xref: /openbmc/linux/drivers/crypto/hifn_795x.c (revision 2874c5fd)
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/slab.h>
23 #include <linux/delay.h>
24 #include <linux/mm.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/scatterlist.h>
27 #include <linux/highmem.h>
28 #include <linux/crypto.h>
29 #include <linux/hw_random.h>
30 #include <linux/ktime.h>
31 
32 #include <crypto/algapi.h>
33 #include <crypto/des.h>
34 
35 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
36 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
37 MODULE_PARM_DESC(hifn_pll_ref,
38 		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
39 
40 static atomic_t hifn_dev_number;
41 
42 #define ACRYPTO_OP_DECRYPT	0
43 #define ACRYPTO_OP_ENCRYPT	1
44 #define ACRYPTO_OP_HMAC		2
45 #define ACRYPTO_OP_RNG		3
46 
47 #define ACRYPTO_MODE_ECB		0
48 #define ACRYPTO_MODE_CBC		1
49 #define ACRYPTO_MODE_CFB		2
50 #define ACRYPTO_MODE_OFB		3
51 
52 #define ACRYPTO_TYPE_AES_128	0
53 #define ACRYPTO_TYPE_AES_192	1
54 #define ACRYPTO_TYPE_AES_256	2
55 #define ACRYPTO_TYPE_3DES	3
56 #define ACRYPTO_TYPE_DES	4
57 
58 #define PCI_VENDOR_ID_HIFN		0x13A3
59 #define PCI_DEVICE_ID_HIFN_7955		0x0020
60 #define	PCI_DEVICE_ID_HIFN_7956		0x001d
61 
62 /* I/O region sizes */
63 
64 #define HIFN_BAR0_SIZE			0x1000
65 #define HIFN_BAR1_SIZE			0x2000
66 #define HIFN_BAR2_SIZE			0x8000
67 
68 /* DMA registres */
69 
70 #define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
71 #define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
72 #define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
73 #define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
74 #define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
75 #define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
76 #define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
77 #define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
78 #define HIFN_CHIP_ID			0x98	/* Chip ID */
79 
80 /*
81  * Processing Unit Registers (offset from BASEREG0)
82  */
83 #define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
84 #define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
85 #define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
86 #define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
87 #define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
88 #define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
89 #define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
90 #define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
91 #define	HIFN_0_SPACESIZE	0x20	/* Register space size */
92 
93 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
94 #define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
95 #define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
96 #define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
97 #define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
98 #define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
99 
100 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
101 #define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
102 #define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
103 #define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
104 #define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
105 #define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
106 #define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
107 #define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
108 #define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
109 #define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
110 #define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
111 
112 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
113 #define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
114 #define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
115 #define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
116 #define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
117 #define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
118 #define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
119 #define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
120 #define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
121 #define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
122 #define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
123 #define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
124 #define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
125 #define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
126 #define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
127 #define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
128 #define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
129 #define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
130 #define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
131 #define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
132 #define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
133 #define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
134 #define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
135 #define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
136 
137 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
138 #define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
139 #define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
140 #define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
141 #define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
142 #define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
143 #define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
144 #define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
145 #define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
146 #define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
147 #define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
148 
149 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
150 #define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
151 #define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
152 #define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
153 #define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
154 #define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
155 #define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
156 #define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
157 #define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
158 #define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
159 #define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
160 #define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
161 #define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
162 #define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
163 #define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
164 #define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
165 #define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
166 #define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
167 
168 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
169 #define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
170 #define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
171 
172 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
173 #define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
174 
175 /*
176  * DMA Interface Registers (offset from BASEREG1)
177  */
178 #define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
179 #define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
180 #define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
181 #define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
182 #define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
183 #define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
184 #define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
185 #define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
186 #define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
187 #define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
188 #define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
189 #define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
190 #define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
191 #define	HIFN_1_REVID		0x98	/* Revision ID */
192 #define	HIFN_1_UNLOCK_SECRET1	0xf4
193 #define	HIFN_1_UNLOCK_SECRET2	0xfc
194 #define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
195 #define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
196 #define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
197 #define	HIFN_1_PUB_OP		0x308	/* Public Operand */
198 #define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
199 #define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
200 #define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
201 #define	HIFN_1_RNG_DATA		0x318	/* RNG data */
202 #define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
203 #define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
204 
205 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
206 #define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
207 #define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
208 #define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
209 #define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
210 #define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
211 #define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
212 #define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
213 #define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
214 #define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
215 #define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
216 #define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
217 #define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
218 #define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
219 #define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
220 #define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
221 #define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
222 #define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
223 #define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
224 #define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
225 #define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
226 #define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
227 #define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
228 #define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
229 #define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
230 #define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
231 #define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
232 #define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
233 #define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
234 #define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
235 #define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
236 #define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
237 #define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
238 #define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
239 #define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
240 #define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
241 #define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
242 #define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
243 #define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
244 
245 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
246 #define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
247 #define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
248 #define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
249 #define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
250 #define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
251 #define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
252 #define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
253 #define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
254 #define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
255 #define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
256 #define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
257 #define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
258 #define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
259 #define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
260 #define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
261 #define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
262 #define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
263 #define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
264 #define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
265 #define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
266 #define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
267 #define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
268 
269 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
270 #define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
271 #define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
272 #define	HIFN_DMACNFG_UNLOCK	0x00000800
273 #define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
274 #define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
275 #define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
276 #define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
277 #define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
278 
279 /* PLL configuration register */
280 #define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
281 #define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
282 #define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
283 #define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
284 #define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
285 #define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
286 #define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
287 #define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
288 #define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
289 #define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
290 #define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
291 #define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
292 #define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
293 #define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
294 #define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
295 #define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
296 #define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
297 
298 #define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
299 
300 /* Public key reset register (HIFN_1_PUB_RESET) */
301 #define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
302 
303 /* Public base address register (HIFN_1_PUB_BASE) */
304 #define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
305 
306 /* Public operand length register (HIFN_1_PUB_OPLEN) */
307 #define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
308 #define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
309 #define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
310 #define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
311 #define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
312 #define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
313 
314 /* Public operation register (HIFN_1_PUB_OP) */
315 #define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
316 #define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
317 #define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
318 #define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
319 #define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
320 #define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
321 #define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
322 #define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
323 #define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
324 #define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
325 #define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
326 #define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
327 #define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
328 #define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
329 #define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
330 #define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
331 #define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
332 #define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
333 #define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
334 #define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
335 
336 /* Public status register (HIFN_1_PUB_STATUS) */
337 #define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
338 #define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
339 
340 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
341 #define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
342 
343 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
344 #define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
345 
346 #define HIFN_NAMESIZE			32
347 #define HIFN_MAX_RESULT_ORDER		5
348 
349 #define	HIFN_D_CMD_RSIZE		(24 * 1)
350 #define	HIFN_D_SRC_RSIZE		(80 * 1)
351 #define	HIFN_D_DST_RSIZE		(80 * 1)
352 #define	HIFN_D_RES_RSIZE		(24 * 1)
353 
354 #define HIFN_D_DST_DALIGN		4
355 
356 #define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
357 
358 #define AES_MIN_KEY_SIZE		16
359 #define AES_MAX_KEY_SIZE		32
360 
361 #define HIFN_DES_KEY_LENGTH		8
362 #define HIFN_3DES_KEY_LENGTH		24
363 #define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
364 #define HIFN_IV_LENGTH			8
365 #define HIFN_AES_IV_LENGTH		16
366 #define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
367 
368 #define HIFN_MAC_KEY_LENGTH		64
369 #define HIFN_MD5_LENGTH			16
370 #define HIFN_SHA1_LENGTH		20
371 #define HIFN_MAC_TRUNC_LENGTH		12
372 
373 #define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
374 #define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
375 #define HIFN_USED_RESULT		12
376 
377 struct hifn_desc {
378 	volatile __le32		l;
379 	volatile __le32		p;
380 };
381 
382 struct hifn_dma {
383 	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
384 	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
385 	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
386 	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
387 
388 	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
389 	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
390 
391 	/*
392 	 *  Our current positions for insertion and removal from the descriptor
393 	 *  rings.
394 	 */
395 	volatile int		cmdi, srci, dsti, resi;
396 	volatile int		cmdu, srcu, dstu, resu;
397 	int			cmdk, srck, dstk, resk;
398 };
399 
400 #define HIFN_FLAG_CMD_BUSY	(1 << 0)
401 #define HIFN_FLAG_SRC_BUSY	(1 << 1)
402 #define HIFN_FLAG_DST_BUSY	(1 << 2)
403 #define HIFN_FLAG_RES_BUSY	(1 << 3)
404 #define HIFN_FLAG_OLD_KEY	(1 << 4)
405 
406 #define HIFN_DEFAULT_ACTIVE_NUM	5
407 
408 struct hifn_device {
409 	char			name[HIFN_NAMESIZE];
410 
411 	int			irq;
412 
413 	struct pci_dev		*pdev;
414 	void __iomem		*bar[3];
415 
416 	void			*desc_virt;
417 	dma_addr_t		desc_dma;
418 
419 	u32			dmareg;
420 
421 	void			*sa[HIFN_D_RES_RSIZE];
422 
423 	spinlock_t		lock;
424 
425 	u32			flags;
426 	int			active, started;
427 	struct delayed_work	work;
428 	unsigned long		reset;
429 	unsigned long		success;
430 	unsigned long		prev_success;
431 
432 	u8			snum;
433 
434 	struct tasklet_struct	tasklet;
435 
436 	struct crypto_queue	queue;
437 	struct list_head	alg_list;
438 
439 	unsigned int		pk_clk_freq;
440 
441 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
442 	unsigned int		rng_wait_time;
443 	ktime_t			rngtime;
444 	struct hwrng		rng;
445 #endif
446 };
447 
448 #define	HIFN_D_LENGTH			0x0000ffff
449 #define	HIFN_D_NOINVALID		0x01000000
450 #define	HIFN_D_MASKDONEIRQ		0x02000000
451 #define	HIFN_D_DESTOVER			0x04000000
452 #define	HIFN_D_OVER			0x08000000
453 #define	HIFN_D_LAST			0x20000000
454 #define	HIFN_D_JUMP			0x40000000
455 #define	HIFN_D_VALID			0x80000000
456 
457 struct hifn_base_command {
458 	volatile __le16		masks;
459 	volatile __le16		session_num;
460 	volatile __le16		total_source_count;
461 	volatile __le16		total_dest_count;
462 };
463 
464 #define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
465 #define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
466 #define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
467 #define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
468 #define	HIFN_BASE_CMD_DECODE		0x2000
469 #define	HIFN_BASE_CMD_SRCLEN_M		0xc000
470 #define	HIFN_BASE_CMD_SRCLEN_S		14
471 #define	HIFN_BASE_CMD_DSTLEN_M		0x3000
472 #define	HIFN_BASE_CMD_DSTLEN_S		12
473 #define	HIFN_BASE_CMD_LENMASK_HI	0x30000
474 #define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
475 
476 /*
477  * Structure to help build up the command data structure.
478  */
479 struct hifn_crypt_command {
480 	volatile __le16		masks;
481 	volatile __le16		header_skip;
482 	volatile __le16		source_count;
483 	volatile __le16		reserved;
484 };
485 
486 #define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
487 #define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
488 #define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
489 #define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
490 #define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
491 #define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
492 #define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
493 #define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
494 #define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
495 #define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
496 #define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
497 #define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
498 #define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
499 #define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
500 #define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
501 #define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
502 #define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
503 #define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
504 #define	HIFN_CRYPT_CMD_SRCLEN_S		14
505 
506 /*
507  * Structure to help build up the command data structure.
508  */
509 struct hifn_mac_command {
510 	volatile __le16	masks;
511 	volatile __le16	header_skip;
512 	volatile __le16	source_count;
513 	volatile __le16	reserved;
514 };
515 
516 #define	HIFN_MAC_CMD_ALG_MASK		0x0001
517 #define	HIFN_MAC_CMD_ALG_SHA1		0x0000
518 #define	HIFN_MAC_CMD_ALG_MD5		0x0001
519 #define	HIFN_MAC_CMD_MODE_MASK		0x000c
520 #define	HIFN_MAC_CMD_MODE_HMAC		0x0000
521 #define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
522 #define	HIFN_MAC_CMD_MODE_HASH		0x0008
523 #define	HIFN_MAC_CMD_MODE_FULL		0x0004
524 #define	HIFN_MAC_CMD_TRUNC		0x0010
525 #define	HIFN_MAC_CMD_RESULT		0x0020
526 #define	HIFN_MAC_CMD_APPEND		0x0040
527 #define	HIFN_MAC_CMD_SRCLEN_M		0xc000
528 #define	HIFN_MAC_CMD_SRCLEN_S		14
529 
530 /*
531  * MAC POS IPsec initiates authentication after encryption on encodes
532  * and before decryption on decodes.
533  */
534 #define	HIFN_MAC_CMD_POS_IPSEC		0x0200
535 #define	HIFN_MAC_CMD_NEW_KEY		0x0800
536 
537 struct hifn_comp_command {
538 	volatile __le16		masks;
539 	volatile __le16		header_skip;
540 	volatile __le16		source_count;
541 	volatile __le16		reserved;
542 };
543 
544 #define	HIFN_COMP_CMD_SRCLEN_M		0xc000
545 #define	HIFN_COMP_CMD_SRCLEN_S		14
546 #define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
547 #define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
548 #define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
549 #define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
550 #define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
551 #define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
552 #define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
553 #define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
554 
555 struct hifn_base_result {
556 	volatile __le16		flags;
557 	volatile __le16		session;
558 	volatile __le16		src_cnt;		/* 15:0 of source count */
559 	volatile __le16		dst_cnt;		/* 15:0 of dest count */
560 };
561 
562 #define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
563 #define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
564 #define	HIFN_BASE_RES_SRCLEN_S		14
565 #define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
566 #define	HIFN_BASE_RES_DSTLEN_S		12
567 
568 struct hifn_comp_result {
569 	volatile __le16		flags;
570 	volatile __le16		crc;
571 };
572 
573 #define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
574 #define	HIFN_COMP_RES_LCB_S		8
575 #define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
576 #define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
577 #define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
578 
579 struct hifn_mac_result {
580 	volatile __le16		flags;
581 	volatile __le16		reserved;
582 	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
583 };
584 
585 #define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
586 #define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
587 
588 struct hifn_crypt_result {
589 	volatile __le16		flags;
590 	volatile __le16		reserved;
591 };
592 
593 #define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
594 
595 #ifndef HIFN_POLL_FREQUENCY
596 #define	HIFN_POLL_FREQUENCY	0x1
597 #endif
598 
599 #ifndef HIFN_POLL_SCALAR
600 #define	HIFN_POLL_SCALAR	0x0
601 #endif
602 
603 #define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
604 #define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
605 
606 struct hifn_crypto_alg {
607 	struct list_head	entry;
608 	struct crypto_alg	alg;
609 	struct hifn_device	*dev;
610 };
611 
612 #define ASYNC_SCATTERLIST_CACHE	16
613 
614 #define ASYNC_FLAGS_MISALIGNED	(1 << 0)
615 
616 struct hifn_cipher_walk {
617 	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
618 	u32			flags;
619 	int			num;
620 };
621 
622 struct hifn_context {
623 	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
624 	struct hifn_device	*dev;
625 	unsigned int		keysize;
626 };
627 
628 struct hifn_request_context {
629 	u8			*iv;
630 	unsigned int		ivsize;
631 	u8			op, type, mode, unused;
632 	struct hifn_cipher_walk	walk;
633 };
634 
635 #define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
636 
637 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
638 {
639 	return readl(dev->bar[0] + reg);
640 }
641 
642 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
643 {
644 	return readl(dev->bar[1] + reg);
645 }
646 
647 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
648 {
649 	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
650 }
651 
652 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
653 {
654 	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
655 }
656 
657 static void hifn_wait_puc(struct hifn_device *dev)
658 {
659 	int i;
660 	u32 ret;
661 
662 	for (i = 10000; i > 0; --i) {
663 		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
664 		if (!(ret & HIFN_PUCTRL_RESET))
665 			break;
666 
667 		udelay(1);
668 	}
669 
670 	if (!i)
671 		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
672 }
673 
674 static void hifn_reset_puc(struct hifn_device *dev)
675 {
676 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
677 	hifn_wait_puc(dev);
678 }
679 
680 static void hifn_stop_device(struct hifn_device *dev)
681 {
682 	hifn_write_1(dev, HIFN_1_DMA_CSR,
683 		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
684 		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
685 	hifn_write_0(dev, HIFN_0_PUIER, 0);
686 	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
687 }
688 
689 static void hifn_reset_dma(struct hifn_device *dev, int full)
690 {
691 	hifn_stop_device(dev);
692 
693 	/*
694 	 * Setting poll frequency and others to 0.
695 	 */
696 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
697 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
698 	mdelay(1);
699 
700 	/*
701 	 * Reset DMA.
702 	 */
703 	if (full) {
704 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
705 		mdelay(1);
706 	} else {
707 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
708 				HIFN_DMACNFG_MSTRESET);
709 		hifn_reset_puc(dev);
710 	}
711 
712 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
713 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
714 
715 	hifn_reset_puc(dev);
716 }
717 
718 static u32 hifn_next_signature(u32 a, u_int cnt)
719 {
720 	int i;
721 	u32 v;
722 
723 	for (i = 0; i < cnt; i++) {
724 		/* get the parity */
725 		v = a & 0x80080125;
726 		v ^= v >> 16;
727 		v ^= v >> 8;
728 		v ^= v >> 4;
729 		v ^= v >> 2;
730 		v ^= v >> 1;
731 
732 		a = (v & 1) ^ (a << 1);
733 	}
734 
735 	return a;
736 }
737 
738 static struct pci2id {
739 	u_short		pci_vendor;
740 	u_short		pci_prod;
741 	char		card_id[13];
742 } pci2id[] = {
743 	{
744 		PCI_VENDOR_ID_HIFN,
745 		PCI_DEVICE_ID_HIFN_7955,
746 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
747 		  0x00, 0x00, 0x00, 0x00, 0x00 }
748 	},
749 	{
750 		PCI_VENDOR_ID_HIFN,
751 		PCI_DEVICE_ID_HIFN_7956,
752 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
753 		  0x00, 0x00, 0x00, 0x00, 0x00 }
754 	}
755 };
756 
757 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
758 static int hifn_rng_data_present(struct hwrng *rng, int wait)
759 {
760 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
761 	s64 nsec;
762 
763 	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
764 	nsec -= dev->rng_wait_time;
765 	if (nsec <= 0)
766 		return 1;
767 	if (!wait)
768 		return 0;
769 	ndelay(nsec);
770 	return 1;
771 }
772 
773 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
774 {
775 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
776 
777 	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
778 	dev->rngtime = ktime_get();
779 	return 4;
780 }
781 
782 static int hifn_register_rng(struct hifn_device *dev)
783 {
784 	/*
785 	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
786 	 */
787 	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
788 						   dev->pk_clk_freq) * 256;
789 
790 	dev->rng.name		= dev->name;
791 	dev->rng.data_present	= hifn_rng_data_present,
792 	dev->rng.data_read	= hifn_rng_data_read,
793 	dev->rng.priv		= (unsigned long)dev;
794 
795 	return hwrng_register(&dev->rng);
796 }
797 
798 static void hifn_unregister_rng(struct hifn_device *dev)
799 {
800 	hwrng_unregister(&dev->rng);
801 }
802 #else
803 #define hifn_register_rng(dev)		0
804 #define hifn_unregister_rng(dev)
805 #endif
806 
807 static int hifn_init_pubrng(struct hifn_device *dev)
808 {
809 	int i;
810 
811 	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
812 			HIFN_PUBRST_RESET);
813 
814 	for (i = 100; i > 0; --i) {
815 		mdelay(1);
816 
817 		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
818 			break;
819 	}
820 
821 	if (!i) {
822 		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
823 	} else {
824 		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
825 		dev->dmareg |= HIFN_DMAIER_PUBDONE;
826 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
827 
828 		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
829 	}
830 
831 	/* Enable RNG engine. */
832 
833 	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
834 			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
835 	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
836 
837 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
838 	/* First value must be discarded */
839 	hifn_read_1(dev, HIFN_1_RNG_DATA);
840 	dev->rngtime = ktime_get();
841 #endif
842 	return 0;
843 }
844 
845 static int hifn_enable_crypto(struct hifn_device *dev)
846 {
847 	u32 dmacfg, addr;
848 	char *offtbl = NULL;
849 	int i;
850 
851 	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
852 		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
853 				pci2id[i].pci_prod == dev->pdev->device) {
854 			offtbl = pci2id[i].card_id;
855 			break;
856 		}
857 	}
858 
859 	if (!offtbl) {
860 		dev_err(&dev->pdev->dev, "Unknown card!\n");
861 		return -ENODEV;
862 	}
863 
864 	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
865 
866 	hifn_write_1(dev, HIFN_1_DMA_CNFG,
867 			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
868 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
869 	mdelay(1);
870 	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
871 	mdelay(1);
872 	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
873 	mdelay(1);
874 
875 	for (i = 0; i < 12; ++i) {
876 		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
877 		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
878 
879 		mdelay(1);
880 	}
881 	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
882 
883 	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
884 
885 	return 0;
886 }
887 
888 static void hifn_init_dma(struct hifn_device *dev)
889 {
890 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
891 	u32 dptr = dev->desc_dma;
892 	int i;
893 
894 	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
895 		dma->cmdr[i].p = __cpu_to_le32(dptr +
896 				offsetof(struct hifn_dma, command_bufs[i][0]));
897 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
898 		dma->resr[i].p = __cpu_to_le32(dptr +
899 				offsetof(struct hifn_dma, result_bufs[i][0]));
900 
901 	/* Setup LAST descriptors. */
902 	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
903 			offsetof(struct hifn_dma, cmdr[0]));
904 	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
905 			offsetof(struct hifn_dma, srcr[0]));
906 	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
907 			offsetof(struct hifn_dma, dstr[0]));
908 	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
909 			offsetof(struct hifn_dma, resr[0]));
910 
911 	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
912 	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
913 	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
914 }
915 
916 /*
917  * Initialize the PLL. We need to know the frequency of the reference clock
918  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
919  * allows us to operate without the risk of overclocking the chip. If it
920  * actually uses 33MHz, the chip will operate at half the speed, this can be
921  * overridden by specifying the frequency as module parameter (pci33).
922  *
923  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
924  * stable clock and the PCI clock frequency may vary, so the default is the
925  * external clock. There is no way to find out its frequency, we default to
926  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
927  * has an external crystal populated at 66MHz.
928  */
929 static void hifn_init_pll(struct hifn_device *dev)
930 {
931 	unsigned int freq, m;
932 	u32 pllcfg;
933 
934 	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
935 
936 	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
937 		pllcfg |= HIFN_PLL_REF_CLK_PLL;
938 	else
939 		pllcfg |= HIFN_PLL_REF_CLK_HBI;
940 
941 	if (hifn_pll_ref[3] != '\0')
942 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
943 	else {
944 		freq = 66;
945 		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
946 			 freq, hifn_pll_ref);
947 	}
948 
949 	m = HIFN_PLL_FCK_MAX / freq;
950 
951 	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
952 	if (m <= 8)
953 		pllcfg |= HIFN_PLL_IS_1_8;
954 	else
955 		pllcfg |= HIFN_PLL_IS_9_12;
956 
957 	/* Select clock source and enable clock bypass */
958 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
959 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
960 
961 	/* Let the chip lock to the input clock */
962 	mdelay(10);
963 
964 	/* Disable clock bypass */
965 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
966 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
967 
968 	/* Switch the engines to the PLL */
969 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
970 		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
971 
972 	/*
973 	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
974 	 * calculate the minimum time between two reads of the rng. Since 33MHz
975 	 * is actually 33.333... we overestimate the frequency here, resulting
976 	 * in slightly larger intervals.
977 	 */
978 	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
979 }
980 
981 static void hifn_init_registers(struct hifn_device *dev)
982 {
983 	u32 dptr = dev->desc_dma;
984 
985 	/* Initialization magic... */
986 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
987 	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
988 	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
989 
990 	/* write all 4 ring address registers */
991 	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
992 				offsetof(struct hifn_dma, cmdr[0]));
993 	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
994 				offsetof(struct hifn_dma, srcr[0]));
995 	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
996 				offsetof(struct hifn_dma, dstr[0]));
997 	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
998 				offsetof(struct hifn_dma, resr[0]));
999 
1000 	mdelay(2);
1001 #if 0
1002 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1003 	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1004 	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1005 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1006 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1007 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1008 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1009 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1010 	    HIFN_DMACSR_S_WAIT |
1011 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1012 	    HIFN_DMACSR_C_WAIT |
1013 	    HIFN_DMACSR_ENGINE |
1014 	    HIFN_DMACSR_PUBDONE);
1015 #else
1016 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1017 	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1018 	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1019 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1020 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1021 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1022 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1023 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1024 	    HIFN_DMACSR_S_WAIT |
1025 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1026 	    HIFN_DMACSR_C_WAIT |
1027 	    HIFN_DMACSR_ENGINE |
1028 	    HIFN_DMACSR_PUBDONE);
1029 #endif
1030 	hifn_read_1(dev, HIFN_1_DMA_CSR);
1031 
1032 	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1033 	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1034 	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1035 	    HIFN_DMAIER_ENGINE;
1036 	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1037 
1038 	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1039 	hifn_read_1(dev, HIFN_1_DMA_IER);
1040 #if 0
1041 	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1042 		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1043 		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1044 		    HIFN_PUCNFG_DRAM);
1045 #else
1046 	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1047 #endif
1048 	hifn_init_pll(dev);
1049 
1050 	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1051 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1052 	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1053 	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1054 	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1055 }
1056 
1057 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1058 		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1059 {
1060 	struct hifn_base_command *base_cmd;
1061 	u8 *buf_pos = buf;
1062 
1063 	base_cmd = (struct hifn_base_command *)buf_pos;
1064 	base_cmd->masks = __cpu_to_le16(mask);
1065 	base_cmd->total_source_count =
1066 		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1067 	base_cmd->total_dest_count =
1068 		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1069 
1070 	dlen >>= 16;
1071 	slen >>= 16;
1072 	base_cmd->session_num = __cpu_to_le16(snum |
1073 	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1074 	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1075 
1076 	return sizeof(struct hifn_base_command);
1077 }
1078 
1079 static int hifn_setup_crypto_command(struct hifn_device *dev,
1080 		u8 *buf, unsigned dlen, unsigned slen,
1081 		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1082 {
1083 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1084 	struct hifn_crypt_command *cry_cmd;
1085 	u8 *buf_pos = buf;
1086 	u16 cmd_len;
1087 
1088 	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1089 
1090 	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1091 	dlen >>= 16;
1092 	cry_cmd->masks = __cpu_to_le16(mode |
1093 			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1094 			 HIFN_CRYPT_CMD_SRCLEN_M));
1095 	cry_cmd->header_skip = 0;
1096 	cry_cmd->reserved = 0;
1097 
1098 	buf_pos += sizeof(struct hifn_crypt_command);
1099 
1100 	dma->cmdu++;
1101 	if (dma->cmdu > 1) {
1102 		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1103 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1104 	}
1105 
1106 	if (keylen) {
1107 		memcpy(buf_pos, key, keylen);
1108 		buf_pos += keylen;
1109 	}
1110 	if (ivsize) {
1111 		memcpy(buf_pos, iv, ivsize);
1112 		buf_pos += ivsize;
1113 	}
1114 
1115 	cmd_len = buf_pos - buf;
1116 
1117 	return cmd_len;
1118 }
1119 
1120 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1121 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1122 		void *priv, unsigned int nbytes)
1123 {
1124 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1125 	int cmd_len, sa_idx;
1126 	u8 *buf, *buf_pos;
1127 	u16 mask;
1128 
1129 	sa_idx = dma->cmdi;
1130 	buf_pos = buf = dma->command_bufs[dma->cmdi];
1131 
1132 	mask = 0;
1133 	switch (rctx->op) {
1134 	case ACRYPTO_OP_DECRYPT:
1135 		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1136 		break;
1137 	case ACRYPTO_OP_ENCRYPT:
1138 		mask = HIFN_BASE_CMD_CRYPT;
1139 		break;
1140 	case ACRYPTO_OP_HMAC:
1141 		mask = HIFN_BASE_CMD_MAC;
1142 		break;
1143 	default:
1144 		goto err_out;
1145 	}
1146 
1147 	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1148 			nbytes, mask, dev->snum);
1149 
1150 	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1151 		u16 md = 0;
1152 
1153 		if (ctx->keysize)
1154 			md |= HIFN_CRYPT_CMD_NEW_KEY;
1155 		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1156 			md |= HIFN_CRYPT_CMD_NEW_IV;
1157 
1158 		switch (rctx->mode) {
1159 		case ACRYPTO_MODE_ECB:
1160 			md |= HIFN_CRYPT_CMD_MODE_ECB;
1161 			break;
1162 		case ACRYPTO_MODE_CBC:
1163 			md |= HIFN_CRYPT_CMD_MODE_CBC;
1164 			break;
1165 		case ACRYPTO_MODE_CFB:
1166 			md |= HIFN_CRYPT_CMD_MODE_CFB;
1167 			break;
1168 		case ACRYPTO_MODE_OFB:
1169 			md |= HIFN_CRYPT_CMD_MODE_OFB;
1170 			break;
1171 		default:
1172 			goto err_out;
1173 		}
1174 
1175 		switch (rctx->type) {
1176 		case ACRYPTO_TYPE_AES_128:
1177 			if (ctx->keysize != 16)
1178 				goto err_out;
1179 			md |= HIFN_CRYPT_CMD_KSZ_128 |
1180 				HIFN_CRYPT_CMD_ALG_AES;
1181 			break;
1182 		case ACRYPTO_TYPE_AES_192:
1183 			if (ctx->keysize != 24)
1184 				goto err_out;
1185 			md |= HIFN_CRYPT_CMD_KSZ_192 |
1186 				HIFN_CRYPT_CMD_ALG_AES;
1187 			break;
1188 		case ACRYPTO_TYPE_AES_256:
1189 			if (ctx->keysize != 32)
1190 				goto err_out;
1191 			md |= HIFN_CRYPT_CMD_KSZ_256 |
1192 				HIFN_CRYPT_CMD_ALG_AES;
1193 			break;
1194 		case ACRYPTO_TYPE_3DES:
1195 			if (ctx->keysize != 24)
1196 				goto err_out;
1197 			md |= HIFN_CRYPT_CMD_ALG_3DES;
1198 			break;
1199 		case ACRYPTO_TYPE_DES:
1200 			if (ctx->keysize != 8)
1201 				goto err_out;
1202 			md |= HIFN_CRYPT_CMD_ALG_DES;
1203 			break;
1204 		default:
1205 			goto err_out;
1206 		}
1207 
1208 		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1209 				nbytes, nbytes, ctx->key, ctx->keysize,
1210 				rctx->iv, rctx->ivsize, md);
1211 	}
1212 
1213 	dev->sa[sa_idx] = priv;
1214 	dev->started++;
1215 
1216 	cmd_len = buf_pos - buf;
1217 	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1218 			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1219 
1220 	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1221 		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1222 			HIFN_D_VALID | HIFN_D_LAST |
1223 			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1224 		dma->cmdi = 0;
1225 	} else {
1226 		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1227 	}
1228 
1229 	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1230 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1231 		dev->flags |= HIFN_FLAG_CMD_BUSY;
1232 	}
1233 	return 0;
1234 
1235 err_out:
1236 	return -EINVAL;
1237 }
1238 
1239 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1240 		unsigned int offset, unsigned int size, int last)
1241 {
1242 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1243 	int idx;
1244 	dma_addr_t addr;
1245 
1246 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1247 
1248 	idx = dma->srci;
1249 
1250 	dma->srcr[idx].p = __cpu_to_le32(addr);
1251 	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1252 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1253 
1254 	if (++idx == HIFN_D_SRC_RSIZE) {
1255 		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1256 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1257 				(last ? HIFN_D_LAST : 0));
1258 		idx = 0;
1259 	}
1260 
1261 	dma->srci = idx;
1262 	dma->srcu++;
1263 
1264 	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1265 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1266 		dev->flags |= HIFN_FLAG_SRC_BUSY;
1267 	}
1268 
1269 	return size;
1270 }
1271 
1272 static void hifn_setup_res_desc(struct hifn_device *dev)
1273 {
1274 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1275 
1276 	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1277 			HIFN_D_VALID | HIFN_D_LAST);
1278 	/*
1279 	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1280 	 *					HIFN_D_LAST);
1281 	 */
1282 
1283 	if (++dma->resi == HIFN_D_RES_RSIZE) {
1284 		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1285 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1286 		dma->resi = 0;
1287 	}
1288 
1289 	dma->resu++;
1290 
1291 	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1292 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1293 		dev->flags |= HIFN_FLAG_RES_BUSY;
1294 	}
1295 }
1296 
1297 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1298 		unsigned offset, unsigned size, int last)
1299 {
1300 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1301 	int idx;
1302 	dma_addr_t addr;
1303 
1304 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1305 
1306 	idx = dma->dsti;
1307 	dma->dstr[idx].p = __cpu_to_le32(addr);
1308 	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1309 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1310 
1311 	if (++idx == HIFN_D_DST_RSIZE) {
1312 		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1313 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1314 				(last ? HIFN_D_LAST : 0));
1315 		idx = 0;
1316 	}
1317 	dma->dsti = idx;
1318 	dma->dstu++;
1319 
1320 	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1321 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1322 		dev->flags |= HIFN_FLAG_DST_BUSY;
1323 	}
1324 }
1325 
1326 static int hifn_setup_dma(struct hifn_device *dev,
1327 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1328 		struct scatterlist *src, struct scatterlist *dst,
1329 		unsigned int nbytes, void *priv)
1330 {
1331 	struct scatterlist *t;
1332 	struct page *spage, *dpage;
1333 	unsigned int soff, doff;
1334 	unsigned int n, len;
1335 
1336 	n = nbytes;
1337 	while (n) {
1338 		spage = sg_page(src);
1339 		soff = src->offset;
1340 		len = min(src->length, n);
1341 
1342 		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1343 
1344 		src++;
1345 		n -= len;
1346 	}
1347 
1348 	t = &rctx->walk.cache[0];
1349 	n = nbytes;
1350 	while (n) {
1351 		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1352 			BUG_ON(!sg_page(t));
1353 			dpage = sg_page(t);
1354 			doff = 0;
1355 			len = t->length;
1356 		} else {
1357 			BUG_ON(!sg_page(dst));
1358 			dpage = sg_page(dst);
1359 			doff = dst->offset;
1360 			len = dst->length;
1361 		}
1362 		len = min(len, n);
1363 
1364 		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1365 
1366 		dst++;
1367 		t++;
1368 		n -= len;
1369 	}
1370 
1371 	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1372 	hifn_setup_res_desc(dev);
1373 	return 0;
1374 }
1375 
1376 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1377 		int num, gfp_t gfp_flags)
1378 {
1379 	int i;
1380 
1381 	num = min(ASYNC_SCATTERLIST_CACHE, num);
1382 	sg_init_table(w->cache, num);
1383 
1384 	w->num = 0;
1385 	for (i = 0; i < num; ++i) {
1386 		struct page *page = alloc_page(gfp_flags);
1387 		struct scatterlist *s;
1388 
1389 		if (!page)
1390 			break;
1391 
1392 		s = &w->cache[i];
1393 
1394 		sg_set_page(s, page, PAGE_SIZE, 0);
1395 		w->num++;
1396 	}
1397 
1398 	return i;
1399 }
1400 
1401 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1402 {
1403 	int i;
1404 
1405 	for (i = 0; i < w->num; ++i) {
1406 		struct scatterlist *s = &w->cache[i];
1407 
1408 		__free_page(sg_page(s));
1409 
1410 		s->length = 0;
1411 	}
1412 
1413 	w->num = 0;
1414 }
1415 
1416 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1417 		unsigned int size, unsigned int *nbytesp)
1418 {
1419 	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1420 	int idx = 0;
1421 
1422 	if (drest < size || size > nbytes)
1423 		return -EINVAL;
1424 
1425 	while (size) {
1426 		copy = min3(drest, size, dst->length);
1427 
1428 		size -= copy;
1429 		drest -= copy;
1430 		nbytes -= copy;
1431 
1432 		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1433 			 __func__, copy, size, drest, nbytes);
1434 
1435 		dst++;
1436 		idx++;
1437 	}
1438 
1439 	*nbytesp = nbytes;
1440 	*drestp = drest;
1441 
1442 	return idx;
1443 }
1444 
1445 static int hifn_cipher_walk(struct ablkcipher_request *req,
1446 		struct hifn_cipher_walk *w)
1447 {
1448 	struct scatterlist *dst, *t;
1449 	unsigned int nbytes = req->nbytes, offset, copy, diff;
1450 	int idx, tidx, err;
1451 
1452 	tidx = idx = 0;
1453 	offset = 0;
1454 	while (nbytes) {
1455 		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1456 			return -EINVAL;
1457 
1458 		dst = &req->dst[idx];
1459 
1460 		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1461 			 __func__, dst->length, dst->offset, offset, nbytes);
1462 
1463 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1464 		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1465 		    offset) {
1466 			unsigned slen = min(dst->length - offset, nbytes);
1467 			unsigned dlen = PAGE_SIZE;
1468 
1469 			t = &w->cache[idx];
1470 
1471 			err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1472 			if (err < 0)
1473 				return err;
1474 
1475 			idx += err;
1476 
1477 			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1478 			diff = slen & (HIFN_D_DST_DALIGN - 1);
1479 
1480 			if (dlen < nbytes) {
1481 				/*
1482 				 * Destination page does not have enough space
1483 				 * to put there additional blocksized chunk,
1484 				 * so we mark that page as containing only
1485 				 * blocksize aligned chunks:
1486 				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1487 				 * and increase number of bytes to be processed
1488 				 * in next chunk:
1489 				 *	nbytes += diff;
1490 				 */
1491 				nbytes += diff;
1492 
1493 				/*
1494 				 * Temporary of course...
1495 				 * Kick author if you will catch this one.
1496 				 */
1497 				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1498 				       __func__, dlen, nbytes, slen, offset);
1499 				pr_err("%s: please contact author to fix this "
1500 				       "issue, generally you should not catch "
1501 				       "this path under any condition but who "
1502 				       "knows how did you use crypto code.\n"
1503 				       "Thank you.\n",	__func__);
1504 				BUG();
1505 			} else {
1506 				copy += diff + nbytes;
1507 
1508 				dst = &req->dst[idx];
1509 
1510 				err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1511 				if (err < 0)
1512 					return err;
1513 
1514 				idx += err;
1515 			}
1516 
1517 			t->length = copy;
1518 			t->offset = offset;
1519 		} else {
1520 			nbytes -= min(dst->length, nbytes);
1521 			idx++;
1522 		}
1523 
1524 		tidx++;
1525 	}
1526 
1527 	return tidx;
1528 }
1529 
1530 static int hifn_setup_session(struct ablkcipher_request *req)
1531 {
1532 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1533 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1534 	struct hifn_device *dev = ctx->dev;
1535 	unsigned long dlen, flags;
1536 	unsigned int nbytes = req->nbytes, idx = 0;
1537 	int err = -EINVAL, sg_num;
1538 	struct scatterlist *dst;
1539 
1540 	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1541 		goto err_out_exit;
1542 
1543 	rctx->walk.flags = 0;
1544 
1545 	while (nbytes) {
1546 		dst = &req->dst[idx];
1547 		dlen = min(dst->length, nbytes);
1548 
1549 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1550 		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1551 			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1552 
1553 		nbytes -= dlen;
1554 		idx++;
1555 	}
1556 
1557 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1558 		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1559 		if (err < 0)
1560 			return err;
1561 	}
1562 
1563 	sg_num = hifn_cipher_walk(req, &rctx->walk);
1564 	if (sg_num < 0) {
1565 		err = sg_num;
1566 		goto err_out_exit;
1567 	}
1568 
1569 	spin_lock_irqsave(&dev->lock, flags);
1570 	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1571 		err = -EAGAIN;
1572 		goto err_out;
1573 	}
1574 
1575 	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1576 	if (err)
1577 		goto err_out;
1578 
1579 	dev->snum++;
1580 
1581 	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1582 	spin_unlock_irqrestore(&dev->lock, flags);
1583 
1584 	return 0;
1585 
1586 err_out:
1587 	spin_unlock_irqrestore(&dev->lock, flags);
1588 err_out_exit:
1589 	if (err) {
1590 		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1591 			 "type: %u, err: %d.\n",
1592 			 rctx->iv, rctx->ivsize,
1593 			 ctx->key, ctx->keysize,
1594 			 rctx->mode, rctx->op, rctx->type, err);
1595 	}
1596 
1597 	return err;
1598 }
1599 
1600 static int hifn_start_device(struct hifn_device *dev)
1601 {
1602 	int err;
1603 
1604 	dev->started = dev->active = 0;
1605 	hifn_reset_dma(dev, 1);
1606 
1607 	err = hifn_enable_crypto(dev);
1608 	if (err)
1609 		return err;
1610 
1611 	hifn_reset_puc(dev);
1612 
1613 	hifn_init_dma(dev);
1614 
1615 	hifn_init_registers(dev);
1616 
1617 	hifn_init_pubrng(dev);
1618 
1619 	return 0;
1620 }
1621 
1622 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1623 		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1624 {
1625 	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1626 	void *daddr;
1627 	int idx = 0;
1628 
1629 	if (srest < size || size > nbytes)
1630 		return -EINVAL;
1631 
1632 	while (size) {
1633 		copy = min3(srest, dst->length, size);
1634 
1635 		daddr = kmap_atomic(sg_page(dst));
1636 		memcpy(daddr + dst->offset + offset, saddr, copy);
1637 		kunmap_atomic(daddr);
1638 
1639 		nbytes -= copy;
1640 		size -= copy;
1641 		srest -= copy;
1642 		saddr += copy;
1643 		offset = 0;
1644 
1645 		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1646 			 __func__, copy, size, srest, nbytes);
1647 
1648 		dst++;
1649 		idx++;
1650 	}
1651 
1652 	*nbytesp = nbytes;
1653 	*srestp = srest;
1654 
1655 	return idx;
1656 }
1657 
1658 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1659 {
1660 	unsigned long flags;
1661 
1662 	spin_lock_irqsave(&dev->lock, flags);
1663 	dev->sa[i] = NULL;
1664 	dev->started--;
1665 	if (dev->started < 0)
1666 		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1667 			 dev->started);
1668 	spin_unlock_irqrestore(&dev->lock, flags);
1669 	BUG_ON(dev->started < 0);
1670 }
1671 
1672 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1673 {
1674 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1675 
1676 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1677 		unsigned int nbytes = req->nbytes;
1678 		int idx = 0, err;
1679 		struct scatterlist *dst, *t;
1680 		void *saddr;
1681 
1682 		while (nbytes) {
1683 			t = &rctx->walk.cache[idx];
1684 			dst = &req->dst[idx];
1685 
1686 			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1687 				"sg_page(dst): %p, dst->length: %u, "
1688 				"nbytes: %u.\n",
1689 				__func__, sg_page(t), t->length,
1690 				sg_page(dst), dst->length, nbytes);
1691 
1692 			if (!t->length) {
1693 				nbytes -= min(dst->length, nbytes);
1694 				idx++;
1695 				continue;
1696 			}
1697 
1698 			saddr = kmap_atomic(sg_page(t));
1699 
1700 			err = ablkcipher_get(saddr, &t->length, t->offset,
1701 					dst, nbytes, &nbytes);
1702 			if (err < 0) {
1703 				kunmap_atomic(saddr);
1704 				break;
1705 			}
1706 
1707 			idx += err;
1708 			kunmap_atomic(saddr);
1709 		}
1710 
1711 		hifn_cipher_walk_exit(&rctx->walk);
1712 	}
1713 
1714 	req->base.complete(&req->base, error);
1715 }
1716 
1717 static void hifn_clear_rings(struct hifn_device *dev, int error)
1718 {
1719 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1720 	int i, u;
1721 
1722 	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1723 			"k: %d.%d.%d.%d.\n",
1724 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1725 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1726 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1727 
1728 	i = dma->resk; u = dma->resu;
1729 	while (u != 0) {
1730 		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1731 			break;
1732 
1733 		if (dev->sa[i]) {
1734 			dev->success++;
1735 			dev->reset = 0;
1736 			hifn_process_ready(dev->sa[i], error);
1737 			hifn_complete_sa(dev, i);
1738 		}
1739 
1740 		if (++i == HIFN_D_RES_RSIZE)
1741 			i = 0;
1742 		u--;
1743 	}
1744 	dma->resk = i; dma->resu = u;
1745 
1746 	i = dma->srck; u = dma->srcu;
1747 	while (u != 0) {
1748 		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1749 			break;
1750 		if (++i == HIFN_D_SRC_RSIZE)
1751 			i = 0;
1752 		u--;
1753 	}
1754 	dma->srck = i; dma->srcu = u;
1755 
1756 	i = dma->cmdk; u = dma->cmdu;
1757 	while (u != 0) {
1758 		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1759 			break;
1760 		if (++i == HIFN_D_CMD_RSIZE)
1761 			i = 0;
1762 		u--;
1763 	}
1764 	dma->cmdk = i; dma->cmdu = u;
1765 
1766 	i = dma->dstk; u = dma->dstu;
1767 	while (u != 0) {
1768 		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1769 			break;
1770 		if (++i == HIFN_D_DST_RSIZE)
1771 			i = 0;
1772 		u--;
1773 	}
1774 	dma->dstk = i; dma->dstu = u;
1775 
1776 	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1777 			"k: %d.%d.%d.%d.\n",
1778 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1779 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1780 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1781 }
1782 
1783 static void hifn_work(struct work_struct *work)
1784 {
1785 	struct delayed_work *dw = to_delayed_work(work);
1786 	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1787 	unsigned long flags;
1788 	int reset = 0;
1789 	u32 r = 0;
1790 
1791 	spin_lock_irqsave(&dev->lock, flags);
1792 	if (dev->active == 0) {
1793 		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1794 
1795 		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1796 			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1797 			r |= HIFN_DMACSR_C_CTRL_DIS;
1798 		}
1799 		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1800 			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1801 			r |= HIFN_DMACSR_S_CTRL_DIS;
1802 		}
1803 		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1804 			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1805 			r |= HIFN_DMACSR_D_CTRL_DIS;
1806 		}
1807 		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1808 			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1809 			r |= HIFN_DMACSR_R_CTRL_DIS;
1810 		}
1811 		if (r)
1812 			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1813 	} else
1814 		dev->active--;
1815 
1816 	if ((dev->prev_success == dev->success) && dev->started)
1817 		reset = 1;
1818 	dev->prev_success = dev->success;
1819 	spin_unlock_irqrestore(&dev->lock, flags);
1820 
1821 	if (reset) {
1822 		if (++dev->reset >= 5) {
1823 			int i;
1824 			struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1825 
1826 			dev_info(&dev->pdev->dev,
1827 				 "r: %08x, active: %d, started: %d, "
1828 				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1829 				 r, dev->active, dev->started,
1830 				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1831 				 reset);
1832 
1833 			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1834 			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1835 				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1836 				if (dev->sa[i]) {
1837 					hifn_process_ready(dev->sa[i], -ENODEV);
1838 					hifn_complete_sa(dev, i);
1839 				}
1840 			}
1841 			pr_info("\n");
1842 
1843 			hifn_reset_dma(dev, 1);
1844 			hifn_stop_device(dev);
1845 			hifn_start_device(dev);
1846 			dev->reset = 0;
1847 		}
1848 
1849 		tasklet_schedule(&dev->tasklet);
1850 	}
1851 
1852 	schedule_delayed_work(&dev->work, HZ);
1853 }
1854 
1855 static irqreturn_t hifn_interrupt(int irq, void *data)
1856 {
1857 	struct hifn_device *dev = (struct hifn_device *)data;
1858 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1859 	u32 dmacsr, restart;
1860 
1861 	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1862 
1863 	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1864 			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1865 		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1866 		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1867 		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1868 
1869 	if ((dmacsr & dev->dmareg) == 0)
1870 		return IRQ_NONE;
1871 
1872 	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1873 
1874 	if (dmacsr & HIFN_DMACSR_ENGINE)
1875 		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1876 	if (dmacsr & HIFN_DMACSR_PUBDONE)
1877 		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1878 			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1879 
1880 	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1881 	if (restart) {
1882 		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1883 
1884 		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1885 			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1886 			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1887 			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1888 		if (!!(puisr & HIFN_PUISR_DSTOVER))
1889 			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1890 		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1891 					HIFN_DMACSR_D_OVER));
1892 	}
1893 
1894 	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1895 			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1896 	if (restart) {
1897 		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1898 			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1899 			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1900 			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1901 			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1902 		hifn_reset_dma(dev, 1);
1903 		hifn_init_dma(dev);
1904 		hifn_init_registers(dev);
1905 	}
1906 
1907 	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1908 		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1909 		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1910 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1911 	}
1912 
1913 	tasklet_schedule(&dev->tasklet);
1914 
1915 	return IRQ_HANDLED;
1916 }
1917 
1918 static void hifn_flush(struct hifn_device *dev)
1919 {
1920 	unsigned long flags;
1921 	struct crypto_async_request *async_req;
1922 	struct ablkcipher_request *req;
1923 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1924 	int i;
1925 
1926 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1927 		struct hifn_desc *d = &dma->resr[i];
1928 
1929 		if (dev->sa[i]) {
1930 			hifn_process_ready(dev->sa[i],
1931 				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1932 			hifn_complete_sa(dev, i);
1933 		}
1934 	}
1935 
1936 	spin_lock_irqsave(&dev->lock, flags);
1937 	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1938 		req = ablkcipher_request_cast(async_req);
1939 		spin_unlock_irqrestore(&dev->lock, flags);
1940 
1941 		hifn_process_ready(req, -ENODEV);
1942 
1943 		spin_lock_irqsave(&dev->lock, flags);
1944 	}
1945 	spin_unlock_irqrestore(&dev->lock, flags);
1946 }
1947 
1948 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1949 		unsigned int len)
1950 {
1951 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1952 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
1953 	struct hifn_device *dev = ctx->dev;
1954 
1955 	if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
1956 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1957 		return -1;
1958 	}
1959 
1960 	if (len == HIFN_DES_KEY_LENGTH) {
1961 		u32 tmp[DES_EXPKEY_WORDS];
1962 		int ret = des_ekey(tmp, key);
1963 
1964 		if (unlikely(ret == 0) &&
1965 		    (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
1966 			tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
1967 			return -EINVAL;
1968 		}
1969 	}
1970 
1971 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1972 
1973 	memcpy(ctx->key, key, len);
1974 	ctx->keysize = len;
1975 
1976 	return 0;
1977 }
1978 
1979 static int hifn_des3_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1980 			    unsigned int len)
1981 {
1982 	struct hifn_context *ctx = crypto_ablkcipher_ctx(cipher);
1983 	struct hifn_device *dev = ctx->dev;
1984 	u32 flags;
1985 	int err;
1986 
1987 	flags = crypto_ablkcipher_get_flags(cipher);
1988 	err = __des3_verify_key(&flags, key);
1989 	if (unlikely(err)) {
1990 		crypto_ablkcipher_set_flags(cipher, flags);
1991 		return err;
1992 	}
1993 
1994 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1995 
1996 	memcpy(ctx->key, key, len);
1997 	ctx->keysize = len;
1998 
1999 	return 0;
2000 }
2001 
2002 static int hifn_handle_req(struct ablkcipher_request *req)
2003 {
2004 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2005 	struct hifn_device *dev = ctx->dev;
2006 	int err = -EAGAIN;
2007 
2008 	if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2009 		err = hifn_setup_session(req);
2010 
2011 	if (err == -EAGAIN) {
2012 		unsigned long flags;
2013 
2014 		spin_lock_irqsave(&dev->lock, flags);
2015 		err = ablkcipher_enqueue_request(&dev->queue, req);
2016 		spin_unlock_irqrestore(&dev->lock, flags);
2017 	}
2018 
2019 	return err;
2020 }
2021 
2022 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2023 		u8 type, u8 mode)
2024 {
2025 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2026 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2027 	unsigned ivsize;
2028 
2029 	ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2030 
2031 	if (req->info && mode != ACRYPTO_MODE_ECB) {
2032 		if (type == ACRYPTO_TYPE_AES_128)
2033 			ivsize = HIFN_AES_IV_LENGTH;
2034 		else if (type == ACRYPTO_TYPE_DES)
2035 			ivsize = HIFN_DES_KEY_LENGTH;
2036 		else if (type == ACRYPTO_TYPE_3DES)
2037 			ivsize = HIFN_3DES_KEY_LENGTH;
2038 	}
2039 
2040 	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2041 		if (ctx->keysize == 24)
2042 			type = ACRYPTO_TYPE_AES_192;
2043 		else if (ctx->keysize == 32)
2044 			type = ACRYPTO_TYPE_AES_256;
2045 	}
2046 
2047 	rctx->op = op;
2048 	rctx->mode = mode;
2049 	rctx->type = type;
2050 	rctx->iv = req->info;
2051 	rctx->ivsize = ivsize;
2052 
2053 	/*
2054 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2055 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2056 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2057 	 */
2058 
2059 	return hifn_handle_req(req);
2060 }
2061 
2062 static int hifn_process_queue(struct hifn_device *dev)
2063 {
2064 	struct crypto_async_request *async_req, *backlog;
2065 	struct ablkcipher_request *req;
2066 	unsigned long flags;
2067 	int err = 0;
2068 
2069 	while (dev->started < HIFN_QUEUE_LENGTH) {
2070 		spin_lock_irqsave(&dev->lock, flags);
2071 		backlog = crypto_get_backlog(&dev->queue);
2072 		async_req = crypto_dequeue_request(&dev->queue);
2073 		spin_unlock_irqrestore(&dev->lock, flags);
2074 
2075 		if (!async_req)
2076 			break;
2077 
2078 		if (backlog)
2079 			backlog->complete(backlog, -EINPROGRESS);
2080 
2081 		req = ablkcipher_request_cast(async_req);
2082 
2083 		err = hifn_handle_req(req);
2084 		if (err)
2085 			break;
2086 	}
2087 
2088 	return err;
2089 }
2090 
2091 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2092 		u8 type, u8 mode)
2093 {
2094 	int err;
2095 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2096 	struct hifn_device *dev = ctx->dev;
2097 
2098 	err = hifn_setup_crypto_req(req, op, type, mode);
2099 	if (err)
2100 		return err;
2101 
2102 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2103 		hifn_process_queue(dev);
2104 
2105 	return -EINPROGRESS;
2106 }
2107 
2108 /*
2109  * AES ecryption functions.
2110  */
2111 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2112 {
2113 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2114 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2115 }
2116 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2117 {
2118 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2119 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2120 }
2121 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2122 {
2123 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2124 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2125 }
2126 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2127 {
2128 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2129 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2130 }
2131 
2132 /*
2133  * AES decryption functions.
2134  */
2135 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2136 {
2137 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2138 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2139 }
2140 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2141 {
2142 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2143 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2144 }
2145 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2146 {
2147 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2148 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2149 }
2150 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2151 {
2152 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2153 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2154 }
2155 
2156 /*
2157  * DES ecryption functions.
2158  */
2159 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2160 {
2161 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2162 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2163 }
2164 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2165 {
2166 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2167 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2168 }
2169 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2170 {
2171 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2172 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2173 }
2174 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2175 {
2176 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2177 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2178 }
2179 
2180 /*
2181  * DES decryption functions.
2182  */
2183 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2184 {
2185 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2186 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2187 }
2188 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2189 {
2190 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2191 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2192 }
2193 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2194 {
2195 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2196 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2197 }
2198 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2199 {
2200 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2201 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2202 }
2203 
2204 /*
2205  * 3DES ecryption functions.
2206  */
2207 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2208 {
2209 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2210 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2211 }
2212 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2213 {
2214 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2215 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2216 }
2217 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2218 {
2219 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2220 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2221 }
2222 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2223 {
2224 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2225 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2226 }
2227 
2228 /* 3DES decryption functions. */
2229 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2230 {
2231 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2232 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2233 }
2234 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2235 {
2236 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2237 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2238 }
2239 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2240 {
2241 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2242 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2243 }
2244 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2245 {
2246 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2247 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2248 }
2249 
2250 struct hifn_alg_template {
2251 	char name[CRYPTO_MAX_ALG_NAME];
2252 	char drv_name[CRYPTO_MAX_ALG_NAME];
2253 	unsigned int bsize;
2254 	struct ablkcipher_alg ablkcipher;
2255 };
2256 
2257 static struct hifn_alg_template hifn_alg_templates[] = {
2258 	/*
2259 	 * 3DES ECB, CBC, CFB and OFB modes.
2260 	 */
2261 	{
2262 		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2263 		.ablkcipher = {
2264 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2265 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2266 			.setkey		=	hifn_des3_setkey,
2267 			.encrypt	=	hifn_encrypt_3des_cfb,
2268 			.decrypt	=	hifn_decrypt_3des_cfb,
2269 		},
2270 	},
2271 	{
2272 		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2273 		.ablkcipher = {
2274 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2275 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2276 			.setkey		=	hifn_des3_setkey,
2277 			.encrypt	=	hifn_encrypt_3des_ofb,
2278 			.decrypt	=	hifn_decrypt_3des_ofb,
2279 		},
2280 	},
2281 	{
2282 		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2283 		.ablkcipher = {
2284 			.ivsize		=	HIFN_IV_LENGTH,
2285 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2286 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2287 			.setkey		=	hifn_des3_setkey,
2288 			.encrypt	=	hifn_encrypt_3des_cbc,
2289 			.decrypt	=	hifn_decrypt_3des_cbc,
2290 		},
2291 	},
2292 	{
2293 		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2294 		.ablkcipher = {
2295 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2296 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2297 			.setkey		=	hifn_des3_setkey,
2298 			.encrypt	=	hifn_encrypt_3des_ecb,
2299 			.decrypt	=	hifn_decrypt_3des_ecb,
2300 		},
2301 	},
2302 
2303 	/*
2304 	 * DES ECB, CBC, CFB and OFB modes.
2305 	 */
2306 	{
2307 		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2308 		.ablkcipher = {
2309 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2310 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2311 			.setkey		=	hifn_setkey,
2312 			.encrypt	=	hifn_encrypt_des_cfb,
2313 			.decrypt	=	hifn_decrypt_des_cfb,
2314 		},
2315 	},
2316 	{
2317 		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2318 		.ablkcipher = {
2319 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2320 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2321 			.setkey		=	hifn_setkey,
2322 			.encrypt	=	hifn_encrypt_des_ofb,
2323 			.decrypt	=	hifn_decrypt_des_ofb,
2324 		},
2325 	},
2326 	{
2327 		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2328 		.ablkcipher = {
2329 			.ivsize		=	HIFN_IV_LENGTH,
2330 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2331 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2332 			.setkey		=	hifn_setkey,
2333 			.encrypt	=	hifn_encrypt_des_cbc,
2334 			.decrypt	=	hifn_decrypt_des_cbc,
2335 		},
2336 	},
2337 	{
2338 		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2339 		.ablkcipher = {
2340 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2341 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2342 			.setkey		=	hifn_setkey,
2343 			.encrypt	=	hifn_encrypt_des_ecb,
2344 			.decrypt	=	hifn_decrypt_des_ecb,
2345 		},
2346 	},
2347 
2348 	/*
2349 	 * AES ECB, CBC, CFB and OFB modes.
2350 	 */
2351 	{
2352 		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2353 		.ablkcipher = {
2354 			.min_keysize	=	AES_MIN_KEY_SIZE,
2355 			.max_keysize	=	AES_MAX_KEY_SIZE,
2356 			.setkey		=	hifn_setkey,
2357 			.encrypt	=	hifn_encrypt_aes_ecb,
2358 			.decrypt	=	hifn_decrypt_aes_ecb,
2359 		},
2360 	},
2361 	{
2362 		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2363 		.ablkcipher = {
2364 			.ivsize		=	HIFN_AES_IV_LENGTH,
2365 			.min_keysize	=	AES_MIN_KEY_SIZE,
2366 			.max_keysize	=	AES_MAX_KEY_SIZE,
2367 			.setkey		=	hifn_setkey,
2368 			.encrypt	=	hifn_encrypt_aes_cbc,
2369 			.decrypt	=	hifn_decrypt_aes_cbc,
2370 		},
2371 	},
2372 	{
2373 		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2374 		.ablkcipher = {
2375 			.min_keysize	=	AES_MIN_KEY_SIZE,
2376 			.max_keysize	=	AES_MAX_KEY_SIZE,
2377 			.setkey		=	hifn_setkey,
2378 			.encrypt	=	hifn_encrypt_aes_cfb,
2379 			.decrypt	=	hifn_decrypt_aes_cfb,
2380 		},
2381 	},
2382 	{
2383 		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2384 		.ablkcipher = {
2385 			.min_keysize	=	AES_MIN_KEY_SIZE,
2386 			.max_keysize	=	AES_MAX_KEY_SIZE,
2387 			.setkey		=	hifn_setkey,
2388 			.encrypt	=	hifn_encrypt_aes_ofb,
2389 			.decrypt	=	hifn_decrypt_aes_ofb,
2390 		},
2391 	},
2392 };
2393 
2394 static int hifn_cra_init(struct crypto_tfm *tfm)
2395 {
2396 	struct crypto_alg *alg = tfm->__crt_alg;
2397 	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2398 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2399 
2400 	ctx->dev = ha->dev;
2401 	tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2402 	return 0;
2403 }
2404 
2405 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2406 {
2407 	struct hifn_crypto_alg *alg;
2408 	int err;
2409 
2410 	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2411 	if (!alg)
2412 		return -ENOMEM;
2413 
2414 	snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2415 	snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2416 		 t->drv_name, dev->name);
2417 
2418 	alg->alg.cra_priority = 300;
2419 	alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2420 				CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2421 	alg->alg.cra_blocksize = t->bsize;
2422 	alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2423 	alg->alg.cra_alignmask = 0;
2424 	alg->alg.cra_type = &crypto_ablkcipher_type;
2425 	alg->alg.cra_module = THIS_MODULE;
2426 	alg->alg.cra_u.ablkcipher = t->ablkcipher;
2427 	alg->alg.cra_init = hifn_cra_init;
2428 
2429 	alg->dev = dev;
2430 
2431 	list_add_tail(&alg->entry, &dev->alg_list);
2432 
2433 	err = crypto_register_alg(&alg->alg);
2434 	if (err) {
2435 		list_del(&alg->entry);
2436 		kfree(alg);
2437 	}
2438 
2439 	return err;
2440 }
2441 
2442 static void hifn_unregister_alg(struct hifn_device *dev)
2443 {
2444 	struct hifn_crypto_alg *a, *n;
2445 
2446 	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2447 		list_del(&a->entry);
2448 		crypto_unregister_alg(&a->alg);
2449 		kfree(a);
2450 	}
2451 }
2452 
2453 static int hifn_register_alg(struct hifn_device *dev)
2454 {
2455 	int i, err;
2456 
2457 	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2458 		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2459 		if (err)
2460 			goto err_out_exit;
2461 	}
2462 
2463 	return 0;
2464 
2465 err_out_exit:
2466 	hifn_unregister_alg(dev);
2467 	return err;
2468 }
2469 
2470 static void hifn_tasklet_callback(unsigned long data)
2471 {
2472 	struct hifn_device *dev = (struct hifn_device *)data;
2473 
2474 	/*
2475 	 * This is ok to call this without lock being held,
2476 	 * althogh it modifies some parameters used in parallel,
2477 	 * (like dev->success), but they are used in process
2478 	 * context or update is atomic (like setting dev->sa[i] to NULL).
2479 	 */
2480 	hifn_clear_rings(dev, 0);
2481 
2482 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2483 		hifn_process_queue(dev);
2484 }
2485 
2486 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2487 {
2488 	int err, i;
2489 	struct hifn_device *dev;
2490 	char name[8];
2491 
2492 	err = pci_enable_device(pdev);
2493 	if (err)
2494 		return err;
2495 	pci_set_master(pdev);
2496 
2497 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2498 	if (err)
2499 		goto err_out_disable_pci_device;
2500 
2501 	snprintf(name, sizeof(name), "hifn%d",
2502 			atomic_inc_return(&hifn_dev_number) - 1);
2503 
2504 	err = pci_request_regions(pdev, name);
2505 	if (err)
2506 		goto err_out_disable_pci_device;
2507 
2508 	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2509 	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2510 	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2511 		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2512 		err = -ENODEV;
2513 		goto err_out_free_regions;
2514 	}
2515 
2516 	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2517 			GFP_KERNEL);
2518 	if (!dev) {
2519 		err = -ENOMEM;
2520 		goto err_out_free_regions;
2521 	}
2522 
2523 	INIT_LIST_HEAD(&dev->alg_list);
2524 
2525 	snprintf(dev->name, sizeof(dev->name), "%s", name);
2526 	spin_lock_init(&dev->lock);
2527 
2528 	for (i = 0; i < 3; ++i) {
2529 		unsigned long addr, size;
2530 
2531 		addr = pci_resource_start(pdev, i);
2532 		size = pci_resource_len(pdev, i);
2533 
2534 		dev->bar[i] = ioremap_nocache(addr, size);
2535 		if (!dev->bar[i]) {
2536 			err = -ENOMEM;
2537 			goto err_out_unmap_bars;
2538 		}
2539 	}
2540 
2541 	dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2542 					       &dev->desc_dma);
2543 	if (!dev->desc_virt) {
2544 		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2545 		err = -ENOMEM;
2546 		goto err_out_unmap_bars;
2547 	}
2548 
2549 	dev->pdev = pdev;
2550 	dev->irq = pdev->irq;
2551 
2552 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2553 		dev->sa[i] = NULL;
2554 
2555 	pci_set_drvdata(pdev, dev);
2556 
2557 	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2558 
2559 	crypto_init_queue(&dev->queue, 1);
2560 
2561 	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2562 	if (err) {
2563 		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2564 			dev->irq, err);
2565 		dev->irq = 0;
2566 		goto err_out_free_desc;
2567 	}
2568 
2569 	err = hifn_start_device(dev);
2570 	if (err)
2571 		goto err_out_free_irq;
2572 
2573 	err = hifn_register_rng(dev);
2574 	if (err)
2575 		goto err_out_stop_device;
2576 
2577 	err = hifn_register_alg(dev);
2578 	if (err)
2579 		goto err_out_unregister_rng;
2580 
2581 	INIT_DELAYED_WORK(&dev->work, hifn_work);
2582 	schedule_delayed_work(&dev->work, HZ);
2583 
2584 	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2585 		"successfully registered as %s.\n",
2586 		pci_name(pdev), dev->name);
2587 
2588 	return 0;
2589 
2590 err_out_unregister_rng:
2591 	hifn_unregister_rng(dev);
2592 err_out_stop_device:
2593 	hifn_reset_dma(dev, 1);
2594 	hifn_stop_device(dev);
2595 err_out_free_irq:
2596 	free_irq(dev->irq, dev);
2597 	tasklet_kill(&dev->tasklet);
2598 err_out_free_desc:
2599 	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2600 			dev->desc_virt, dev->desc_dma);
2601 
2602 err_out_unmap_bars:
2603 	for (i = 0; i < 3; ++i)
2604 		if (dev->bar[i])
2605 			iounmap(dev->bar[i]);
2606 	kfree(dev);
2607 
2608 err_out_free_regions:
2609 	pci_release_regions(pdev);
2610 
2611 err_out_disable_pci_device:
2612 	pci_disable_device(pdev);
2613 
2614 	return err;
2615 }
2616 
2617 static void hifn_remove(struct pci_dev *pdev)
2618 {
2619 	int i;
2620 	struct hifn_device *dev;
2621 
2622 	dev = pci_get_drvdata(pdev);
2623 
2624 	if (dev) {
2625 		cancel_delayed_work_sync(&dev->work);
2626 
2627 		hifn_unregister_rng(dev);
2628 		hifn_unregister_alg(dev);
2629 		hifn_reset_dma(dev, 1);
2630 		hifn_stop_device(dev);
2631 
2632 		free_irq(dev->irq, dev);
2633 		tasklet_kill(&dev->tasklet);
2634 
2635 		hifn_flush(dev);
2636 
2637 		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2638 				dev->desc_virt, dev->desc_dma);
2639 		for (i = 0; i < 3; ++i)
2640 			if (dev->bar[i])
2641 				iounmap(dev->bar[i]);
2642 
2643 		kfree(dev);
2644 	}
2645 
2646 	pci_release_regions(pdev);
2647 	pci_disable_device(pdev);
2648 }
2649 
2650 static struct pci_device_id hifn_pci_tbl[] = {
2651 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2652 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2653 	{ 0 }
2654 };
2655 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2656 
2657 static struct pci_driver hifn_pci_driver = {
2658 	.name     = "hifn795x",
2659 	.id_table = hifn_pci_tbl,
2660 	.probe    = hifn_probe,
2661 	.remove   = hifn_remove,
2662 };
2663 
2664 static int __init hifn_init(void)
2665 {
2666 	unsigned int freq;
2667 	int err;
2668 
2669 	/* HIFN supports only 32-bit addresses */
2670 	BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2671 
2672 	if (strncmp(hifn_pll_ref, "ext", 3) &&
2673 	    strncmp(hifn_pll_ref, "pci", 3)) {
2674 		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2675 		return -EINVAL;
2676 	}
2677 
2678 	/*
2679 	 * For the 7955/7956 the reference clock frequency must be in the
2680 	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2681 	 * but this chip is currently not supported.
2682 	 */
2683 	if (hifn_pll_ref[3] != '\0') {
2684 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2685 		if (freq < 20 || freq > 100) {
2686 			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2687 			       "be in the range of 20-100");
2688 			return -EINVAL;
2689 		}
2690 	}
2691 
2692 	err = pci_register_driver(&hifn_pci_driver);
2693 	if (err < 0) {
2694 		pr_err("Failed to register PCI driver for %s device.\n",
2695 		       hifn_pci_driver.name);
2696 		return -ENODEV;
2697 	}
2698 
2699 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2700 		"has been successfully registered.\n");
2701 
2702 	return 0;
2703 }
2704 
2705 static void __exit hifn_fini(void)
2706 {
2707 	pci_unregister_driver(&hifn_pci_driver);
2708 
2709 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2710 		"has been successfully unregistered.\n");
2711 }
2712 
2713 module_init(hifn_init);
2714 module_exit(hifn_fini);
2715 
2716 MODULE_LICENSE("GPL");
2717 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2718 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2719