xref: /openbmc/linux/drivers/crypto/hifn_795x.c (revision 6ee73861)
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/crypto.h>
33 #include <linux/hw_random.h>
34 #include <linux/ktime.h>
35 
36 #include <crypto/algapi.h>
37 #include <crypto/des.h>
38 
39 #include <asm/kmap_types.h>
40 
41 //#define HIFN_DEBUG
42 
43 #ifdef HIFN_DEBUG
44 #define dprintk(f, a...) 	printk(f, ##a)
45 #else
46 #define dprintk(f, a...)	do {} while (0)
47 #endif
48 
49 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
50 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
51 MODULE_PARM_DESC(hifn_pll_ref,
52 		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
53 
54 static atomic_t hifn_dev_number;
55 
56 #define ACRYPTO_OP_DECRYPT	0
57 #define ACRYPTO_OP_ENCRYPT	1
58 #define ACRYPTO_OP_HMAC		2
59 #define ACRYPTO_OP_RNG		3
60 
61 #define ACRYPTO_MODE_ECB		0
62 #define ACRYPTO_MODE_CBC		1
63 #define ACRYPTO_MODE_CFB		2
64 #define ACRYPTO_MODE_OFB		3
65 
66 #define ACRYPTO_TYPE_AES_128	0
67 #define ACRYPTO_TYPE_AES_192	1
68 #define ACRYPTO_TYPE_AES_256	2
69 #define ACRYPTO_TYPE_3DES	3
70 #define ACRYPTO_TYPE_DES	4
71 
72 #define PCI_VENDOR_ID_HIFN		0x13A3
73 #define PCI_DEVICE_ID_HIFN_7955		0x0020
74 #define	PCI_DEVICE_ID_HIFN_7956		0x001d
75 
76 /* I/O region sizes */
77 
78 #define HIFN_BAR0_SIZE			0x1000
79 #define HIFN_BAR1_SIZE			0x2000
80 #define HIFN_BAR2_SIZE			0x8000
81 
82 /* DMA registres */
83 
84 #define HIFN_DMA_CRA 			0x0C	/* DMA Command Ring Address */
85 #define HIFN_DMA_SDRA 			0x1C	/* DMA Source Data Ring Address */
86 #define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
87 #define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
88 #define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
89 #define HIFN_DMA_INTREN 		0x44	/* DMA Interrupt Enable */
90 #define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
91 #define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
92 #define HIFN_CHIP_ID			0x98	/* Chip ID */
93 
94 /*
95  * Processing Unit Registers (offset from BASEREG0)
96  */
97 #define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
98 #define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
99 #define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
100 #define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
101 #define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
102 #define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
103 #define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
104 #define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
105 #define	HIFN_0_SPACESIZE	0x20	/* Register space size */
106 
107 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
108 #define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
109 #define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
110 #define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
111 #define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
112 #define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
113 
114 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
115 #define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
116 #define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
117 #define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
118 #define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
119 #define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
120 #define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
121 #define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
122 #define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
123 #define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
124 #define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
125 
126 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
127 #define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
128 #define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
129 #define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
130 #define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
131 #define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
132 #define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
133 #define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
134 #define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
135 #define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
136 #define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
137 #define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
138 #define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
139 #define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
140 #define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
141 #define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
142 #define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
143 #define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
144 #define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
145 #define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
146 #define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
147 #define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
148 #define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
149 #define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
150 
151 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
152 #define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
153 #define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
154 #define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
155 #define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
156 #define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
157 #define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
158 #define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
159 #define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
160 #define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
161 #define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
162 
163 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
164 #define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
165 #define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
166 #define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
167 #define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
168 #define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
169 #define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
170 #define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
171 #define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
172 #define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
173 #define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
174 #define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
175 #define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
176 #define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
177 #define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
178 #define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
179 #define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
180 #define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
181 
182 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
183 #define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
184 #define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
185 
186 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
187 #define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
188 
189 /*
190  * DMA Interface Registers (offset from BASEREG1)
191  */
192 #define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
193 #define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
194 #define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
195 #define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
196 #define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
197 #define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
198 #define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
199 #define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
200 #define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
201 #define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
202 #define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
203 #define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
204 #define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
205 #define	HIFN_1_REVID		0x98	/* Revision ID */
206 #define	HIFN_1_UNLOCK_SECRET1	0xf4
207 #define	HIFN_1_UNLOCK_SECRET2	0xfc
208 #define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
209 #define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
210 #define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
211 #define	HIFN_1_PUB_OP		0x308	/* Public Operand */
212 #define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
213 #define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
214 #define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
215 #define	HIFN_1_RNG_DATA		0x318	/* RNG data */
216 #define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
217 #define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
218 
219 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
220 #define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
221 #define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
222 #define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
223 #define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
224 #define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
225 #define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
226 #define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
227 #define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
228 #define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
229 #define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
230 #define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
231 #define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
232 #define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
233 #define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
234 #define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
235 #define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
236 #define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
237 #define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
238 #define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
239 #define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
240 #define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
241 #define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
242 #define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
243 #define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
244 #define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
245 #define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
246 #define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
247 #define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
248 #define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
249 #define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
250 #define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
251 #define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
252 #define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
253 #define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
254 #define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
255 #define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
256 #define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
257 #define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
258 
259 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
260 #define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
261 #define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
262 #define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
263 #define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
264 #define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
265 #define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
266 #define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
267 #define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
268 #define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
269 #define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
270 #define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
271 #define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
272 #define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
273 #define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
274 #define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
275 #define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
276 #define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
277 #define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
278 #define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
279 #define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
280 #define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
281 #define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
282 
283 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
284 #define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
285 #define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
286 #define	HIFN_DMACNFG_UNLOCK	0x00000800
287 #define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
288 #define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
289 #define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
290 #define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
291 #define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
292 
293 /* PLL configuration register */
294 #define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
295 #define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
296 #define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
297 #define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
298 #define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
299 #define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
300 #define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
301 #define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
302 #define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
303 #define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
304 #define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
305 #define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
306 #define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
307 #define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
308 #define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
309 #define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
310 #define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
311 
312 #define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
313 
314 /* Public key reset register (HIFN_1_PUB_RESET) */
315 #define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
316 
317 /* Public base address register (HIFN_1_PUB_BASE) */
318 #define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
319 
320 /* Public operand length register (HIFN_1_PUB_OPLEN) */
321 #define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
322 #define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
323 #define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
324 #define	HIFN_PUBOPLEN_EXP_S	7		/* exponent lenght shift */
325 #define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
326 #define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
327 
328 /* Public operation register (HIFN_1_PUB_OP) */
329 #define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
330 #define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
331 #define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
332 #define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
333 #define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
334 #define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
335 #define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
336 #define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
337 #define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
338 #define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
339 #define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
340 #define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
341 #define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
342 #define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
343 #define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
344 #define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
345 #define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
346 #define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
347 #define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
348 #define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
349 
350 /* Public status register (HIFN_1_PUB_STATUS) */
351 #define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
352 #define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
353 
354 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
355 #define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
356 
357 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
358 #define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
359 
360 #define HIFN_NAMESIZE			32
361 #define HIFN_MAX_RESULT_ORDER		5
362 
363 #define	HIFN_D_CMD_RSIZE		24*1
364 #define	HIFN_D_SRC_RSIZE		80*1
365 #define	HIFN_D_DST_RSIZE		80*1
366 #define	HIFN_D_RES_RSIZE		24*1
367 
368 #define HIFN_D_DST_DALIGN		4
369 
370 #define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
371 
372 #define AES_MIN_KEY_SIZE		16
373 #define AES_MAX_KEY_SIZE		32
374 
375 #define HIFN_DES_KEY_LENGTH		8
376 #define HIFN_3DES_KEY_LENGTH		24
377 #define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
378 #define HIFN_IV_LENGTH			8
379 #define HIFN_AES_IV_LENGTH		16
380 #define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
381 
382 #define HIFN_MAC_KEY_LENGTH		64
383 #define HIFN_MD5_LENGTH			16
384 #define HIFN_SHA1_LENGTH		20
385 #define HIFN_MAC_TRUNC_LENGTH		12
386 
387 #define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
388 #define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
389 #define HIFN_USED_RESULT		12
390 
391 struct hifn_desc
392 {
393 	volatile __le32		l;
394 	volatile __le32		p;
395 };
396 
397 struct hifn_dma {
398 	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE+1];
399 	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE+1];
400 	struct hifn_desc	dstr[HIFN_D_DST_RSIZE+1];
401 	struct hifn_desc	resr[HIFN_D_RES_RSIZE+1];
402 
403 	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
404 	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
405 
406 	/*
407 	 *  Our current positions for insertion and removal from the descriptor
408 	 *  rings.
409 	 */
410 	volatile int		cmdi, srci, dsti, resi;
411 	volatile int		cmdu, srcu, dstu, resu;
412 	int			cmdk, srck, dstk, resk;
413 };
414 
415 #define HIFN_FLAG_CMD_BUSY	(1<<0)
416 #define HIFN_FLAG_SRC_BUSY	(1<<1)
417 #define HIFN_FLAG_DST_BUSY	(1<<2)
418 #define HIFN_FLAG_RES_BUSY	(1<<3)
419 #define HIFN_FLAG_OLD_KEY	(1<<4)
420 
421 #define HIFN_DEFAULT_ACTIVE_NUM	5
422 
423 struct hifn_device
424 {
425 	char			name[HIFN_NAMESIZE];
426 
427 	int			irq;
428 
429 	struct pci_dev		*pdev;
430 	void __iomem		*bar[3];
431 
432 	void			*desc_virt;
433 	dma_addr_t		desc_dma;
434 
435 	u32			dmareg;
436 
437 	void 			*sa[HIFN_D_RES_RSIZE];
438 
439 	spinlock_t		lock;
440 
441 	u32			flags;
442 	int			active, started;
443 	struct delayed_work	work;
444 	unsigned long		reset;
445 	unsigned long		success;
446 	unsigned long		prev_success;
447 
448 	u8			snum;
449 
450 	struct tasklet_struct	tasklet;
451 
452 	struct crypto_queue 	queue;
453 	struct list_head	alg_list;
454 
455 	unsigned int		pk_clk_freq;
456 
457 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
458 	unsigned int		rng_wait_time;
459 	ktime_t			rngtime;
460 	struct hwrng		rng;
461 #endif
462 };
463 
464 #define	HIFN_D_LENGTH			0x0000ffff
465 #define	HIFN_D_NOINVALID		0x01000000
466 #define	HIFN_D_MASKDONEIRQ		0x02000000
467 #define	HIFN_D_DESTOVER			0x04000000
468 #define	HIFN_D_OVER			0x08000000
469 #define	HIFN_D_LAST			0x20000000
470 #define	HIFN_D_JUMP			0x40000000
471 #define	HIFN_D_VALID			0x80000000
472 
473 struct hifn_base_command
474 {
475 	volatile __le16		masks;
476 	volatile __le16		session_num;
477 	volatile __le16		total_source_count;
478 	volatile __le16		total_dest_count;
479 };
480 
481 #define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
482 #define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
483 #define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
484 #define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
485 #define	HIFN_BASE_CMD_DECODE		0x2000
486 #define	HIFN_BASE_CMD_SRCLEN_M		0xc000
487 #define	HIFN_BASE_CMD_SRCLEN_S		14
488 #define	HIFN_BASE_CMD_DSTLEN_M		0x3000
489 #define	HIFN_BASE_CMD_DSTLEN_S		12
490 #define	HIFN_BASE_CMD_LENMASK_HI	0x30000
491 #define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
492 
493 /*
494  * Structure to help build up the command data structure.
495  */
496 struct hifn_crypt_command
497 {
498 	volatile __le16 		masks;
499 	volatile __le16 		header_skip;
500 	volatile __le16 		source_count;
501 	volatile __le16 		reserved;
502 };
503 
504 #define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
505 #define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
506 #define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
507 #define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
508 #define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
509 #define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
510 #define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
511 #define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
512 #define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
513 #define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
514 #define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
515 #define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
516 #define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
517 #define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
518 #define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
519 #define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
520 #define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
521 #define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
522 #define	HIFN_CRYPT_CMD_SRCLEN_S		14
523 
524 /*
525  * Structure to help build up the command data structure.
526  */
527 struct hifn_mac_command
528 {
529 	volatile __le16 	masks;
530 	volatile __le16 	header_skip;
531 	volatile __le16 	source_count;
532 	volatile __le16 	reserved;
533 };
534 
535 #define	HIFN_MAC_CMD_ALG_MASK		0x0001
536 #define	HIFN_MAC_CMD_ALG_SHA1		0x0000
537 #define	HIFN_MAC_CMD_ALG_MD5		0x0001
538 #define	HIFN_MAC_CMD_MODE_MASK		0x000c
539 #define	HIFN_MAC_CMD_MODE_HMAC		0x0000
540 #define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
541 #define	HIFN_MAC_CMD_MODE_HASH		0x0008
542 #define	HIFN_MAC_CMD_MODE_FULL		0x0004
543 #define	HIFN_MAC_CMD_TRUNC		0x0010
544 #define	HIFN_MAC_CMD_RESULT		0x0020
545 #define	HIFN_MAC_CMD_APPEND		0x0040
546 #define	HIFN_MAC_CMD_SRCLEN_M		0xc000
547 #define	HIFN_MAC_CMD_SRCLEN_S		14
548 
549 /*
550  * MAC POS IPsec initiates authentication after encryption on encodes
551  * and before decryption on decodes.
552  */
553 #define	HIFN_MAC_CMD_POS_IPSEC		0x0200
554 #define	HIFN_MAC_CMD_NEW_KEY		0x0800
555 
556 struct hifn_comp_command
557 {
558 	volatile __le16 	masks;
559 	volatile __le16 	header_skip;
560 	volatile __le16 	source_count;
561 	volatile __le16 	reserved;
562 };
563 
564 #define	HIFN_COMP_CMD_SRCLEN_M		0xc000
565 #define	HIFN_COMP_CMD_SRCLEN_S		14
566 #define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
567 #define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
568 #define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
569 #define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
570 #define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
571 #define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
572 #define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
573 #define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
574 
575 struct hifn_base_result
576 {
577 	volatile __le16 	flags;
578 	volatile __le16 	session;
579 	volatile __le16 	src_cnt;		/* 15:0 of source count */
580 	volatile __le16 	dst_cnt;		/* 15:0 of dest count */
581 };
582 
583 #define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
584 #define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
585 #define	HIFN_BASE_RES_SRCLEN_S		14
586 #define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
587 #define	HIFN_BASE_RES_DSTLEN_S		12
588 
589 struct hifn_comp_result
590 {
591 	volatile __le16		flags;
592 	volatile __le16		crc;
593 };
594 
595 #define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
596 #define	HIFN_COMP_RES_LCB_S		8
597 #define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
598 #define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
599 #define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
600 
601 struct hifn_mac_result
602 {
603 	volatile __le16 	flags;
604 	volatile __le16 	reserved;
605 	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
606 };
607 
608 #define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
609 #define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
610 
611 struct hifn_crypt_result
612 {
613 	volatile __le16		flags;
614 	volatile __le16		reserved;
615 };
616 
617 #define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
618 
619 #ifndef HIFN_POLL_FREQUENCY
620 #define	HIFN_POLL_FREQUENCY	0x1
621 #endif
622 
623 #ifndef HIFN_POLL_SCALAR
624 #define	HIFN_POLL_SCALAR	0x0
625 #endif
626 
627 #define	HIFN_MAX_SEGLEN 	0xffff		/* maximum dma segment len */
628 #define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
629 
630 struct hifn_crypto_alg
631 {
632 	struct list_head	entry;
633 	struct crypto_alg	alg;
634 	struct hifn_device	*dev;
635 };
636 
637 #define ASYNC_SCATTERLIST_CACHE	16
638 
639 #define ASYNC_FLAGS_MISALIGNED	(1<<0)
640 
641 struct ablkcipher_walk
642 {
643 	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
644 	u32			flags;
645 	int			num;
646 };
647 
648 struct hifn_context
649 {
650 	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
651 	struct hifn_device	*dev;
652 	unsigned int		keysize;
653 };
654 
655 struct hifn_request_context
656 {
657 	u8			*iv;
658 	unsigned int		ivsize;
659 	u8			op, type, mode, unused;
660 	struct ablkcipher_walk	walk;
661 };
662 
663 #define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
664 
665 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
666 {
667 	u32 ret;
668 
669 	ret = readl(dev->bar[0] + reg);
670 
671 	return ret;
672 }
673 
674 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
675 {
676 	u32 ret;
677 
678 	ret = readl(dev->bar[1] + reg);
679 
680 	return ret;
681 }
682 
683 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
684 {
685 	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
686 }
687 
688 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
689 {
690 	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
691 }
692 
693 static void hifn_wait_puc(struct hifn_device *dev)
694 {
695 	int i;
696 	u32 ret;
697 
698 	for (i=10000; i > 0; --i) {
699 		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
700 		if (!(ret & HIFN_PUCTRL_RESET))
701 			break;
702 
703 		udelay(1);
704 	}
705 
706 	if (!i)
707 		dprintk("%s: Failed to reset PUC unit.\n", dev->name);
708 }
709 
710 static void hifn_reset_puc(struct hifn_device *dev)
711 {
712 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
713 	hifn_wait_puc(dev);
714 }
715 
716 static void hifn_stop_device(struct hifn_device *dev)
717 {
718 	hifn_write_1(dev, HIFN_1_DMA_CSR,
719 		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
720 		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
721 	hifn_write_0(dev, HIFN_0_PUIER, 0);
722 	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
723 }
724 
725 static void hifn_reset_dma(struct hifn_device *dev, int full)
726 {
727 	hifn_stop_device(dev);
728 
729 	/*
730 	 * Setting poll frequency and others to 0.
731 	 */
732 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
733 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
734 	mdelay(1);
735 
736 	/*
737 	 * Reset DMA.
738 	 */
739 	if (full) {
740 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
741 		mdelay(1);
742 	} else {
743 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
744 				HIFN_DMACNFG_MSTRESET);
745 		hifn_reset_puc(dev);
746 	}
747 
748 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
749 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
750 
751 	hifn_reset_puc(dev);
752 }
753 
754 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
755 {
756 	int i;
757 	u32 v;
758 
759 	for (i = 0; i < cnt; i++) {
760 
761 		/* get the parity */
762 		v = a & 0x80080125;
763 		v ^= v >> 16;
764 		v ^= v >> 8;
765 		v ^= v >> 4;
766 		v ^= v >> 2;
767 		v ^= v >> 1;
768 
769 		a = (v & 1) ^ (a << 1);
770 	}
771 
772 	return a;
773 }
774 
775 static struct pci2id {
776 	u_short		pci_vendor;
777 	u_short		pci_prod;
778 	char		card_id[13];
779 } pci2id[] = {
780 	{
781 		PCI_VENDOR_ID_HIFN,
782 		PCI_DEVICE_ID_HIFN_7955,
783 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
784 		  0x00, 0x00, 0x00, 0x00, 0x00 }
785 	},
786 	{
787 		PCI_VENDOR_ID_HIFN,
788 		PCI_DEVICE_ID_HIFN_7956,
789 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
790 		  0x00, 0x00, 0x00, 0x00, 0x00 }
791 	}
792 };
793 
794 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
795 static int hifn_rng_data_present(struct hwrng *rng, int wait)
796 {
797 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
798 	s64 nsec;
799 
800 	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
801 	nsec -= dev->rng_wait_time;
802 	if (nsec <= 0)
803 		return 1;
804 	if (!wait)
805 		return 0;
806 	ndelay(nsec);
807 	return 1;
808 }
809 
810 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
811 {
812 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
813 
814 	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
815 	dev->rngtime = ktime_get();
816 	return 4;
817 }
818 
819 static int hifn_register_rng(struct hifn_device *dev)
820 {
821 	/*
822 	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
823 	 */
824 	dev->rng_wait_time	= DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
825 				  256;
826 
827 	dev->rng.name		= dev->name;
828 	dev->rng.data_present	= hifn_rng_data_present,
829 	dev->rng.data_read	= hifn_rng_data_read,
830 	dev->rng.priv		= (unsigned long)dev;
831 
832 	return hwrng_register(&dev->rng);
833 }
834 
835 static void hifn_unregister_rng(struct hifn_device *dev)
836 {
837 	hwrng_unregister(&dev->rng);
838 }
839 #else
840 #define hifn_register_rng(dev)		0
841 #define hifn_unregister_rng(dev)
842 #endif
843 
844 static int hifn_init_pubrng(struct hifn_device *dev)
845 {
846 	int i;
847 
848 	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
849 			HIFN_PUBRST_RESET);
850 
851 	for (i=100; i > 0; --i) {
852 		mdelay(1);
853 
854 		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
855 			break;
856 	}
857 
858 	if (!i)
859 		dprintk("Chip %s: Failed to initialise public key engine.\n",
860 				dev->name);
861 	else {
862 		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
863 		dev->dmareg |= HIFN_DMAIER_PUBDONE;
864 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
865 
866 		dprintk("Chip %s: Public key engine has been sucessfully "
867 				"initialised.\n", dev->name);
868 	}
869 
870 	/*
871 	 * Enable RNG engine.
872 	 */
873 
874 	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
875 			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
876 	dprintk("Chip %s: RNG engine has been successfully initialised.\n",
877 			dev->name);
878 
879 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
880 	/* First value must be discarded */
881 	hifn_read_1(dev, HIFN_1_RNG_DATA);
882 	dev->rngtime = ktime_get();
883 #endif
884 	return 0;
885 }
886 
887 static int hifn_enable_crypto(struct hifn_device *dev)
888 {
889 	u32 dmacfg, addr;
890 	char *offtbl = NULL;
891 	int i;
892 
893 	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
894 		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
895 				pci2id[i].pci_prod == dev->pdev->device) {
896 			offtbl = pci2id[i].card_id;
897 			break;
898 		}
899 	}
900 
901 	if (offtbl == NULL) {
902 		dprintk("Chip %s: Unknown card!\n", dev->name);
903 		return -ENODEV;
904 	}
905 
906 	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
907 
908 	hifn_write_1(dev, HIFN_1_DMA_CNFG,
909 			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
910 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
911 	mdelay(1);
912 	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
913 	mdelay(1);
914 	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
915 	mdelay(1);
916 
917 	for (i=0; i<12; ++i) {
918 		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
919 		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
920 
921 		mdelay(1);
922 	}
923 	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
924 
925 	dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
926 
927 	return 0;
928 }
929 
930 static void hifn_init_dma(struct hifn_device *dev)
931 {
932 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
933 	u32 dptr = dev->desc_dma;
934 	int i;
935 
936 	for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
937 		dma->cmdr[i].p = __cpu_to_le32(dptr +
938 				offsetof(struct hifn_dma, command_bufs[i][0]));
939 	for (i=0; i<HIFN_D_RES_RSIZE; ++i)
940 		dma->resr[i].p = __cpu_to_le32(dptr +
941 				offsetof(struct hifn_dma, result_bufs[i][0]));
942 
943 	/*
944 	 * Setup LAST descriptors.
945 	 */
946 	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
947 			offsetof(struct hifn_dma, cmdr[0]));
948 	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
949 			offsetof(struct hifn_dma, srcr[0]));
950 	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
951 			offsetof(struct hifn_dma, dstr[0]));
952 	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
953 			offsetof(struct hifn_dma, resr[0]));
954 
955 	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
956 	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
957 	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
958 }
959 
960 /*
961  * Initialize the PLL. We need to know the frequency of the reference clock
962  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
963  * allows us to operate without the risk of overclocking the chip. If it
964  * actually uses 33MHz, the chip will operate at half the speed, this can be
965  * overriden by specifying the frequency as module parameter (pci33).
966  *
967  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
968  * stable clock and the PCI clock frequency may vary, so the default is the
969  * external clock. There is no way to find out its frequency, we default to
970  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
971  * has an external crystal populated at 66MHz.
972  */
973 static void hifn_init_pll(struct hifn_device *dev)
974 {
975 	unsigned int freq, m;
976 	u32 pllcfg;
977 
978 	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
979 
980 	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
981 		pllcfg |= HIFN_PLL_REF_CLK_PLL;
982 	else
983 		pllcfg |= HIFN_PLL_REF_CLK_HBI;
984 
985 	if (hifn_pll_ref[3] != '\0')
986 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
987 	else {
988 		freq = 66;
989 		printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
990 				 "override with hifn_pll_ref=%.3s<frequency>\n",
991 		       freq, hifn_pll_ref);
992 	}
993 
994 	m = HIFN_PLL_FCK_MAX / freq;
995 
996 	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
997 	if (m <= 8)
998 		pllcfg |= HIFN_PLL_IS_1_8;
999 	else
1000 		pllcfg |= HIFN_PLL_IS_9_12;
1001 
1002 	/* Select clock source and enable clock bypass */
1003 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1004 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1005 
1006 	/* Let the chip lock to the input clock */
1007 	mdelay(10);
1008 
1009 	/* Disable clock bypass */
1010 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1011 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1012 
1013 	/* Switch the engines to the PLL */
1014 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1015 		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1016 
1017 	/*
1018 	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
1019 	 * calculate the minimum time between two reads of the rng. Since 33MHz
1020 	 * is actually 33.333... we overestimate the frequency here, resulting
1021 	 * in slightly larger intervals.
1022 	 */
1023 	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1024 }
1025 
1026 static void hifn_init_registers(struct hifn_device *dev)
1027 {
1028 	u32 dptr = dev->desc_dma;
1029 
1030 	/* Initialization magic... */
1031 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1032 	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1033 	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1034 
1035 	/* write all 4 ring address registers */
1036 	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1037 				offsetof(struct hifn_dma, cmdr[0]));
1038 	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1039 				offsetof(struct hifn_dma, srcr[0]));
1040 	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1041 				offsetof(struct hifn_dma, dstr[0]));
1042 	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1043 				offsetof(struct hifn_dma, resr[0]));
1044 
1045 	mdelay(2);
1046 #if 0
1047 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1048 	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1049 	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1050 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1051 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1052 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1053 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1054 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1055 	    HIFN_DMACSR_S_WAIT |
1056 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1057 	    HIFN_DMACSR_C_WAIT |
1058 	    HIFN_DMACSR_ENGINE |
1059 	    HIFN_DMACSR_PUBDONE);
1060 #else
1061 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1062 	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1063 	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1064 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1065 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1066 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1067 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1068 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1069 	    HIFN_DMACSR_S_WAIT |
1070 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1071 	    HIFN_DMACSR_C_WAIT |
1072 	    HIFN_DMACSR_ENGINE |
1073 	    HIFN_DMACSR_PUBDONE);
1074 #endif
1075 	hifn_read_1(dev, HIFN_1_DMA_CSR);
1076 
1077 	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1078 	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1079 	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1080 	    HIFN_DMAIER_ENGINE;
1081 	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1082 
1083 	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1084 	hifn_read_1(dev, HIFN_1_DMA_IER);
1085 #if 0
1086 	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1087 		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1088 		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1089 		    HIFN_PUCNFG_DRAM);
1090 #else
1091 	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1092 #endif
1093 	hifn_init_pll(dev);
1094 
1095 	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1096 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1097 	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1098 	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1099 	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1100 }
1101 
1102 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1103 		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1104 {
1105 	struct hifn_base_command *base_cmd;
1106 	u8 *buf_pos = buf;
1107 
1108 	base_cmd = (struct hifn_base_command *)buf_pos;
1109 	base_cmd->masks = __cpu_to_le16(mask);
1110 	base_cmd->total_source_count =
1111 		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1112 	base_cmd->total_dest_count =
1113 		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1114 
1115 	dlen >>= 16;
1116 	slen >>= 16;
1117 	base_cmd->session_num = __cpu_to_le16(snum |
1118 	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1119 	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1120 
1121 	return sizeof(struct hifn_base_command);
1122 }
1123 
1124 static int hifn_setup_crypto_command(struct hifn_device *dev,
1125 		u8 *buf, unsigned dlen, unsigned slen,
1126 		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1127 {
1128 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1129 	struct hifn_crypt_command *cry_cmd;
1130 	u8 *buf_pos = buf;
1131 	u16 cmd_len;
1132 
1133 	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1134 
1135 	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1136 	dlen >>= 16;
1137 	cry_cmd->masks = __cpu_to_le16(mode |
1138 			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1139 			 HIFN_CRYPT_CMD_SRCLEN_M));
1140 	cry_cmd->header_skip = 0;
1141 	cry_cmd->reserved = 0;
1142 
1143 	buf_pos += sizeof(struct hifn_crypt_command);
1144 
1145 	dma->cmdu++;
1146 	if (dma->cmdu > 1) {
1147 		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1148 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1149 	}
1150 
1151 	if (keylen) {
1152 		memcpy(buf_pos, key, keylen);
1153 		buf_pos += keylen;
1154 	}
1155 	if (ivsize) {
1156 		memcpy(buf_pos, iv, ivsize);
1157 		buf_pos += ivsize;
1158 	}
1159 
1160 	cmd_len = buf_pos - buf;
1161 
1162 	return cmd_len;
1163 }
1164 
1165 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1166 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1167 		void *priv, unsigned int nbytes)
1168 {
1169 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1170 	int cmd_len, sa_idx;
1171 	u8 *buf, *buf_pos;
1172 	u16 mask;
1173 
1174 	sa_idx = dma->cmdi;
1175 	buf_pos = buf = dma->command_bufs[dma->cmdi];
1176 
1177 	mask = 0;
1178 	switch (rctx->op) {
1179 		case ACRYPTO_OP_DECRYPT:
1180 			mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1181 			break;
1182 		case ACRYPTO_OP_ENCRYPT:
1183 			mask = HIFN_BASE_CMD_CRYPT;
1184 			break;
1185 		case ACRYPTO_OP_HMAC:
1186 			mask = HIFN_BASE_CMD_MAC;
1187 			break;
1188 		default:
1189 			goto err_out;
1190 	}
1191 
1192 	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1193 			nbytes, mask, dev->snum);
1194 
1195 	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1196 		u16 md = 0;
1197 
1198 		if (ctx->keysize)
1199 			md |= HIFN_CRYPT_CMD_NEW_KEY;
1200 		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1201 			md |= HIFN_CRYPT_CMD_NEW_IV;
1202 
1203 		switch (rctx->mode) {
1204 			case ACRYPTO_MODE_ECB:
1205 				md |= HIFN_CRYPT_CMD_MODE_ECB;
1206 				break;
1207 			case ACRYPTO_MODE_CBC:
1208 				md |= HIFN_CRYPT_CMD_MODE_CBC;
1209 				break;
1210 			case ACRYPTO_MODE_CFB:
1211 				md |= HIFN_CRYPT_CMD_MODE_CFB;
1212 				break;
1213 			case ACRYPTO_MODE_OFB:
1214 				md |= HIFN_CRYPT_CMD_MODE_OFB;
1215 				break;
1216 			default:
1217 				goto err_out;
1218 		}
1219 
1220 		switch (rctx->type) {
1221 			case ACRYPTO_TYPE_AES_128:
1222 				if (ctx->keysize != 16)
1223 					goto err_out;
1224 				md |= HIFN_CRYPT_CMD_KSZ_128 |
1225 					HIFN_CRYPT_CMD_ALG_AES;
1226 				break;
1227 			case ACRYPTO_TYPE_AES_192:
1228 				if (ctx->keysize != 24)
1229 					goto err_out;
1230 				md |= HIFN_CRYPT_CMD_KSZ_192 |
1231 					HIFN_CRYPT_CMD_ALG_AES;
1232 				break;
1233 			case ACRYPTO_TYPE_AES_256:
1234 				if (ctx->keysize != 32)
1235 					goto err_out;
1236 				md |= HIFN_CRYPT_CMD_KSZ_256 |
1237 					HIFN_CRYPT_CMD_ALG_AES;
1238 				break;
1239 			case ACRYPTO_TYPE_3DES:
1240 				if (ctx->keysize != 24)
1241 					goto err_out;
1242 				md |= HIFN_CRYPT_CMD_ALG_3DES;
1243 				break;
1244 			case ACRYPTO_TYPE_DES:
1245 				if (ctx->keysize != 8)
1246 					goto err_out;
1247 				md |= HIFN_CRYPT_CMD_ALG_DES;
1248 				break;
1249 			default:
1250 				goto err_out;
1251 		}
1252 
1253 		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1254 				nbytes, nbytes, ctx->key, ctx->keysize,
1255 				rctx->iv, rctx->ivsize, md);
1256 	}
1257 
1258 	dev->sa[sa_idx] = priv;
1259 	dev->started++;
1260 
1261 	cmd_len = buf_pos - buf;
1262 	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1263 			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1264 
1265 	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1266 		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1267 			HIFN_D_VALID | HIFN_D_LAST |
1268 			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1269 		dma->cmdi = 0;
1270 	} else
1271 		dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1272 
1273 	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1274 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1275 		dev->flags |= HIFN_FLAG_CMD_BUSY;
1276 	}
1277 	return 0;
1278 
1279 err_out:
1280 	return -EINVAL;
1281 }
1282 
1283 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1284 		unsigned int offset, unsigned int size, int last)
1285 {
1286 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1287 	int idx;
1288 	dma_addr_t addr;
1289 
1290 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1291 
1292 	idx = dma->srci;
1293 
1294 	dma->srcr[idx].p = __cpu_to_le32(addr);
1295 	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1296 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1297 
1298 	if (++idx == HIFN_D_SRC_RSIZE) {
1299 		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1300 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1301 				(last ? HIFN_D_LAST : 0));
1302 		idx = 0;
1303 	}
1304 
1305 	dma->srci = idx;
1306 	dma->srcu++;
1307 
1308 	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1309 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1310 		dev->flags |= HIFN_FLAG_SRC_BUSY;
1311 	}
1312 
1313 	return size;
1314 }
1315 
1316 static void hifn_setup_res_desc(struct hifn_device *dev)
1317 {
1318 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1319 
1320 	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1321 			HIFN_D_VALID | HIFN_D_LAST);
1322 	/*
1323 	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1324 	 *					HIFN_D_LAST);
1325 	 */
1326 
1327 	if (++dma->resi == HIFN_D_RES_RSIZE) {
1328 		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1329 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1330 		dma->resi = 0;
1331 	}
1332 
1333 	dma->resu++;
1334 
1335 	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1336 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1337 		dev->flags |= HIFN_FLAG_RES_BUSY;
1338 	}
1339 }
1340 
1341 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1342 		unsigned offset, unsigned size, int last)
1343 {
1344 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1345 	int idx;
1346 	dma_addr_t addr;
1347 
1348 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1349 
1350 	idx = dma->dsti;
1351 	dma->dstr[idx].p = __cpu_to_le32(addr);
1352 	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1353 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1354 
1355 	if (++idx == HIFN_D_DST_RSIZE) {
1356 		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1357 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1358 				(last ? HIFN_D_LAST : 0));
1359 		idx = 0;
1360 	}
1361 	dma->dsti = idx;
1362 	dma->dstu++;
1363 
1364 	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1365 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1366 		dev->flags |= HIFN_FLAG_DST_BUSY;
1367 	}
1368 }
1369 
1370 static int hifn_setup_dma(struct hifn_device *dev,
1371 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1372 		struct scatterlist *src, struct scatterlist *dst,
1373 		unsigned int nbytes, void *priv)
1374 {
1375 	struct scatterlist *t;
1376 	struct page *spage, *dpage;
1377 	unsigned int soff, doff;
1378 	unsigned int n, len;
1379 
1380 	n = nbytes;
1381 	while (n) {
1382 		spage = sg_page(src);
1383 		soff = src->offset;
1384 		len = min(src->length, n);
1385 
1386 		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1387 
1388 		src++;
1389 		n -= len;
1390 	}
1391 
1392 	t = &rctx->walk.cache[0];
1393 	n = nbytes;
1394 	while (n) {
1395 		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1396 			BUG_ON(!sg_page(t));
1397 			dpage = sg_page(t);
1398 			doff = 0;
1399 			len = t->length;
1400 		} else {
1401 			BUG_ON(!sg_page(dst));
1402 			dpage = sg_page(dst);
1403 			doff = dst->offset;
1404 			len = dst->length;
1405 		}
1406 		len = min(len, n);
1407 
1408 		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1409 
1410 		dst++;
1411 		t++;
1412 		n -= len;
1413 	}
1414 
1415 	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1416 	hifn_setup_res_desc(dev);
1417 	return 0;
1418 }
1419 
1420 static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1421 		int num, gfp_t gfp_flags)
1422 {
1423 	int i;
1424 
1425 	num = min(ASYNC_SCATTERLIST_CACHE, num);
1426 	sg_init_table(w->cache, num);
1427 
1428 	w->num = 0;
1429 	for (i=0; i<num; ++i) {
1430 		struct page *page = alloc_page(gfp_flags);
1431 		struct scatterlist *s;
1432 
1433 		if (!page)
1434 			break;
1435 
1436 		s = &w->cache[i];
1437 
1438 		sg_set_page(s, page, PAGE_SIZE, 0);
1439 		w->num++;
1440 	}
1441 
1442 	return i;
1443 }
1444 
1445 static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1446 {
1447 	int i;
1448 
1449 	for (i=0; i<w->num; ++i) {
1450 		struct scatterlist *s = &w->cache[i];
1451 
1452 		__free_page(sg_page(s));
1453 
1454 		s->length = 0;
1455 	}
1456 
1457 	w->num = 0;
1458 }
1459 
1460 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1461 		unsigned int size, unsigned int *nbytesp)
1462 {
1463 	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1464 	int idx = 0;
1465 
1466 	if (drest < size || size > nbytes)
1467 		return -EINVAL;
1468 
1469 	while (size) {
1470 		copy = min(drest, min(size, dst->length));
1471 
1472 		size -= copy;
1473 		drest -= copy;
1474 		nbytes -= copy;
1475 
1476 		dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1477 				__func__, copy, size, drest, nbytes);
1478 
1479 		dst++;
1480 		idx++;
1481 	}
1482 
1483 	*nbytesp = nbytes;
1484 	*drestp = drest;
1485 
1486 	return idx;
1487 }
1488 
1489 static int ablkcipher_walk(struct ablkcipher_request *req,
1490 		struct ablkcipher_walk *w)
1491 {
1492 	struct scatterlist *dst, *t;
1493 	unsigned int nbytes = req->nbytes, offset, copy, diff;
1494 	int idx, tidx, err;
1495 
1496 	tidx = idx = 0;
1497 	offset = 0;
1498 	while (nbytes) {
1499 		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1500 			return -EINVAL;
1501 
1502 		dst = &req->dst[idx];
1503 
1504 		dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1505 			__func__, dst->length, dst->offset, offset, nbytes);
1506 
1507 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1508 		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1509 		    offset) {
1510 			unsigned slen = min(dst->length - offset, nbytes);
1511 			unsigned dlen = PAGE_SIZE;
1512 
1513 			t = &w->cache[idx];
1514 
1515 			err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1516 			if (err < 0)
1517 				return err;
1518 
1519 			idx += err;
1520 
1521 			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1522 			diff = slen & (HIFN_D_DST_DALIGN - 1);
1523 
1524 			if (dlen < nbytes) {
1525 				/*
1526 				 * Destination page does not have enough space
1527 				 * to put there additional blocksized chunk,
1528 				 * so we mark that page as containing only
1529 				 * blocksize aligned chunks:
1530 				 * 	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1531 				 * and increase number of bytes to be processed
1532 				 * in next chunk:
1533 				 * 	nbytes += diff;
1534 				 */
1535 				nbytes += diff;
1536 
1537 				/*
1538 				 * Temporary of course...
1539 				 * Kick author if you will catch this one.
1540 				 */
1541 				printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1542 					"slen: %u, offset: %u.\n",
1543 					__func__, dlen, nbytes, slen, offset);
1544 				printk(KERN_ERR "%s: please contact author to fix this "
1545 					"issue, generally you should not catch "
1546 					"this path under any condition but who "
1547 					"knows how did you use crypto code.\n"
1548 					"Thank you.\n",	__func__);
1549 				BUG();
1550 			} else {
1551 				copy += diff + nbytes;
1552 
1553 				dst = &req->dst[idx];
1554 
1555 				err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1556 				if (err < 0)
1557 					return err;
1558 
1559 				idx += err;
1560 			}
1561 
1562 			t->length = copy;
1563 			t->offset = offset;
1564 		} else {
1565 			nbytes -= min(dst->length, nbytes);
1566 			idx++;
1567 		}
1568 
1569 		tidx++;
1570 	}
1571 
1572 	return tidx;
1573 }
1574 
1575 static int hifn_setup_session(struct ablkcipher_request *req)
1576 {
1577 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1578 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1579 	struct hifn_device *dev = ctx->dev;
1580 	unsigned long dlen, flags;
1581 	unsigned int nbytes = req->nbytes, idx = 0;
1582 	int err = -EINVAL, sg_num;
1583 	struct scatterlist *dst;
1584 
1585 	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1586 		goto err_out_exit;
1587 
1588 	rctx->walk.flags = 0;
1589 
1590 	while (nbytes) {
1591 		dst = &req->dst[idx];
1592 		dlen = min(dst->length, nbytes);
1593 
1594 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1595 		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1596 			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1597 
1598 		nbytes -= dlen;
1599 		idx++;
1600 	}
1601 
1602 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1603 		err = ablkcipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1604 		if (err < 0)
1605 			return err;
1606 	}
1607 
1608 	sg_num = ablkcipher_walk(req, &rctx->walk);
1609 	if (sg_num < 0) {
1610 		err = sg_num;
1611 		goto err_out_exit;
1612 	}
1613 
1614 	spin_lock_irqsave(&dev->lock, flags);
1615 	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1616 		err = -EAGAIN;
1617 		goto err_out;
1618 	}
1619 
1620 	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1621 	if (err)
1622 		goto err_out;
1623 
1624 	dev->snum++;
1625 
1626 	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1627 	spin_unlock_irqrestore(&dev->lock, flags);
1628 
1629 	return 0;
1630 
1631 err_out:
1632 	spin_unlock_irqrestore(&dev->lock, flags);
1633 err_out_exit:
1634 	if (err) {
1635 		printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1636 				"type: %u, err: %d.\n",
1637 			dev->name, rctx->iv, rctx->ivsize,
1638 			ctx->key, ctx->keysize,
1639 			rctx->mode, rctx->op, rctx->type, err);
1640 	}
1641 
1642 	return err;
1643 }
1644 
1645 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1646 {
1647 	int n, err;
1648 	u8 src[16];
1649 	struct hifn_context ctx;
1650 	struct hifn_request_context rctx;
1651 	u8 fips_aes_ecb_from_zero[16] = {
1652 		0x66, 0xE9, 0x4B, 0xD4,
1653 		0xEF, 0x8A, 0x2C, 0x3B,
1654 		0x88, 0x4C, 0xFA, 0x59,
1655 		0xCA, 0x34, 0x2B, 0x2E};
1656 	struct scatterlist sg;
1657 
1658 	memset(src, 0, sizeof(src));
1659 	memset(ctx.key, 0, sizeof(ctx.key));
1660 
1661 	ctx.dev = dev;
1662 	ctx.keysize = 16;
1663 	rctx.ivsize = 0;
1664 	rctx.iv = NULL;
1665 	rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1666 	rctx.mode = ACRYPTO_MODE_ECB;
1667 	rctx.type = ACRYPTO_TYPE_AES_128;
1668 	rctx.walk.cache[0].length = 0;
1669 
1670 	sg_init_one(&sg, &src, sizeof(src));
1671 
1672 	err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
1673 	if (err)
1674 		goto err_out;
1675 
1676 	dev->started = 0;
1677 	msleep(200);
1678 
1679 	dprintk("%s: decoded: ", dev->name);
1680 	for (n=0; n<sizeof(src); ++n)
1681 		dprintk("%02x ", src[n]);
1682 	dprintk("\n");
1683 	dprintk("%s: FIPS   : ", dev->name);
1684 	for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1685 		dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1686 	dprintk("\n");
1687 
1688 	if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1689 		printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1690 				"passed.\n", dev->name);
1691 		return 0;
1692 	}
1693 
1694 err_out:
1695 	printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1696 	return -1;
1697 }
1698 
1699 static int hifn_start_device(struct hifn_device *dev)
1700 {
1701 	int err;
1702 
1703 	dev->started = dev->active = 0;
1704 	hifn_reset_dma(dev, 1);
1705 
1706 	err = hifn_enable_crypto(dev);
1707 	if (err)
1708 		return err;
1709 
1710 	hifn_reset_puc(dev);
1711 
1712 	hifn_init_dma(dev);
1713 
1714 	hifn_init_registers(dev);
1715 
1716 	hifn_init_pubrng(dev);
1717 
1718 	return 0;
1719 }
1720 
1721 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1722 		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1723 {
1724 	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1725 	void *daddr;
1726 	int idx = 0;
1727 
1728 	if (srest < size || size > nbytes)
1729 		return -EINVAL;
1730 
1731 	while (size) {
1732 		copy = min(srest, min(dst->length, size));
1733 
1734 		daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1735 		memcpy(daddr + dst->offset + offset, saddr, copy);
1736 		kunmap_atomic(daddr, KM_IRQ0);
1737 
1738 		nbytes -= copy;
1739 		size -= copy;
1740 		srest -= copy;
1741 		saddr += copy;
1742 		offset = 0;
1743 
1744 		dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1745 				__func__, copy, size, srest, nbytes);
1746 
1747 		dst++;
1748 		idx++;
1749 	}
1750 
1751 	*nbytesp = nbytes;
1752 	*srestp = srest;
1753 
1754 	return idx;
1755 }
1756 
1757 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1758 {
1759 	unsigned long flags;
1760 
1761 	spin_lock_irqsave(&dev->lock, flags);
1762 	dev->sa[i] = NULL;
1763 	dev->started--;
1764 	if (dev->started < 0)
1765 		printk("%s: started: %d.\n", __func__, dev->started);
1766 	spin_unlock_irqrestore(&dev->lock, flags);
1767 	BUG_ON(dev->started < 0);
1768 }
1769 
1770 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1771 {
1772 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1773 
1774 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1775 		unsigned int nbytes = req->nbytes;
1776 		int idx = 0, err;
1777 		struct scatterlist *dst, *t;
1778 		void *saddr;
1779 
1780 		while (nbytes) {
1781 			t = &rctx->walk.cache[idx];
1782 			dst = &req->dst[idx];
1783 
1784 			dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1785 				"sg_page(dst): %p, dst->length: %u, "
1786 				"nbytes: %u.\n",
1787 				__func__, sg_page(t), t->length,
1788 				sg_page(dst), dst->length, nbytes);
1789 
1790 			if (!t->length) {
1791 				nbytes -= min(dst->length, nbytes);
1792 				idx++;
1793 				continue;
1794 			}
1795 
1796 			saddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
1797 
1798 			err = ablkcipher_get(saddr, &t->length, t->offset,
1799 					dst, nbytes, &nbytes);
1800 			if (err < 0) {
1801 				kunmap_atomic(saddr, KM_SOFTIRQ0);
1802 				break;
1803 			}
1804 
1805 			idx += err;
1806 			kunmap_atomic(saddr, KM_SOFTIRQ0);
1807 		}
1808 
1809 		ablkcipher_walk_exit(&rctx->walk);
1810 	}
1811 
1812 	req->base.complete(&req->base, error);
1813 }
1814 
1815 static void hifn_clear_rings(struct hifn_device *dev, int error)
1816 {
1817 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1818 	int i, u;
1819 
1820 	dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1821 			"k: %d.%d.%d.%d.\n",
1822 			dev->name,
1823 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1824 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1825 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1826 
1827 	i = dma->resk; u = dma->resu;
1828 	while (u != 0) {
1829 		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1830 			break;
1831 
1832 		if (dev->sa[i]) {
1833 			dev->success++;
1834 			dev->reset = 0;
1835 			hifn_process_ready(dev->sa[i], error);
1836 			hifn_complete_sa(dev, i);
1837 		}
1838 
1839 		if (++i == HIFN_D_RES_RSIZE)
1840 			i = 0;
1841 		u--;
1842 	}
1843 	dma->resk = i; dma->resu = u;
1844 
1845 	i = dma->srck; u = dma->srcu;
1846 	while (u != 0) {
1847 		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1848 			break;
1849 		if (++i == HIFN_D_SRC_RSIZE)
1850 			i = 0;
1851 		u--;
1852 	}
1853 	dma->srck = i; dma->srcu = u;
1854 
1855 	i = dma->cmdk; u = dma->cmdu;
1856 	while (u != 0) {
1857 		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1858 			break;
1859 		if (++i == HIFN_D_CMD_RSIZE)
1860 			i = 0;
1861 		u--;
1862 	}
1863 	dma->cmdk = i; dma->cmdu = u;
1864 
1865 	i = dma->dstk; u = dma->dstu;
1866 	while (u != 0) {
1867 		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1868 			break;
1869 		if (++i == HIFN_D_DST_RSIZE)
1870 			i = 0;
1871 		u--;
1872 	}
1873 	dma->dstk = i; dma->dstu = u;
1874 
1875 	dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1876 			"k: %d.%d.%d.%d.\n",
1877 			dev->name,
1878 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1879 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1880 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1881 }
1882 
1883 static void hifn_work(struct work_struct *work)
1884 {
1885 	struct delayed_work *dw = to_delayed_work(work);
1886 	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1887 	unsigned long flags;
1888 	int reset = 0;
1889 	u32 r = 0;
1890 
1891 	spin_lock_irqsave(&dev->lock, flags);
1892 	if (dev->active == 0) {
1893 		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1894 
1895 		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1896 			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1897 			r |= HIFN_DMACSR_C_CTRL_DIS;
1898 		}
1899 		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1900 			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1901 			r |= HIFN_DMACSR_S_CTRL_DIS;
1902 		}
1903 		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1904 			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1905 			r |= HIFN_DMACSR_D_CTRL_DIS;
1906 		}
1907 		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1908 			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1909 			r |= HIFN_DMACSR_R_CTRL_DIS;
1910 		}
1911 		if (r)
1912 			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1913 	} else
1914 		dev->active--;
1915 
1916 	if ((dev->prev_success == dev->success) && dev->started)
1917 		reset = 1;
1918 	dev->prev_success = dev->success;
1919 	spin_unlock_irqrestore(&dev->lock, flags);
1920 
1921 	if (reset) {
1922 		if (++dev->reset >= 5) {
1923 			int i;
1924 			struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1925 
1926 			printk("%s: r: %08x, active: %d, started: %d, "
1927 				"success: %lu: qlen: %u/%u, reset: %d.\n",
1928 				dev->name, r, dev->active, dev->started,
1929 				dev->success, dev->queue.qlen, dev->queue.max_qlen,
1930 				reset);
1931 
1932 			printk("%s: res: ", __func__);
1933 			for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1934 				printk("%x.%p ", dma->resr[i].l, dev->sa[i]);
1935 				if (dev->sa[i]) {
1936 					hifn_process_ready(dev->sa[i], -ENODEV);
1937 					hifn_complete_sa(dev, i);
1938 				}
1939 			}
1940 			printk("\n");
1941 
1942 			hifn_reset_dma(dev, 1);
1943 			hifn_stop_device(dev);
1944 			hifn_start_device(dev);
1945 			dev->reset = 0;
1946 		}
1947 
1948 		tasklet_schedule(&dev->tasklet);
1949 	}
1950 
1951 	schedule_delayed_work(&dev->work, HZ);
1952 }
1953 
1954 static irqreturn_t hifn_interrupt(int irq, void *data)
1955 {
1956 	struct hifn_device *dev = (struct hifn_device *)data;
1957 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1958 	u32 dmacsr, restart;
1959 
1960 	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1961 
1962 	dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1963 			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1964 		dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1965 		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1966 		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1967 
1968 	if ((dmacsr & dev->dmareg) == 0)
1969 		return IRQ_NONE;
1970 
1971 	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1972 
1973 	if (dmacsr & HIFN_DMACSR_ENGINE)
1974 		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1975 	if (dmacsr & HIFN_DMACSR_PUBDONE)
1976 		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1977 			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1978 
1979 	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1980 	if (restart) {
1981 		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1982 
1983 		printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1984 			dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
1985 			!!(dmacsr & HIFN_DMACSR_D_OVER),
1986 			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1987 		if (!!(puisr & HIFN_PUISR_DSTOVER))
1988 			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1989 		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1990 					HIFN_DMACSR_D_OVER));
1991 	}
1992 
1993 	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1994 			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1995 	if (restart) {
1996 		printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
1997 			dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
1998 			!!(dmacsr & HIFN_DMACSR_S_ABORT),
1999 			!!(dmacsr & HIFN_DMACSR_D_ABORT),
2000 			!!(dmacsr & HIFN_DMACSR_R_ABORT));
2001 		hifn_reset_dma(dev, 1);
2002 		hifn_init_dma(dev);
2003 		hifn_init_registers(dev);
2004 	}
2005 
2006 	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2007 		dprintk("%s: wait on command.\n", dev->name);
2008 		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2009 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2010 	}
2011 
2012 	tasklet_schedule(&dev->tasklet);
2013 
2014 	return IRQ_HANDLED;
2015 }
2016 
2017 static void hifn_flush(struct hifn_device *dev)
2018 {
2019 	unsigned long flags;
2020 	struct crypto_async_request *async_req;
2021 	struct hifn_context *ctx;
2022 	struct ablkcipher_request *req;
2023 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2024 	int i;
2025 
2026 	for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2027 		struct hifn_desc *d = &dma->resr[i];
2028 
2029 		if (dev->sa[i]) {
2030 			hifn_process_ready(dev->sa[i],
2031 				(d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2032 			hifn_complete_sa(dev, i);
2033 		}
2034 	}
2035 
2036 	spin_lock_irqsave(&dev->lock, flags);
2037 	while ((async_req = crypto_dequeue_request(&dev->queue))) {
2038 		ctx = crypto_tfm_ctx(async_req->tfm);
2039 		req = container_of(async_req, struct ablkcipher_request, base);
2040 		spin_unlock_irqrestore(&dev->lock, flags);
2041 
2042 		hifn_process_ready(req, -ENODEV);
2043 
2044 		spin_lock_irqsave(&dev->lock, flags);
2045 	}
2046 	spin_unlock_irqrestore(&dev->lock, flags);
2047 }
2048 
2049 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2050 		unsigned int len)
2051 {
2052 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2053 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2054 	struct hifn_device *dev = ctx->dev;
2055 
2056 	if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2057 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2058 		return -1;
2059 	}
2060 
2061 	if (len == HIFN_DES_KEY_LENGTH) {
2062 		u32 tmp[DES_EXPKEY_WORDS];
2063 		int ret = des_ekey(tmp, key);
2064 
2065 		if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2066 			tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2067 			return -EINVAL;
2068 		}
2069 	}
2070 
2071 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
2072 
2073 	memcpy(ctx->key, key, len);
2074 	ctx->keysize = len;
2075 
2076 	return 0;
2077 }
2078 
2079 static int hifn_handle_req(struct ablkcipher_request *req)
2080 {
2081 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2082 	struct hifn_device *dev = ctx->dev;
2083 	int err = -EAGAIN;
2084 
2085 	if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2086 		err = hifn_setup_session(req);
2087 
2088 	if (err == -EAGAIN) {
2089 		unsigned long flags;
2090 
2091 		spin_lock_irqsave(&dev->lock, flags);
2092 		err = ablkcipher_enqueue_request(&dev->queue, req);
2093 		spin_unlock_irqrestore(&dev->lock, flags);
2094 	}
2095 
2096 	return err;
2097 }
2098 
2099 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2100 		u8 type, u8 mode)
2101 {
2102 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2103 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2104 	unsigned ivsize;
2105 
2106 	ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2107 
2108 	if (req->info && mode != ACRYPTO_MODE_ECB) {
2109 		if (type == ACRYPTO_TYPE_AES_128)
2110 			ivsize = HIFN_AES_IV_LENGTH;
2111 		else if (type == ACRYPTO_TYPE_DES)
2112 			ivsize = HIFN_DES_KEY_LENGTH;
2113 		else if (type == ACRYPTO_TYPE_3DES)
2114 			ivsize = HIFN_3DES_KEY_LENGTH;
2115 	}
2116 
2117 	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2118 		if (ctx->keysize == 24)
2119 			type = ACRYPTO_TYPE_AES_192;
2120 		else if (ctx->keysize == 32)
2121 			type = ACRYPTO_TYPE_AES_256;
2122 	}
2123 
2124 	rctx->op = op;
2125 	rctx->mode = mode;
2126 	rctx->type = type;
2127 	rctx->iv = req->info;
2128 	rctx->ivsize = ivsize;
2129 
2130 	/*
2131 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2132 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2133 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2134 	 */
2135 
2136 	return hifn_handle_req(req);
2137 }
2138 
2139 static int hifn_process_queue(struct hifn_device *dev)
2140 {
2141 	struct crypto_async_request *async_req, *backlog;
2142 	struct hifn_context *ctx;
2143 	struct ablkcipher_request *req;
2144 	unsigned long flags;
2145 	int err = 0;
2146 
2147 	while (dev->started < HIFN_QUEUE_LENGTH) {
2148 		spin_lock_irqsave(&dev->lock, flags);
2149 		backlog = crypto_get_backlog(&dev->queue);
2150 		async_req = crypto_dequeue_request(&dev->queue);
2151 		spin_unlock_irqrestore(&dev->lock, flags);
2152 
2153 		if (!async_req)
2154 			break;
2155 
2156 		if (backlog)
2157 			backlog->complete(backlog, -EINPROGRESS);
2158 
2159 		ctx = crypto_tfm_ctx(async_req->tfm);
2160 		req = container_of(async_req, struct ablkcipher_request, base);
2161 
2162 		err = hifn_handle_req(req);
2163 		if (err)
2164 			break;
2165 	}
2166 
2167 	return err;
2168 }
2169 
2170 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2171 		u8 type, u8 mode)
2172 {
2173 	int err;
2174 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2175 	struct hifn_device *dev = ctx->dev;
2176 
2177 	err = hifn_setup_crypto_req(req, op, type, mode);
2178 	if (err)
2179 		return err;
2180 
2181 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2182 		hifn_process_queue(dev);
2183 
2184 	return -EINPROGRESS;
2185 }
2186 
2187 /*
2188  * AES ecryption functions.
2189  */
2190 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2191 {
2192 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2193 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2194 }
2195 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2196 {
2197 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2198 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2199 }
2200 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2201 {
2202 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2203 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2204 }
2205 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2206 {
2207 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2208 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2209 }
2210 
2211 /*
2212  * AES decryption functions.
2213  */
2214 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2215 {
2216 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2217 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2218 }
2219 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2220 {
2221 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2222 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2223 }
2224 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2225 {
2226 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2227 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2228 }
2229 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2230 {
2231 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2232 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2233 }
2234 
2235 /*
2236  * DES ecryption functions.
2237  */
2238 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2239 {
2240 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2241 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2242 }
2243 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2244 {
2245 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2246 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2247 }
2248 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2249 {
2250 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2251 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2252 }
2253 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2254 {
2255 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2256 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2257 }
2258 
2259 /*
2260  * DES decryption functions.
2261  */
2262 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2263 {
2264 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2265 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2266 }
2267 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2268 {
2269 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2270 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2271 }
2272 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2273 {
2274 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2275 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2276 }
2277 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2278 {
2279 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2280 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2281 }
2282 
2283 /*
2284  * 3DES ecryption functions.
2285  */
2286 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2287 {
2288 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2289 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2290 }
2291 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2292 {
2293 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2294 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2295 }
2296 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2297 {
2298 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2299 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2300 }
2301 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2302 {
2303 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2304 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2305 }
2306 
2307 /*
2308  * 3DES decryption functions.
2309  */
2310 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2311 {
2312 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2313 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2314 }
2315 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2316 {
2317 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2318 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2319 }
2320 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2321 {
2322 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2323 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2324 }
2325 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2326 {
2327 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2328 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2329 }
2330 
2331 struct hifn_alg_template
2332 {
2333 	char name[CRYPTO_MAX_ALG_NAME];
2334 	char drv_name[CRYPTO_MAX_ALG_NAME];
2335 	unsigned int bsize;
2336 	struct ablkcipher_alg ablkcipher;
2337 };
2338 
2339 static struct hifn_alg_template hifn_alg_templates[] = {
2340 	/*
2341 	 * 3DES ECB, CBC, CFB and OFB modes.
2342 	 */
2343 	{
2344 		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2345 		.ablkcipher = {
2346 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2347 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2348 			.setkey		=	hifn_setkey,
2349 			.encrypt	=	hifn_encrypt_3des_cfb,
2350 			.decrypt	=	hifn_decrypt_3des_cfb,
2351 		},
2352 	},
2353 	{
2354 		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2355 		.ablkcipher = {
2356 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2357 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2358 			.setkey		=	hifn_setkey,
2359 			.encrypt	=	hifn_encrypt_3des_ofb,
2360 			.decrypt	=	hifn_decrypt_3des_ofb,
2361 		},
2362 	},
2363 	{
2364 		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2365 		.ablkcipher = {
2366 			.ivsize		=	HIFN_IV_LENGTH,
2367 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2368 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2369 			.setkey		=	hifn_setkey,
2370 			.encrypt	=	hifn_encrypt_3des_cbc,
2371 			.decrypt	=	hifn_decrypt_3des_cbc,
2372 		},
2373 	},
2374 	{
2375 		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2376 		.ablkcipher = {
2377 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2378 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2379 			.setkey		=	hifn_setkey,
2380 			.encrypt	=	hifn_encrypt_3des_ecb,
2381 			.decrypt	=	hifn_decrypt_3des_ecb,
2382 		},
2383 	},
2384 
2385 	/*
2386 	 * DES ECB, CBC, CFB and OFB modes.
2387 	 */
2388 	{
2389 		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2390 		.ablkcipher = {
2391 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2392 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2393 			.setkey		=	hifn_setkey,
2394 			.encrypt	=	hifn_encrypt_des_cfb,
2395 			.decrypt	=	hifn_decrypt_des_cfb,
2396 		},
2397 	},
2398 	{
2399 		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2400 		.ablkcipher = {
2401 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2402 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2403 			.setkey		=	hifn_setkey,
2404 			.encrypt	=	hifn_encrypt_des_ofb,
2405 			.decrypt	=	hifn_decrypt_des_ofb,
2406 		},
2407 	},
2408 	{
2409 		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2410 		.ablkcipher = {
2411 			.ivsize		=	HIFN_IV_LENGTH,
2412 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2413 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2414 			.setkey		=	hifn_setkey,
2415 			.encrypt	=	hifn_encrypt_des_cbc,
2416 			.decrypt	=	hifn_decrypt_des_cbc,
2417 		},
2418 	},
2419 	{
2420 		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2421 		.ablkcipher = {
2422 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2423 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2424 			.setkey		=	hifn_setkey,
2425 			.encrypt	=	hifn_encrypt_des_ecb,
2426 			.decrypt	=	hifn_decrypt_des_ecb,
2427 		},
2428 	},
2429 
2430 	/*
2431 	 * AES ECB, CBC, CFB and OFB modes.
2432 	 */
2433 	{
2434 		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2435 		.ablkcipher = {
2436 			.min_keysize	=	AES_MIN_KEY_SIZE,
2437 			.max_keysize	=	AES_MAX_KEY_SIZE,
2438 			.setkey		=	hifn_setkey,
2439 			.encrypt	=	hifn_encrypt_aes_ecb,
2440 			.decrypt	=	hifn_decrypt_aes_ecb,
2441 		},
2442 	},
2443 	{
2444 		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2445 		.ablkcipher = {
2446 			.ivsize		=	HIFN_AES_IV_LENGTH,
2447 			.min_keysize	=	AES_MIN_KEY_SIZE,
2448 			.max_keysize	=	AES_MAX_KEY_SIZE,
2449 			.setkey		=	hifn_setkey,
2450 			.encrypt	=	hifn_encrypt_aes_cbc,
2451 			.decrypt	=	hifn_decrypt_aes_cbc,
2452 		},
2453 	},
2454 	{
2455 		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2456 		.ablkcipher = {
2457 			.min_keysize	=	AES_MIN_KEY_SIZE,
2458 			.max_keysize	=	AES_MAX_KEY_SIZE,
2459 			.setkey		=	hifn_setkey,
2460 			.encrypt	=	hifn_encrypt_aes_cfb,
2461 			.decrypt	=	hifn_decrypt_aes_cfb,
2462 		},
2463 	},
2464 	{
2465 		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2466 		.ablkcipher = {
2467 			.min_keysize	=	AES_MIN_KEY_SIZE,
2468 			.max_keysize	=	AES_MAX_KEY_SIZE,
2469 			.setkey		=	hifn_setkey,
2470 			.encrypt	=	hifn_encrypt_aes_ofb,
2471 			.decrypt	=	hifn_decrypt_aes_ofb,
2472 		},
2473 	},
2474 };
2475 
2476 static int hifn_cra_init(struct crypto_tfm *tfm)
2477 {
2478 	struct crypto_alg *alg = tfm->__crt_alg;
2479 	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2480 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2481 
2482 	ctx->dev = ha->dev;
2483 	tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2484 	return 0;
2485 }
2486 
2487 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2488 {
2489 	struct hifn_crypto_alg *alg;
2490 	int err;
2491 
2492 	alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2493 	if (!alg)
2494 		return -ENOMEM;
2495 
2496 	snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2497 	snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2498 		 t->drv_name, dev->name);
2499 
2500 	alg->alg.cra_priority = 300;
2501 	alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
2502 	alg->alg.cra_blocksize = t->bsize;
2503 	alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2504 	alg->alg.cra_alignmask = 0;
2505 	alg->alg.cra_type = &crypto_ablkcipher_type;
2506 	alg->alg.cra_module = THIS_MODULE;
2507 	alg->alg.cra_u.ablkcipher = t->ablkcipher;
2508 	alg->alg.cra_init = hifn_cra_init;
2509 
2510 	alg->dev = dev;
2511 
2512 	list_add_tail(&alg->entry, &dev->alg_list);
2513 
2514 	err = crypto_register_alg(&alg->alg);
2515 	if (err) {
2516 		list_del(&alg->entry);
2517 		kfree(alg);
2518 	}
2519 
2520 	return err;
2521 }
2522 
2523 static void hifn_unregister_alg(struct hifn_device *dev)
2524 {
2525 	struct hifn_crypto_alg *a, *n;
2526 
2527 	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2528 		list_del(&a->entry);
2529 		crypto_unregister_alg(&a->alg);
2530 		kfree(a);
2531 	}
2532 }
2533 
2534 static int hifn_register_alg(struct hifn_device *dev)
2535 {
2536 	int i, err;
2537 
2538 	for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2539 		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2540 		if (err)
2541 			goto err_out_exit;
2542 	}
2543 
2544 	return 0;
2545 
2546 err_out_exit:
2547 	hifn_unregister_alg(dev);
2548 	return err;
2549 }
2550 
2551 static void hifn_tasklet_callback(unsigned long data)
2552 {
2553 	struct hifn_device *dev = (struct hifn_device *)data;
2554 
2555 	/*
2556 	 * This is ok to call this without lock being held,
2557 	 * althogh it modifies some parameters used in parallel,
2558 	 * (like dev->success), but they are used in process
2559 	 * context or update is atomic (like setting dev->sa[i] to NULL).
2560 	 */
2561 	hifn_clear_rings(dev, 0);
2562 
2563 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2564 		hifn_process_queue(dev);
2565 }
2566 
2567 static int __devinit hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2568 {
2569 	int err, i;
2570 	struct hifn_device *dev;
2571 	char name[8];
2572 
2573 	err = pci_enable_device(pdev);
2574 	if (err)
2575 		return err;
2576 	pci_set_master(pdev);
2577 
2578 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2579 	if (err)
2580 		goto err_out_disable_pci_device;
2581 
2582 	snprintf(name, sizeof(name), "hifn%d",
2583 			atomic_inc_return(&hifn_dev_number)-1);
2584 
2585 	err = pci_request_regions(pdev, name);
2586 	if (err)
2587 		goto err_out_disable_pci_device;
2588 
2589 	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2590 	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2591 	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2592 		dprintk("%s: Broken hardware - I/O regions are too small.\n",
2593 				pci_name(pdev));
2594 		err = -ENODEV;
2595 		goto err_out_free_regions;
2596 	}
2597 
2598 	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2599 			GFP_KERNEL);
2600 	if (!dev) {
2601 		err = -ENOMEM;
2602 		goto err_out_free_regions;
2603 	}
2604 
2605 	INIT_LIST_HEAD(&dev->alg_list);
2606 
2607 	snprintf(dev->name, sizeof(dev->name), "%s", name);
2608 	spin_lock_init(&dev->lock);
2609 
2610 	for (i=0; i<3; ++i) {
2611 		unsigned long addr, size;
2612 
2613 		addr = pci_resource_start(pdev, i);
2614 		size = pci_resource_len(pdev, i);
2615 
2616 		dev->bar[i] = ioremap_nocache(addr, size);
2617 		if (!dev->bar[i])
2618 			goto err_out_unmap_bars;
2619 	}
2620 
2621 	dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2622 			&dev->desc_dma);
2623 	if (!dev->desc_virt) {
2624 		dprintk("Failed to allocate descriptor rings.\n");
2625 		goto err_out_unmap_bars;
2626 	}
2627 	memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2628 
2629 	dev->pdev = pdev;
2630 	dev->irq = pdev->irq;
2631 
2632 	for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2633 		dev->sa[i] = NULL;
2634 
2635 	pci_set_drvdata(pdev, dev);
2636 
2637 	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2638 
2639 	crypto_init_queue(&dev->queue, 1);
2640 
2641 	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2642 	if (err) {
2643 		dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2644 		dev->irq = 0;
2645 		goto err_out_free_desc;
2646 	}
2647 
2648 	err = hifn_start_device(dev);
2649 	if (err)
2650 		goto err_out_free_irq;
2651 
2652 	err = hifn_test(dev, 1, 0);
2653 	if (err)
2654 		goto err_out_stop_device;
2655 
2656 	err = hifn_register_rng(dev);
2657 	if (err)
2658 		goto err_out_stop_device;
2659 
2660 	err = hifn_register_alg(dev);
2661 	if (err)
2662 		goto err_out_unregister_rng;
2663 
2664 	INIT_DELAYED_WORK(&dev->work, hifn_work);
2665 	schedule_delayed_work(&dev->work, HZ);
2666 
2667 	dprintk("HIFN crypto accelerator card at %s has been "
2668 			"successfully registered as %s.\n",
2669 			pci_name(pdev), dev->name);
2670 
2671 	return 0;
2672 
2673 err_out_unregister_rng:
2674 	hifn_unregister_rng(dev);
2675 err_out_stop_device:
2676 	hifn_reset_dma(dev, 1);
2677 	hifn_stop_device(dev);
2678 err_out_free_irq:
2679 	free_irq(dev->irq, dev->name);
2680 	tasklet_kill(&dev->tasklet);
2681 err_out_free_desc:
2682 	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2683 			dev->desc_virt, dev->desc_dma);
2684 
2685 err_out_unmap_bars:
2686 	for (i=0; i<3; ++i)
2687 		if (dev->bar[i])
2688 			iounmap(dev->bar[i]);
2689 
2690 err_out_free_regions:
2691 	pci_release_regions(pdev);
2692 
2693 err_out_disable_pci_device:
2694 	pci_disable_device(pdev);
2695 
2696 	return err;
2697 }
2698 
2699 static void __devexit hifn_remove(struct pci_dev *pdev)
2700 {
2701 	int i;
2702 	struct hifn_device *dev;
2703 
2704 	dev = pci_get_drvdata(pdev);
2705 
2706 	if (dev) {
2707 		cancel_delayed_work(&dev->work);
2708 		flush_scheduled_work();
2709 
2710 		hifn_unregister_rng(dev);
2711 		hifn_unregister_alg(dev);
2712 		hifn_reset_dma(dev, 1);
2713 		hifn_stop_device(dev);
2714 
2715 		free_irq(dev->irq, dev->name);
2716 		tasklet_kill(&dev->tasklet);
2717 
2718 		hifn_flush(dev);
2719 
2720 		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2721 				dev->desc_virt, dev->desc_dma);
2722 		for (i=0; i<3; ++i)
2723 			if (dev->bar[i])
2724 				iounmap(dev->bar[i]);
2725 
2726 		kfree(dev);
2727 	}
2728 
2729 	pci_release_regions(pdev);
2730 	pci_disable_device(pdev);
2731 }
2732 
2733 static struct pci_device_id hifn_pci_tbl[] = {
2734 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2735 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2736 	{ 0 }
2737 };
2738 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2739 
2740 static struct pci_driver hifn_pci_driver = {
2741 	.name     = "hifn795x",
2742 	.id_table = hifn_pci_tbl,
2743 	.probe    = hifn_probe,
2744 	.remove   = __devexit_p(hifn_remove),
2745 };
2746 
2747 static int __init hifn_init(void)
2748 {
2749 	unsigned int freq;
2750 	int err;
2751 
2752 	if (sizeof(dma_addr_t) > 4) {
2753 		printk(KERN_INFO "HIFN supports only 32-bit addresses.\n");
2754 		return -EINVAL;
2755 	}
2756 
2757 	if (strncmp(hifn_pll_ref, "ext", 3) &&
2758 	    strncmp(hifn_pll_ref, "pci", 3)) {
2759 		printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2760 				"must be pci or ext");
2761 		return -EINVAL;
2762 	}
2763 
2764 	/*
2765 	 * For the 7955/7956 the reference clock frequency must be in the
2766 	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2767 	 * but this chip is currently not supported.
2768 	 */
2769 	if (hifn_pll_ref[3] != '\0') {
2770 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2771 		if (freq < 20 || freq > 100) {
2772 			printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2773 					"frequency, must be in the range "
2774 					"of 20-100");
2775 			return -EINVAL;
2776 		}
2777 	}
2778 
2779 	err = pci_register_driver(&hifn_pci_driver);
2780 	if (err < 0) {
2781 		dprintk("Failed to register PCI driver for %s device.\n",
2782 				hifn_pci_driver.name);
2783 		return -ENODEV;
2784 	}
2785 
2786 	printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2787 			"has been successfully registered.\n");
2788 
2789 	return 0;
2790 }
2791 
2792 static void __exit hifn_fini(void)
2793 {
2794 	pci_unregister_driver(&hifn_pci_driver);
2795 
2796 	printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2797 			"has been successfully unregistered.\n");
2798 }
2799 
2800 module_init(hifn_init);
2801 module_exit(hifn_fini);
2802 
2803 MODULE_LICENSE("GPL");
2804 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2805 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2806