1 /* 2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru> 3 * All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/interrupt.h> 25 #include <linux/pci.h> 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/mm.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/scatterlist.h> 31 #include <linux/highmem.h> 32 #include <linux/crypto.h> 33 #include <linux/hw_random.h> 34 #include <linux/ktime.h> 35 36 #include <crypto/algapi.h> 37 #include <crypto/des.h> 38 39 #include <asm/kmap_types.h> 40 41 #undef dprintk 42 43 #define HIFN_TEST 44 //#define HIFN_DEBUG 45 46 #ifdef HIFN_DEBUG 47 #define dprintk(f, a...) printk(f, ##a) 48 #else 49 #define dprintk(f, a...) do {} while (0) 50 #endif 51 52 static char hifn_pll_ref[sizeof("extNNN")] = "ext"; 53 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444); 54 MODULE_PARM_DESC(hifn_pll_ref, 55 "PLL reference clock (pci[freq] or ext[freq], default ext)"); 56 57 static atomic_t hifn_dev_number; 58 59 #define ACRYPTO_OP_DECRYPT 0 60 #define ACRYPTO_OP_ENCRYPT 1 61 #define ACRYPTO_OP_HMAC 2 62 #define ACRYPTO_OP_RNG 3 63 64 #define ACRYPTO_MODE_ECB 0 65 #define ACRYPTO_MODE_CBC 1 66 #define ACRYPTO_MODE_CFB 2 67 #define ACRYPTO_MODE_OFB 3 68 69 #define ACRYPTO_TYPE_AES_128 0 70 #define ACRYPTO_TYPE_AES_192 1 71 #define ACRYPTO_TYPE_AES_256 2 72 #define ACRYPTO_TYPE_3DES 3 73 #define ACRYPTO_TYPE_DES 4 74 75 #define PCI_VENDOR_ID_HIFN 0x13A3 76 #define PCI_DEVICE_ID_HIFN_7955 0x0020 77 #define PCI_DEVICE_ID_HIFN_7956 0x001d 78 79 /* I/O region sizes */ 80 81 #define HIFN_BAR0_SIZE 0x1000 82 #define HIFN_BAR1_SIZE 0x2000 83 #define HIFN_BAR2_SIZE 0x8000 84 85 /* DMA registres */ 86 87 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */ 88 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */ 89 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */ 90 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */ 91 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */ 92 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */ 93 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */ 94 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */ 95 #define HIFN_CHIP_ID 0x98 /* Chip ID */ 96 97 /* 98 * Processing Unit Registers (offset from BASEREG0) 99 */ 100 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */ 101 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */ 102 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */ 103 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */ 104 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */ 105 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */ 106 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */ 107 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */ 108 #define HIFN_0_SPACESIZE 0x20 /* Register space size */ 109 110 /* Processing Unit Control Register (HIFN_0_PUCTRL) */ 111 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */ 112 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */ 113 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */ 114 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */ 115 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */ 116 117 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */ 118 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */ 119 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */ 120 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 121 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 122 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */ 123 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */ 124 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */ 125 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */ 126 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */ 127 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */ 128 129 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */ 130 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */ 131 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */ 132 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */ 133 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */ 134 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */ 135 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */ 136 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */ 137 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */ 138 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */ 139 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */ 140 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */ 141 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */ 142 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */ 143 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */ 144 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */ 145 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */ 146 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */ 147 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */ 148 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */ 149 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */ 150 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */ 151 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */ 152 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */ 153 154 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */ 155 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */ 156 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */ 157 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 158 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 159 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */ 160 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */ 161 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */ 162 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */ 163 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */ 164 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */ 165 166 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */ 167 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */ 168 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */ 169 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 170 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 171 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */ 172 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */ 173 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */ 174 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */ 175 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */ 176 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */ 177 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */ 178 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */ 179 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */ 180 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */ 181 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */ 182 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */ 183 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */ 184 185 /* FIFO Status Register (HIFN_0_FIFOSTAT) */ 186 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */ 187 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */ 188 189 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */ 190 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */ 191 192 /* 193 * DMA Interface Registers (offset from BASEREG1) 194 */ 195 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */ 196 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */ 197 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */ 198 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */ 199 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */ 200 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */ 201 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */ 202 #define HIFN_1_PLL 0x4c /* 795x: PLL config */ 203 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */ 204 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */ 205 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */ 206 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */ 207 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */ 208 #define HIFN_1_REVID 0x98 /* Revision ID */ 209 #define HIFN_1_UNLOCK_SECRET1 0xf4 210 #define HIFN_1_UNLOCK_SECRET2 0xfc 211 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */ 212 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */ 213 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */ 214 #define HIFN_1_PUB_OP 0x308 /* Public Operand */ 215 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */ 216 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */ 217 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */ 218 #define HIFN_1_RNG_DATA 0x318 /* RNG data */ 219 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */ 220 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */ 221 222 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */ 223 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */ 224 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */ 225 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */ 226 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */ 227 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */ 228 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */ 229 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */ 230 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */ 231 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */ 232 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */ 233 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */ 234 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */ 235 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */ 236 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 237 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */ 238 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */ 239 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */ 240 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */ 241 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */ 242 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */ 243 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */ 244 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */ 245 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 246 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */ 247 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */ 248 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */ 249 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */ 250 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */ 251 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */ 252 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */ 253 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */ 254 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */ 255 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 256 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */ 257 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */ 258 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */ 259 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */ 260 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */ 261 262 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */ 263 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */ 264 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */ 265 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */ 266 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */ 267 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */ 268 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 269 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */ 270 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */ 271 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */ 272 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */ 273 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 274 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */ 275 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */ 276 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */ 277 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */ 278 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */ 279 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 280 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */ 281 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */ 282 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */ 283 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */ 284 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */ 285 286 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */ 287 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */ 288 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */ 289 #define HIFN_DMACNFG_UNLOCK 0x00000800 290 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */ 291 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */ 292 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */ 293 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */ 294 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */ 295 296 /* PLL configuration register */ 297 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */ 298 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */ 299 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */ 300 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */ 301 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */ 302 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */ 303 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */ 304 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */ 305 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */ 306 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */ 307 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */ 308 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */ 309 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */ 310 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */ 311 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */ 312 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */ 313 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */ 314 315 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */ 316 317 /* Public key reset register (HIFN_1_PUB_RESET) */ 318 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */ 319 320 /* Public base address register (HIFN_1_PUB_BASE) */ 321 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */ 322 323 /* Public operand length register (HIFN_1_PUB_OPLEN) */ 324 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */ 325 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */ 326 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */ 327 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent lenght shift */ 328 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */ 329 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */ 330 331 /* Public operation register (HIFN_1_PUB_OP) */ 332 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */ 333 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */ 334 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */ 335 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */ 336 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */ 337 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */ 338 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */ 339 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */ 340 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */ 341 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */ 342 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */ 343 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */ 344 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */ 345 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */ 346 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */ 347 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */ 348 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */ 349 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */ 350 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */ 351 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */ 352 353 /* Public status register (HIFN_1_PUB_STATUS) */ 354 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */ 355 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */ 356 357 /* Public interrupt enable register (HIFN_1_PUB_IEN) */ 358 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */ 359 360 /* Random number generator config register (HIFN_1_RNG_CONFIG) */ 361 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */ 362 363 #define HIFN_NAMESIZE 32 364 #define HIFN_MAX_RESULT_ORDER 5 365 366 #define HIFN_D_CMD_RSIZE 24*4 367 #define HIFN_D_SRC_RSIZE 80*4 368 #define HIFN_D_DST_RSIZE 80*4 369 #define HIFN_D_RES_RSIZE 24*4 370 371 #define HIFN_D_DST_DALIGN 4 372 373 #define HIFN_QUEUE_LENGTH HIFN_D_CMD_RSIZE-1 374 375 #define AES_MIN_KEY_SIZE 16 376 #define AES_MAX_KEY_SIZE 32 377 378 #define HIFN_DES_KEY_LENGTH 8 379 #define HIFN_3DES_KEY_LENGTH 24 380 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE 381 #define HIFN_IV_LENGTH 8 382 #define HIFN_AES_IV_LENGTH 16 383 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH 384 385 #define HIFN_MAC_KEY_LENGTH 64 386 #define HIFN_MD5_LENGTH 16 387 #define HIFN_SHA1_LENGTH 20 388 #define HIFN_MAC_TRUNC_LENGTH 12 389 390 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260) 391 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4) 392 #define HIFN_USED_RESULT 12 393 394 struct hifn_desc 395 { 396 volatile __le32 l; 397 volatile __le32 p; 398 }; 399 400 struct hifn_dma { 401 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1]; 402 struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1]; 403 struct hifn_desc dstr[HIFN_D_DST_RSIZE+1]; 404 struct hifn_desc resr[HIFN_D_RES_RSIZE+1]; 405 406 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND]; 407 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT]; 408 409 u64 test_src, test_dst; 410 411 /* 412 * Our current positions for insertion and removal from the descriptor 413 * rings. 414 */ 415 volatile int cmdi, srci, dsti, resi; 416 volatile int cmdu, srcu, dstu, resu; 417 int cmdk, srck, dstk, resk; 418 }; 419 420 #define HIFN_FLAG_CMD_BUSY (1<<0) 421 #define HIFN_FLAG_SRC_BUSY (1<<1) 422 #define HIFN_FLAG_DST_BUSY (1<<2) 423 #define HIFN_FLAG_RES_BUSY (1<<3) 424 #define HIFN_FLAG_OLD_KEY (1<<4) 425 426 #define HIFN_DEFAULT_ACTIVE_NUM 5 427 428 struct hifn_device 429 { 430 char name[HIFN_NAMESIZE]; 431 432 int irq; 433 434 struct pci_dev *pdev; 435 void __iomem *bar[3]; 436 437 unsigned long result_mem; 438 dma_addr_t dst; 439 440 void *desc_virt; 441 dma_addr_t desc_dma; 442 443 u32 dmareg; 444 445 void *sa[HIFN_D_RES_RSIZE]; 446 447 spinlock_t lock; 448 449 void *priv; 450 451 u32 flags; 452 int active, started; 453 struct delayed_work work; 454 unsigned long reset; 455 unsigned long success; 456 unsigned long prev_success; 457 458 u8 snum; 459 460 struct tasklet_struct tasklet; 461 462 struct crypto_queue queue; 463 struct list_head alg_list; 464 465 unsigned int pk_clk_freq; 466 467 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 468 unsigned int rng_wait_time; 469 ktime_t rngtime; 470 struct hwrng rng; 471 #endif 472 }; 473 474 #define HIFN_D_LENGTH 0x0000ffff 475 #define HIFN_D_NOINVALID 0x01000000 476 #define HIFN_D_MASKDONEIRQ 0x02000000 477 #define HIFN_D_DESTOVER 0x04000000 478 #define HIFN_D_OVER 0x08000000 479 #define HIFN_D_LAST 0x20000000 480 #define HIFN_D_JUMP 0x40000000 481 #define HIFN_D_VALID 0x80000000 482 483 struct hifn_base_command 484 { 485 volatile __le16 masks; 486 volatile __le16 session_num; 487 volatile __le16 total_source_count; 488 volatile __le16 total_dest_count; 489 }; 490 491 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */ 492 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */ 493 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */ 494 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */ 495 #define HIFN_BASE_CMD_DECODE 0x2000 496 #define HIFN_BASE_CMD_SRCLEN_M 0xc000 497 #define HIFN_BASE_CMD_SRCLEN_S 14 498 #define HIFN_BASE_CMD_DSTLEN_M 0x3000 499 #define HIFN_BASE_CMD_DSTLEN_S 12 500 #define HIFN_BASE_CMD_LENMASK_HI 0x30000 501 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff 502 503 /* 504 * Structure to help build up the command data structure. 505 */ 506 struct hifn_crypt_command 507 { 508 volatile __le16 masks; 509 volatile __le16 header_skip; 510 volatile __le16 source_count; 511 volatile __le16 reserved; 512 }; 513 514 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */ 515 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */ 516 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */ 517 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */ 518 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */ 519 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */ 520 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */ 521 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */ 522 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */ 523 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */ 524 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */ 525 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */ 526 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */ 527 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */ 528 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */ 529 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */ 530 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */ 531 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000 532 #define HIFN_CRYPT_CMD_SRCLEN_S 14 533 534 /* 535 * Structure to help build up the command data structure. 536 */ 537 struct hifn_mac_command 538 { 539 volatile __le16 masks; 540 volatile __le16 header_skip; 541 volatile __le16 source_count; 542 volatile __le16 reserved; 543 }; 544 545 #define HIFN_MAC_CMD_ALG_MASK 0x0001 546 #define HIFN_MAC_CMD_ALG_SHA1 0x0000 547 #define HIFN_MAC_CMD_ALG_MD5 0x0001 548 #define HIFN_MAC_CMD_MODE_MASK 0x000c 549 #define HIFN_MAC_CMD_MODE_HMAC 0x0000 550 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004 551 #define HIFN_MAC_CMD_MODE_HASH 0x0008 552 #define HIFN_MAC_CMD_MODE_FULL 0x0004 553 #define HIFN_MAC_CMD_TRUNC 0x0010 554 #define HIFN_MAC_CMD_RESULT 0x0020 555 #define HIFN_MAC_CMD_APPEND 0x0040 556 #define HIFN_MAC_CMD_SRCLEN_M 0xc000 557 #define HIFN_MAC_CMD_SRCLEN_S 14 558 559 /* 560 * MAC POS IPsec initiates authentication after encryption on encodes 561 * and before decryption on decodes. 562 */ 563 #define HIFN_MAC_CMD_POS_IPSEC 0x0200 564 #define HIFN_MAC_CMD_NEW_KEY 0x0800 565 566 struct hifn_comp_command 567 { 568 volatile __le16 masks; 569 volatile __le16 header_skip; 570 volatile __le16 source_count; 571 volatile __le16 reserved; 572 }; 573 574 #define HIFN_COMP_CMD_SRCLEN_M 0xc000 575 #define HIFN_COMP_CMD_SRCLEN_S 14 576 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */ 577 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */ 578 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */ 579 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */ 580 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */ 581 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */ 582 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */ 583 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */ 584 585 struct hifn_base_result 586 { 587 volatile __le16 flags; 588 volatile __le16 session; 589 volatile __le16 src_cnt; /* 15:0 of source count */ 590 volatile __le16 dst_cnt; /* 15:0 of dest count */ 591 }; 592 593 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */ 594 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */ 595 #define HIFN_BASE_RES_SRCLEN_S 14 596 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */ 597 #define HIFN_BASE_RES_DSTLEN_S 12 598 599 struct hifn_comp_result 600 { 601 volatile __le16 flags; 602 volatile __le16 crc; 603 }; 604 605 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */ 606 #define HIFN_COMP_RES_LCB_S 8 607 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */ 608 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */ 609 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */ 610 611 struct hifn_mac_result 612 { 613 volatile __le16 flags; 614 volatile __le16 reserved; 615 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */ 616 }; 617 618 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */ 619 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */ 620 621 struct hifn_crypt_result 622 { 623 volatile __le16 flags; 624 volatile __le16 reserved; 625 }; 626 627 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */ 628 629 #ifndef HIFN_POLL_FREQUENCY 630 #define HIFN_POLL_FREQUENCY 0x1 631 #endif 632 633 #ifndef HIFN_POLL_SCALAR 634 #define HIFN_POLL_SCALAR 0x0 635 #endif 636 637 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */ 638 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */ 639 640 struct hifn_crypto_alg 641 { 642 struct list_head entry; 643 struct crypto_alg alg; 644 struct hifn_device *dev; 645 }; 646 647 #define ASYNC_SCATTERLIST_CACHE 16 648 649 #define ASYNC_FLAGS_MISALIGNED (1<<0) 650 651 struct ablkcipher_walk 652 { 653 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE]; 654 u32 flags; 655 int num; 656 }; 657 658 struct hifn_context 659 { 660 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv; 661 struct hifn_device *dev; 662 unsigned int keysize, ivsize; 663 u8 op, type, mode, unused; 664 struct ablkcipher_walk walk; 665 atomic_t sg_num; 666 }; 667 668 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg) 669 670 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg) 671 { 672 u32 ret; 673 674 ret = readl(dev->bar[0] + reg); 675 676 return ret; 677 } 678 679 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg) 680 { 681 u32 ret; 682 683 ret = readl(dev->bar[1] + reg); 684 685 return ret; 686 } 687 688 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val) 689 { 690 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg); 691 } 692 693 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val) 694 { 695 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg); 696 } 697 698 static void hifn_wait_puc(struct hifn_device *dev) 699 { 700 int i; 701 u32 ret; 702 703 for (i=10000; i > 0; --i) { 704 ret = hifn_read_0(dev, HIFN_0_PUCTRL); 705 if (!(ret & HIFN_PUCTRL_RESET)) 706 break; 707 708 udelay(1); 709 } 710 711 if (!i) 712 dprintk("%s: Failed to reset PUC unit.\n", dev->name); 713 } 714 715 static void hifn_reset_puc(struct hifn_device *dev) 716 { 717 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 718 hifn_wait_puc(dev); 719 } 720 721 static void hifn_stop_device(struct hifn_device *dev) 722 { 723 hifn_write_1(dev, HIFN_1_DMA_CSR, 724 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 725 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS); 726 hifn_write_0(dev, HIFN_0_PUIER, 0); 727 hifn_write_1(dev, HIFN_1_DMA_IER, 0); 728 } 729 730 static void hifn_reset_dma(struct hifn_device *dev, int full) 731 { 732 hifn_stop_device(dev); 733 734 /* 735 * Setting poll frequency and others to 0. 736 */ 737 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 738 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 739 mdelay(1); 740 741 /* 742 * Reset DMA. 743 */ 744 if (full) { 745 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE); 746 mdelay(1); 747 } else { 748 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE | 749 HIFN_DMACNFG_MSTRESET); 750 hifn_reset_puc(dev); 751 } 752 753 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 754 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 755 756 hifn_reset_puc(dev); 757 } 758 759 static u32 hifn_next_signature(u_int32_t a, u_int cnt) 760 { 761 int i; 762 u32 v; 763 764 for (i = 0; i < cnt; i++) { 765 766 /* get the parity */ 767 v = a & 0x80080125; 768 v ^= v >> 16; 769 v ^= v >> 8; 770 v ^= v >> 4; 771 v ^= v >> 2; 772 v ^= v >> 1; 773 774 a = (v & 1) ^ (a << 1); 775 } 776 777 return a; 778 } 779 780 static struct pci2id { 781 u_short pci_vendor; 782 u_short pci_prod; 783 char card_id[13]; 784 } pci2id[] = { 785 { 786 PCI_VENDOR_ID_HIFN, 787 PCI_DEVICE_ID_HIFN_7955, 788 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 789 0x00, 0x00, 0x00, 0x00, 0x00 } 790 }, 791 { 792 PCI_VENDOR_ID_HIFN, 793 PCI_DEVICE_ID_HIFN_7956, 794 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 795 0x00, 0x00, 0x00, 0x00, 0x00 } 796 } 797 }; 798 799 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 800 static int hifn_rng_data_present(struct hwrng *rng, int wait) 801 { 802 struct hifn_device *dev = (struct hifn_device *)rng->priv; 803 s64 nsec; 804 805 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime)); 806 nsec -= dev->rng_wait_time; 807 if (nsec <= 0) 808 return 1; 809 if (!wait) 810 return 0; 811 ndelay(nsec); 812 return 1; 813 } 814 815 static int hifn_rng_data_read(struct hwrng *rng, u32 *data) 816 { 817 struct hifn_device *dev = (struct hifn_device *)rng->priv; 818 819 *data = hifn_read_1(dev, HIFN_1_RNG_DATA); 820 dev->rngtime = ktime_get(); 821 return 4; 822 } 823 824 static int hifn_register_rng(struct hifn_device *dev) 825 { 826 /* 827 * We must wait at least 256 Pk_clk cycles between two reads of the rng. 828 */ 829 dev->rng_wait_time = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) * 830 256; 831 832 dev->rng.name = dev->name; 833 dev->rng.data_present = hifn_rng_data_present, 834 dev->rng.data_read = hifn_rng_data_read, 835 dev->rng.priv = (unsigned long)dev; 836 837 return hwrng_register(&dev->rng); 838 } 839 840 static void hifn_unregister_rng(struct hifn_device *dev) 841 { 842 hwrng_unregister(&dev->rng); 843 } 844 #else 845 #define hifn_register_rng(dev) 0 846 #define hifn_unregister_rng(dev) 847 #endif 848 849 static int hifn_init_pubrng(struct hifn_device *dev) 850 { 851 int i; 852 853 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) | 854 HIFN_PUBRST_RESET); 855 856 for (i=100; i > 0; --i) { 857 mdelay(1); 858 859 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0) 860 break; 861 } 862 863 if (!i) 864 dprintk("Chip %s: Failed to initialise public key engine.\n", 865 dev->name); 866 else { 867 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE); 868 dev->dmareg |= HIFN_DMAIER_PUBDONE; 869 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 870 871 dprintk("Chip %s: Public key engine has been sucessfully " 872 "initialised.\n", dev->name); 873 } 874 875 /* 876 * Enable RNG engine. 877 */ 878 879 hifn_write_1(dev, HIFN_1_RNG_CONFIG, 880 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA); 881 dprintk("Chip %s: RNG engine has been successfully initialised.\n", 882 dev->name); 883 884 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 885 /* First value must be discarded */ 886 hifn_read_1(dev, HIFN_1_RNG_DATA); 887 dev->rngtime = ktime_get(); 888 #endif 889 return 0; 890 } 891 892 static int hifn_enable_crypto(struct hifn_device *dev) 893 { 894 u32 dmacfg, addr; 895 char *offtbl = NULL; 896 int i; 897 898 for (i = 0; i < ARRAY_SIZE(pci2id); i++) { 899 if (pci2id[i].pci_vendor == dev->pdev->vendor && 900 pci2id[i].pci_prod == dev->pdev->device) { 901 offtbl = pci2id[i].card_id; 902 break; 903 } 904 } 905 906 if (offtbl == NULL) { 907 dprintk("Chip %s: Unknown card!\n", dev->name); 908 return -ENODEV; 909 } 910 911 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG); 912 913 hifn_write_1(dev, HIFN_1_DMA_CNFG, 914 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET | 915 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 916 mdelay(1); 917 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1); 918 mdelay(1); 919 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0); 920 mdelay(1); 921 922 for (i=0; i<12; ++i) { 923 addr = hifn_next_signature(addr, offtbl[i] + 0x101); 924 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr); 925 926 mdelay(1); 927 } 928 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg); 929 930 dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev)); 931 932 return 0; 933 } 934 935 static void hifn_init_dma(struct hifn_device *dev) 936 { 937 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 938 u32 dptr = dev->desc_dma; 939 int i; 940 941 for (i=0; i<HIFN_D_CMD_RSIZE; ++i) 942 dma->cmdr[i].p = __cpu_to_le32(dptr + 943 offsetof(struct hifn_dma, command_bufs[i][0])); 944 for (i=0; i<HIFN_D_RES_RSIZE; ++i) 945 dma->resr[i].p = __cpu_to_le32(dptr + 946 offsetof(struct hifn_dma, result_bufs[i][0])); 947 948 /* 949 * Setup LAST descriptors. 950 */ 951 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr + 952 offsetof(struct hifn_dma, cmdr[0])); 953 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr + 954 offsetof(struct hifn_dma, srcr[0])); 955 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr + 956 offsetof(struct hifn_dma, dstr[0])); 957 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr + 958 offsetof(struct hifn_dma, resr[0])); 959 960 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0; 961 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0; 962 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0; 963 } 964 965 /* 966 * Initialize the PLL. We need to know the frequency of the reference clock 967 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that 968 * allows us to operate without the risk of overclocking the chip. If it 969 * actually uses 33MHz, the chip will operate at half the speed, this can be 970 * overriden by specifying the frequency as module parameter (pci33). 971 * 972 * Unfortunately the PCI clock is not very suitable since the HIFN needs a 973 * stable clock and the PCI clock frequency may vary, so the default is the 974 * external clock. There is no way to find out its frequency, we default to 975 * 66MHz since according to Mike Ham of HiFn, almost every board in existence 976 * has an external crystal populated at 66MHz. 977 */ 978 static void hifn_init_pll(struct hifn_device *dev) 979 { 980 unsigned int freq, m; 981 u32 pllcfg; 982 983 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1; 984 985 if (strncmp(hifn_pll_ref, "ext", 3) == 0) 986 pllcfg |= HIFN_PLL_REF_CLK_PLL; 987 else 988 pllcfg |= HIFN_PLL_REF_CLK_HBI; 989 990 if (hifn_pll_ref[3] != '\0') 991 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); 992 else { 993 freq = 66; 994 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, " 995 "override with hifn_pll_ref=%.3s<frequency>\n", 996 freq, hifn_pll_ref); 997 } 998 999 m = HIFN_PLL_FCK_MAX / freq; 1000 1001 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT; 1002 if (m <= 8) 1003 pllcfg |= HIFN_PLL_IS_1_8; 1004 else 1005 pllcfg |= HIFN_PLL_IS_9_12; 1006 1007 /* Select clock source and enable clock bypass */ 1008 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 1009 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP); 1010 1011 /* Let the chip lock to the input clock */ 1012 mdelay(10); 1013 1014 /* Disable clock bypass */ 1015 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 1016 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI); 1017 1018 /* Switch the engines to the PLL */ 1019 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 1020 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL); 1021 1022 /* 1023 * The Fpk_clk runs at half the total speed. Its frequency is needed to 1024 * calculate the minimum time between two reads of the rng. Since 33MHz 1025 * is actually 33.333... we overestimate the frequency here, resulting 1026 * in slightly larger intervals. 1027 */ 1028 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2; 1029 } 1030 1031 static void hifn_init_registers(struct hifn_device *dev) 1032 { 1033 u32 dptr = dev->desc_dma; 1034 1035 /* Initialization magic... */ 1036 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 1037 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD); 1038 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER); 1039 1040 /* write all 4 ring address registers */ 1041 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr + 1042 offsetof(struct hifn_dma, cmdr[0])); 1043 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr + 1044 offsetof(struct hifn_dma, srcr[0])); 1045 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr + 1046 offsetof(struct hifn_dma, dstr[0])); 1047 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr + 1048 offsetof(struct hifn_dma, resr[0])); 1049 1050 mdelay(2); 1051 #if 0 1052 hifn_write_1(dev, HIFN_1_DMA_CSR, 1053 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 1054 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS | 1055 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 1056 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 1057 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 1058 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 1059 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 1060 HIFN_DMACSR_S_WAIT | 1061 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 1062 HIFN_DMACSR_C_WAIT | 1063 HIFN_DMACSR_ENGINE | 1064 HIFN_DMACSR_PUBDONE); 1065 #else 1066 hifn_write_1(dev, HIFN_1_DMA_CSR, 1067 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA | 1068 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA | 1069 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 1070 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 1071 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 1072 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 1073 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 1074 HIFN_DMACSR_S_WAIT | 1075 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 1076 HIFN_DMACSR_C_WAIT | 1077 HIFN_DMACSR_ENGINE | 1078 HIFN_DMACSR_PUBDONE); 1079 #endif 1080 hifn_read_1(dev, HIFN_1_DMA_CSR); 1081 1082 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT | 1083 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER | 1084 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT | 1085 HIFN_DMAIER_ENGINE; 1086 dev->dmareg &= ~HIFN_DMAIER_C_WAIT; 1087 1088 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1089 hifn_read_1(dev, HIFN_1_DMA_IER); 1090 #if 0 1091 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG | 1092 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES | 1093 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 | 1094 HIFN_PUCNFG_DRAM); 1095 #else 1096 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342); 1097 #endif 1098 hifn_init_pll(dev); 1099 1100 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 1101 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 1102 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST | 1103 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) | 1104 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL)); 1105 } 1106 1107 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf, 1108 unsigned dlen, unsigned slen, u16 mask, u8 snum) 1109 { 1110 struct hifn_base_command *base_cmd; 1111 u8 *buf_pos = buf; 1112 1113 base_cmd = (struct hifn_base_command *)buf_pos; 1114 base_cmd->masks = __cpu_to_le16(mask); 1115 base_cmd->total_source_count = 1116 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO); 1117 base_cmd->total_dest_count = 1118 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO); 1119 1120 dlen >>= 16; 1121 slen >>= 16; 1122 base_cmd->session_num = __cpu_to_le16(snum | 1123 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) | 1124 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M)); 1125 1126 return sizeof(struct hifn_base_command); 1127 } 1128 1129 static int hifn_setup_crypto_command(struct hifn_device *dev, 1130 u8 *buf, unsigned dlen, unsigned slen, 1131 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode) 1132 { 1133 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1134 struct hifn_crypt_command *cry_cmd; 1135 u8 *buf_pos = buf; 1136 u16 cmd_len; 1137 1138 cry_cmd = (struct hifn_crypt_command *)buf_pos; 1139 1140 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff); 1141 dlen >>= 16; 1142 cry_cmd->masks = __cpu_to_le16(mode | 1143 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & 1144 HIFN_CRYPT_CMD_SRCLEN_M)); 1145 cry_cmd->header_skip = 0; 1146 cry_cmd->reserved = 0; 1147 1148 buf_pos += sizeof(struct hifn_crypt_command); 1149 1150 dma->cmdu++; 1151 if (dma->cmdu > 1) { 1152 dev->dmareg |= HIFN_DMAIER_C_WAIT; 1153 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1154 } 1155 1156 if (keylen) { 1157 memcpy(buf_pos, key, keylen); 1158 buf_pos += keylen; 1159 } 1160 if (ivsize) { 1161 memcpy(buf_pos, iv, ivsize); 1162 buf_pos += ivsize; 1163 } 1164 1165 cmd_len = buf_pos - buf; 1166 1167 return cmd_len; 1168 } 1169 1170 static int hifn_setup_cmd_desc(struct hifn_device *dev, 1171 struct hifn_context *ctx, void *priv, unsigned int nbytes) 1172 { 1173 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1174 int cmd_len, sa_idx; 1175 u8 *buf, *buf_pos; 1176 u16 mask; 1177 1178 sa_idx = dma->cmdi; 1179 buf_pos = buf = dma->command_bufs[dma->cmdi]; 1180 1181 mask = 0; 1182 switch (ctx->op) { 1183 case ACRYPTO_OP_DECRYPT: 1184 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE; 1185 break; 1186 case ACRYPTO_OP_ENCRYPT: 1187 mask = HIFN_BASE_CMD_CRYPT; 1188 break; 1189 case ACRYPTO_OP_HMAC: 1190 mask = HIFN_BASE_CMD_MAC; 1191 break; 1192 default: 1193 goto err_out; 1194 } 1195 1196 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes, 1197 nbytes, mask, dev->snum); 1198 1199 if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) { 1200 u16 md = 0; 1201 1202 if (ctx->keysize) 1203 md |= HIFN_CRYPT_CMD_NEW_KEY; 1204 if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB) 1205 md |= HIFN_CRYPT_CMD_NEW_IV; 1206 1207 switch (ctx->mode) { 1208 case ACRYPTO_MODE_ECB: 1209 md |= HIFN_CRYPT_CMD_MODE_ECB; 1210 break; 1211 case ACRYPTO_MODE_CBC: 1212 md |= HIFN_CRYPT_CMD_MODE_CBC; 1213 break; 1214 case ACRYPTO_MODE_CFB: 1215 md |= HIFN_CRYPT_CMD_MODE_CFB; 1216 break; 1217 case ACRYPTO_MODE_OFB: 1218 md |= HIFN_CRYPT_CMD_MODE_OFB; 1219 break; 1220 default: 1221 goto err_out; 1222 } 1223 1224 switch (ctx->type) { 1225 case ACRYPTO_TYPE_AES_128: 1226 if (ctx->keysize != 16) 1227 goto err_out; 1228 md |= HIFN_CRYPT_CMD_KSZ_128 | 1229 HIFN_CRYPT_CMD_ALG_AES; 1230 break; 1231 case ACRYPTO_TYPE_AES_192: 1232 if (ctx->keysize != 24) 1233 goto err_out; 1234 md |= HIFN_CRYPT_CMD_KSZ_192 | 1235 HIFN_CRYPT_CMD_ALG_AES; 1236 break; 1237 case ACRYPTO_TYPE_AES_256: 1238 if (ctx->keysize != 32) 1239 goto err_out; 1240 md |= HIFN_CRYPT_CMD_KSZ_256 | 1241 HIFN_CRYPT_CMD_ALG_AES; 1242 break; 1243 case ACRYPTO_TYPE_3DES: 1244 if (ctx->keysize != 24) 1245 goto err_out; 1246 md |= HIFN_CRYPT_CMD_ALG_3DES; 1247 break; 1248 case ACRYPTO_TYPE_DES: 1249 if (ctx->keysize != 8) 1250 goto err_out; 1251 md |= HIFN_CRYPT_CMD_ALG_DES; 1252 break; 1253 default: 1254 goto err_out; 1255 } 1256 1257 buf_pos += hifn_setup_crypto_command(dev, buf_pos, 1258 nbytes, nbytes, ctx->key, ctx->keysize, 1259 ctx->iv, ctx->ivsize, md); 1260 } 1261 1262 dev->sa[sa_idx] = priv; 1263 1264 cmd_len = buf_pos - buf; 1265 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID | 1266 HIFN_D_LAST | HIFN_D_MASKDONEIRQ); 1267 1268 if (++dma->cmdi == HIFN_D_CMD_RSIZE) { 1269 dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND | 1270 HIFN_D_VALID | HIFN_D_LAST | 1271 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP); 1272 dma->cmdi = 0; 1273 } else 1274 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID); 1275 1276 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) { 1277 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA); 1278 dev->flags |= HIFN_FLAG_CMD_BUSY; 1279 } 1280 return 0; 1281 1282 err_out: 1283 return -EINVAL; 1284 } 1285 1286 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page, 1287 unsigned int offset, unsigned int size) 1288 { 1289 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1290 int idx; 1291 dma_addr_t addr; 1292 1293 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE); 1294 1295 idx = dma->srci; 1296 1297 dma->srcr[idx].p = __cpu_to_le32(addr); 1298 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1299 HIFN_D_MASKDONEIRQ | HIFN_D_LAST); 1300 1301 if (++idx == HIFN_D_SRC_RSIZE) { 1302 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1303 HIFN_D_JUMP | 1304 HIFN_D_MASKDONEIRQ | HIFN_D_LAST); 1305 idx = 0; 1306 } 1307 1308 dma->srci = idx; 1309 dma->srcu++; 1310 1311 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) { 1312 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA); 1313 dev->flags |= HIFN_FLAG_SRC_BUSY; 1314 } 1315 1316 return size; 1317 } 1318 1319 static void hifn_setup_res_desc(struct hifn_device *dev) 1320 { 1321 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1322 1323 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT | 1324 HIFN_D_VALID | HIFN_D_LAST); 1325 /* 1326 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID | 1327 * HIFN_D_LAST); 1328 */ 1329 1330 if (++dma->resi == HIFN_D_RES_RSIZE) { 1331 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID | 1332 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST); 1333 dma->resi = 0; 1334 } 1335 1336 dma->resu++; 1337 1338 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) { 1339 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA); 1340 dev->flags |= HIFN_FLAG_RES_BUSY; 1341 } 1342 } 1343 1344 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page, 1345 unsigned offset, unsigned size) 1346 { 1347 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1348 int idx; 1349 dma_addr_t addr; 1350 1351 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE); 1352 1353 idx = dma->dsti; 1354 dma->dstr[idx].p = __cpu_to_le32(addr); 1355 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1356 HIFN_D_MASKDONEIRQ | HIFN_D_LAST); 1357 1358 if (++idx == HIFN_D_DST_RSIZE) { 1359 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1360 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | 1361 HIFN_D_LAST); 1362 idx = 0; 1363 } 1364 dma->dsti = idx; 1365 dma->dstu++; 1366 1367 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) { 1368 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA); 1369 dev->flags |= HIFN_FLAG_DST_BUSY; 1370 } 1371 } 1372 1373 static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff, 1374 struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv, 1375 struct hifn_context *ctx) 1376 { 1377 dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n", 1378 dev->name, spage, soff, dpage, doff, nbytes, priv, ctx); 1379 1380 hifn_setup_src_desc(dev, spage, soff, nbytes); 1381 hifn_setup_cmd_desc(dev, ctx, priv, nbytes); 1382 hifn_setup_dst_desc(dev, dpage, doff, nbytes); 1383 hifn_setup_res_desc(dev); 1384 return 0; 1385 } 1386 1387 static int ablkcipher_walk_init(struct ablkcipher_walk *w, 1388 int num, gfp_t gfp_flags) 1389 { 1390 int i; 1391 1392 num = min(ASYNC_SCATTERLIST_CACHE, num); 1393 sg_init_table(w->cache, num); 1394 1395 w->num = 0; 1396 for (i=0; i<num; ++i) { 1397 struct page *page = alloc_page(gfp_flags); 1398 struct scatterlist *s; 1399 1400 if (!page) 1401 break; 1402 1403 s = &w->cache[i]; 1404 1405 sg_set_page(s, page, PAGE_SIZE, 0); 1406 w->num++; 1407 } 1408 1409 return i; 1410 } 1411 1412 static void ablkcipher_walk_exit(struct ablkcipher_walk *w) 1413 { 1414 int i; 1415 1416 for (i=0; i<w->num; ++i) { 1417 struct scatterlist *s = &w->cache[i]; 1418 1419 __free_page(sg_page(s)); 1420 1421 s->length = 0; 1422 } 1423 1424 w->num = 0; 1425 } 1426 1427 static int ablkcipher_add(void *daddr, unsigned int *drestp, struct scatterlist *src, 1428 unsigned int size, unsigned int *nbytesp) 1429 { 1430 unsigned int copy, drest = *drestp, nbytes = *nbytesp; 1431 int idx = 0; 1432 void *saddr; 1433 1434 if (drest < size || size > nbytes) 1435 return -EINVAL; 1436 1437 while (size) { 1438 copy = min(drest, min(size, src->length)); 1439 1440 saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1); 1441 memcpy(daddr, saddr + src->offset, copy); 1442 kunmap_atomic(saddr, KM_SOFTIRQ1); 1443 1444 size -= copy; 1445 drest -= copy; 1446 nbytes -= copy; 1447 daddr += copy; 1448 1449 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n", 1450 __func__, copy, size, drest, nbytes); 1451 1452 src++; 1453 idx++; 1454 } 1455 1456 *nbytesp = nbytes; 1457 *drestp = drest; 1458 1459 return idx; 1460 } 1461 1462 static int ablkcipher_walk(struct ablkcipher_request *req, 1463 struct ablkcipher_walk *w) 1464 { 1465 struct scatterlist *src, *dst, *t; 1466 void *daddr; 1467 unsigned int nbytes = req->nbytes, offset, copy, diff; 1468 int idx, tidx, err; 1469 1470 tidx = idx = 0; 1471 offset = 0; 1472 while (nbytes) { 1473 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED)) 1474 return -EINVAL; 1475 1476 src = &req->src[idx]; 1477 dst = &req->dst[idx]; 1478 1479 dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, " 1480 "nbytes: %u.\n", 1481 __func__, src->length, dst->length, src->offset, 1482 dst->offset, offset, nbytes); 1483 1484 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || 1485 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) || 1486 offset) { 1487 unsigned slen = min(src->length - offset, nbytes); 1488 unsigned dlen = PAGE_SIZE; 1489 1490 t = &w->cache[idx]; 1491 1492 daddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0); 1493 err = ablkcipher_add(daddr, &dlen, src, slen, &nbytes); 1494 if (err < 0) 1495 goto err_out_unmap; 1496 1497 idx += err; 1498 1499 copy = slen & ~(HIFN_D_DST_DALIGN - 1); 1500 diff = slen & (HIFN_D_DST_DALIGN - 1); 1501 1502 if (dlen < nbytes) { 1503 /* 1504 * Destination page does not have enough space 1505 * to put there additional blocksized chunk, 1506 * so we mark that page as containing only 1507 * blocksize aligned chunks: 1508 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1)); 1509 * and increase number of bytes to be processed 1510 * in next chunk: 1511 * nbytes += diff; 1512 */ 1513 nbytes += diff; 1514 1515 /* 1516 * Temporary of course... 1517 * Kick author if you will catch this one. 1518 */ 1519 printk(KERN_ERR "%s: dlen: %u, nbytes: %u," 1520 "slen: %u, offset: %u.\n", 1521 __func__, dlen, nbytes, slen, offset); 1522 printk(KERN_ERR "%s: please contact author to fix this " 1523 "issue, generally you should not catch " 1524 "this path under any condition but who " 1525 "knows how did you use crypto code.\n" 1526 "Thank you.\n", __func__); 1527 BUG(); 1528 } else { 1529 copy += diff + nbytes; 1530 1531 src = &req->src[idx]; 1532 1533 err = ablkcipher_add(daddr + slen, &dlen, src, nbytes, &nbytes); 1534 if (err < 0) 1535 goto err_out_unmap; 1536 1537 idx += err; 1538 } 1539 1540 t->length = copy; 1541 t->offset = offset; 1542 1543 kunmap_atomic(daddr, KM_SOFTIRQ0); 1544 } else { 1545 nbytes -= min(src->length, nbytes); 1546 idx++; 1547 } 1548 1549 tidx++; 1550 } 1551 1552 return tidx; 1553 1554 err_out_unmap: 1555 kunmap_atomic(daddr, KM_SOFTIRQ0); 1556 return err; 1557 } 1558 1559 static int hifn_setup_session(struct ablkcipher_request *req) 1560 { 1561 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1562 struct hifn_device *dev = ctx->dev; 1563 struct page *spage, *dpage; 1564 unsigned long soff, doff, dlen, flags; 1565 unsigned int nbytes = req->nbytes, idx = 0, len; 1566 int err = -EINVAL, sg_num; 1567 struct scatterlist *src, *dst, *t; 1568 1569 if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB) 1570 goto err_out_exit; 1571 1572 ctx->walk.flags = 0; 1573 1574 while (nbytes) { 1575 dst = &req->dst[idx]; 1576 dlen = min(dst->length, nbytes); 1577 1578 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || 1579 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN)) 1580 ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED; 1581 1582 nbytes -= dlen; 1583 idx++; 1584 } 1585 1586 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1587 err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC); 1588 if (err < 0) 1589 return err; 1590 } 1591 1592 nbytes = req->nbytes; 1593 idx = 0; 1594 1595 sg_num = ablkcipher_walk(req, &ctx->walk); 1596 if (sg_num < 0) { 1597 err = sg_num; 1598 goto err_out_exit; 1599 } 1600 atomic_set(&ctx->sg_num, sg_num); 1601 1602 spin_lock_irqsave(&dev->lock, flags); 1603 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) { 1604 err = -EAGAIN; 1605 goto err_out; 1606 } 1607 1608 dev->snum++; 1609 dev->started += sg_num; 1610 1611 while (nbytes) { 1612 src = &req->src[idx]; 1613 dst = &req->dst[idx]; 1614 t = &ctx->walk.cache[idx]; 1615 1616 if (t->length) { 1617 spage = dpage = sg_page(t); 1618 soff = doff = 0; 1619 len = t->length; 1620 } else { 1621 spage = sg_page(src); 1622 soff = src->offset; 1623 1624 dpage = sg_page(dst); 1625 doff = dst->offset; 1626 1627 len = dst->length; 1628 } 1629 1630 idx++; 1631 1632 err = hifn_setup_dma(dev, spage, soff, dpage, doff, nbytes, 1633 req, ctx); 1634 if (err) 1635 goto err_out; 1636 1637 nbytes -= min(len, nbytes); 1638 } 1639 1640 dev->active = HIFN_DEFAULT_ACTIVE_NUM; 1641 spin_unlock_irqrestore(&dev->lock, flags); 1642 1643 return 0; 1644 1645 err_out: 1646 spin_unlock_irqrestore(&dev->lock, flags); 1647 err_out_exit: 1648 if (err) 1649 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, " 1650 "type: %u, err: %d.\n", 1651 dev->name, ctx->iv, ctx->ivsize, 1652 ctx->key, ctx->keysize, 1653 ctx->mode, ctx->op, ctx->type, err); 1654 1655 return err; 1656 } 1657 1658 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum) 1659 { 1660 int n, err; 1661 u8 src[16]; 1662 struct hifn_context ctx; 1663 u8 fips_aes_ecb_from_zero[16] = { 1664 0x66, 0xE9, 0x4B, 0xD4, 1665 0xEF, 0x8A, 0x2C, 0x3B, 1666 0x88, 0x4C, 0xFA, 0x59, 1667 0xCA, 0x34, 0x2B, 0x2E}; 1668 1669 memset(src, 0, sizeof(src)); 1670 memset(ctx.key, 0, sizeof(ctx.key)); 1671 1672 ctx.dev = dev; 1673 ctx.keysize = 16; 1674 ctx.ivsize = 0; 1675 ctx.iv = NULL; 1676 ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT; 1677 ctx.mode = ACRYPTO_MODE_ECB; 1678 ctx.type = ACRYPTO_TYPE_AES_128; 1679 atomic_set(&ctx.sg_num, 1); 1680 1681 err = hifn_setup_dma(dev, 1682 virt_to_page(src), offset_in_page(src), 1683 virt_to_page(src), offset_in_page(src), 1684 sizeof(src), NULL, &ctx); 1685 if (err) 1686 goto err_out; 1687 1688 msleep(200); 1689 1690 dprintk("%s: decoded: ", dev->name); 1691 for (n=0; n<sizeof(src); ++n) 1692 dprintk("%02x ", src[n]); 1693 dprintk("\n"); 1694 dprintk("%s: FIPS : ", dev->name); 1695 for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n) 1696 dprintk("%02x ", fips_aes_ecb_from_zero[n]); 1697 dprintk("\n"); 1698 1699 if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) { 1700 printk(KERN_INFO "%s: AES 128 ECB test has been successfully " 1701 "passed.\n", dev->name); 1702 return 0; 1703 } 1704 1705 err_out: 1706 printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name); 1707 return -1; 1708 } 1709 1710 static int hifn_start_device(struct hifn_device *dev) 1711 { 1712 int err; 1713 1714 hifn_reset_dma(dev, 1); 1715 1716 err = hifn_enable_crypto(dev); 1717 if (err) 1718 return err; 1719 1720 hifn_reset_puc(dev); 1721 1722 hifn_init_dma(dev); 1723 1724 hifn_init_registers(dev); 1725 1726 hifn_init_pubrng(dev); 1727 1728 return 0; 1729 } 1730 1731 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset, 1732 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp) 1733 { 1734 unsigned int srest = *srestp, nbytes = *nbytesp, copy; 1735 void *daddr; 1736 int idx = 0; 1737 1738 if (srest < size || size > nbytes) 1739 return -EINVAL; 1740 1741 while (size) { 1742 copy = min(srest, min(dst->length, size)); 1743 1744 daddr = kmap_atomic(sg_page(dst), KM_IRQ0); 1745 memcpy(daddr + dst->offset + offset, saddr, copy); 1746 kunmap_atomic(daddr, KM_IRQ0); 1747 1748 nbytes -= copy; 1749 size -= copy; 1750 srest -= copy; 1751 saddr += copy; 1752 offset = 0; 1753 1754 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n", 1755 __func__, copy, size, srest, nbytes); 1756 1757 dst++; 1758 idx++; 1759 } 1760 1761 *nbytesp = nbytes; 1762 *srestp = srest; 1763 1764 return idx; 1765 } 1766 1767 static void hifn_process_ready(struct ablkcipher_request *req, int error) 1768 { 1769 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1770 struct hifn_device *dev; 1771 1772 dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx); 1773 1774 dev = ctx->dev; 1775 dprintk("%s: req: %p, started: %d, sg_num: %d.\n", 1776 __func__, req, dev->started, atomic_read(&ctx->sg_num)); 1777 1778 if (--dev->started < 0) 1779 BUG(); 1780 1781 if (atomic_dec_and_test(&ctx->sg_num)) { 1782 unsigned int nbytes = req->nbytes; 1783 int idx = 0, err; 1784 struct scatterlist *dst, *t; 1785 void *saddr; 1786 1787 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1788 while (nbytes) { 1789 t = &ctx->walk.cache[idx]; 1790 dst = &req->dst[idx]; 1791 1792 dprintk("\n%s: sg_page(t): %p, t->length: %u, " 1793 "sg_page(dst): %p, dst->length: %u, " 1794 "nbytes: %u.\n", 1795 __func__, sg_page(t), t->length, 1796 sg_page(dst), dst->length, nbytes); 1797 1798 if (!t->length) { 1799 nbytes -= min(dst->length, nbytes); 1800 idx++; 1801 continue; 1802 } 1803 1804 saddr = kmap_atomic(sg_page(t), KM_IRQ1); 1805 1806 err = ablkcipher_get(saddr, &t->length, t->offset, 1807 dst, nbytes, &nbytes); 1808 if (err < 0) { 1809 kunmap_atomic(saddr, KM_IRQ1); 1810 break; 1811 } 1812 1813 idx += err; 1814 kunmap_atomic(saddr, KM_IRQ1); 1815 } 1816 1817 ablkcipher_walk_exit(&ctx->walk); 1818 } 1819 1820 req->base.complete(&req->base, error); 1821 } 1822 } 1823 1824 static void hifn_check_for_completion(struct hifn_device *dev, int error) 1825 { 1826 int i; 1827 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1828 1829 for (i=0; i<HIFN_D_RES_RSIZE; ++i) { 1830 struct hifn_desc *d = &dma->resr[i]; 1831 1832 if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) { 1833 dev->success++; 1834 dev->reset = 0; 1835 hifn_process_ready(dev->sa[i], error); 1836 dev->sa[i] = NULL; 1837 } 1838 1839 if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER)) 1840 if (printk_ratelimit()) 1841 printk("%s: overflow detected [d: %u, o: %u] " 1842 "at %d resr: l: %08x, p: %08x.\n", 1843 dev->name, 1844 !!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)), 1845 !!(d->l & __cpu_to_le32(HIFN_D_OVER)), 1846 i, d->l, d->p); 1847 } 1848 } 1849 1850 static void hifn_clear_rings(struct hifn_device *dev) 1851 { 1852 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1853 int i, u; 1854 1855 dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1856 "k: %d.%d.%d.%d.\n", 1857 dev->name, 1858 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1859 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1860 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1861 1862 i = dma->resk; u = dma->resu; 1863 while (u != 0) { 1864 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1865 break; 1866 1867 if (i != HIFN_D_RES_RSIZE) 1868 u--; 1869 1870 if (++i == (HIFN_D_RES_RSIZE + 1)) 1871 i = 0; 1872 } 1873 dma->resk = i; dma->resu = u; 1874 1875 i = dma->srck; u = dma->srcu; 1876 while (u != 0) { 1877 if (i == HIFN_D_SRC_RSIZE) 1878 i = 0; 1879 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1880 break; 1881 i++, u--; 1882 } 1883 dma->srck = i; dma->srcu = u; 1884 1885 i = dma->cmdk; u = dma->cmdu; 1886 while (u != 0) { 1887 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1888 break; 1889 if (i != HIFN_D_CMD_RSIZE) 1890 u--; 1891 if (++i == (HIFN_D_CMD_RSIZE + 1)) 1892 i = 0; 1893 } 1894 dma->cmdk = i; dma->cmdu = u; 1895 1896 i = dma->dstk; u = dma->dstu; 1897 while (u != 0) { 1898 if (i == HIFN_D_DST_RSIZE) 1899 i = 0; 1900 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1901 break; 1902 i++, u--; 1903 } 1904 dma->dstk = i; dma->dstu = u; 1905 1906 dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1907 "k: %d.%d.%d.%d.\n", 1908 dev->name, 1909 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1910 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1911 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1912 } 1913 1914 static void hifn_work(struct work_struct *work) 1915 { 1916 struct delayed_work *dw = container_of(work, struct delayed_work, work); 1917 struct hifn_device *dev = container_of(dw, struct hifn_device, work); 1918 unsigned long flags; 1919 int reset = 0; 1920 u32 r = 0; 1921 1922 spin_lock_irqsave(&dev->lock, flags); 1923 if (dev->active == 0) { 1924 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1925 1926 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) { 1927 dev->flags &= ~HIFN_FLAG_CMD_BUSY; 1928 r |= HIFN_DMACSR_C_CTRL_DIS; 1929 } 1930 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) { 1931 dev->flags &= ~HIFN_FLAG_SRC_BUSY; 1932 r |= HIFN_DMACSR_S_CTRL_DIS; 1933 } 1934 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) { 1935 dev->flags &= ~HIFN_FLAG_DST_BUSY; 1936 r |= HIFN_DMACSR_D_CTRL_DIS; 1937 } 1938 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) { 1939 dev->flags &= ~HIFN_FLAG_RES_BUSY; 1940 r |= HIFN_DMACSR_R_CTRL_DIS; 1941 } 1942 if (r) 1943 hifn_write_1(dev, HIFN_1_DMA_CSR, r); 1944 } else 1945 dev->active--; 1946 1947 if (dev->prev_success == dev->success && dev->started) 1948 reset = 1; 1949 dev->prev_success = dev->success; 1950 spin_unlock_irqrestore(&dev->lock, flags); 1951 1952 if (reset) { 1953 dprintk("%s: r: %08x, active: %d, started: %d, " 1954 "success: %lu: reset: %d.\n", 1955 dev->name, r, dev->active, dev->started, 1956 dev->success, reset); 1957 1958 if (++dev->reset >= 5) { 1959 dprintk("%s: really hard reset.\n", dev->name); 1960 hifn_reset_dma(dev, 1); 1961 hifn_stop_device(dev); 1962 hifn_start_device(dev); 1963 dev->reset = 0; 1964 } 1965 1966 spin_lock_irqsave(&dev->lock, flags); 1967 hifn_check_for_completion(dev, -EBUSY); 1968 hifn_clear_rings(dev); 1969 dev->started = 0; 1970 spin_unlock_irqrestore(&dev->lock, flags); 1971 } 1972 1973 schedule_delayed_work(&dev->work, HZ); 1974 } 1975 1976 static irqreturn_t hifn_interrupt(int irq, void *data) 1977 { 1978 struct hifn_device *dev = (struct hifn_device *)data; 1979 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1980 u32 dmacsr, restart; 1981 1982 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR); 1983 1984 dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], " 1985 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n", 1986 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi, 1987 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1988 dma->cmdi, dma->srci, dma->dsti, dma->resi); 1989 1990 if ((dmacsr & dev->dmareg) == 0) 1991 return IRQ_NONE; 1992 1993 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg); 1994 1995 if (dmacsr & HIFN_DMACSR_ENGINE) 1996 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR)); 1997 if (dmacsr & HIFN_DMACSR_PUBDONE) 1998 hifn_write_1(dev, HIFN_1_PUB_STATUS, 1999 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE); 2000 2001 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER); 2002 if (restart) { 2003 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR); 2004 2005 if (printk_ratelimit()) 2006 printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n", 2007 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER), 2008 !!(dmacsr & HIFN_DMACSR_D_OVER), 2009 puisr, !!(puisr & HIFN_PUISR_DSTOVER)); 2010 if (!!(puisr & HIFN_PUISR_DSTOVER)) 2011 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 2012 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER | 2013 HIFN_DMACSR_D_OVER)); 2014 } 2015 2016 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT | 2017 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT); 2018 if (restart) { 2019 if (printk_ratelimit()) 2020 printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n", 2021 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT), 2022 !!(dmacsr & HIFN_DMACSR_S_ABORT), 2023 !!(dmacsr & HIFN_DMACSR_D_ABORT), 2024 !!(dmacsr & HIFN_DMACSR_R_ABORT)); 2025 hifn_reset_dma(dev, 1); 2026 hifn_init_dma(dev); 2027 hifn_init_registers(dev); 2028 } 2029 2030 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) { 2031 dprintk("%s: wait on command.\n", dev->name); 2032 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT); 2033 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 2034 } 2035 2036 tasklet_schedule(&dev->tasklet); 2037 hifn_clear_rings(dev); 2038 2039 return IRQ_HANDLED; 2040 } 2041 2042 static void hifn_flush(struct hifn_device *dev) 2043 { 2044 unsigned long flags; 2045 struct crypto_async_request *async_req; 2046 struct hifn_context *ctx; 2047 struct ablkcipher_request *req; 2048 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 2049 int i; 2050 2051 spin_lock_irqsave(&dev->lock, flags); 2052 for (i=0; i<HIFN_D_RES_RSIZE; ++i) { 2053 struct hifn_desc *d = &dma->resr[i]; 2054 2055 if (dev->sa[i]) { 2056 hifn_process_ready(dev->sa[i], 2057 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0); 2058 } 2059 } 2060 2061 while ((async_req = crypto_dequeue_request(&dev->queue))) { 2062 ctx = crypto_tfm_ctx(async_req->tfm); 2063 req = container_of(async_req, struct ablkcipher_request, base); 2064 2065 hifn_process_ready(req, -ENODEV); 2066 } 2067 spin_unlock_irqrestore(&dev->lock, flags); 2068 } 2069 2070 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 2071 unsigned int len) 2072 { 2073 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 2074 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 2075 struct hifn_device *dev = ctx->dev; 2076 2077 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) { 2078 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 2079 return -1; 2080 } 2081 2082 if (len == HIFN_DES_KEY_LENGTH) { 2083 u32 tmp[DES_EXPKEY_WORDS]; 2084 int ret = des_ekey(tmp, key); 2085 2086 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { 2087 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; 2088 return -EINVAL; 2089 } 2090 } 2091 2092 dev->flags &= ~HIFN_FLAG_OLD_KEY; 2093 2094 memcpy(ctx->key, key, len); 2095 ctx->keysize = len; 2096 2097 return 0; 2098 } 2099 2100 static int hifn_handle_req(struct ablkcipher_request *req) 2101 { 2102 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2103 struct hifn_device *dev = ctx->dev; 2104 int err = -EAGAIN; 2105 2106 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH) 2107 err = hifn_setup_session(req); 2108 2109 if (err == -EAGAIN) { 2110 unsigned long flags; 2111 2112 spin_lock_irqsave(&dev->lock, flags); 2113 err = ablkcipher_enqueue_request(&dev->queue, req); 2114 spin_unlock_irqrestore(&dev->lock, flags); 2115 } 2116 2117 return err; 2118 } 2119 2120 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op, 2121 u8 type, u8 mode) 2122 { 2123 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2124 unsigned ivsize; 2125 2126 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); 2127 2128 if (req->info && mode != ACRYPTO_MODE_ECB) { 2129 if (type == ACRYPTO_TYPE_AES_128) 2130 ivsize = HIFN_AES_IV_LENGTH; 2131 else if (type == ACRYPTO_TYPE_DES) 2132 ivsize = HIFN_DES_KEY_LENGTH; 2133 else if (type == ACRYPTO_TYPE_3DES) 2134 ivsize = HIFN_3DES_KEY_LENGTH; 2135 } 2136 2137 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) { 2138 if (ctx->keysize == 24) 2139 type = ACRYPTO_TYPE_AES_192; 2140 else if (ctx->keysize == 32) 2141 type = ACRYPTO_TYPE_AES_256; 2142 } 2143 2144 ctx->op = op; 2145 ctx->mode = mode; 2146 ctx->type = type; 2147 ctx->iv = req->info; 2148 ctx->ivsize = ivsize; 2149 2150 /* 2151 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2152 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2153 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2154 */ 2155 2156 return hifn_handle_req(req); 2157 } 2158 2159 static int hifn_process_queue(struct hifn_device *dev) 2160 { 2161 struct crypto_async_request *async_req; 2162 struct hifn_context *ctx; 2163 struct ablkcipher_request *req; 2164 unsigned long flags; 2165 int err = 0; 2166 2167 while (dev->started < HIFN_QUEUE_LENGTH) { 2168 spin_lock_irqsave(&dev->lock, flags); 2169 async_req = crypto_dequeue_request(&dev->queue); 2170 spin_unlock_irqrestore(&dev->lock, flags); 2171 2172 if (!async_req) 2173 break; 2174 2175 ctx = crypto_tfm_ctx(async_req->tfm); 2176 req = container_of(async_req, struct ablkcipher_request, base); 2177 2178 err = hifn_handle_req(req); 2179 if (err) 2180 break; 2181 } 2182 2183 return err; 2184 } 2185 2186 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op, 2187 u8 type, u8 mode) 2188 { 2189 int err; 2190 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2191 struct hifn_device *dev = ctx->dev; 2192 2193 err = hifn_setup_crypto_req(req, op, type, mode); 2194 if (err) 2195 return err; 2196 2197 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) 2198 hifn_process_queue(dev); 2199 2200 return -EINPROGRESS; 2201 } 2202 2203 /* 2204 * AES ecryption functions. 2205 */ 2206 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req) 2207 { 2208 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2209 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2210 } 2211 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req) 2212 { 2213 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2214 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2215 } 2216 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req) 2217 { 2218 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2219 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2220 } 2221 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req) 2222 { 2223 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2224 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2225 } 2226 2227 /* 2228 * AES decryption functions. 2229 */ 2230 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req) 2231 { 2232 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2233 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2234 } 2235 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req) 2236 { 2237 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2238 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2239 } 2240 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req) 2241 { 2242 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2243 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2244 } 2245 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req) 2246 { 2247 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2248 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2249 } 2250 2251 /* 2252 * DES ecryption functions. 2253 */ 2254 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req) 2255 { 2256 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2257 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2258 } 2259 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req) 2260 { 2261 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2262 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2263 } 2264 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req) 2265 { 2266 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2267 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2268 } 2269 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req) 2270 { 2271 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2272 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2273 } 2274 2275 /* 2276 * DES decryption functions. 2277 */ 2278 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req) 2279 { 2280 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2281 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2282 } 2283 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req) 2284 { 2285 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2286 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2287 } 2288 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req) 2289 { 2290 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2291 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2292 } 2293 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req) 2294 { 2295 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2296 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2297 } 2298 2299 /* 2300 * 3DES ecryption functions. 2301 */ 2302 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req) 2303 { 2304 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2305 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2306 } 2307 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req) 2308 { 2309 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2310 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2311 } 2312 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req) 2313 { 2314 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2315 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2316 } 2317 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req) 2318 { 2319 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2320 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2321 } 2322 2323 /* 2324 * 3DES decryption functions. 2325 */ 2326 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req) 2327 { 2328 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2329 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2330 } 2331 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req) 2332 { 2333 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2334 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2335 } 2336 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req) 2337 { 2338 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2339 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2340 } 2341 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req) 2342 { 2343 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2344 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2345 } 2346 2347 struct hifn_alg_template 2348 { 2349 char name[CRYPTO_MAX_ALG_NAME]; 2350 char drv_name[CRYPTO_MAX_ALG_NAME]; 2351 unsigned int bsize; 2352 struct ablkcipher_alg ablkcipher; 2353 }; 2354 2355 static struct hifn_alg_template hifn_alg_templates[] = { 2356 /* 2357 * 3DES ECB, CBC, CFB and OFB modes. 2358 */ 2359 { 2360 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8, 2361 .ablkcipher = { 2362 .min_keysize = HIFN_3DES_KEY_LENGTH, 2363 .max_keysize = HIFN_3DES_KEY_LENGTH, 2364 .setkey = hifn_setkey, 2365 .encrypt = hifn_encrypt_3des_cfb, 2366 .decrypt = hifn_decrypt_3des_cfb, 2367 }, 2368 }, 2369 { 2370 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8, 2371 .ablkcipher = { 2372 .min_keysize = HIFN_3DES_KEY_LENGTH, 2373 .max_keysize = HIFN_3DES_KEY_LENGTH, 2374 .setkey = hifn_setkey, 2375 .encrypt = hifn_encrypt_3des_ofb, 2376 .decrypt = hifn_decrypt_3des_ofb, 2377 }, 2378 }, 2379 { 2380 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8, 2381 .ablkcipher = { 2382 .ivsize = HIFN_IV_LENGTH, 2383 .min_keysize = HIFN_3DES_KEY_LENGTH, 2384 .max_keysize = HIFN_3DES_KEY_LENGTH, 2385 .setkey = hifn_setkey, 2386 .encrypt = hifn_encrypt_3des_cbc, 2387 .decrypt = hifn_decrypt_3des_cbc, 2388 }, 2389 }, 2390 { 2391 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8, 2392 .ablkcipher = { 2393 .min_keysize = HIFN_3DES_KEY_LENGTH, 2394 .max_keysize = HIFN_3DES_KEY_LENGTH, 2395 .setkey = hifn_setkey, 2396 .encrypt = hifn_encrypt_3des_ecb, 2397 .decrypt = hifn_decrypt_3des_ecb, 2398 }, 2399 }, 2400 2401 /* 2402 * DES ECB, CBC, CFB and OFB modes. 2403 */ 2404 { 2405 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8, 2406 .ablkcipher = { 2407 .min_keysize = HIFN_DES_KEY_LENGTH, 2408 .max_keysize = HIFN_DES_KEY_LENGTH, 2409 .setkey = hifn_setkey, 2410 .encrypt = hifn_encrypt_des_cfb, 2411 .decrypt = hifn_decrypt_des_cfb, 2412 }, 2413 }, 2414 { 2415 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8, 2416 .ablkcipher = { 2417 .min_keysize = HIFN_DES_KEY_LENGTH, 2418 .max_keysize = HIFN_DES_KEY_LENGTH, 2419 .setkey = hifn_setkey, 2420 .encrypt = hifn_encrypt_des_ofb, 2421 .decrypt = hifn_decrypt_des_ofb, 2422 }, 2423 }, 2424 { 2425 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8, 2426 .ablkcipher = { 2427 .ivsize = HIFN_IV_LENGTH, 2428 .min_keysize = HIFN_DES_KEY_LENGTH, 2429 .max_keysize = HIFN_DES_KEY_LENGTH, 2430 .setkey = hifn_setkey, 2431 .encrypt = hifn_encrypt_des_cbc, 2432 .decrypt = hifn_decrypt_des_cbc, 2433 }, 2434 }, 2435 { 2436 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8, 2437 .ablkcipher = { 2438 .min_keysize = HIFN_DES_KEY_LENGTH, 2439 .max_keysize = HIFN_DES_KEY_LENGTH, 2440 .setkey = hifn_setkey, 2441 .encrypt = hifn_encrypt_des_ecb, 2442 .decrypt = hifn_decrypt_des_ecb, 2443 }, 2444 }, 2445 2446 /* 2447 * AES ECB, CBC, CFB and OFB modes. 2448 */ 2449 { 2450 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16, 2451 .ablkcipher = { 2452 .min_keysize = AES_MIN_KEY_SIZE, 2453 .max_keysize = AES_MAX_KEY_SIZE, 2454 .setkey = hifn_setkey, 2455 .encrypt = hifn_encrypt_aes_ecb, 2456 .decrypt = hifn_decrypt_aes_ecb, 2457 }, 2458 }, 2459 { 2460 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16, 2461 .ablkcipher = { 2462 .ivsize = HIFN_AES_IV_LENGTH, 2463 .min_keysize = AES_MIN_KEY_SIZE, 2464 .max_keysize = AES_MAX_KEY_SIZE, 2465 .setkey = hifn_setkey, 2466 .encrypt = hifn_encrypt_aes_cbc, 2467 .decrypt = hifn_decrypt_aes_cbc, 2468 }, 2469 }, 2470 { 2471 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16, 2472 .ablkcipher = { 2473 .min_keysize = AES_MIN_KEY_SIZE, 2474 .max_keysize = AES_MAX_KEY_SIZE, 2475 .setkey = hifn_setkey, 2476 .encrypt = hifn_encrypt_aes_cfb, 2477 .decrypt = hifn_decrypt_aes_cfb, 2478 }, 2479 }, 2480 { 2481 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16, 2482 .ablkcipher = { 2483 .min_keysize = AES_MIN_KEY_SIZE, 2484 .max_keysize = AES_MAX_KEY_SIZE, 2485 .setkey = hifn_setkey, 2486 .encrypt = hifn_encrypt_aes_ofb, 2487 .decrypt = hifn_decrypt_aes_ofb, 2488 }, 2489 }, 2490 }; 2491 2492 static int hifn_cra_init(struct crypto_tfm *tfm) 2493 { 2494 struct crypto_alg *alg = tfm->__crt_alg; 2495 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg); 2496 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 2497 2498 ctx->dev = ha->dev; 2499 2500 return 0; 2501 } 2502 2503 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t) 2504 { 2505 struct hifn_crypto_alg *alg; 2506 int err; 2507 2508 alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL); 2509 if (!alg) 2510 return -ENOMEM; 2511 2512 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name); 2513 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s", 2514 t->drv_name, dev->name); 2515 2516 alg->alg.cra_priority = 300; 2517 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC; 2518 alg->alg.cra_blocksize = t->bsize; 2519 alg->alg.cra_ctxsize = sizeof(struct hifn_context); 2520 alg->alg.cra_alignmask = 0; 2521 alg->alg.cra_type = &crypto_ablkcipher_type; 2522 alg->alg.cra_module = THIS_MODULE; 2523 alg->alg.cra_u.ablkcipher = t->ablkcipher; 2524 alg->alg.cra_init = hifn_cra_init; 2525 2526 alg->dev = dev; 2527 2528 list_add_tail(&alg->entry, &dev->alg_list); 2529 2530 err = crypto_register_alg(&alg->alg); 2531 if (err) { 2532 list_del(&alg->entry); 2533 kfree(alg); 2534 } 2535 2536 return err; 2537 } 2538 2539 static void hifn_unregister_alg(struct hifn_device *dev) 2540 { 2541 struct hifn_crypto_alg *a, *n; 2542 2543 list_for_each_entry_safe(a, n, &dev->alg_list, entry) { 2544 list_del(&a->entry); 2545 crypto_unregister_alg(&a->alg); 2546 kfree(a); 2547 } 2548 } 2549 2550 static int hifn_register_alg(struct hifn_device *dev) 2551 { 2552 int i, err; 2553 2554 for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) { 2555 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]); 2556 if (err) 2557 goto err_out_exit; 2558 } 2559 2560 return 0; 2561 2562 err_out_exit: 2563 hifn_unregister_alg(dev); 2564 return err; 2565 } 2566 2567 static void hifn_tasklet_callback(unsigned long data) 2568 { 2569 struct hifn_device *dev = (struct hifn_device *)data; 2570 2571 /* 2572 * This is ok to call this without lock being held, 2573 * althogh it modifies some parameters used in parallel, 2574 * (like dev->success), but they are used in process 2575 * context or update is atomic (like setting dev->sa[i] to NULL). 2576 */ 2577 hifn_check_for_completion(dev, 0); 2578 } 2579 2580 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2581 { 2582 int err, i; 2583 struct hifn_device *dev; 2584 char name[8]; 2585 2586 err = pci_enable_device(pdev); 2587 if (err) 2588 return err; 2589 pci_set_master(pdev); 2590 2591 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); 2592 if (err) 2593 goto err_out_disable_pci_device; 2594 2595 snprintf(name, sizeof(name), "hifn%d", 2596 atomic_inc_return(&hifn_dev_number)-1); 2597 2598 err = pci_request_regions(pdev, name); 2599 if (err) 2600 goto err_out_disable_pci_device; 2601 2602 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE || 2603 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE || 2604 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) { 2605 dprintk("%s: Broken hardware - I/O regions are too small.\n", 2606 pci_name(pdev)); 2607 err = -ENODEV; 2608 goto err_out_free_regions; 2609 } 2610 2611 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg), 2612 GFP_KERNEL); 2613 if (!dev) { 2614 err = -ENOMEM; 2615 goto err_out_free_regions; 2616 } 2617 2618 INIT_LIST_HEAD(&dev->alg_list); 2619 2620 snprintf(dev->name, sizeof(dev->name), "%s", name); 2621 spin_lock_init(&dev->lock); 2622 2623 for (i=0; i<3; ++i) { 2624 unsigned long addr, size; 2625 2626 addr = pci_resource_start(pdev, i); 2627 size = pci_resource_len(pdev, i); 2628 2629 dev->bar[i] = ioremap_nocache(addr, size); 2630 if (!dev->bar[i]) 2631 goto err_out_unmap_bars; 2632 } 2633 2634 dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER); 2635 if (!dev->result_mem) { 2636 dprintk("Failed to allocate %d pages for result_mem.\n", 2637 HIFN_MAX_RESULT_ORDER); 2638 goto err_out_unmap_bars; 2639 } 2640 memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER)); 2641 2642 dev->dst = pci_map_single(pdev, (void *)dev->result_mem, 2643 PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE); 2644 2645 dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma), 2646 &dev->desc_dma); 2647 if (!dev->desc_virt) { 2648 dprintk("Failed to allocate descriptor rings.\n"); 2649 goto err_out_free_result_pages; 2650 } 2651 memset(dev->desc_virt, 0, sizeof(struct hifn_dma)); 2652 2653 dev->pdev = pdev; 2654 dev->irq = pdev->irq; 2655 2656 for (i=0; i<HIFN_D_RES_RSIZE; ++i) 2657 dev->sa[i] = NULL; 2658 2659 pci_set_drvdata(pdev, dev); 2660 2661 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev); 2662 2663 crypto_init_queue(&dev->queue, 1); 2664 2665 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev); 2666 if (err) { 2667 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err); 2668 dev->irq = 0; 2669 goto err_out_free_desc; 2670 } 2671 2672 err = hifn_start_device(dev); 2673 if (err) 2674 goto err_out_free_irq; 2675 2676 err = hifn_test(dev, 1, 0); 2677 if (err) 2678 goto err_out_stop_device; 2679 2680 err = hifn_register_rng(dev); 2681 if (err) 2682 goto err_out_stop_device; 2683 2684 err = hifn_register_alg(dev); 2685 if (err) 2686 goto err_out_unregister_rng; 2687 2688 INIT_DELAYED_WORK(&dev->work, hifn_work); 2689 schedule_delayed_work(&dev->work, HZ); 2690 2691 dprintk("HIFN crypto accelerator card at %s has been " 2692 "successfully registered as %s.\n", 2693 pci_name(pdev), dev->name); 2694 2695 return 0; 2696 2697 err_out_unregister_rng: 2698 hifn_unregister_rng(dev); 2699 err_out_stop_device: 2700 hifn_reset_dma(dev, 1); 2701 hifn_stop_device(dev); 2702 err_out_free_irq: 2703 free_irq(dev->irq, dev->name); 2704 tasklet_kill(&dev->tasklet); 2705 err_out_free_desc: 2706 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2707 dev->desc_virt, dev->desc_dma); 2708 2709 err_out_free_result_pages: 2710 pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER, 2711 PCI_DMA_FROMDEVICE); 2712 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER); 2713 2714 err_out_unmap_bars: 2715 for (i=0; i<3; ++i) 2716 if (dev->bar[i]) 2717 iounmap(dev->bar[i]); 2718 2719 err_out_free_regions: 2720 pci_release_regions(pdev); 2721 2722 err_out_disable_pci_device: 2723 pci_disable_device(pdev); 2724 2725 return err; 2726 } 2727 2728 static void hifn_remove(struct pci_dev *pdev) 2729 { 2730 int i; 2731 struct hifn_device *dev; 2732 2733 dev = pci_get_drvdata(pdev); 2734 2735 if (dev) { 2736 cancel_delayed_work(&dev->work); 2737 flush_scheduled_work(); 2738 2739 hifn_unregister_rng(dev); 2740 hifn_unregister_alg(dev); 2741 hifn_reset_dma(dev, 1); 2742 hifn_stop_device(dev); 2743 2744 free_irq(dev->irq, dev->name); 2745 tasklet_kill(&dev->tasklet); 2746 2747 hifn_flush(dev); 2748 2749 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2750 dev->desc_virt, dev->desc_dma); 2751 pci_unmap_single(pdev, dev->dst, 2752 PAGE_SIZE << HIFN_MAX_RESULT_ORDER, 2753 PCI_DMA_FROMDEVICE); 2754 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER); 2755 for (i=0; i<3; ++i) 2756 if (dev->bar[i]) 2757 iounmap(dev->bar[i]); 2758 2759 kfree(dev); 2760 } 2761 2762 pci_release_regions(pdev); 2763 pci_disable_device(pdev); 2764 } 2765 2766 static struct pci_device_id hifn_pci_tbl[] = { 2767 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) }, 2768 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) }, 2769 { 0 } 2770 }; 2771 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl); 2772 2773 static struct pci_driver hifn_pci_driver = { 2774 .name = "hifn795x", 2775 .id_table = hifn_pci_tbl, 2776 .probe = hifn_probe, 2777 .remove = __devexit_p(hifn_remove), 2778 }; 2779 2780 static int __devinit hifn_init(void) 2781 { 2782 unsigned int freq; 2783 int err; 2784 2785 if (strncmp(hifn_pll_ref, "ext", 3) && 2786 strncmp(hifn_pll_ref, "pci", 3)) { 2787 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, " 2788 "must be pci or ext"); 2789 return -EINVAL; 2790 } 2791 2792 /* 2793 * For the 7955/7956 the reference clock frequency must be in the 2794 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz, 2795 * but this chip is currently not supported. 2796 */ 2797 if (hifn_pll_ref[3] != '\0') { 2798 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); 2799 if (freq < 20 || freq > 100) { 2800 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref " 2801 "frequency, must be in the range " 2802 "of 20-100"); 2803 return -EINVAL; 2804 } 2805 } 2806 2807 err = pci_register_driver(&hifn_pci_driver); 2808 if (err < 0) { 2809 dprintk("Failed to register PCI driver for %s device.\n", 2810 hifn_pci_driver.name); 2811 return -ENODEV; 2812 } 2813 2814 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip " 2815 "has been successfully registered.\n"); 2816 2817 return 0; 2818 } 2819 2820 static void __devexit hifn_fini(void) 2821 { 2822 pci_unregister_driver(&hifn_pci_driver); 2823 2824 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip " 2825 "has been successfully unregistered.\n"); 2826 } 2827 2828 module_init(hifn_init); 2829 module_exit(hifn_fini); 2830 2831 MODULE_LICENSE("GPL"); 2832 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>"); 2833 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip."); 2834