xref: /openbmc/linux/drivers/crypto/hifn_795x.c (revision 2f8be0e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4  * All rights reserved.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22 
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 #include <crypto/internal/skcipher.h>
26 
27 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29 MODULE_PARM_DESC(hifn_pll_ref,
30 		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
31 
32 static atomic_t hifn_dev_number;
33 
34 #define ACRYPTO_OP_DECRYPT	0
35 #define ACRYPTO_OP_ENCRYPT	1
36 #define ACRYPTO_OP_HMAC		2
37 #define ACRYPTO_OP_RNG		3
38 
39 #define ACRYPTO_MODE_ECB		0
40 #define ACRYPTO_MODE_CBC		1
41 #define ACRYPTO_MODE_CFB		2
42 #define ACRYPTO_MODE_OFB		3
43 
44 #define ACRYPTO_TYPE_AES_128	0
45 #define ACRYPTO_TYPE_AES_192	1
46 #define ACRYPTO_TYPE_AES_256	2
47 #define ACRYPTO_TYPE_3DES	3
48 #define ACRYPTO_TYPE_DES	4
49 
50 #define PCI_VENDOR_ID_HIFN		0x13A3
51 #define PCI_DEVICE_ID_HIFN_7955		0x0020
52 #define	PCI_DEVICE_ID_HIFN_7956		0x001d
53 
54 /* I/O region sizes */
55 
56 #define HIFN_BAR0_SIZE			0x1000
57 #define HIFN_BAR1_SIZE			0x2000
58 #define HIFN_BAR2_SIZE			0x8000
59 
60 /* DMA registres */
61 
62 #define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
63 #define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
64 #define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
65 #define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
66 #define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
67 #define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
68 #define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
69 #define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
70 #define HIFN_CHIP_ID			0x98	/* Chip ID */
71 
72 /*
73  * Processing Unit Registers (offset from BASEREG0)
74  */
75 #define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
76 #define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
77 #define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
78 #define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
79 #define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
80 #define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
81 #define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
82 #define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
83 #define	HIFN_0_SPACESIZE	0x20	/* Register space size */
84 
85 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
86 #define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
87 #define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
88 #define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
89 #define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
90 #define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
91 
92 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93 #define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
94 #define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
95 #define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
96 #define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
97 #define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
98 #define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
99 #define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
100 #define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
101 #define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
102 #define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
103 
104 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105 #define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
106 #define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
107 #define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
108 #define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
109 #define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
110 #define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
111 #define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
112 #define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
113 #define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
114 #define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
115 #define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
116 #define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
117 #define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
118 #define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
119 #define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
120 #define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
121 #define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
122 #define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
123 #define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
124 #define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
125 #define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
126 #define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
127 #define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
128 
129 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130 #define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
131 #define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
132 #define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
133 #define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
134 #define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
135 #define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
136 #define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
137 #define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
138 #define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
139 #define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
140 
141 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142 #define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
143 #define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
144 #define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
145 #define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
146 #define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
147 #define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
148 #define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
149 #define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
150 #define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
151 #define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
152 #define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
153 #define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
154 #define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
155 #define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
156 #define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
157 #define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
158 #define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
159 
160 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
161 #define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
162 #define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
163 
164 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165 #define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
166 
167 /*
168  * DMA Interface Registers (offset from BASEREG1)
169  */
170 #define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
171 #define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
172 #define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
173 #define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
174 #define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
175 #define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
176 #define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
177 #define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
178 #define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
179 #define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
180 #define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
181 #define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
182 #define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
183 #define	HIFN_1_REVID		0x98	/* Revision ID */
184 #define	HIFN_1_UNLOCK_SECRET1	0xf4
185 #define	HIFN_1_UNLOCK_SECRET2	0xfc
186 #define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
187 #define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
188 #define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
189 #define	HIFN_1_PUB_OP		0x308	/* Public Operand */
190 #define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
191 #define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
192 #define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
193 #define	HIFN_1_RNG_DATA		0x318	/* RNG data */
194 #define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
195 #define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
196 
197 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198 #define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
199 #define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
200 #define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
201 #define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
202 #define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
203 #define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
204 #define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
205 #define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
206 #define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
207 #define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
208 #define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
209 #define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
210 #define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
211 #define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
212 #define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
213 #define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
214 #define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
215 #define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
216 #define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
217 #define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
218 #define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
219 #define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
220 #define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
221 #define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
222 #define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
223 #define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
224 #define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
225 #define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
226 #define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
227 #define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
228 #define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
229 #define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
230 #define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
231 #define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
232 #define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
233 #define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
234 #define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
235 #define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
236 
237 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238 #define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
239 #define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
240 #define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
241 #define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
242 #define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
243 #define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
244 #define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
245 #define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
246 #define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
247 #define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
248 #define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
249 #define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
250 #define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
251 #define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
252 #define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
253 #define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
254 #define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
255 #define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
256 #define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
257 #define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
258 #define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
259 #define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
260 
261 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262 #define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
263 #define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
264 #define	HIFN_DMACNFG_UNLOCK	0x00000800
265 #define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
266 #define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
267 #define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
268 #define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
269 #define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
270 
271 /* PLL configuration register */
272 #define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
273 #define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
274 #define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
275 #define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
276 #define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
277 #define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
278 #define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
279 #define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
280 #define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
281 #define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
282 #define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
283 #define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
284 #define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
285 #define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
286 #define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
287 #define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
288 #define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
289 
290 #define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
291 
292 /* Public key reset register (HIFN_1_PUB_RESET) */
293 #define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
294 
295 /* Public base address register (HIFN_1_PUB_BASE) */
296 #define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
297 
298 /* Public operand length register (HIFN_1_PUB_OPLEN) */
299 #define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
300 #define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
301 #define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
302 #define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
303 #define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
304 #define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
305 
306 /* Public operation register (HIFN_1_PUB_OP) */
307 #define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
308 #define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
309 #define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
310 #define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
311 #define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
312 #define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
313 #define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
314 #define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
315 #define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
316 #define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
317 #define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
318 #define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
319 #define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
320 #define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
321 #define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
322 #define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
323 #define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
324 #define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
325 #define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
326 #define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
327 
328 /* Public status register (HIFN_1_PUB_STATUS) */
329 #define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
330 #define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
331 
332 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
333 #define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
334 
335 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
336 #define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
337 
338 #define HIFN_NAMESIZE			32
339 #define HIFN_MAX_RESULT_ORDER		5
340 
341 #define	HIFN_D_CMD_RSIZE		(24 * 1)
342 #define	HIFN_D_SRC_RSIZE		(80 * 1)
343 #define	HIFN_D_DST_RSIZE		(80 * 1)
344 #define	HIFN_D_RES_RSIZE		(24 * 1)
345 
346 #define HIFN_D_DST_DALIGN		4
347 
348 #define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
349 
350 #define AES_MIN_KEY_SIZE		16
351 #define AES_MAX_KEY_SIZE		32
352 
353 #define HIFN_DES_KEY_LENGTH		8
354 #define HIFN_3DES_KEY_LENGTH		24
355 #define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
356 #define HIFN_IV_LENGTH			8
357 #define HIFN_AES_IV_LENGTH		16
358 #define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
359 
360 #define HIFN_MAC_KEY_LENGTH		64
361 #define HIFN_MD5_LENGTH			16
362 #define HIFN_SHA1_LENGTH		20
363 #define HIFN_MAC_TRUNC_LENGTH		12
364 
365 #define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
366 #define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
367 #define HIFN_USED_RESULT		12
368 
369 struct hifn_desc {
370 	volatile __le32		l;
371 	volatile __le32		p;
372 };
373 
374 struct hifn_dma {
375 	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
376 	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
377 	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
378 	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
379 
380 	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381 	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382 
383 	/*
384 	 *  Our current positions for insertion and removal from the descriptor
385 	 *  rings.
386 	 */
387 	volatile int		cmdi, srci, dsti, resi;
388 	volatile int		cmdu, srcu, dstu, resu;
389 	int			cmdk, srck, dstk, resk;
390 };
391 
392 #define HIFN_FLAG_CMD_BUSY	(1 << 0)
393 #define HIFN_FLAG_SRC_BUSY	(1 << 1)
394 #define HIFN_FLAG_DST_BUSY	(1 << 2)
395 #define HIFN_FLAG_RES_BUSY	(1 << 3)
396 #define HIFN_FLAG_OLD_KEY	(1 << 4)
397 
398 #define HIFN_DEFAULT_ACTIVE_NUM	5
399 
400 struct hifn_device {
401 	char			name[HIFN_NAMESIZE];
402 
403 	int			irq;
404 
405 	struct pci_dev		*pdev;
406 	void __iomem		*bar[3];
407 
408 	void			*desc_virt;
409 	dma_addr_t		desc_dma;
410 
411 	u32			dmareg;
412 
413 	void			*sa[HIFN_D_RES_RSIZE];
414 
415 	spinlock_t		lock;
416 
417 	u32			flags;
418 	int			active, started;
419 	struct delayed_work	work;
420 	unsigned long		reset;
421 	unsigned long		success;
422 	unsigned long		prev_success;
423 
424 	u8			snum;
425 
426 	struct tasklet_struct	tasklet;
427 
428 	struct crypto_queue	queue;
429 	struct list_head	alg_list;
430 
431 	unsigned int		pk_clk_freq;
432 
433 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434 	unsigned int		rng_wait_time;
435 	ktime_t			rngtime;
436 	struct hwrng		rng;
437 #endif
438 };
439 
440 #define	HIFN_D_LENGTH			0x0000ffff
441 #define	HIFN_D_NOINVALID		0x01000000
442 #define	HIFN_D_MASKDONEIRQ		0x02000000
443 #define	HIFN_D_DESTOVER			0x04000000
444 #define	HIFN_D_OVER			0x08000000
445 #define	HIFN_D_LAST			0x20000000
446 #define	HIFN_D_JUMP			0x40000000
447 #define	HIFN_D_VALID			0x80000000
448 
449 struct hifn_base_command {
450 	volatile __le16		masks;
451 	volatile __le16		session_num;
452 	volatile __le16		total_source_count;
453 	volatile __le16		total_dest_count;
454 };
455 
456 #define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
457 #define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
458 #define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
459 #define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
460 #define	HIFN_BASE_CMD_DECODE		0x2000
461 #define	HIFN_BASE_CMD_SRCLEN_M		0xc000
462 #define	HIFN_BASE_CMD_SRCLEN_S		14
463 #define	HIFN_BASE_CMD_DSTLEN_M		0x3000
464 #define	HIFN_BASE_CMD_DSTLEN_S		12
465 #define	HIFN_BASE_CMD_LENMASK_HI	0x30000
466 #define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
467 
468 /*
469  * Structure to help build up the command data structure.
470  */
471 struct hifn_crypt_command {
472 	volatile __le16		masks;
473 	volatile __le16		header_skip;
474 	volatile __le16		source_count;
475 	volatile __le16		reserved;
476 };
477 
478 #define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
479 #define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
480 #define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
481 #define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
482 #define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
483 #define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
484 #define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
485 #define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
486 #define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
487 #define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
488 #define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
489 #define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
490 #define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
491 #define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
492 #define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
493 #define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
494 #define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
495 #define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
496 #define	HIFN_CRYPT_CMD_SRCLEN_S		14
497 
498 /*
499  * Structure to help build up the command data structure.
500  */
501 struct hifn_mac_command {
502 	volatile __le16	masks;
503 	volatile __le16	header_skip;
504 	volatile __le16	source_count;
505 	volatile __le16	reserved;
506 };
507 
508 #define	HIFN_MAC_CMD_ALG_MASK		0x0001
509 #define	HIFN_MAC_CMD_ALG_SHA1		0x0000
510 #define	HIFN_MAC_CMD_ALG_MD5		0x0001
511 #define	HIFN_MAC_CMD_MODE_MASK		0x000c
512 #define	HIFN_MAC_CMD_MODE_HMAC		0x0000
513 #define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
514 #define	HIFN_MAC_CMD_MODE_HASH		0x0008
515 #define	HIFN_MAC_CMD_MODE_FULL		0x0004
516 #define	HIFN_MAC_CMD_TRUNC		0x0010
517 #define	HIFN_MAC_CMD_RESULT		0x0020
518 #define	HIFN_MAC_CMD_APPEND		0x0040
519 #define	HIFN_MAC_CMD_SRCLEN_M		0xc000
520 #define	HIFN_MAC_CMD_SRCLEN_S		14
521 
522 /*
523  * MAC POS IPsec initiates authentication after encryption on encodes
524  * and before decryption on decodes.
525  */
526 #define	HIFN_MAC_CMD_POS_IPSEC		0x0200
527 #define	HIFN_MAC_CMD_NEW_KEY		0x0800
528 
529 struct hifn_comp_command {
530 	volatile __le16		masks;
531 	volatile __le16		header_skip;
532 	volatile __le16		source_count;
533 	volatile __le16		reserved;
534 };
535 
536 #define	HIFN_COMP_CMD_SRCLEN_M		0xc000
537 #define	HIFN_COMP_CMD_SRCLEN_S		14
538 #define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
539 #define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
540 #define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
541 #define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
542 #define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
543 #define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
544 #define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
545 #define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
546 
547 struct hifn_base_result {
548 	volatile __le16		flags;
549 	volatile __le16		session;
550 	volatile __le16		src_cnt;		/* 15:0 of source count */
551 	volatile __le16		dst_cnt;		/* 15:0 of dest count */
552 };
553 
554 #define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
555 #define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
556 #define	HIFN_BASE_RES_SRCLEN_S		14
557 #define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
558 #define	HIFN_BASE_RES_DSTLEN_S		12
559 
560 struct hifn_comp_result {
561 	volatile __le16		flags;
562 	volatile __le16		crc;
563 };
564 
565 #define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
566 #define	HIFN_COMP_RES_LCB_S		8
567 #define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
568 #define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
569 #define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
570 
571 struct hifn_mac_result {
572 	volatile __le16		flags;
573 	volatile __le16		reserved;
574 	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
575 };
576 
577 #define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
578 #define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
579 
580 struct hifn_crypt_result {
581 	volatile __le16		flags;
582 	volatile __le16		reserved;
583 };
584 
585 #define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
586 
587 #ifndef HIFN_POLL_FREQUENCY
588 #define	HIFN_POLL_FREQUENCY	0x1
589 #endif
590 
591 #ifndef HIFN_POLL_SCALAR
592 #define	HIFN_POLL_SCALAR	0x0
593 #endif
594 
595 #define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
596 #define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
597 
598 struct hifn_crypto_alg {
599 	struct list_head	entry;
600 	struct skcipher_alg	alg;
601 	struct hifn_device	*dev;
602 };
603 
604 #define ASYNC_SCATTERLIST_CACHE	16
605 
606 #define ASYNC_FLAGS_MISALIGNED	(1 << 0)
607 
608 struct hifn_cipher_walk {
609 	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
610 	u32			flags;
611 	int			num;
612 };
613 
614 struct hifn_context {
615 	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
616 	struct hifn_device	*dev;
617 	unsigned int		keysize;
618 };
619 
620 struct hifn_request_context {
621 	u8			*iv;
622 	unsigned int		ivsize;
623 	u8			op, type, mode, unused;
624 	struct hifn_cipher_walk	walk;
625 };
626 
627 #define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
628 
629 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
630 {
631 	return readl(dev->bar[0] + reg);
632 }
633 
634 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
635 {
636 	return readl(dev->bar[1] + reg);
637 }
638 
639 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
640 {
641 	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
642 }
643 
644 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
645 {
646 	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
647 }
648 
649 static void hifn_wait_puc(struct hifn_device *dev)
650 {
651 	int i;
652 	u32 ret;
653 
654 	for (i = 10000; i > 0; --i) {
655 		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
656 		if (!(ret & HIFN_PUCTRL_RESET))
657 			break;
658 
659 		udelay(1);
660 	}
661 
662 	if (!i)
663 		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
664 }
665 
666 static void hifn_reset_puc(struct hifn_device *dev)
667 {
668 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
669 	hifn_wait_puc(dev);
670 }
671 
672 static void hifn_stop_device(struct hifn_device *dev)
673 {
674 	hifn_write_1(dev, HIFN_1_DMA_CSR,
675 		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
676 		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
677 	hifn_write_0(dev, HIFN_0_PUIER, 0);
678 	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
679 }
680 
681 static void hifn_reset_dma(struct hifn_device *dev, int full)
682 {
683 	hifn_stop_device(dev);
684 
685 	/*
686 	 * Setting poll frequency and others to 0.
687 	 */
688 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
689 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
690 	mdelay(1);
691 
692 	/*
693 	 * Reset DMA.
694 	 */
695 	if (full) {
696 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
697 		mdelay(1);
698 	} else {
699 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
700 				HIFN_DMACNFG_MSTRESET);
701 		hifn_reset_puc(dev);
702 	}
703 
704 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
705 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
706 
707 	hifn_reset_puc(dev);
708 }
709 
710 static u32 hifn_next_signature(u32 a, u_int cnt)
711 {
712 	int i;
713 	u32 v;
714 
715 	for (i = 0; i < cnt; i++) {
716 		/* get the parity */
717 		v = a & 0x80080125;
718 		v ^= v >> 16;
719 		v ^= v >> 8;
720 		v ^= v >> 4;
721 		v ^= v >> 2;
722 		v ^= v >> 1;
723 
724 		a = (v & 1) ^ (a << 1);
725 	}
726 
727 	return a;
728 }
729 
730 static struct pci2id {
731 	u_short		pci_vendor;
732 	u_short		pci_prod;
733 	char		card_id[13];
734 } pci2id[] = {
735 	{
736 		PCI_VENDOR_ID_HIFN,
737 		PCI_DEVICE_ID_HIFN_7955,
738 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
739 		  0x00, 0x00, 0x00, 0x00, 0x00 }
740 	},
741 	{
742 		PCI_VENDOR_ID_HIFN,
743 		PCI_DEVICE_ID_HIFN_7956,
744 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
745 		  0x00, 0x00, 0x00, 0x00, 0x00 }
746 	}
747 };
748 
749 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
750 static int hifn_rng_data_present(struct hwrng *rng, int wait)
751 {
752 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
753 	s64 nsec;
754 
755 	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
756 	nsec -= dev->rng_wait_time;
757 	if (nsec <= 0)
758 		return 1;
759 	if (!wait)
760 		return 0;
761 	ndelay(nsec);
762 	return 1;
763 }
764 
765 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
766 {
767 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
768 
769 	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
770 	dev->rngtime = ktime_get();
771 	return 4;
772 }
773 
774 static int hifn_register_rng(struct hifn_device *dev)
775 {
776 	/*
777 	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
778 	 */
779 	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
780 						   dev->pk_clk_freq) * 256;
781 
782 	dev->rng.name		= dev->name;
783 	dev->rng.data_present	= hifn_rng_data_present,
784 	dev->rng.data_read	= hifn_rng_data_read,
785 	dev->rng.priv		= (unsigned long)dev;
786 
787 	return hwrng_register(&dev->rng);
788 }
789 
790 static void hifn_unregister_rng(struct hifn_device *dev)
791 {
792 	hwrng_unregister(&dev->rng);
793 }
794 #else
795 #define hifn_register_rng(dev)		0
796 #define hifn_unregister_rng(dev)
797 #endif
798 
799 static int hifn_init_pubrng(struct hifn_device *dev)
800 {
801 	int i;
802 
803 	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
804 			HIFN_PUBRST_RESET);
805 
806 	for (i = 100; i > 0; --i) {
807 		mdelay(1);
808 
809 		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
810 			break;
811 	}
812 
813 	if (!i) {
814 		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
815 	} else {
816 		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
817 		dev->dmareg |= HIFN_DMAIER_PUBDONE;
818 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
819 
820 		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
821 	}
822 
823 	/* Enable RNG engine. */
824 
825 	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
826 			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
827 	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
828 
829 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
830 	/* First value must be discarded */
831 	hifn_read_1(dev, HIFN_1_RNG_DATA);
832 	dev->rngtime = ktime_get();
833 #endif
834 	return 0;
835 }
836 
837 static int hifn_enable_crypto(struct hifn_device *dev)
838 {
839 	u32 dmacfg, addr;
840 	char *offtbl = NULL;
841 	int i;
842 
843 	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
844 		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
845 				pci2id[i].pci_prod == dev->pdev->device) {
846 			offtbl = pci2id[i].card_id;
847 			break;
848 		}
849 	}
850 
851 	if (!offtbl) {
852 		dev_err(&dev->pdev->dev, "Unknown card!\n");
853 		return -ENODEV;
854 	}
855 
856 	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
857 
858 	hifn_write_1(dev, HIFN_1_DMA_CNFG,
859 			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
860 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
861 	mdelay(1);
862 	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
863 	mdelay(1);
864 	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
865 	mdelay(1);
866 
867 	for (i = 0; i < 12; ++i) {
868 		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
869 		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
870 
871 		mdelay(1);
872 	}
873 	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
874 
875 	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
876 
877 	return 0;
878 }
879 
880 static void hifn_init_dma(struct hifn_device *dev)
881 {
882 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
883 	u32 dptr = dev->desc_dma;
884 	int i;
885 
886 	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
887 		dma->cmdr[i].p = __cpu_to_le32(dptr +
888 				offsetof(struct hifn_dma, command_bufs[i][0]));
889 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
890 		dma->resr[i].p = __cpu_to_le32(dptr +
891 				offsetof(struct hifn_dma, result_bufs[i][0]));
892 
893 	/* Setup LAST descriptors. */
894 	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
895 			offsetof(struct hifn_dma, cmdr[0]));
896 	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
897 			offsetof(struct hifn_dma, srcr[0]));
898 	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
899 			offsetof(struct hifn_dma, dstr[0]));
900 	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
901 			offsetof(struct hifn_dma, resr[0]));
902 
903 	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
904 	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
905 	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
906 }
907 
908 /*
909  * Initialize the PLL. We need to know the frequency of the reference clock
910  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
911  * allows us to operate without the risk of overclocking the chip. If it
912  * actually uses 33MHz, the chip will operate at half the speed, this can be
913  * overridden by specifying the frequency as module parameter (pci33).
914  *
915  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
916  * stable clock and the PCI clock frequency may vary, so the default is the
917  * external clock. There is no way to find out its frequency, we default to
918  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
919  * has an external crystal populated at 66MHz.
920  */
921 static void hifn_init_pll(struct hifn_device *dev)
922 {
923 	unsigned int freq, m;
924 	u32 pllcfg;
925 
926 	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
927 
928 	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
929 		pllcfg |= HIFN_PLL_REF_CLK_PLL;
930 	else
931 		pllcfg |= HIFN_PLL_REF_CLK_HBI;
932 
933 	if (hifn_pll_ref[3] != '\0')
934 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
935 	else {
936 		freq = 66;
937 		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
938 			 freq, hifn_pll_ref);
939 	}
940 
941 	m = HIFN_PLL_FCK_MAX / freq;
942 
943 	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
944 	if (m <= 8)
945 		pllcfg |= HIFN_PLL_IS_1_8;
946 	else
947 		pllcfg |= HIFN_PLL_IS_9_12;
948 
949 	/* Select clock source and enable clock bypass */
950 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
951 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
952 
953 	/* Let the chip lock to the input clock */
954 	mdelay(10);
955 
956 	/* Disable clock bypass */
957 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
958 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
959 
960 	/* Switch the engines to the PLL */
961 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
962 		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
963 
964 	/*
965 	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
966 	 * calculate the minimum time between two reads of the rng. Since 33MHz
967 	 * is actually 33.333... we overestimate the frequency here, resulting
968 	 * in slightly larger intervals.
969 	 */
970 	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
971 }
972 
973 static void hifn_init_registers(struct hifn_device *dev)
974 {
975 	u32 dptr = dev->desc_dma;
976 
977 	/* Initialization magic... */
978 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
979 	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
980 	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
981 
982 	/* write all 4 ring address registers */
983 	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
984 				offsetof(struct hifn_dma, cmdr[0]));
985 	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
986 				offsetof(struct hifn_dma, srcr[0]));
987 	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
988 				offsetof(struct hifn_dma, dstr[0]));
989 	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
990 				offsetof(struct hifn_dma, resr[0]));
991 
992 	mdelay(2);
993 #if 0
994 	hifn_write_1(dev, HIFN_1_DMA_CSR,
995 	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
996 	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
997 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
998 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
999 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1000 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1001 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1002 	    HIFN_DMACSR_S_WAIT |
1003 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1004 	    HIFN_DMACSR_C_WAIT |
1005 	    HIFN_DMACSR_ENGINE |
1006 	    HIFN_DMACSR_PUBDONE);
1007 #else
1008 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1009 	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1010 	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1011 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1012 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1013 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1014 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1015 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1016 	    HIFN_DMACSR_S_WAIT |
1017 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1018 	    HIFN_DMACSR_C_WAIT |
1019 	    HIFN_DMACSR_ENGINE |
1020 	    HIFN_DMACSR_PUBDONE);
1021 #endif
1022 	hifn_read_1(dev, HIFN_1_DMA_CSR);
1023 
1024 	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1025 	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1026 	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1027 	    HIFN_DMAIER_ENGINE;
1028 	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1029 
1030 	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1031 	hifn_read_1(dev, HIFN_1_DMA_IER);
1032 #if 0
1033 	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1034 		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1035 		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1036 		    HIFN_PUCNFG_DRAM);
1037 #else
1038 	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1039 #endif
1040 	hifn_init_pll(dev);
1041 
1042 	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1043 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1044 	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1045 	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1046 	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1047 }
1048 
1049 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1050 		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1051 {
1052 	struct hifn_base_command *base_cmd;
1053 	u8 *buf_pos = buf;
1054 
1055 	base_cmd = (struct hifn_base_command *)buf_pos;
1056 	base_cmd->masks = __cpu_to_le16(mask);
1057 	base_cmd->total_source_count =
1058 		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1059 	base_cmd->total_dest_count =
1060 		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1061 
1062 	dlen >>= 16;
1063 	slen >>= 16;
1064 	base_cmd->session_num = __cpu_to_le16(snum |
1065 	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1066 	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1067 
1068 	return sizeof(struct hifn_base_command);
1069 }
1070 
1071 static int hifn_setup_crypto_command(struct hifn_device *dev,
1072 		u8 *buf, unsigned dlen, unsigned slen,
1073 		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1074 {
1075 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1076 	struct hifn_crypt_command *cry_cmd;
1077 	u8 *buf_pos = buf;
1078 	u16 cmd_len;
1079 
1080 	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1081 
1082 	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1083 	dlen >>= 16;
1084 	cry_cmd->masks = __cpu_to_le16(mode |
1085 			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1086 			 HIFN_CRYPT_CMD_SRCLEN_M));
1087 	cry_cmd->header_skip = 0;
1088 	cry_cmd->reserved = 0;
1089 
1090 	buf_pos += sizeof(struct hifn_crypt_command);
1091 
1092 	dma->cmdu++;
1093 	if (dma->cmdu > 1) {
1094 		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1095 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1096 	}
1097 
1098 	if (keylen) {
1099 		memcpy(buf_pos, key, keylen);
1100 		buf_pos += keylen;
1101 	}
1102 	if (ivsize) {
1103 		memcpy(buf_pos, iv, ivsize);
1104 		buf_pos += ivsize;
1105 	}
1106 
1107 	cmd_len = buf_pos - buf;
1108 
1109 	return cmd_len;
1110 }
1111 
1112 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1113 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1114 		void *priv, unsigned int nbytes)
1115 {
1116 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1117 	int cmd_len, sa_idx;
1118 	u8 *buf, *buf_pos;
1119 	u16 mask;
1120 
1121 	sa_idx = dma->cmdi;
1122 	buf_pos = buf = dma->command_bufs[dma->cmdi];
1123 
1124 	mask = 0;
1125 	switch (rctx->op) {
1126 	case ACRYPTO_OP_DECRYPT:
1127 		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1128 		break;
1129 	case ACRYPTO_OP_ENCRYPT:
1130 		mask = HIFN_BASE_CMD_CRYPT;
1131 		break;
1132 	case ACRYPTO_OP_HMAC:
1133 		mask = HIFN_BASE_CMD_MAC;
1134 		break;
1135 	default:
1136 		goto err_out;
1137 	}
1138 
1139 	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1140 			nbytes, mask, dev->snum);
1141 
1142 	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1143 		u16 md = 0;
1144 
1145 		if (ctx->keysize)
1146 			md |= HIFN_CRYPT_CMD_NEW_KEY;
1147 		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1148 			md |= HIFN_CRYPT_CMD_NEW_IV;
1149 
1150 		switch (rctx->mode) {
1151 		case ACRYPTO_MODE_ECB:
1152 			md |= HIFN_CRYPT_CMD_MODE_ECB;
1153 			break;
1154 		case ACRYPTO_MODE_CBC:
1155 			md |= HIFN_CRYPT_CMD_MODE_CBC;
1156 			break;
1157 		case ACRYPTO_MODE_CFB:
1158 			md |= HIFN_CRYPT_CMD_MODE_CFB;
1159 			break;
1160 		case ACRYPTO_MODE_OFB:
1161 			md |= HIFN_CRYPT_CMD_MODE_OFB;
1162 			break;
1163 		default:
1164 			goto err_out;
1165 		}
1166 
1167 		switch (rctx->type) {
1168 		case ACRYPTO_TYPE_AES_128:
1169 			if (ctx->keysize != 16)
1170 				goto err_out;
1171 			md |= HIFN_CRYPT_CMD_KSZ_128 |
1172 				HIFN_CRYPT_CMD_ALG_AES;
1173 			break;
1174 		case ACRYPTO_TYPE_AES_192:
1175 			if (ctx->keysize != 24)
1176 				goto err_out;
1177 			md |= HIFN_CRYPT_CMD_KSZ_192 |
1178 				HIFN_CRYPT_CMD_ALG_AES;
1179 			break;
1180 		case ACRYPTO_TYPE_AES_256:
1181 			if (ctx->keysize != 32)
1182 				goto err_out;
1183 			md |= HIFN_CRYPT_CMD_KSZ_256 |
1184 				HIFN_CRYPT_CMD_ALG_AES;
1185 			break;
1186 		case ACRYPTO_TYPE_3DES:
1187 			if (ctx->keysize != 24)
1188 				goto err_out;
1189 			md |= HIFN_CRYPT_CMD_ALG_3DES;
1190 			break;
1191 		case ACRYPTO_TYPE_DES:
1192 			if (ctx->keysize != 8)
1193 				goto err_out;
1194 			md |= HIFN_CRYPT_CMD_ALG_DES;
1195 			break;
1196 		default:
1197 			goto err_out;
1198 		}
1199 
1200 		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1201 				nbytes, nbytes, ctx->key, ctx->keysize,
1202 				rctx->iv, rctx->ivsize, md);
1203 	}
1204 
1205 	dev->sa[sa_idx] = priv;
1206 	dev->started++;
1207 
1208 	cmd_len = buf_pos - buf;
1209 	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1210 			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1211 
1212 	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1213 		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1214 			HIFN_D_VALID | HIFN_D_LAST |
1215 			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1216 		dma->cmdi = 0;
1217 	} else {
1218 		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1219 	}
1220 
1221 	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1222 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1223 		dev->flags |= HIFN_FLAG_CMD_BUSY;
1224 	}
1225 	return 0;
1226 
1227 err_out:
1228 	return -EINVAL;
1229 }
1230 
1231 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1232 		unsigned int offset, unsigned int size, int last)
1233 {
1234 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1235 	int idx;
1236 	dma_addr_t addr;
1237 
1238 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1239 
1240 	idx = dma->srci;
1241 
1242 	dma->srcr[idx].p = __cpu_to_le32(addr);
1243 	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1244 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1245 
1246 	if (++idx == HIFN_D_SRC_RSIZE) {
1247 		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1248 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1249 				(last ? HIFN_D_LAST : 0));
1250 		idx = 0;
1251 	}
1252 
1253 	dma->srci = idx;
1254 	dma->srcu++;
1255 
1256 	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1257 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1258 		dev->flags |= HIFN_FLAG_SRC_BUSY;
1259 	}
1260 
1261 	return size;
1262 }
1263 
1264 static void hifn_setup_res_desc(struct hifn_device *dev)
1265 {
1266 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1267 
1268 	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1269 			HIFN_D_VALID | HIFN_D_LAST);
1270 	/*
1271 	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1272 	 *					HIFN_D_LAST);
1273 	 */
1274 
1275 	if (++dma->resi == HIFN_D_RES_RSIZE) {
1276 		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1277 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1278 		dma->resi = 0;
1279 	}
1280 
1281 	dma->resu++;
1282 
1283 	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1284 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1285 		dev->flags |= HIFN_FLAG_RES_BUSY;
1286 	}
1287 }
1288 
1289 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1290 		unsigned offset, unsigned size, int last)
1291 {
1292 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1293 	int idx;
1294 	dma_addr_t addr;
1295 
1296 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1297 
1298 	idx = dma->dsti;
1299 	dma->dstr[idx].p = __cpu_to_le32(addr);
1300 	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1301 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1302 
1303 	if (++idx == HIFN_D_DST_RSIZE) {
1304 		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1305 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1306 				(last ? HIFN_D_LAST : 0));
1307 		idx = 0;
1308 	}
1309 	dma->dsti = idx;
1310 	dma->dstu++;
1311 
1312 	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1313 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1314 		dev->flags |= HIFN_FLAG_DST_BUSY;
1315 	}
1316 }
1317 
1318 static int hifn_setup_dma(struct hifn_device *dev,
1319 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1320 		struct scatterlist *src, struct scatterlist *dst,
1321 		unsigned int nbytes, void *priv)
1322 {
1323 	struct scatterlist *t;
1324 	struct page *spage, *dpage;
1325 	unsigned int soff, doff;
1326 	unsigned int n, len;
1327 
1328 	n = nbytes;
1329 	while (n) {
1330 		spage = sg_page(src);
1331 		soff = src->offset;
1332 		len = min(src->length, n);
1333 
1334 		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1335 
1336 		src++;
1337 		n -= len;
1338 	}
1339 
1340 	t = &rctx->walk.cache[0];
1341 	n = nbytes;
1342 	while (n) {
1343 		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1344 			BUG_ON(!sg_page(t));
1345 			dpage = sg_page(t);
1346 			doff = 0;
1347 			len = t->length;
1348 		} else {
1349 			BUG_ON(!sg_page(dst));
1350 			dpage = sg_page(dst);
1351 			doff = dst->offset;
1352 			len = dst->length;
1353 		}
1354 		len = min(len, n);
1355 
1356 		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1357 
1358 		dst++;
1359 		t++;
1360 		n -= len;
1361 	}
1362 
1363 	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1364 	hifn_setup_res_desc(dev);
1365 	return 0;
1366 }
1367 
1368 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1369 		int num, gfp_t gfp_flags)
1370 {
1371 	int i;
1372 
1373 	num = min(ASYNC_SCATTERLIST_CACHE, num);
1374 	sg_init_table(w->cache, num);
1375 
1376 	w->num = 0;
1377 	for (i = 0; i < num; ++i) {
1378 		struct page *page = alloc_page(gfp_flags);
1379 		struct scatterlist *s;
1380 
1381 		if (!page)
1382 			break;
1383 
1384 		s = &w->cache[i];
1385 
1386 		sg_set_page(s, page, PAGE_SIZE, 0);
1387 		w->num++;
1388 	}
1389 
1390 	return i;
1391 }
1392 
1393 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1394 {
1395 	int i;
1396 
1397 	for (i = 0; i < w->num; ++i) {
1398 		struct scatterlist *s = &w->cache[i];
1399 
1400 		__free_page(sg_page(s));
1401 
1402 		s->length = 0;
1403 	}
1404 
1405 	w->num = 0;
1406 }
1407 
1408 static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1409 		unsigned int size, unsigned int *nbytesp)
1410 {
1411 	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1412 	int idx = 0;
1413 
1414 	if (drest < size || size > nbytes)
1415 		return -EINVAL;
1416 
1417 	while (size) {
1418 		copy = min3(drest, size, dst->length);
1419 
1420 		size -= copy;
1421 		drest -= copy;
1422 		nbytes -= copy;
1423 
1424 		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1425 			 __func__, copy, size, drest, nbytes);
1426 
1427 		dst++;
1428 		idx++;
1429 	}
1430 
1431 	*nbytesp = nbytes;
1432 	*drestp = drest;
1433 
1434 	return idx;
1435 }
1436 
1437 static int hifn_cipher_walk(struct skcipher_request *req,
1438 		struct hifn_cipher_walk *w)
1439 {
1440 	struct scatterlist *dst, *t;
1441 	unsigned int nbytes = req->cryptlen, offset, copy, diff;
1442 	int idx, tidx, err;
1443 
1444 	tidx = idx = 0;
1445 	offset = 0;
1446 	while (nbytes) {
1447 		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1448 			return -EINVAL;
1449 
1450 		dst = &req->dst[idx];
1451 
1452 		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1453 			 __func__, dst->length, dst->offset, offset, nbytes);
1454 
1455 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1456 		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1457 		    offset) {
1458 			unsigned slen = min(dst->length - offset, nbytes);
1459 			unsigned dlen = PAGE_SIZE;
1460 
1461 			t = &w->cache[idx];
1462 
1463 			err = skcipher_add(&dlen, dst, slen, &nbytes);
1464 			if (err < 0)
1465 				return err;
1466 
1467 			idx += err;
1468 
1469 			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1470 			diff = slen & (HIFN_D_DST_DALIGN - 1);
1471 
1472 			if (dlen < nbytes) {
1473 				/*
1474 				 * Destination page does not have enough space
1475 				 * to put there additional blocksized chunk,
1476 				 * so we mark that page as containing only
1477 				 * blocksize aligned chunks:
1478 				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1479 				 * and increase number of bytes to be processed
1480 				 * in next chunk:
1481 				 *	nbytes += diff;
1482 				 */
1483 				nbytes += diff;
1484 
1485 				/*
1486 				 * Temporary of course...
1487 				 * Kick author if you will catch this one.
1488 				 */
1489 				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1490 				       __func__, dlen, nbytes, slen, offset);
1491 				pr_err("%s: please contact author to fix this "
1492 				       "issue, generally you should not catch "
1493 				       "this path under any condition but who "
1494 				       "knows how did you use crypto code.\n"
1495 				       "Thank you.\n",	__func__);
1496 				BUG();
1497 			} else {
1498 				copy += diff + nbytes;
1499 
1500 				dst = &req->dst[idx];
1501 
1502 				err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1503 				if (err < 0)
1504 					return err;
1505 
1506 				idx += err;
1507 			}
1508 
1509 			t->length = copy;
1510 			t->offset = offset;
1511 		} else {
1512 			nbytes -= min(dst->length, nbytes);
1513 			idx++;
1514 		}
1515 
1516 		tidx++;
1517 	}
1518 
1519 	return tidx;
1520 }
1521 
1522 static int hifn_setup_session(struct skcipher_request *req)
1523 {
1524 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1525 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1526 	struct hifn_device *dev = ctx->dev;
1527 	unsigned long dlen, flags;
1528 	unsigned int nbytes = req->cryptlen, idx = 0;
1529 	int err = -EINVAL, sg_num;
1530 	struct scatterlist *dst;
1531 
1532 	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1533 		goto err_out_exit;
1534 
1535 	rctx->walk.flags = 0;
1536 
1537 	while (nbytes) {
1538 		dst = &req->dst[idx];
1539 		dlen = min(dst->length, nbytes);
1540 
1541 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1542 		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1543 			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1544 
1545 		nbytes -= dlen;
1546 		idx++;
1547 	}
1548 
1549 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1550 		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1551 		if (err < 0)
1552 			return err;
1553 	}
1554 
1555 	sg_num = hifn_cipher_walk(req, &rctx->walk);
1556 	if (sg_num < 0) {
1557 		err = sg_num;
1558 		goto err_out_exit;
1559 	}
1560 
1561 	spin_lock_irqsave(&dev->lock, flags);
1562 	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1563 		err = -EAGAIN;
1564 		goto err_out;
1565 	}
1566 
1567 	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1568 	if (err)
1569 		goto err_out;
1570 
1571 	dev->snum++;
1572 
1573 	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1574 	spin_unlock_irqrestore(&dev->lock, flags);
1575 
1576 	return 0;
1577 
1578 err_out:
1579 	spin_unlock_irqrestore(&dev->lock, flags);
1580 err_out_exit:
1581 	if (err) {
1582 		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1583 			 "type: %u, err: %d.\n",
1584 			 rctx->iv, rctx->ivsize,
1585 			 ctx->key, ctx->keysize,
1586 			 rctx->mode, rctx->op, rctx->type, err);
1587 	}
1588 
1589 	return err;
1590 }
1591 
1592 static int hifn_start_device(struct hifn_device *dev)
1593 {
1594 	int err;
1595 
1596 	dev->started = dev->active = 0;
1597 	hifn_reset_dma(dev, 1);
1598 
1599 	err = hifn_enable_crypto(dev);
1600 	if (err)
1601 		return err;
1602 
1603 	hifn_reset_puc(dev);
1604 
1605 	hifn_init_dma(dev);
1606 
1607 	hifn_init_registers(dev);
1608 
1609 	hifn_init_pubrng(dev);
1610 
1611 	return 0;
1612 }
1613 
1614 static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1615 		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1616 {
1617 	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1618 	void *daddr;
1619 	int idx = 0;
1620 
1621 	if (srest < size || size > nbytes)
1622 		return -EINVAL;
1623 
1624 	while (size) {
1625 		copy = min3(srest, dst->length, size);
1626 
1627 		daddr = kmap_atomic(sg_page(dst));
1628 		memcpy(daddr + dst->offset + offset, saddr, copy);
1629 		kunmap_atomic(daddr);
1630 
1631 		nbytes -= copy;
1632 		size -= copy;
1633 		srest -= copy;
1634 		saddr += copy;
1635 		offset = 0;
1636 
1637 		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1638 			 __func__, copy, size, srest, nbytes);
1639 
1640 		dst++;
1641 		idx++;
1642 	}
1643 
1644 	*nbytesp = nbytes;
1645 	*srestp = srest;
1646 
1647 	return idx;
1648 }
1649 
1650 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1651 {
1652 	unsigned long flags;
1653 
1654 	spin_lock_irqsave(&dev->lock, flags);
1655 	dev->sa[i] = NULL;
1656 	dev->started--;
1657 	if (dev->started < 0)
1658 		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1659 			 dev->started);
1660 	spin_unlock_irqrestore(&dev->lock, flags);
1661 	BUG_ON(dev->started < 0);
1662 }
1663 
1664 static void hifn_process_ready(struct skcipher_request *req, int error)
1665 {
1666 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1667 
1668 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1669 		unsigned int nbytes = req->cryptlen;
1670 		int idx = 0, err;
1671 		struct scatterlist *dst, *t;
1672 		void *saddr;
1673 
1674 		while (nbytes) {
1675 			t = &rctx->walk.cache[idx];
1676 			dst = &req->dst[idx];
1677 
1678 			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1679 				"sg_page(dst): %p, dst->length: %u, "
1680 				"nbytes: %u.\n",
1681 				__func__, sg_page(t), t->length,
1682 				sg_page(dst), dst->length, nbytes);
1683 
1684 			if (!t->length) {
1685 				nbytes -= min(dst->length, nbytes);
1686 				idx++;
1687 				continue;
1688 			}
1689 
1690 			saddr = kmap_atomic(sg_page(t));
1691 
1692 			err = skcipher_get(saddr, &t->length, t->offset,
1693 					dst, nbytes, &nbytes);
1694 			if (err < 0) {
1695 				kunmap_atomic(saddr);
1696 				break;
1697 			}
1698 
1699 			idx += err;
1700 			kunmap_atomic(saddr);
1701 		}
1702 
1703 		hifn_cipher_walk_exit(&rctx->walk);
1704 	}
1705 
1706 	req->base.complete(&req->base, error);
1707 }
1708 
1709 static void hifn_clear_rings(struct hifn_device *dev, int error)
1710 {
1711 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1712 	int i, u;
1713 
1714 	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1715 			"k: %d.%d.%d.%d.\n",
1716 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1717 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1718 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1719 
1720 	i = dma->resk; u = dma->resu;
1721 	while (u != 0) {
1722 		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1723 			break;
1724 
1725 		if (dev->sa[i]) {
1726 			dev->success++;
1727 			dev->reset = 0;
1728 			hifn_process_ready(dev->sa[i], error);
1729 			hifn_complete_sa(dev, i);
1730 		}
1731 
1732 		if (++i == HIFN_D_RES_RSIZE)
1733 			i = 0;
1734 		u--;
1735 	}
1736 	dma->resk = i; dma->resu = u;
1737 
1738 	i = dma->srck; u = dma->srcu;
1739 	while (u != 0) {
1740 		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1741 			break;
1742 		if (++i == HIFN_D_SRC_RSIZE)
1743 			i = 0;
1744 		u--;
1745 	}
1746 	dma->srck = i; dma->srcu = u;
1747 
1748 	i = dma->cmdk; u = dma->cmdu;
1749 	while (u != 0) {
1750 		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1751 			break;
1752 		if (++i == HIFN_D_CMD_RSIZE)
1753 			i = 0;
1754 		u--;
1755 	}
1756 	dma->cmdk = i; dma->cmdu = u;
1757 
1758 	i = dma->dstk; u = dma->dstu;
1759 	while (u != 0) {
1760 		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1761 			break;
1762 		if (++i == HIFN_D_DST_RSIZE)
1763 			i = 0;
1764 		u--;
1765 	}
1766 	dma->dstk = i; dma->dstu = u;
1767 
1768 	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1769 			"k: %d.%d.%d.%d.\n",
1770 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1771 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1772 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1773 }
1774 
1775 static void hifn_work(struct work_struct *work)
1776 {
1777 	struct delayed_work *dw = to_delayed_work(work);
1778 	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1779 	unsigned long flags;
1780 	int reset = 0;
1781 	u32 r = 0;
1782 
1783 	spin_lock_irqsave(&dev->lock, flags);
1784 	if (dev->active == 0) {
1785 		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1786 
1787 		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1788 			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1789 			r |= HIFN_DMACSR_C_CTRL_DIS;
1790 		}
1791 		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1792 			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1793 			r |= HIFN_DMACSR_S_CTRL_DIS;
1794 		}
1795 		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1796 			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1797 			r |= HIFN_DMACSR_D_CTRL_DIS;
1798 		}
1799 		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1800 			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1801 			r |= HIFN_DMACSR_R_CTRL_DIS;
1802 		}
1803 		if (r)
1804 			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1805 	} else
1806 		dev->active--;
1807 
1808 	if ((dev->prev_success == dev->success) && dev->started)
1809 		reset = 1;
1810 	dev->prev_success = dev->success;
1811 	spin_unlock_irqrestore(&dev->lock, flags);
1812 
1813 	if (reset) {
1814 		if (++dev->reset >= 5) {
1815 			int i;
1816 			struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1817 
1818 			dev_info(&dev->pdev->dev,
1819 				 "r: %08x, active: %d, started: %d, "
1820 				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1821 				 r, dev->active, dev->started,
1822 				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1823 				 reset);
1824 
1825 			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1826 			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1827 				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1828 				if (dev->sa[i]) {
1829 					hifn_process_ready(dev->sa[i], -ENODEV);
1830 					hifn_complete_sa(dev, i);
1831 				}
1832 			}
1833 			pr_info("\n");
1834 
1835 			hifn_reset_dma(dev, 1);
1836 			hifn_stop_device(dev);
1837 			hifn_start_device(dev);
1838 			dev->reset = 0;
1839 		}
1840 
1841 		tasklet_schedule(&dev->tasklet);
1842 	}
1843 
1844 	schedule_delayed_work(&dev->work, HZ);
1845 }
1846 
1847 static irqreturn_t hifn_interrupt(int irq, void *data)
1848 {
1849 	struct hifn_device *dev = (struct hifn_device *)data;
1850 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1851 	u32 dmacsr, restart;
1852 
1853 	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1854 
1855 	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1856 			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1857 		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1858 		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1859 		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1860 
1861 	if ((dmacsr & dev->dmareg) == 0)
1862 		return IRQ_NONE;
1863 
1864 	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1865 
1866 	if (dmacsr & HIFN_DMACSR_ENGINE)
1867 		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1868 	if (dmacsr & HIFN_DMACSR_PUBDONE)
1869 		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1870 			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1871 
1872 	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1873 	if (restart) {
1874 		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1875 
1876 		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1877 			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1878 			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1879 			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1880 		if (!!(puisr & HIFN_PUISR_DSTOVER))
1881 			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1882 		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1883 					HIFN_DMACSR_D_OVER));
1884 	}
1885 
1886 	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1887 			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1888 	if (restart) {
1889 		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1890 			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1891 			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1892 			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1893 			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1894 		hifn_reset_dma(dev, 1);
1895 		hifn_init_dma(dev);
1896 		hifn_init_registers(dev);
1897 	}
1898 
1899 	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1900 		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1901 		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1902 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1903 	}
1904 
1905 	tasklet_schedule(&dev->tasklet);
1906 
1907 	return IRQ_HANDLED;
1908 }
1909 
1910 static void hifn_flush(struct hifn_device *dev)
1911 {
1912 	unsigned long flags;
1913 	struct crypto_async_request *async_req;
1914 	struct skcipher_request *req;
1915 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1916 	int i;
1917 
1918 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1919 		struct hifn_desc *d = &dma->resr[i];
1920 
1921 		if (dev->sa[i]) {
1922 			hifn_process_ready(dev->sa[i],
1923 				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1924 			hifn_complete_sa(dev, i);
1925 		}
1926 	}
1927 
1928 	spin_lock_irqsave(&dev->lock, flags);
1929 	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1930 		req = skcipher_request_cast(async_req);
1931 		spin_unlock_irqrestore(&dev->lock, flags);
1932 
1933 		hifn_process_ready(req, -ENODEV);
1934 
1935 		spin_lock_irqsave(&dev->lock, flags);
1936 	}
1937 	spin_unlock_irqrestore(&dev->lock, flags);
1938 }
1939 
1940 static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1941 		unsigned int len)
1942 {
1943 	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1944 	struct hifn_device *dev = ctx->dev;
1945 	int err;
1946 
1947 	err = verify_skcipher_des_key(cipher, key);
1948 	if (err)
1949 		return err;
1950 
1951 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1952 
1953 	memcpy(ctx->key, key, len);
1954 	ctx->keysize = len;
1955 
1956 	return 0;
1957 }
1958 
1959 static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1960 			    unsigned int len)
1961 {
1962 	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1963 	struct hifn_device *dev = ctx->dev;
1964 	int err;
1965 
1966 	err = verify_skcipher_des3_key(cipher, key);
1967 	if (err)
1968 		return err;
1969 
1970 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1971 
1972 	memcpy(ctx->key, key, len);
1973 	ctx->keysize = len;
1974 
1975 	return 0;
1976 }
1977 
1978 static int hifn_handle_req(struct skcipher_request *req)
1979 {
1980 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1981 	struct hifn_device *dev = ctx->dev;
1982 	int err = -EAGAIN;
1983 
1984 	if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1985 		err = hifn_setup_session(req);
1986 
1987 	if (err == -EAGAIN) {
1988 		unsigned long flags;
1989 
1990 		spin_lock_irqsave(&dev->lock, flags);
1991 		err = crypto_enqueue_request(&dev->queue, &req->base);
1992 		spin_unlock_irqrestore(&dev->lock, flags);
1993 	}
1994 
1995 	return err;
1996 }
1997 
1998 static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1999 		u8 type, u8 mode)
2000 {
2001 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2002 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
2003 	unsigned ivsize;
2004 
2005 	ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
2006 
2007 	if (req->iv && mode != ACRYPTO_MODE_ECB) {
2008 		if (type == ACRYPTO_TYPE_AES_128)
2009 			ivsize = HIFN_AES_IV_LENGTH;
2010 		else if (type == ACRYPTO_TYPE_DES)
2011 			ivsize = HIFN_DES_KEY_LENGTH;
2012 		else if (type == ACRYPTO_TYPE_3DES)
2013 			ivsize = HIFN_3DES_KEY_LENGTH;
2014 	}
2015 
2016 	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2017 		if (ctx->keysize == 24)
2018 			type = ACRYPTO_TYPE_AES_192;
2019 		else if (ctx->keysize == 32)
2020 			type = ACRYPTO_TYPE_AES_256;
2021 	}
2022 
2023 	rctx->op = op;
2024 	rctx->mode = mode;
2025 	rctx->type = type;
2026 	rctx->iv = req->iv;
2027 	rctx->ivsize = ivsize;
2028 
2029 	/*
2030 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2031 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033 	 */
2034 
2035 	return hifn_handle_req(req);
2036 }
2037 
2038 static int hifn_process_queue(struct hifn_device *dev)
2039 {
2040 	struct crypto_async_request *async_req, *backlog;
2041 	struct skcipher_request *req;
2042 	unsigned long flags;
2043 	int err = 0;
2044 
2045 	while (dev->started < HIFN_QUEUE_LENGTH) {
2046 		spin_lock_irqsave(&dev->lock, flags);
2047 		backlog = crypto_get_backlog(&dev->queue);
2048 		async_req = crypto_dequeue_request(&dev->queue);
2049 		spin_unlock_irqrestore(&dev->lock, flags);
2050 
2051 		if (!async_req)
2052 			break;
2053 
2054 		if (backlog)
2055 			backlog->complete(backlog, -EINPROGRESS);
2056 
2057 		req = skcipher_request_cast(async_req);
2058 
2059 		err = hifn_handle_req(req);
2060 		if (err)
2061 			break;
2062 	}
2063 
2064 	return err;
2065 }
2066 
2067 static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2068 		u8 type, u8 mode)
2069 {
2070 	int err;
2071 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2072 	struct hifn_device *dev = ctx->dev;
2073 
2074 	err = hifn_setup_crypto_req(req, op, type, mode);
2075 	if (err)
2076 		return err;
2077 
2078 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2079 		hifn_process_queue(dev);
2080 
2081 	return -EINPROGRESS;
2082 }
2083 
2084 /*
2085  * AES ecryption functions.
2086  */
2087 static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2088 {
2089 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2090 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2091 }
2092 static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2093 {
2094 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2095 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2096 }
2097 static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req)
2098 {
2099 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2100 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2101 }
2102 static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req)
2103 {
2104 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2105 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2106 }
2107 
2108 /*
2109  * AES decryption functions.
2110  */
2111 static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2112 {
2113 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2114 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2115 }
2116 static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2117 {
2118 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2119 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2120 }
2121 static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req)
2122 {
2123 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2124 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2125 }
2126 static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req)
2127 {
2128 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2129 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2130 }
2131 
2132 /*
2133  * DES ecryption functions.
2134  */
2135 static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2136 {
2137 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2138 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2139 }
2140 static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2141 {
2142 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2143 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2144 }
2145 static inline int hifn_encrypt_des_cfb(struct skcipher_request *req)
2146 {
2147 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2148 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2149 }
2150 static inline int hifn_encrypt_des_ofb(struct skcipher_request *req)
2151 {
2152 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2153 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2154 }
2155 
2156 /*
2157  * DES decryption functions.
2158  */
2159 static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2160 {
2161 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2162 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2163 }
2164 static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2165 {
2166 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2167 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2168 }
2169 static inline int hifn_decrypt_des_cfb(struct skcipher_request *req)
2170 {
2171 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2172 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2173 }
2174 static inline int hifn_decrypt_des_ofb(struct skcipher_request *req)
2175 {
2176 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2177 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2178 }
2179 
2180 /*
2181  * 3DES ecryption functions.
2182  */
2183 static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2184 {
2185 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2186 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2187 }
2188 static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2189 {
2190 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2191 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2192 }
2193 static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req)
2194 {
2195 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2196 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2197 }
2198 static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req)
2199 {
2200 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2201 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2202 }
2203 
2204 /* 3DES decryption functions. */
2205 static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2206 {
2207 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2208 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2209 }
2210 static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2211 {
2212 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2213 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2214 }
2215 static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req)
2216 {
2217 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2218 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2219 }
2220 static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req)
2221 {
2222 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2223 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2224 }
2225 
2226 struct hifn_alg_template {
2227 	char name[CRYPTO_MAX_ALG_NAME];
2228 	char drv_name[CRYPTO_MAX_ALG_NAME];
2229 	unsigned int bsize;
2230 	struct skcipher_alg skcipher;
2231 };
2232 
2233 static const struct hifn_alg_template hifn_alg_templates[] = {
2234 	/*
2235 	 * 3DES ECB, CBC, CFB and OFB modes.
2236 	 */
2237 	{
2238 		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2239 		.skcipher = {
2240 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2241 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2242 			.setkey		=	hifn_des3_setkey,
2243 			.encrypt	=	hifn_encrypt_3des_cfb,
2244 			.decrypt	=	hifn_decrypt_3des_cfb,
2245 		},
2246 	},
2247 	{
2248 		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2249 		.skcipher = {
2250 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2251 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2252 			.setkey		=	hifn_des3_setkey,
2253 			.encrypt	=	hifn_encrypt_3des_ofb,
2254 			.decrypt	=	hifn_decrypt_3des_ofb,
2255 		},
2256 	},
2257 	{
2258 		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2259 		.skcipher = {
2260 			.ivsize		=	HIFN_IV_LENGTH,
2261 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2262 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2263 			.setkey		=	hifn_des3_setkey,
2264 			.encrypt	=	hifn_encrypt_3des_cbc,
2265 			.decrypt	=	hifn_decrypt_3des_cbc,
2266 		},
2267 	},
2268 	{
2269 		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2270 		.skcipher = {
2271 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2272 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2273 			.setkey		=	hifn_des3_setkey,
2274 			.encrypt	=	hifn_encrypt_3des_ecb,
2275 			.decrypt	=	hifn_decrypt_3des_ecb,
2276 		},
2277 	},
2278 
2279 	/*
2280 	 * DES ECB, CBC, CFB and OFB modes.
2281 	 */
2282 	{
2283 		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2284 		.skcipher = {
2285 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2286 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2287 			.setkey		=	hifn_setkey,
2288 			.encrypt	=	hifn_encrypt_des_cfb,
2289 			.decrypt	=	hifn_decrypt_des_cfb,
2290 		},
2291 	},
2292 	{
2293 		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2294 		.skcipher = {
2295 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2296 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2297 			.setkey		=	hifn_setkey,
2298 			.encrypt	=	hifn_encrypt_des_ofb,
2299 			.decrypt	=	hifn_decrypt_des_ofb,
2300 		},
2301 	},
2302 	{
2303 		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2304 		.skcipher = {
2305 			.ivsize		=	HIFN_IV_LENGTH,
2306 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2307 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2308 			.setkey		=	hifn_setkey,
2309 			.encrypt	=	hifn_encrypt_des_cbc,
2310 			.decrypt	=	hifn_decrypt_des_cbc,
2311 		},
2312 	},
2313 	{
2314 		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2315 		.skcipher = {
2316 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2317 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2318 			.setkey		=	hifn_setkey,
2319 			.encrypt	=	hifn_encrypt_des_ecb,
2320 			.decrypt	=	hifn_decrypt_des_ecb,
2321 		},
2322 	},
2323 
2324 	/*
2325 	 * AES ECB, CBC, CFB and OFB modes.
2326 	 */
2327 	{
2328 		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2329 		.skcipher = {
2330 			.min_keysize	=	AES_MIN_KEY_SIZE,
2331 			.max_keysize	=	AES_MAX_KEY_SIZE,
2332 			.setkey		=	hifn_setkey,
2333 			.encrypt	=	hifn_encrypt_aes_ecb,
2334 			.decrypt	=	hifn_decrypt_aes_ecb,
2335 		},
2336 	},
2337 	{
2338 		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2339 		.skcipher = {
2340 			.ivsize		=	HIFN_AES_IV_LENGTH,
2341 			.min_keysize	=	AES_MIN_KEY_SIZE,
2342 			.max_keysize	=	AES_MAX_KEY_SIZE,
2343 			.setkey		=	hifn_setkey,
2344 			.encrypt	=	hifn_encrypt_aes_cbc,
2345 			.decrypt	=	hifn_decrypt_aes_cbc,
2346 		},
2347 	},
2348 	{
2349 		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2350 		.skcipher = {
2351 			.min_keysize	=	AES_MIN_KEY_SIZE,
2352 			.max_keysize	=	AES_MAX_KEY_SIZE,
2353 			.setkey		=	hifn_setkey,
2354 			.encrypt	=	hifn_encrypt_aes_cfb,
2355 			.decrypt	=	hifn_decrypt_aes_cfb,
2356 		},
2357 	},
2358 	{
2359 		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2360 		.skcipher = {
2361 			.min_keysize	=	AES_MIN_KEY_SIZE,
2362 			.max_keysize	=	AES_MAX_KEY_SIZE,
2363 			.setkey		=	hifn_setkey,
2364 			.encrypt	=	hifn_encrypt_aes_ofb,
2365 			.decrypt	=	hifn_decrypt_aes_ofb,
2366 		},
2367 	},
2368 };
2369 
2370 static int hifn_init_tfm(struct crypto_skcipher *tfm)
2371 {
2372 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2373 	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2374 	struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2375 
2376 	ctx->dev = ha->dev;
2377 	crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2378 
2379 	return 0;
2380 }
2381 
2382 static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2383 {
2384 	struct hifn_crypto_alg *alg;
2385 	int err;
2386 
2387 	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2388 	if (!alg)
2389 		return -ENOMEM;
2390 
2391 	alg->alg = t->skcipher;
2392 	alg->alg.init = hifn_init_tfm;
2393 
2394 	snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2395 	snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2396 		 t->drv_name, dev->name);
2397 
2398 	alg->alg.base.cra_priority = 300;
2399 	alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2400 	alg->alg.base.cra_blocksize = t->bsize;
2401 	alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2402 	alg->alg.base.cra_alignmask = 0;
2403 	alg->alg.base.cra_module = THIS_MODULE;
2404 
2405 	alg->dev = dev;
2406 
2407 	list_add_tail(&alg->entry, &dev->alg_list);
2408 
2409 	err = crypto_register_skcipher(&alg->alg);
2410 	if (err) {
2411 		list_del(&alg->entry);
2412 		kfree(alg);
2413 	}
2414 
2415 	return err;
2416 }
2417 
2418 static void hifn_unregister_alg(struct hifn_device *dev)
2419 {
2420 	struct hifn_crypto_alg *a, *n;
2421 
2422 	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2423 		list_del(&a->entry);
2424 		crypto_unregister_skcipher(&a->alg);
2425 		kfree(a);
2426 	}
2427 }
2428 
2429 static int hifn_register_alg(struct hifn_device *dev)
2430 {
2431 	int i, err;
2432 
2433 	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2434 		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2435 		if (err)
2436 			goto err_out_exit;
2437 	}
2438 
2439 	return 0;
2440 
2441 err_out_exit:
2442 	hifn_unregister_alg(dev);
2443 	return err;
2444 }
2445 
2446 static void hifn_tasklet_callback(unsigned long data)
2447 {
2448 	struct hifn_device *dev = (struct hifn_device *)data;
2449 
2450 	/*
2451 	 * This is ok to call this without lock being held,
2452 	 * althogh it modifies some parameters used in parallel,
2453 	 * (like dev->success), but they are used in process
2454 	 * context or update is atomic (like setting dev->sa[i] to NULL).
2455 	 */
2456 	hifn_clear_rings(dev, 0);
2457 
2458 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2459 		hifn_process_queue(dev);
2460 }
2461 
2462 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2463 {
2464 	int err, i;
2465 	struct hifn_device *dev;
2466 	char name[8];
2467 
2468 	err = pci_enable_device(pdev);
2469 	if (err)
2470 		return err;
2471 	pci_set_master(pdev);
2472 
2473 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2474 	if (err)
2475 		goto err_out_disable_pci_device;
2476 
2477 	snprintf(name, sizeof(name), "hifn%d",
2478 			atomic_inc_return(&hifn_dev_number) - 1);
2479 
2480 	err = pci_request_regions(pdev, name);
2481 	if (err)
2482 		goto err_out_disable_pci_device;
2483 
2484 	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2485 	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2486 	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2487 		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2488 		err = -ENODEV;
2489 		goto err_out_free_regions;
2490 	}
2491 
2492 	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2493 			GFP_KERNEL);
2494 	if (!dev) {
2495 		err = -ENOMEM;
2496 		goto err_out_free_regions;
2497 	}
2498 
2499 	INIT_LIST_HEAD(&dev->alg_list);
2500 
2501 	snprintf(dev->name, sizeof(dev->name), "%s", name);
2502 	spin_lock_init(&dev->lock);
2503 
2504 	for (i = 0; i < 3; ++i) {
2505 		unsigned long addr, size;
2506 
2507 		addr = pci_resource_start(pdev, i);
2508 		size = pci_resource_len(pdev, i);
2509 
2510 		dev->bar[i] = ioremap(addr, size);
2511 		if (!dev->bar[i]) {
2512 			err = -ENOMEM;
2513 			goto err_out_unmap_bars;
2514 		}
2515 	}
2516 
2517 	dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2518 					       &dev->desc_dma);
2519 	if (!dev->desc_virt) {
2520 		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2521 		err = -ENOMEM;
2522 		goto err_out_unmap_bars;
2523 	}
2524 
2525 	dev->pdev = pdev;
2526 	dev->irq = pdev->irq;
2527 
2528 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2529 		dev->sa[i] = NULL;
2530 
2531 	pci_set_drvdata(pdev, dev);
2532 
2533 	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2534 
2535 	crypto_init_queue(&dev->queue, 1);
2536 
2537 	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2538 	if (err) {
2539 		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2540 			dev->irq, err);
2541 		dev->irq = 0;
2542 		goto err_out_free_desc;
2543 	}
2544 
2545 	err = hifn_start_device(dev);
2546 	if (err)
2547 		goto err_out_free_irq;
2548 
2549 	err = hifn_register_rng(dev);
2550 	if (err)
2551 		goto err_out_stop_device;
2552 
2553 	err = hifn_register_alg(dev);
2554 	if (err)
2555 		goto err_out_unregister_rng;
2556 
2557 	INIT_DELAYED_WORK(&dev->work, hifn_work);
2558 	schedule_delayed_work(&dev->work, HZ);
2559 
2560 	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2561 		"successfully registered as %s.\n",
2562 		pci_name(pdev), dev->name);
2563 
2564 	return 0;
2565 
2566 err_out_unregister_rng:
2567 	hifn_unregister_rng(dev);
2568 err_out_stop_device:
2569 	hifn_reset_dma(dev, 1);
2570 	hifn_stop_device(dev);
2571 err_out_free_irq:
2572 	free_irq(dev->irq, dev);
2573 	tasklet_kill(&dev->tasklet);
2574 err_out_free_desc:
2575 	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2576 			dev->desc_virt, dev->desc_dma);
2577 
2578 err_out_unmap_bars:
2579 	for (i = 0; i < 3; ++i)
2580 		if (dev->bar[i])
2581 			iounmap(dev->bar[i]);
2582 	kfree(dev);
2583 
2584 err_out_free_regions:
2585 	pci_release_regions(pdev);
2586 
2587 err_out_disable_pci_device:
2588 	pci_disable_device(pdev);
2589 
2590 	return err;
2591 }
2592 
2593 static void hifn_remove(struct pci_dev *pdev)
2594 {
2595 	int i;
2596 	struct hifn_device *dev;
2597 
2598 	dev = pci_get_drvdata(pdev);
2599 
2600 	if (dev) {
2601 		cancel_delayed_work_sync(&dev->work);
2602 
2603 		hifn_unregister_rng(dev);
2604 		hifn_unregister_alg(dev);
2605 		hifn_reset_dma(dev, 1);
2606 		hifn_stop_device(dev);
2607 
2608 		free_irq(dev->irq, dev);
2609 		tasklet_kill(&dev->tasklet);
2610 
2611 		hifn_flush(dev);
2612 
2613 		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2614 				dev->desc_virt, dev->desc_dma);
2615 		for (i = 0; i < 3; ++i)
2616 			if (dev->bar[i])
2617 				iounmap(dev->bar[i]);
2618 
2619 		kfree(dev);
2620 	}
2621 
2622 	pci_release_regions(pdev);
2623 	pci_disable_device(pdev);
2624 }
2625 
2626 static struct pci_device_id hifn_pci_tbl[] = {
2627 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2628 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2629 	{ 0 }
2630 };
2631 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2632 
2633 static struct pci_driver hifn_pci_driver = {
2634 	.name     = "hifn795x",
2635 	.id_table = hifn_pci_tbl,
2636 	.probe    = hifn_probe,
2637 	.remove   = hifn_remove,
2638 };
2639 
2640 static int __init hifn_init(void)
2641 {
2642 	unsigned int freq;
2643 	int err;
2644 
2645 	/* HIFN supports only 32-bit addresses */
2646 	BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2647 
2648 	if (strncmp(hifn_pll_ref, "ext", 3) &&
2649 	    strncmp(hifn_pll_ref, "pci", 3)) {
2650 		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2651 		return -EINVAL;
2652 	}
2653 
2654 	/*
2655 	 * For the 7955/7956 the reference clock frequency must be in the
2656 	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2657 	 * but this chip is currently not supported.
2658 	 */
2659 	if (hifn_pll_ref[3] != '\0') {
2660 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2661 		if (freq < 20 || freq > 100) {
2662 			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2663 			       "be in the range of 20-100");
2664 			return -EINVAL;
2665 		}
2666 	}
2667 
2668 	err = pci_register_driver(&hifn_pci_driver);
2669 	if (err < 0) {
2670 		pr_err("Failed to register PCI driver for %s device.\n",
2671 		       hifn_pci_driver.name);
2672 		return -ENODEV;
2673 	}
2674 
2675 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2676 		"has been successfully registered.\n");
2677 
2678 	return 0;
2679 }
2680 
2681 static void __exit hifn_fini(void)
2682 {
2683 	pci_unregister_driver(&hifn_pci_driver);
2684 
2685 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2686 		"has been successfully unregistered.\n");
2687 }
2688 
2689 module_init(hifn_init);
2690 module_exit(hifn_fini);
2691 
2692 MODULE_LICENSE("GPL");
2693 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2694 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2695