn_process_ready(dev->sa[i], error); 1836 hifn_complete_sa(dev, i); 1837 } 1838 1839 if (++i == HIFN_D_RES_RSIZE) 1840 i = 0; 1841 u--; 1842 } 1843 dma->resk = i; dma->resu = u; 1844 1845 i = dma->srck; u = dma->srcu; 1846 while (u != 0) { 1847 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1848 break; 1849 if (++i == HIFN_D_SRC_RSIZE) 1850 i = 0; 1851 u--; 1852 } 1853 dma->srck = i; dma->srcu = u; 1854 1855 i = dma->cmdk; u = dma->cmdu; 1856 while (u != 0) { 1857 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1858 break; 1859 if (++i == HIFN_D_CMD_RSIZE) 1860 i = 0; 1861 u--; 1862 } 1863 dma->cmdk = i; dma->cmdu = u; 1864 1865 i = dma->dstk; u = dma->dstu; 1866 while (u != 0) { 1867 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1868 break; 1869 if (++i == HIFN_D_DST_RSIZE) 1870 i = 0; 1871 u--; 1872 } 1873 dma->dstk = i; dma->dstu = u; 1874 1875 dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1876 "k: %d.%d.%d.%d.\n", 1877 dev->name, 1878 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1879 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1880 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1881 } 1882 1883 static void hifn_work(struct work_struct *work) 1884 { 1885 struct delayed_work *dw = to_delayed_work(work); 1886 struct hifn_device *dev = container_of(dw, struct hifn_device, work); 1887 unsigned long flags; 1888 int reset = 0; 1889 u32 r = 0; 1890 1891 spin_lock_irqsave(&dev->lock, flags); 1892 if (dev->active == 0) { 1893 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1894 1895 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) { 1896 dev->flags &= ~HIFN_FLAG_CMD_BUSY; 1897 r |= HIFN_DMACSR_C_CTRL_DIS; 1898 } 1899 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) { 1900 dev->flags &= ~HIFN_FLAG_SRC_BUSY; 1901 r |= HIFN_DMACSR_S_CTRL_DIS; 1902 } 1903 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) { 1904 dev->flags &= ~HIFN_FLAG_DST_BUSY; 1905 r |= HIFN_DMACSR_D_CTRL_DIS; 1906 } 1907 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) { 1908 dev->flags &= ~HIFN_FLAG_RES_BUSY; 1909 r |= HIFN_DMACSR_R_CTRL_DIS; 1910 } 1911 if (r) 1912 hifn_write_1(dev, HIFN_1_DMA_CSR, r); 1913 } else 1914 dev->active--; 1915 1916 if ((dev->prev_success == dev->success) && dev->started) 1917 reset = 1; 1918 dev->prev_success = dev->success; 1919 spin_unlock_irqrestore(&dev->lock, flags); 1920 1921 if (reset) { 1922 if (++dev->reset >= 5) { 1923 int i; 1924 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1925 1926 printk("%s: r: %08x, active: %d, started: %d, " 1927 "success: %lu: qlen: %u/%u, reset: %d.\n", 1928 dev->name, r, dev->active, dev->started, 1929 dev->success, dev->queue.qlen, dev->queue.max_qlen, 1930 reset); 1931 1932 printk("%s: res: ", __func__); 1933 for (i=0; i<HIFN_D_RES_RSIZE; ++i) { 1934 printk("%x.%p ", dma->resr[i].l, dev->sa[i]); 1935 if (dev->sa[i]) { 1936 hifn_process_ready(dev->sa[i], -ENODEV); 1937 hifn_complete_sa(dev, i); 1938 } 1939 } 1940 printk("\n"); 1941 1942 hifn_reset_dma(dev, 1); 1943 hifn_stop_device(dev); 1944 hifn_start_device(dev); 1945 dev->reset = 0; 1946 } 1947 1948 tasklet_schedule(&dev->tasklet); 1949 } 1950 1951 schedule_delayed_work(&dev->work, HZ); 1952 } 1953 1954 static irqreturn_t hifn_interrupt(int irq, void *data) 1955 { 1956 struct hifn_device *dev = (struct hifn_device *)data; 1957 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1958 u32 dmacsr, restart; 1959 1960 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR); 1961 1962 dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], " 1963 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n", 1964 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi, 1965 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1966 dma->cmdu, dma->srcu, dma->dstu, dma->resu); 1967 1968 if ((dmacsr & dev->dmareg) == 0) 1969 return IRQ_NONE; 1970 1971 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg); 1972 1973 if (dmacsr & HIFN_DMACSR_ENGINE) 1974 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR)); 1975 if (dmacsr & HIFN_DMACSR_PUBDONE) 1976 hifn_write_1(dev, HIFN_1_PUB_STATUS, 1977 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE); 1978 1979 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER); 1980 if (restart) { 1981 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR); 1982 1983 printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n", 1984 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER), 1985 !!(dmacsr & HIFN_DMACSR_D_OVER), 1986 puisr, !!(puisr & HIFN_PUISR_DSTOVER)); 1987 if (!!(puisr & HIFN_PUISR_DSTOVER)) 1988 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 1989 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER | 1990 HIFN_DMACSR_D_OVER)); 1991 } 1992 1993 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT | 1994 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT); 1995 if (restart) { 1996 printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n", 1997 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT), 1998 !!(dmacsr & HIFN_DMACSR_S_ABORT), 1999 !!(dmacsr & HIFN_DMACSR_D_ABORT), 2000 !!(dmacsr & HIFN_DMACSR_R_ABORT)); 2001 hifn_reset_dma(dev, 1); 2002 hifn_init_dma(dev); 2003 hifn_init_registers(dev); 2004 } 2005 2006 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) { 2007 dprintk("%s: wait on command.\n", dev->name); 2008 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT); 2009 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 2010 } 2011 2012 tasklet_schedule(&dev->tasklet); 2013 2014 return IRQ_HANDLED; 2015 } 2016 2017 static void hifn_flush(struct hifn_device *dev) 2018 { 2019 unsigned long flags; 2020 struct crypto_async_request *async_req; 2021 struct hifn_context *ctx; 2022 struct ablkcipher_request *req; 2023 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 2024 int i; 2025 2026 for (i=0; i<HIFN_D_RES_RSIZE; ++i) { 2027 struct hifn_desc *d = &dma->resr[i]; 2028 2029 if (dev->sa[i]) { 2030 hifn_process_ready(dev->sa[i], 2031 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0); 2032 hifn_complete_sa(dev, i); 2033 } 2034 } 2035 2036 spin_lock_irqsave(&dev->lock, flags); 2037 while ((async_req = crypto_dequeue_request(&dev->queue))) { 2038 ctx = crypto_tfm_ctx(async_req->tfm); 2039 req = container_of(async_req, struct ablkcipher_request, base); 2040 spin_unlock_irqrestore(&dev->lock, flags); 2041 2042 hifn_process_ready(req, -ENODEV); 2043 2044 spin_lock_irqsave(&dev->lock, flags); 2045 } 2046 spin_unlock_irqrestore(&dev->lock, flags); 2047 } 2048 2049 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 2050 unsigned int len) 2051 { 2052 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 2053 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 2054 struct hifn_device *dev = ctx->dev; 2055 2056 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) { 2057 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 2058 return -1; 2059 } 2060 2061 if (len == HIFN_DES_KEY_LENGTH) { 2062 u32 tmp[DES_EXPKEY_WORDS]; 2063 int ret = des_ekey(tmp, key); 2064 2065 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { 2066 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; 2067 return -EINVAL; 2068 } 2069 } 2070 2071 dev->flags &= ~HIFN_FLAG_OLD_KEY; 2072 2073 memcpy(ctx->key, key, len); 2074 ctx->keysize = len; 2075 2076 return 0; 2077 } 2078 2079 static int hifn_handle_req(struct ablkcipher_request *req) 2080 { 2081 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2082 struct hifn_device *dev = ctx->dev; 2083 int err = -EAGAIN; 2084 2085 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH) 2086 err = hifn_setup_session(req); 2087 2088 if (err == -EAGAIN) { 2089 unsigned long flags; 2090 2091 spin_lock_irqsave(&dev->lock, flags); 2092 err = ablkcipher_enqueue_request(&dev->queue, req); 2093 spin_unlock_irqrestore(&dev->lock, flags); 2094 } 2095 2096 return err; 2097 } 2098 2099 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op, 2100 u8 type, u8 mode) 2101 { 2102 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2103 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 2104 unsigned ivsize; 2105 2106 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); 2107 2108 if (req->info && mode != ACRYPTO_MODE_ECB) { 2109 if (type == ACRYPTO_TYPE_AES_128) 2110 ivsize = HIFN_AES_IV_LENGTH; 2111 else if (type == ACRYPTO_TYPE_DES) 2112 ivsize = HIFN_DES_KEY_LENGTH; 2113 else if (type == ACRYPTO_TYPE_3DES) 2114 ivsize = HIFN_3DES_KEY_LENGTH; 2115 } 2116 2117 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) { 2118 if (ctx->keysize == 24) 2119 type = ACRYPTO_TYPE_AES_192; 2120 else if (ctx->keysize == 32) 2121 type = ACRYPTO_TYPE_AES_256; 2122 } 2123 2124 rctx->op = op; 2125 rctx->mode = mode; 2126 rctx->type = type; 2127 rctx->iv = req->info; 2128 rctx->ivsize = ivsize; 2129 2130 /* 2131 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2132 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2133 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2134 */ 2135 2136 return hifn_handle_req(req); 2137 } 2138 2139 static int hifn_process_queue(struct hifn_device *dev) 2140 { 2141 struct crypto_async_request *async_req, *backlog; 2142 struct hifn_context *ctx; 2143 struct ablkcipher_request *req; 2144 unsigned long flags; 2145 int err = 0; 2146 2147 while (dev->started < HIFN_QUEUE_LENGTH) { 2148 spin_lock_irqsave(&dev->lock, flags); 2149 backlog = crypto_get_backlog(&dev->queue); 2150 async_req = crypto_dequeue_request(&dev->queue); 2151 spin_unlock_irqrestore(&dev->lock, flags); 2152 2153 if (!async_req) 2154 break; 2155 2156 if (backlog) 2157 backlog->complete(backlog, -EINPROGRESS); 2158 2159 ctx = crypto_tfm_ctx(async_req->tfm); 2160 req = container_of(async_req, struct ablkcipher_request, base); 2161 2162 err = hifn_handle_req(req); 2163 if (err) 2164 break; 2165 } 2166 2167 return err; 2168 } 2169 2170 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op, 2171 u8 type, u8 mode) 2172 { 2173 int err; 2174 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2175 struct hifn_device *dev = ctx->dev; 2176 2177 err = hifn_setup_crypto_req(req, op, type, mode); 2178 if (err) 2179 return err; 2180 2181 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) 2182 hifn_process_queue(dev); 2183 2184 return -EINPROGRESS; 2185 } 2186 2187 /* 2188 * AES ecryption functions. 2189 */ 2190 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req) 2191 { 2192 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2193 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2194 } 2195 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req) 2196 { 2197 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2198 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2199 } 2200 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req) 2201 { 2202 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2203 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2204 } 2205 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req) 2206 { 2207 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2208 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2209 } 2210 2211 /* 2212 * AES decryption functions. 2213 */ 2214 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req) 2215 { 2216 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2217 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2218 } 2219 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req) 2220 { 2221 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2222 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2223 } 2224 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req) 2225 { 2226 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2227 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2228 } 2229 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req) 2230 { 2231 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2232 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2233 } 2234 2235 /* 2236 * DES ecryption functions. 2237 */ 2238 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req) 2239 { 2240 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2241 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2242 } 2243 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req) 2244 { 2245 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2246 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2247 } 2248 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req) 2249 { 2250 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2251 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2252 } 2253 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req) 2254 { 2255 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2256 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2257 } 2258 2259 /* 2260 * DES decryption functions. 2261 */ 2262 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req) 2263 { 2264 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2265 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2266 } 2267 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req) 2268 { 2269 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2270 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2271 } 2272 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req) 2273 { 2274 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2275 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2276 } 2277 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req) 2278 { 2279 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2280 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2281 } 2282 2283 /* 2284 * 3DES ecryption functions. 2285 */ 2286 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req) 2287 { 2288 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2289 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2290 } 2291 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req) 2292 { 2293 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2294 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2295 } 2296 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req) 2297 { 2298 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2299 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2300 } 2301 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req) 2302 { 2303 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2304 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2305 } 2306 2307 /* 2308 * 3DES decryption functions. 2309 */ 2310 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req) 2311 { 2312 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2313 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2314 } 2315 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req) 2316 { 2317 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2318 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2319 } 2320 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req) 2321 { 2322 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2323 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2324 } 2325 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req) 2326 { 2327 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2328 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2329 } 2330 2331 struct hifn_alg_template 2332 { 2333 char name[CRYPTO_MAX_ALG_NAME]; 2334 char drv_name[CRYPTO_MAX_ALG_NAME]; 2335 unsigned int bsize; 2336 struct ablkcipher_alg ablkcipher; 2337 }; 2338 2339 static struct hifn_alg_template hifn_alg_templates[] = { 2340 /* 2341 * 3DES ECB, CBC, CFB and OFB modes. 2342 */ 2343 { 2344 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8, 2345 .ablkcipher = { 2346 .min_keysize = HIFN_3DES_KEY_LENGTH, 2347 .max_keysize = HIFN_3DES_KEY_LENGTH, 2348 .setkey = hifn_setkey, 2349 .encrypt = hifn_encrypt_3des_cfb, 2350 .decrypt = hifn_decrypt_3des_cfb, 2351 }, 2352 }, 2353 { 2354 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8, 2355 .ablkcipher = { 2356 .min_keysize = HIFN_3DES_KEY_LENGTH, 2357 .max_keysize = HIFN_3DES_KEY_LENGTH, 2358 .setkey = hifn_setkey, 2359 .encrypt = hifn_encrypt_3des_ofb, 2360 .decrypt = hifn_decrypt_3des_ofb, 2361 }, 2362 }, 2363 { 2364 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8, 2365 .ablkcipher = { 2366 .ivsize = HIFN_IV_LENGTH, 2367 .min_keysize = HIFN_3DES_KEY_LENGTH, 2368 .max_keysize = HIFN_3DES_KEY_LENGTH, 2369 .setkey = hifn_setkey, 2370 .encrypt = hifn_encrypt_3des_cbc, 2371 .decrypt = hifn_decrypt_3des_cbc, 2372 }, 2373 }, 2374 { 2375 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8, 2376 .ablkcipher = { 2377 .min_keysize = HIFN_3DES_KEY_LENGTH, 2378 .max_keysize = HIFN_3DES_KEY_LENGTH, 2379 .setkey = hifn_setkey, 2380 .encrypt = hifn_encrypt_3des_ecb, 2381 .decrypt = hifn_decrypt_3des_ecb, 2382 }, 2383 }, 2384 2385 /* 2386 * DES ECB, CBC, CFB and OFB modes. 2387 */ 2388 { 2389 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8, 2390 .ablkcipher = { 2391 .min_keysize = HIFN_DES_KEY_LENGTH, 2392 .max_keysize = HIFN_DES_KEY_LENGTH, 2393 .setkey = hifn_setkey, 2394 .encrypt = hifn_encrypt_des_cfb, 2395 .decrypt = hifn_decrypt_des_cfb, 2396 }, 2397 }, 2398 { 2399 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8, 2400 .ablkcipher = { 2401 .min_keysize = HIFN_DES_KEY_LENGTH, 2402 .max_keysize = HIFN_DES_KEY_LENGTH, 2403 .setkey = hifn_setkey, 2404 .encrypt = hifn_encrypt_des_ofb, 2405 .decrypt = hifn_decrypt_des_ofb, 2406 }, 2407 }, 2408 { 2409 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8, 2410 .ablkcipher = { 2411 .ivsize = HIFN_IV_LENGTH, 2412 .min_keysize = HIFN_DES_KEY_LENGTH, 2413 .max_keysize = HIFN_DES_KEY_LENGTH, 2414 .setkey = hifn_setkey, 2415 .encrypt = hifn_encrypt_des_cbc, 2416 .decrypt = hifn_decrypt_des_cbc, 2417 }, 2418 }, 2419 { 2420 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8, 2421 .ablkcipher = { 2422 .min_keysize = HIFN_DES_KEY_LENGTH, 2423 .max_keysize = HIFN_DES_KEY_LENGTH, 2424 .setkey = hifn_setkey, 2425 .encrypt = hifn_encrypt_des_ecb, 2426 .decrypt = hifn_decrypt_des_ecb, 2427 }, 2428 }, 2429 2430 /* 2431 * AES ECB, CBC, CFB and OFB modes. 2432 */ 2433 { 2434 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16, 2435 .ablkcipher = { 2436 .min_keysize = AES_MIN_KEY_SIZE, 2437 .max_keysize = AES_MAX_KEY_SIZE, 2438 .setkey = hifn_setkey, 2439 .encrypt = hifn_encrypt_aes_ecb, 2440 .decrypt = hifn_decrypt_aes_ecb, 2441 }, 2442 }, 2443 { 2444 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16, 2445 .ablkcipher = { 2446 .ivsize = HIFN_AES_IV_LENGTH, 2447 .min_keysize = AES_MIN_KEY_SIZE, 2448 .max_keysize = AES_MAX_KEY_SIZE, 2449 .setkey = hifn_setkey, 2450 .encrypt = hifn_encrypt_aes_cbc, 2451 .decrypt = hifn_decrypt_aes_cbc, 2452 }, 2453 }, 2454 { 2455 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16, 2456 .ablkcipher = { 2457 .min_keysize = AES_MIN_KEY_SIZE, 2458 .max_keysize = AES_MAX_KEY_SIZE, 2459 .setkey = hifn_setkey, 2460 .encrypt = hifn_encrypt_aes_cfb, 2461 .decrypt = hifn_decrypt_aes_cfb, 2462 }, 2463 }, 2464 { 2465 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16, 2466 .ablkcipher = { 2467 .min_keysize = AES_MIN_KEY_SIZE, 2468 .max_keysize = AES_MAX_KEY_SIZE, 2469 .setkey = hifn_setkey, 2470 .encrypt = hifn_encrypt_aes_ofb, 2471 .decrypt = hifn_decrypt_aes_ofb, 2472 }, 2473 }, 2474 }; 2475 2476 static int hifn_cra_init(struct crypto_tfm *tfm) 2477 { 2478 struct crypto_alg *alg = tfm->__crt_alg; 2479 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg); 2480 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 2481 2482 ctx->dev = ha->dev; 2483 tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context); 2484 return 0; 2485 } 2486 2487 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t) 2488 { 2489 struct hifn_crypto_alg *alg; 2490 int err; 2491 2492 alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL); 2493 if (!alg) 2494 return -ENOMEM; 2495 2496 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name); 2497 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s", 2498 t->drv_name, dev->name); 2499 2500 alg->alg.cra_priority = 300; 2501 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC; 2502 alg->alg.cra_blocksize = t->bsize; 2503 alg->alg.cra_ctxsize = sizeof(struct hifn_context); 2504 alg->alg.cra_alignmask = 0; 2505 alg->alg.cra_type = &crypto_ablkcipher_type; 2506 alg->alg.cra_module = THIS_MODULE; 2507 alg->alg.cra_u.ablkcipher = t->ablkcipher; 2508 alg->alg.cra_init = hifn_cra_init; 2509 2510 alg->dev = dev; 2511 2512 list_add_tail(&alg->entry, &dev->alg_list); 2513 2514 err = crypto_register_alg(&alg->alg); 2515 if (err) { 2516 list_del(&alg->entry); 2517 kfree(alg); 2518 } 2519 2520 return err; 2521 } 2522 2523 static void hifn_unregister_alg(struct hifn_device *dev) 2524 { 2525 struct hifn_crypto_alg *a, *n; 2526 2527 list_for_each_entry_safe(a, n, &dev->alg_list, entry) { 2528 list_del(&a->entry); 2529 crypto_unregister_alg(&a->alg); 2530 kfree(a); 2531 } 2532 } 2533 2534 static int hifn_register_alg(struct hifn_device *dev) 2535 { 2536 int i, err; 2537 2538 for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) { 2539 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]); 2540 if (err) 2541 goto err_out_exit; 2542 } 2543 2544 return 0; 2545 2546 err_out_exit: 2547 hifn_unregister_alg(dev); 2548 return err; 2549 } 2550 2551 static void hifn_tasklet_callback(unsigned long data) 2552 { 2553 struct hifn_device *dev = (struct hifn_device *)data; 2554 2555 /* 2556 * This is ok to call this without lock being held, 2557 * althogh it modifies some parameters used in parallel, 2558 * (like dev->success), but they are used in process 2559 * context or update is atomic (like setting dev->sa[i] to NULL). 2560 */ 2561 hifn_clear_rings(dev, 0); 2562 2563 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) 2564 hifn_process_queue(dev); 2565 } 2566 2567 static int __devinit hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2568 { 2569 int err, i; 2570 struct hifn_device *dev; 2571 char name[8]; 2572 2573 err = pci_enable_device(pdev); 2574 if (err) 2575 return err; 2576 pci_set_master(pdev); 2577 2578 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2579 if (err) 2580 goto err_out_disable_pci_device; 2581 2582 snprintf(name, sizeof(name), "hifn%d", 2583 atomic_inc_return(&hifn_dev_number)-1); 2584 2585 err = pci_request_regions(pdev, name); 2586 if (err) 2587 goto err_out_disable_pci_device; 2588 2589 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE || 2590 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE || 2591 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) { 2592 dprintk("%s: Broken hardware - I/O regions are too small.\n", 2593 pci_name(pdev)); 2594 err = -ENODEV; 2595 goto err_out_free_regions; 2596 } 2597 2598 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg), 2599 GFP_KERNEL); 2600 if (!dev) { 2601 err = -ENOMEM; 2602 goto err_out_free_regions; 2603 } 2604 2605 INIT_LIST_HEAD(&dev->alg_list); 2606 2607 snprintf(dev->name, sizeof(dev->name), "%s", name); 2608 spin_lock_init(&dev->lock); 2609 2610 for (i=0; i<3; ++i) { 2611 unsigned long addr, size; 2612 2613 addr = pci_resource_start(pdev, i); 2614 size = pci_resource_len(pdev, i); 2615 2616 dev->bar[i] = ioremap_nocache(addr, size); 2617 if (!dev->bar[i]) 2618 goto err_out_unmap_bars; 2619 } 2620 2621 dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma), 2622 &dev->desc_dma); 2623 if (!dev->desc_virt) { 2624 dprintk("Failed to allocate descriptor rings.\n"); 2625 goto err_out_unmap_bars; 2626 } 2627 memset(dev->desc_virt, 0, sizeof(struct hifn_dma)); 2628 2629 dev->pdev = pdev; 2630 dev->irq = pdev->irq; 2631 2632 for (i=0; i<HIFN_D_RES_RSIZE; ++i) 2633 dev->sa[i] = NULL; 2634 2635 pci_set_drvdata(pdev, dev); 2636 2637 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev); 2638 2639 crypto_init_queue(&dev->queue, 1); 2640 2641 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev); 2642 if (err) { 2643 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err); 2644 dev->irq = 0; 2645 goto err_out_free_desc; 2646 } 2647 2648 err = hifn_start_device(dev); 2649 if (err) 2650 goto err_out_free_irq; 2651 2652 err = hifn_test(dev, 1, 0); 2653 if (err) 2654 goto err_out_stop_device; 2655 2656 err = hifn_register_rng(dev); 2657 if (err) 2658 goto err_out_stop_device; 2659 2660 err = hifn_register_alg(dev); 2661 if (err) 2662 goto err_out_unregister_rng; 2663 2664 INIT_DELAYED_WORK(&dev->work, hifn_work); 2665 schedule_delayed_work(&dev->work, HZ); 2666 2667 dprintk("HIFN crypto accelerator card at %s has been " 2668 "successfully registered as %s.\n", 2669 pci_name(pdev), dev->name); 2670 2671 return 0; 2672 2673 err_out_unregister_rng: 2674 hifn_unregister_rng(dev); 2675 err_out_stop_device: 2676 hifn_reset_dma(dev, 1); 2677 hifn_stop_device(dev); 2678 err_out_free_irq: 2679 free_irq(dev->irq, dev->name); 2680 tasklet_kill(&dev->tasklet); 2681 err_out_free_desc: 2682 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2683 dev->desc_virt, dev->desc_dma); 2684 2685 err_out_unmap_bars: 2686 for (i=0; i<3; ++i) 2687 if (dev->bar[i]) 2688 iounmap(dev->bar[i]); 2689 2690 err_out_free_regions: 2691 pci_release_regions(pdev); 2692 2693 err_out_disable_pci_device: 2694 pci_disable_device(pdev); 2695 2696 return err; 2697 } 2698 2699 static void __devexit hifn_remove(struct pci_dev *pdev) 2700 { 2701 int i; 2702 struct hifn_device *dev; 2703 2704 dev = pci_get_drvdata(pdev); 2705 2706 if (dev) { 2707 cancel_delayed_work(&dev->work); 2708 flush_scheduled_work(); 2709 2710 hifn_unregister_rng(dev); 2711 hifn_unregister_alg(dev); 2712 hifn_reset_dma(dev, 1); 2713 hifn_stop_device(dev); 2714 2715 free_irq(dev->irq, dev->name); 2716 tasklet_kill(&dev->tasklet); 2717 2718 hifn_flush(dev); 2719 2720 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2721 dev->desc_virt, dev->desc_dma); 2722 for (i=0; i<3; ++i) 2723 if (dev->bar[i]) 2724 iounmap(dev->bar[i]); 2725 2726 kfree(dev); 2727 } 2728 2729 pci_release_regions(pdev); 2730 pci_disable_device(pdev); 2731 } 2732 2733 static struct pci_device_id hifn_pci_tbl[] = { 2734 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) }, 2735 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) }, 2736 { 0 } 2737 }; 2738 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl); 2739 2740 static struct pci_driver hifn_pci_driver = { 2741 .name = "hifn795x", 2742 .id_table = hifn_pci_tbl, 2743 .probe = hifn_probe, 2744 .remove = __devexit_p(hifn_remove), 2745 }; 2746 2747 static int __init hifn_init(void) 2748 { 2749 unsigned int freq; 2750 int err; 2751 2752 if (sizeof(dma_addr_t) > 4) { 2753 printk(KERN_INFO "HIFN supports only 32-bit addresses.\n"); 2754 return -EINVAL; 2755 } 2756 2757 if (strncmp(hifn_pll_ref, "ext", 3) && 2758 strncmp(hifn_pll_ref, "pci", 3)) { 2759 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, " 2760 "must be pci or ext"); 2761 return -EINVAL; 2762 } 2763 2764 /* 2765 * For the 7955/7956 the reference clock frequency must be in the 2766 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz, 2767 * but this chip is currently not supported. 2768 */ 2769 if (hifn_pll_ref[3] != '\0') { 2770 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); 2771 if (freq < 20 || freq > 100) { 2772 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref " 2773 "frequency, must be in the range " 2774 "of 20-100"); 2775 return -EINVAL; 2776 } 2777 } 2778 2779 err = pci_register_driver(&hifn_pci_driver); 2780 if (err < 0) { 2781 dprintk("Failed to register PCI driver for %s device.\n", 2782 hifn_pci_driver.name); 2783 return -ENODEV; 2784 } 2785 2786 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip " 2787 "has been successfully registered.\n"); 2788 2789 return 0; 2790 } 2791 2792 static void __exit hifn_fini(void) 2793 { 2794 pci_unregister_driver(&hifn_pci_driver); 2795 2796 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip " 2797 "has been successfully unregistered.\n"); 2798 } 2799 2800 module_init(hifn_init); 2801 module_exit(hifn_fini); 2802 2803 MODULE_LICENSE("GPL"); 2804 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>"); 2805 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip."); 2806