xref: /openbmc/linux/drivers/crypto/hifn_795x.c (revision 23c2b932)
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/slab.h>
23 #include <linux/delay.h>
24 #include <linux/mm.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/scatterlist.h>
27 #include <linux/highmem.h>
28 #include <linux/crypto.h>
29 #include <linux/hw_random.h>
30 #include <linux/ktime.h>
31 
32 #include <crypto/algapi.h>
33 #include <crypto/des.h>
34 
35 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
36 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
37 MODULE_PARM_DESC(hifn_pll_ref,
38 		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
39 
40 static atomic_t hifn_dev_number;
41 
42 #define ACRYPTO_OP_DECRYPT	0
43 #define ACRYPTO_OP_ENCRYPT	1
44 #define ACRYPTO_OP_HMAC		2
45 #define ACRYPTO_OP_RNG		3
46 
47 #define ACRYPTO_MODE_ECB		0
48 #define ACRYPTO_MODE_CBC		1
49 #define ACRYPTO_MODE_CFB		2
50 #define ACRYPTO_MODE_OFB		3
51 
52 #define ACRYPTO_TYPE_AES_128	0
53 #define ACRYPTO_TYPE_AES_192	1
54 #define ACRYPTO_TYPE_AES_256	2
55 #define ACRYPTO_TYPE_3DES	3
56 #define ACRYPTO_TYPE_DES	4
57 
58 #define PCI_VENDOR_ID_HIFN		0x13A3
59 #define PCI_DEVICE_ID_HIFN_7955		0x0020
60 #define	PCI_DEVICE_ID_HIFN_7956		0x001d
61 
62 /* I/O region sizes */
63 
64 #define HIFN_BAR0_SIZE			0x1000
65 #define HIFN_BAR1_SIZE			0x2000
66 #define HIFN_BAR2_SIZE			0x8000
67 
68 /* DMA registres */
69 
70 #define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
71 #define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
72 #define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
73 #define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
74 #define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
75 #define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
76 #define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
77 #define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
78 #define HIFN_CHIP_ID			0x98	/* Chip ID */
79 
80 /*
81  * Processing Unit Registers (offset from BASEREG0)
82  */
83 #define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
84 #define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
85 #define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
86 #define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
87 #define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
88 #define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
89 #define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
90 #define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
91 #define	HIFN_0_SPACESIZE	0x20	/* Register space size */
92 
93 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
94 #define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
95 #define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
96 #define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
97 #define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
98 #define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
99 
100 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
101 #define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
102 #define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
103 #define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
104 #define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
105 #define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
106 #define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
107 #define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
108 #define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
109 #define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
110 #define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
111 
112 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
113 #define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
114 #define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
115 #define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
116 #define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
117 #define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
118 #define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
119 #define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
120 #define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
121 #define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
122 #define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
123 #define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
124 #define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
125 #define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
126 #define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
127 #define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
128 #define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
129 #define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
130 #define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
131 #define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
132 #define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
133 #define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
134 #define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
135 #define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
136 
137 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
138 #define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
139 #define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
140 #define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
141 #define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
142 #define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
143 #define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
144 #define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
145 #define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
146 #define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
147 #define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
148 
149 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
150 #define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
151 #define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
152 #define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
153 #define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
154 #define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
155 #define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
156 #define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
157 #define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
158 #define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
159 #define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
160 #define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
161 #define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
162 #define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
163 #define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
164 #define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
165 #define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
166 #define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
167 
168 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
169 #define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
170 #define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
171 
172 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
173 #define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
174 
175 /*
176  * DMA Interface Registers (offset from BASEREG1)
177  */
178 #define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
179 #define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
180 #define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
181 #define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
182 #define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
183 #define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
184 #define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
185 #define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
186 #define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
187 #define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
188 #define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
189 #define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
190 #define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
191 #define	HIFN_1_REVID		0x98	/* Revision ID */
192 #define	HIFN_1_UNLOCK_SECRET1	0xf4
193 #define	HIFN_1_UNLOCK_SECRET2	0xfc
194 #define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
195 #define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
196 #define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
197 #define	HIFN_1_PUB_OP		0x308	/* Public Operand */
198 #define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
199 #define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
200 #define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
201 #define	HIFN_1_RNG_DATA		0x318	/* RNG data */
202 #define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
203 #define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
204 
205 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
206 #define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
207 #define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
208 #define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
209 #define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
210 #define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
211 #define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
212 #define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
213 #define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
214 #define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
215 #define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
216 #define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
217 #define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
218 #define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
219 #define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
220 #define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
221 #define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
222 #define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
223 #define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
224 #define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
225 #define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
226 #define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
227 #define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
228 #define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
229 #define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
230 #define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
231 #define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
232 #define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
233 #define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
234 #define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
235 #define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
236 #define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
237 #define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
238 #define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
239 #define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
240 #define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
241 #define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
242 #define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
243 #define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
244 
245 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
246 #define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
247 #define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
248 #define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
249 #define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
250 #define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
251 #define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
252 #define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
253 #define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
254 #define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
255 #define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
256 #define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
257 #define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
258 #define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
259 #define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
260 #define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
261 #define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
262 #define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
263 #define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
264 #define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
265 #define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
266 #define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
267 #define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
268 
269 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
270 #define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
271 #define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
272 #define	HIFN_DMACNFG_UNLOCK	0x00000800
273 #define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
274 #define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
275 #define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
276 #define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
277 #define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
278 
279 /* PLL configuration register */
280 #define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
281 #define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
282 #define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
283 #define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
284 #define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
285 #define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
286 #define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
287 #define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
288 #define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
289 #define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
290 #define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
291 #define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
292 #define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
293 #define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
294 #define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
295 #define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
296 #define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
297 
298 #define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
299 
300 /* Public key reset register (HIFN_1_PUB_RESET) */
301 #define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
302 
303 /* Public base address register (HIFN_1_PUB_BASE) */
304 #define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
305 
306 /* Public operand length register (HIFN_1_PUB_OPLEN) */
307 #define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
308 #define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
309 #define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
310 #define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
311 #define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
312 #define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
313 
314 /* Public operation register (HIFN_1_PUB_OP) */
315 #define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
316 #define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
317 #define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
318 #define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
319 #define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
320 #define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
321 #define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
322 #define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
323 #define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
324 #define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
325 #define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
326 #define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
327 #define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
328 #define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
329 #define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
330 #define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
331 #define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
332 #define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
333 #define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
334 #define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
335 
336 /* Public status register (HIFN_1_PUB_STATUS) */
337 #define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
338 #define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
339 
340 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
341 #define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
342 
343 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
344 #define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
345 
346 #define HIFN_NAMESIZE			32
347 #define HIFN_MAX_RESULT_ORDER		5
348 
349 #define	HIFN_D_CMD_RSIZE		(24 * 1)
350 #define	HIFN_D_SRC_RSIZE		(80 * 1)
351 #define	HIFN_D_DST_RSIZE		(80 * 1)
352 #define	HIFN_D_RES_RSIZE		(24 * 1)
353 
354 #define HIFN_D_DST_DALIGN		4
355 
356 #define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
357 
358 #define AES_MIN_KEY_SIZE		16
359 #define AES_MAX_KEY_SIZE		32
360 
361 #define HIFN_DES_KEY_LENGTH		8
362 #define HIFN_3DES_KEY_LENGTH		24
363 #define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
364 #define HIFN_IV_LENGTH			8
365 #define HIFN_AES_IV_LENGTH		16
366 #define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
367 
368 #define HIFN_MAC_KEY_LENGTH		64
369 #define HIFN_MD5_LENGTH			16
370 #define HIFN_SHA1_LENGTH		20
371 #define HIFN_MAC_TRUNC_LENGTH		12
372 
373 #define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
374 #define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
375 #define HIFN_USED_RESULT		12
376 
377 struct hifn_desc {
378 	volatile __le32		l;
379 	volatile __le32		p;
380 };
381 
382 struct hifn_dma {
383 	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
384 	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
385 	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
386 	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
387 
388 	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
389 	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
390 
391 	/*
392 	 *  Our current positions for insertion and removal from the descriptor
393 	 *  rings.
394 	 */
395 	volatile int		cmdi, srci, dsti, resi;
396 	volatile int		cmdu, srcu, dstu, resu;
397 	int			cmdk, srck, dstk, resk;
398 };
399 
400 #define HIFN_FLAG_CMD_BUSY	(1 << 0)
401 #define HIFN_FLAG_SRC_BUSY	(1 << 1)
402 #define HIFN_FLAG_DST_BUSY	(1 << 2)
403 #define HIFN_FLAG_RES_BUSY	(1 << 3)
404 #define HIFN_FLAG_OLD_KEY	(1 << 4)
405 
406 #define HIFN_DEFAULT_ACTIVE_NUM	5
407 
408 struct hifn_device {
409 	char			name[HIFN_NAMESIZE];
410 
411 	int			irq;
412 
413 	struct pci_dev		*pdev;
414 	void __iomem		*bar[3];
415 
416 	void			*desc_virt;
417 	dma_addr_t		desc_dma;
418 
419 	u32			dmareg;
420 
421 	void			*sa[HIFN_D_RES_RSIZE];
422 
423 	spinlock_t		lock;
424 
425 	u32			flags;
426 	int			active, started;
427 	struct delayed_work	work;
428 	unsigned long		reset;
429 	unsigned long		success;
430 	unsigned long		prev_success;
431 
432 	u8			snum;
433 
434 	struct tasklet_struct	tasklet;
435 
436 	struct crypto_queue	queue;
437 	struct list_head	alg_list;
438 
439 	unsigned int		pk_clk_freq;
440 
441 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
442 	unsigned int		rng_wait_time;
443 	ktime_t			rngtime;
444 	struct hwrng		rng;
445 #endif
446 };
447 
448 #define	HIFN_D_LENGTH			0x0000ffff
449 #define	HIFN_D_NOINVALID		0x01000000
450 #define	HIFN_D_MASKDONEIRQ		0x02000000
451 #define	HIFN_D_DESTOVER			0x04000000
452 #define	HIFN_D_OVER			0x08000000
453 #define	HIFN_D_LAST			0x20000000
454 #define	HIFN_D_JUMP			0x40000000
455 #define	HIFN_D_VALID			0x80000000
456 
457 struct hifn_base_command {
458 	volatile __le16		masks;
459 	volatile __le16		session_num;
460 	volatile __le16		total_source_count;
461 	volatile __le16		total_dest_count;
462 };
463 
464 #define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
465 #define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
466 #define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
467 #define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
468 #define	HIFN_BASE_CMD_DECODE		0x2000
469 #define	HIFN_BASE_CMD_SRCLEN_M		0xc000
470 #define	HIFN_BASE_CMD_SRCLEN_S		14
471 #define	HIFN_BASE_CMD_DSTLEN_M		0x3000
472 #define	HIFN_BASE_CMD_DSTLEN_S		12
473 #define	HIFN_BASE_CMD_LENMASK_HI	0x30000
474 #define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
475 
476 /*
477  * Structure to help build up the command data structure.
478  */
479 struct hifn_crypt_command {
480 	volatile __le16		masks;
481 	volatile __le16		header_skip;
482 	volatile __le16		source_count;
483 	volatile __le16		reserved;
484 };
485 
486 #define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
487 #define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
488 #define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
489 #define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
490 #define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
491 #define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
492 #define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
493 #define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
494 #define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
495 #define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
496 #define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
497 #define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
498 #define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
499 #define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
500 #define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
501 #define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
502 #define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
503 #define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
504 #define	HIFN_CRYPT_CMD_SRCLEN_S		14
505 
506 /*
507  * Structure to help build up the command data structure.
508  */
509 struct hifn_mac_command {
510 	volatile __le16	masks;
511 	volatile __le16	header_skip;
512 	volatile __le16	source_count;
513 	volatile __le16	reserved;
514 };
515 
516 #define	HIFN_MAC_CMD_ALG_MASK		0x0001
517 #define	HIFN_MAC_CMD_ALG_SHA1		0x0000
518 #define	HIFN_MAC_CMD_ALG_MD5		0x0001
519 #define	HIFN_MAC_CMD_MODE_MASK		0x000c
520 #define	HIFN_MAC_CMD_MODE_HMAC		0x0000
521 #define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
522 #define	HIFN_MAC_CMD_MODE_HASH		0x0008
523 #define	HIFN_MAC_CMD_MODE_FULL		0x0004
524 #define	HIFN_MAC_CMD_TRUNC		0x0010
525 #define	HIFN_MAC_CMD_RESULT		0x0020
526 #define	HIFN_MAC_CMD_APPEND		0x0040
527 #define	HIFN_MAC_CMD_SRCLEN_M		0xc000
528 #define	HIFN_MAC_CMD_SRCLEN_S		14
529 
530 /*
531  * MAC POS IPsec initiates authentication after encryption on encodes
532  * and before decryption on decodes.
533  */
534 #define	HIFN_MAC_CMD_POS_IPSEC		0x0200
535 #define	HIFN_MAC_CMD_NEW_KEY		0x0800
536 
537 struct hifn_comp_command {
538 	volatile __le16		masks;
539 	volatile __le16		header_skip;
540 	volatile __le16		source_count;
541 	volatile __le16		reserved;
542 };
543 
544 #define	HIFN_COMP_CMD_SRCLEN_M		0xc000
545 #define	HIFN_COMP_CMD_SRCLEN_S		14
546 #define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
547 #define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
548 #define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
549 #define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
550 #define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
551 #define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
552 #define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
553 #define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
554 
555 struct hifn_base_result {
556 	volatile __le16		flags;
557 	volatile __le16		session;
558 	volatile __le16		src_cnt;		/* 15:0 of source count */
559 	volatile __le16		dst_cnt;		/* 15:0 of dest count */
560 };
561 
562 #define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
563 #define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
564 #define	HIFN_BASE_RES_SRCLEN_S		14
565 #define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
566 #define	HIFN_BASE_RES_DSTLEN_S		12
567 
568 struct hifn_comp_result {
569 	volatile __le16		flags;
570 	volatile __le16		crc;
571 };
572 
573 #define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
574 #define	HIFN_COMP_RES_LCB_S		8
575 #define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
576 #define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
577 #define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
578 
579 struct hifn_mac_result {
580 	volatile __le16		flags;
581 	volatile __le16		reserved;
582 	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
583 };
584 
585 #define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
586 #define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
587 
588 struct hifn_crypt_result {
589 	volatile __le16		flags;
590 	volatile __le16		reserved;
591 };
592 
593 #define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
594 
595 #ifndef HIFN_POLL_FREQUENCY
596 #define	HIFN_POLL_FREQUENCY	0x1
597 #endif
598 
599 #ifndef HIFN_POLL_SCALAR
600 #define	HIFN_POLL_SCALAR	0x0
601 #endif
602 
603 #define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
604 #define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
605 
606 struct hifn_crypto_alg {
607 	struct list_head	entry;
608 	struct crypto_alg	alg;
609 	struct hifn_device	*dev;
610 };
611 
612 #define ASYNC_SCATTERLIST_CACHE	16
613 
614 #define ASYNC_FLAGS_MISALIGNED	(1 << 0)
615 
616 struct hifn_cipher_walk {
617 	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
618 	u32			flags;
619 	int			num;
620 };
621 
622 struct hifn_context {
623 	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
624 	struct hifn_device	*dev;
625 	unsigned int		keysize;
626 };
627 
628 struct hifn_request_context {
629 	u8			*iv;
630 	unsigned int		ivsize;
631 	u8			op, type, mode, unused;
632 	struct hifn_cipher_walk	walk;
633 };
634 
635 #define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
636 
637 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
638 {
639 	u32 ret;
640 
641 	ret = readl(dev->bar[0] + reg);
642 
643 	return ret;
644 }
645 
646 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
647 {
648 	u32 ret;
649 
650 	ret = readl(dev->bar[1] + reg);
651 
652 	return ret;
653 }
654 
655 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
656 {
657 	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
658 }
659 
660 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
661 {
662 	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
663 }
664 
665 static void hifn_wait_puc(struct hifn_device *dev)
666 {
667 	int i;
668 	u32 ret;
669 
670 	for (i = 10000; i > 0; --i) {
671 		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
672 		if (!(ret & HIFN_PUCTRL_RESET))
673 			break;
674 
675 		udelay(1);
676 	}
677 
678 	if (!i)
679 		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
680 }
681 
682 static void hifn_reset_puc(struct hifn_device *dev)
683 {
684 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
685 	hifn_wait_puc(dev);
686 }
687 
688 static void hifn_stop_device(struct hifn_device *dev)
689 {
690 	hifn_write_1(dev, HIFN_1_DMA_CSR,
691 		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
692 		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
693 	hifn_write_0(dev, HIFN_0_PUIER, 0);
694 	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
695 }
696 
697 static void hifn_reset_dma(struct hifn_device *dev, int full)
698 {
699 	hifn_stop_device(dev);
700 
701 	/*
702 	 * Setting poll frequency and others to 0.
703 	 */
704 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
705 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
706 	mdelay(1);
707 
708 	/*
709 	 * Reset DMA.
710 	 */
711 	if (full) {
712 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
713 		mdelay(1);
714 	} else {
715 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
716 				HIFN_DMACNFG_MSTRESET);
717 		hifn_reset_puc(dev);
718 	}
719 
720 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
721 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
722 
723 	hifn_reset_puc(dev);
724 }
725 
726 static u32 hifn_next_signature(u32 a, u_int cnt)
727 {
728 	int i;
729 	u32 v;
730 
731 	for (i = 0; i < cnt; i++) {
732 		/* get the parity */
733 		v = a & 0x80080125;
734 		v ^= v >> 16;
735 		v ^= v >> 8;
736 		v ^= v >> 4;
737 		v ^= v >> 2;
738 		v ^= v >> 1;
739 
740 		a = (v & 1) ^ (a << 1);
741 	}
742 
743 	return a;
744 }
745 
746 static struct pci2id {
747 	u_short		pci_vendor;
748 	u_short		pci_prod;
749 	char		card_id[13];
750 } pci2id[] = {
751 	{
752 		PCI_VENDOR_ID_HIFN,
753 		PCI_DEVICE_ID_HIFN_7955,
754 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
755 		  0x00, 0x00, 0x00, 0x00, 0x00 }
756 	},
757 	{
758 		PCI_VENDOR_ID_HIFN,
759 		PCI_DEVICE_ID_HIFN_7956,
760 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
761 		  0x00, 0x00, 0x00, 0x00, 0x00 }
762 	}
763 };
764 
765 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
766 static int hifn_rng_data_present(struct hwrng *rng, int wait)
767 {
768 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
769 	s64 nsec;
770 
771 	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
772 	nsec -= dev->rng_wait_time;
773 	if (nsec <= 0)
774 		return 1;
775 	if (!wait)
776 		return 0;
777 	ndelay(nsec);
778 	return 1;
779 }
780 
781 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
782 {
783 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
784 
785 	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
786 	dev->rngtime = ktime_get();
787 	return 4;
788 }
789 
790 static int hifn_register_rng(struct hifn_device *dev)
791 {
792 	/*
793 	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
794 	 */
795 	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
796 						   dev->pk_clk_freq) * 256;
797 
798 	dev->rng.name		= dev->name;
799 	dev->rng.data_present	= hifn_rng_data_present,
800 	dev->rng.data_read	= hifn_rng_data_read,
801 	dev->rng.priv		= (unsigned long)dev;
802 
803 	return hwrng_register(&dev->rng);
804 }
805 
806 static void hifn_unregister_rng(struct hifn_device *dev)
807 {
808 	hwrng_unregister(&dev->rng);
809 }
810 #else
811 #define hifn_register_rng(dev)		0
812 #define hifn_unregister_rng(dev)
813 #endif
814 
815 static int hifn_init_pubrng(struct hifn_device *dev)
816 {
817 	int i;
818 
819 	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
820 			HIFN_PUBRST_RESET);
821 
822 	for (i = 100; i > 0; --i) {
823 		mdelay(1);
824 
825 		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
826 			break;
827 	}
828 
829 	if (!i) {
830 		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
831 	} else {
832 		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
833 		dev->dmareg |= HIFN_DMAIER_PUBDONE;
834 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
835 
836 		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
837 	}
838 
839 	/* Enable RNG engine. */
840 
841 	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
842 			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
843 	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
844 
845 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
846 	/* First value must be discarded */
847 	hifn_read_1(dev, HIFN_1_RNG_DATA);
848 	dev->rngtime = ktime_get();
849 #endif
850 	return 0;
851 }
852 
853 static int hifn_enable_crypto(struct hifn_device *dev)
854 {
855 	u32 dmacfg, addr;
856 	char *offtbl = NULL;
857 	int i;
858 
859 	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
860 		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
861 				pci2id[i].pci_prod == dev->pdev->device) {
862 			offtbl = pci2id[i].card_id;
863 			break;
864 		}
865 	}
866 
867 	if (!offtbl) {
868 		dev_err(&dev->pdev->dev, "Unknown card!\n");
869 		return -ENODEV;
870 	}
871 
872 	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
873 
874 	hifn_write_1(dev, HIFN_1_DMA_CNFG,
875 			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
876 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
877 	mdelay(1);
878 	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
879 	mdelay(1);
880 	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
881 	mdelay(1);
882 
883 	for (i = 0; i < 12; ++i) {
884 		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
885 		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
886 
887 		mdelay(1);
888 	}
889 	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
890 
891 	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
892 
893 	return 0;
894 }
895 
896 static void hifn_init_dma(struct hifn_device *dev)
897 {
898 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
899 	u32 dptr = dev->desc_dma;
900 	int i;
901 
902 	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
903 		dma->cmdr[i].p = __cpu_to_le32(dptr +
904 				offsetof(struct hifn_dma, command_bufs[i][0]));
905 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
906 		dma->resr[i].p = __cpu_to_le32(dptr +
907 				offsetof(struct hifn_dma, result_bufs[i][0]));
908 
909 	/* Setup LAST descriptors. */
910 	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
911 			offsetof(struct hifn_dma, cmdr[0]));
912 	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
913 			offsetof(struct hifn_dma, srcr[0]));
914 	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
915 			offsetof(struct hifn_dma, dstr[0]));
916 	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
917 			offsetof(struct hifn_dma, resr[0]));
918 
919 	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
920 	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
921 	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
922 }
923 
924 /*
925  * Initialize the PLL. We need to know the frequency of the reference clock
926  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
927  * allows us to operate without the risk of overclocking the chip. If it
928  * actually uses 33MHz, the chip will operate at half the speed, this can be
929  * overridden by specifying the frequency as module parameter (pci33).
930  *
931  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
932  * stable clock and the PCI clock frequency may vary, so the default is the
933  * external clock. There is no way to find out its frequency, we default to
934  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
935  * has an external crystal populated at 66MHz.
936  */
937 static void hifn_init_pll(struct hifn_device *dev)
938 {
939 	unsigned int freq, m;
940 	u32 pllcfg;
941 
942 	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
943 
944 	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
945 		pllcfg |= HIFN_PLL_REF_CLK_PLL;
946 	else
947 		pllcfg |= HIFN_PLL_REF_CLK_HBI;
948 
949 	if (hifn_pll_ref[3] != '\0')
950 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
951 	else {
952 		freq = 66;
953 		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
954 			 freq, hifn_pll_ref);
955 	}
956 
957 	m = HIFN_PLL_FCK_MAX / freq;
958 
959 	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
960 	if (m <= 8)
961 		pllcfg |= HIFN_PLL_IS_1_8;
962 	else
963 		pllcfg |= HIFN_PLL_IS_9_12;
964 
965 	/* Select clock source and enable clock bypass */
966 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
967 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
968 
969 	/* Let the chip lock to the input clock */
970 	mdelay(10);
971 
972 	/* Disable clock bypass */
973 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
974 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
975 
976 	/* Switch the engines to the PLL */
977 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
978 		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
979 
980 	/*
981 	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
982 	 * calculate the minimum time between two reads of the rng. Since 33MHz
983 	 * is actually 33.333... we overestimate the frequency here, resulting
984 	 * in slightly larger intervals.
985 	 */
986 	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
987 }
988 
989 static void hifn_init_registers(struct hifn_device *dev)
990 {
991 	u32 dptr = dev->desc_dma;
992 
993 	/* Initialization magic... */
994 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
995 	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
996 	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
997 
998 	/* write all 4 ring address registers */
999 	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1000 				offsetof(struct hifn_dma, cmdr[0]));
1001 	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1002 				offsetof(struct hifn_dma, srcr[0]));
1003 	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1004 				offsetof(struct hifn_dma, dstr[0]));
1005 	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1006 				offsetof(struct hifn_dma, resr[0]));
1007 
1008 	mdelay(2);
1009 #if 0
1010 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1011 	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1012 	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1013 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1014 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1015 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1016 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1017 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1018 	    HIFN_DMACSR_S_WAIT |
1019 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1020 	    HIFN_DMACSR_C_WAIT |
1021 	    HIFN_DMACSR_ENGINE |
1022 	    HIFN_DMACSR_PUBDONE);
1023 #else
1024 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1025 	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1026 	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1027 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1028 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1029 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1030 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1031 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1032 	    HIFN_DMACSR_S_WAIT |
1033 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1034 	    HIFN_DMACSR_C_WAIT |
1035 	    HIFN_DMACSR_ENGINE |
1036 	    HIFN_DMACSR_PUBDONE);
1037 #endif
1038 	hifn_read_1(dev, HIFN_1_DMA_CSR);
1039 
1040 	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1041 	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1042 	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1043 	    HIFN_DMAIER_ENGINE;
1044 	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1045 
1046 	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1047 	hifn_read_1(dev, HIFN_1_DMA_IER);
1048 #if 0
1049 	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1050 		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1051 		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1052 		    HIFN_PUCNFG_DRAM);
1053 #else
1054 	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1055 #endif
1056 	hifn_init_pll(dev);
1057 
1058 	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1059 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1060 	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1061 	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1062 	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1063 }
1064 
1065 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1066 		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1067 {
1068 	struct hifn_base_command *base_cmd;
1069 	u8 *buf_pos = buf;
1070 
1071 	base_cmd = (struct hifn_base_command *)buf_pos;
1072 	base_cmd->masks = __cpu_to_le16(mask);
1073 	base_cmd->total_source_count =
1074 		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1075 	base_cmd->total_dest_count =
1076 		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1077 
1078 	dlen >>= 16;
1079 	slen >>= 16;
1080 	base_cmd->session_num = __cpu_to_le16(snum |
1081 	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1082 	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1083 
1084 	return sizeof(struct hifn_base_command);
1085 }
1086 
1087 static int hifn_setup_crypto_command(struct hifn_device *dev,
1088 		u8 *buf, unsigned dlen, unsigned slen,
1089 		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1090 {
1091 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1092 	struct hifn_crypt_command *cry_cmd;
1093 	u8 *buf_pos = buf;
1094 	u16 cmd_len;
1095 
1096 	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1097 
1098 	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1099 	dlen >>= 16;
1100 	cry_cmd->masks = __cpu_to_le16(mode |
1101 			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1102 			 HIFN_CRYPT_CMD_SRCLEN_M));
1103 	cry_cmd->header_skip = 0;
1104 	cry_cmd->reserved = 0;
1105 
1106 	buf_pos += sizeof(struct hifn_crypt_command);
1107 
1108 	dma->cmdu++;
1109 	if (dma->cmdu > 1) {
1110 		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1111 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1112 	}
1113 
1114 	if (keylen) {
1115 		memcpy(buf_pos, key, keylen);
1116 		buf_pos += keylen;
1117 	}
1118 	if (ivsize) {
1119 		memcpy(buf_pos, iv, ivsize);
1120 		buf_pos += ivsize;
1121 	}
1122 
1123 	cmd_len = buf_pos - buf;
1124 
1125 	return cmd_len;
1126 }
1127 
1128 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1129 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1130 		void *priv, unsigned int nbytes)
1131 {
1132 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1133 	int cmd_len, sa_idx;
1134 	u8 *buf, *buf_pos;
1135 	u16 mask;
1136 
1137 	sa_idx = dma->cmdi;
1138 	buf_pos = buf = dma->command_bufs[dma->cmdi];
1139 
1140 	mask = 0;
1141 	switch (rctx->op) {
1142 	case ACRYPTO_OP_DECRYPT:
1143 		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1144 		break;
1145 	case ACRYPTO_OP_ENCRYPT:
1146 		mask = HIFN_BASE_CMD_CRYPT;
1147 		break;
1148 	case ACRYPTO_OP_HMAC:
1149 		mask = HIFN_BASE_CMD_MAC;
1150 		break;
1151 	default:
1152 		goto err_out;
1153 	}
1154 
1155 	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1156 			nbytes, mask, dev->snum);
1157 
1158 	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1159 		u16 md = 0;
1160 
1161 		if (ctx->keysize)
1162 			md |= HIFN_CRYPT_CMD_NEW_KEY;
1163 		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1164 			md |= HIFN_CRYPT_CMD_NEW_IV;
1165 
1166 		switch (rctx->mode) {
1167 		case ACRYPTO_MODE_ECB:
1168 			md |= HIFN_CRYPT_CMD_MODE_ECB;
1169 			break;
1170 		case ACRYPTO_MODE_CBC:
1171 			md |= HIFN_CRYPT_CMD_MODE_CBC;
1172 			break;
1173 		case ACRYPTO_MODE_CFB:
1174 			md |= HIFN_CRYPT_CMD_MODE_CFB;
1175 			break;
1176 		case ACRYPTO_MODE_OFB:
1177 			md |= HIFN_CRYPT_CMD_MODE_OFB;
1178 			break;
1179 		default:
1180 			goto err_out;
1181 		}
1182 
1183 		switch (rctx->type) {
1184 		case ACRYPTO_TYPE_AES_128:
1185 			if (ctx->keysize != 16)
1186 				goto err_out;
1187 			md |= HIFN_CRYPT_CMD_KSZ_128 |
1188 				HIFN_CRYPT_CMD_ALG_AES;
1189 			break;
1190 		case ACRYPTO_TYPE_AES_192:
1191 			if (ctx->keysize != 24)
1192 				goto err_out;
1193 			md |= HIFN_CRYPT_CMD_KSZ_192 |
1194 				HIFN_CRYPT_CMD_ALG_AES;
1195 			break;
1196 		case ACRYPTO_TYPE_AES_256:
1197 			if (ctx->keysize != 32)
1198 				goto err_out;
1199 			md |= HIFN_CRYPT_CMD_KSZ_256 |
1200 				HIFN_CRYPT_CMD_ALG_AES;
1201 			break;
1202 		case ACRYPTO_TYPE_3DES:
1203 			if (ctx->keysize != 24)
1204 				goto err_out;
1205 			md |= HIFN_CRYPT_CMD_ALG_3DES;
1206 			break;
1207 		case ACRYPTO_TYPE_DES:
1208 			if (ctx->keysize != 8)
1209 				goto err_out;
1210 			md |= HIFN_CRYPT_CMD_ALG_DES;
1211 			break;
1212 		default:
1213 			goto err_out;
1214 		}
1215 
1216 		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1217 				nbytes, nbytes, ctx->key, ctx->keysize,
1218 				rctx->iv, rctx->ivsize, md);
1219 	}
1220 
1221 	dev->sa[sa_idx] = priv;
1222 	dev->started++;
1223 
1224 	cmd_len = buf_pos - buf;
1225 	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1226 			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1227 
1228 	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1229 		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1230 			HIFN_D_VALID | HIFN_D_LAST |
1231 			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1232 		dma->cmdi = 0;
1233 	} else {
1234 		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1235 	}
1236 
1237 	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1238 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1239 		dev->flags |= HIFN_FLAG_CMD_BUSY;
1240 	}
1241 	return 0;
1242 
1243 err_out:
1244 	return -EINVAL;
1245 }
1246 
1247 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1248 		unsigned int offset, unsigned int size, int last)
1249 {
1250 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1251 	int idx;
1252 	dma_addr_t addr;
1253 
1254 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1255 
1256 	idx = dma->srci;
1257 
1258 	dma->srcr[idx].p = __cpu_to_le32(addr);
1259 	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1260 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1261 
1262 	if (++idx == HIFN_D_SRC_RSIZE) {
1263 		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1264 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1265 				(last ? HIFN_D_LAST : 0));
1266 		idx = 0;
1267 	}
1268 
1269 	dma->srci = idx;
1270 	dma->srcu++;
1271 
1272 	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1273 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1274 		dev->flags |= HIFN_FLAG_SRC_BUSY;
1275 	}
1276 
1277 	return size;
1278 }
1279 
1280 static void hifn_setup_res_desc(struct hifn_device *dev)
1281 {
1282 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1283 
1284 	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1285 			HIFN_D_VALID | HIFN_D_LAST);
1286 	/*
1287 	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1288 	 *					HIFN_D_LAST);
1289 	 */
1290 
1291 	if (++dma->resi == HIFN_D_RES_RSIZE) {
1292 		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1293 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1294 		dma->resi = 0;
1295 	}
1296 
1297 	dma->resu++;
1298 
1299 	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1300 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1301 		dev->flags |= HIFN_FLAG_RES_BUSY;
1302 	}
1303 }
1304 
1305 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1306 		unsigned offset, unsigned size, int last)
1307 {
1308 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1309 	int idx;
1310 	dma_addr_t addr;
1311 
1312 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1313 
1314 	idx = dma->dsti;
1315 	dma->dstr[idx].p = __cpu_to_le32(addr);
1316 	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1317 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1318 
1319 	if (++idx == HIFN_D_DST_RSIZE) {
1320 		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1321 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1322 				(last ? HIFN_D_LAST : 0));
1323 		idx = 0;
1324 	}
1325 	dma->dsti = idx;
1326 	dma->dstu++;
1327 
1328 	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1329 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1330 		dev->flags |= HIFN_FLAG_DST_BUSY;
1331 	}
1332 }
1333 
1334 static int hifn_setup_dma(struct hifn_device *dev,
1335 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1336 		struct scatterlist *src, struct scatterlist *dst,
1337 		unsigned int nbytes, void *priv)
1338 {
1339 	struct scatterlist *t;
1340 	struct page *spage, *dpage;
1341 	unsigned int soff, doff;
1342 	unsigned int n, len;
1343 
1344 	n = nbytes;
1345 	while (n) {
1346 		spage = sg_page(src);
1347 		soff = src->offset;
1348 		len = min(src->length, n);
1349 
1350 		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1351 
1352 		src++;
1353 		n -= len;
1354 	}
1355 
1356 	t = &rctx->walk.cache[0];
1357 	n = nbytes;
1358 	while (n) {
1359 		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1360 			BUG_ON(!sg_page(t));
1361 			dpage = sg_page(t);
1362 			doff = 0;
1363 			len = t->length;
1364 		} else {
1365 			BUG_ON(!sg_page(dst));
1366 			dpage = sg_page(dst);
1367 			doff = dst->offset;
1368 			len = dst->length;
1369 		}
1370 		len = min(len, n);
1371 
1372 		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1373 
1374 		dst++;
1375 		t++;
1376 		n -= len;
1377 	}
1378 
1379 	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1380 	hifn_setup_res_desc(dev);
1381 	return 0;
1382 }
1383 
1384 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1385 		int num, gfp_t gfp_flags)
1386 {
1387 	int i;
1388 
1389 	num = min(ASYNC_SCATTERLIST_CACHE, num);
1390 	sg_init_table(w->cache, num);
1391 
1392 	w->num = 0;
1393 	for (i = 0; i < num; ++i) {
1394 		struct page *page = alloc_page(gfp_flags);
1395 		struct scatterlist *s;
1396 
1397 		if (!page)
1398 			break;
1399 
1400 		s = &w->cache[i];
1401 
1402 		sg_set_page(s, page, PAGE_SIZE, 0);
1403 		w->num++;
1404 	}
1405 
1406 	return i;
1407 }
1408 
1409 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1410 {
1411 	int i;
1412 
1413 	for (i = 0; i < w->num; ++i) {
1414 		struct scatterlist *s = &w->cache[i];
1415 
1416 		__free_page(sg_page(s));
1417 
1418 		s->length = 0;
1419 	}
1420 
1421 	w->num = 0;
1422 }
1423 
1424 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1425 		unsigned int size, unsigned int *nbytesp)
1426 {
1427 	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1428 	int idx = 0;
1429 
1430 	if (drest < size || size > nbytes)
1431 		return -EINVAL;
1432 
1433 	while (size) {
1434 		copy = min3(drest, size, dst->length);
1435 
1436 		size -= copy;
1437 		drest -= copy;
1438 		nbytes -= copy;
1439 
1440 		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1441 			 __func__, copy, size, drest, nbytes);
1442 
1443 		dst++;
1444 		idx++;
1445 	}
1446 
1447 	*nbytesp = nbytes;
1448 	*drestp = drest;
1449 
1450 	return idx;
1451 }
1452 
1453 static int hifn_cipher_walk(struct ablkcipher_request *req,
1454 		struct hifn_cipher_walk *w)
1455 {
1456 	struct scatterlist *dst, *t;
1457 	unsigned int nbytes = req->nbytes, offset, copy, diff;
1458 	int idx, tidx, err;
1459 
1460 	tidx = idx = 0;
1461 	offset = 0;
1462 	while (nbytes) {
1463 		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1464 			return -EINVAL;
1465 
1466 		dst = &req->dst[idx];
1467 
1468 		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1469 			 __func__, dst->length, dst->offset, offset, nbytes);
1470 
1471 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1472 		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1473 		    offset) {
1474 			unsigned slen = min(dst->length - offset, nbytes);
1475 			unsigned dlen = PAGE_SIZE;
1476 
1477 			t = &w->cache[idx];
1478 
1479 			err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1480 			if (err < 0)
1481 				return err;
1482 
1483 			idx += err;
1484 
1485 			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1486 			diff = slen & (HIFN_D_DST_DALIGN - 1);
1487 
1488 			if (dlen < nbytes) {
1489 				/*
1490 				 * Destination page does not have enough space
1491 				 * to put there additional blocksized chunk,
1492 				 * so we mark that page as containing only
1493 				 * blocksize aligned chunks:
1494 				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1495 				 * and increase number of bytes to be processed
1496 				 * in next chunk:
1497 				 *	nbytes += diff;
1498 				 */
1499 				nbytes += diff;
1500 
1501 				/*
1502 				 * Temporary of course...
1503 				 * Kick author if you will catch this one.
1504 				 */
1505 				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1506 				       __func__, dlen, nbytes, slen, offset);
1507 				pr_err("%s: please contact author to fix this "
1508 				       "issue, generally you should not catch "
1509 				       "this path under any condition but who "
1510 				       "knows how did you use crypto code.\n"
1511 				       "Thank you.\n",	__func__);
1512 				BUG();
1513 			} else {
1514 				copy += diff + nbytes;
1515 
1516 				dst = &req->dst[idx];
1517 
1518 				err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1519 				if (err < 0)
1520 					return err;
1521 
1522 				idx += err;
1523 			}
1524 
1525 			t->length = copy;
1526 			t->offset = offset;
1527 		} else {
1528 			nbytes -= min(dst->length, nbytes);
1529 			idx++;
1530 		}
1531 
1532 		tidx++;
1533 	}
1534 
1535 	return tidx;
1536 }
1537 
1538 static int hifn_setup_session(struct ablkcipher_request *req)
1539 {
1540 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1541 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1542 	struct hifn_device *dev = ctx->dev;
1543 	unsigned long dlen, flags;
1544 	unsigned int nbytes = req->nbytes, idx = 0;
1545 	int err = -EINVAL, sg_num;
1546 	struct scatterlist *dst;
1547 
1548 	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1549 		goto err_out_exit;
1550 
1551 	rctx->walk.flags = 0;
1552 
1553 	while (nbytes) {
1554 		dst = &req->dst[idx];
1555 		dlen = min(dst->length, nbytes);
1556 
1557 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1558 		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1559 			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1560 
1561 		nbytes -= dlen;
1562 		idx++;
1563 	}
1564 
1565 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1566 		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1567 		if (err < 0)
1568 			return err;
1569 	}
1570 
1571 	sg_num = hifn_cipher_walk(req, &rctx->walk);
1572 	if (sg_num < 0) {
1573 		err = sg_num;
1574 		goto err_out_exit;
1575 	}
1576 
1577 	spin_lock_irqsave(&dev->lock, flags);
1578 	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1579 		err = -EAGAIN;
1580 		goto err_out;
1581 	}
1582 
1583 	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1584 	if (err)
1585 		goto err_out;
1586 
1587 	dev->snum++;
1588 
1589 	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1590 	spin_unlock_irqrestore(&dev->lock, flags);
1591 
1592 	return 0;
1593 
1594 err_out:
1595 	spin_unlock_irqrestore(&dev->lock, flags);
1596 err_out_exit:
1597 	if (err) {
1598 		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1599 			 "type: %u, err: %d.\n",
1600 			 rctx->iv, rctx->ivsize,
1601 			 ctx->key, ctx->keysize,
1602 			 rctx->mode, rctx->op, rctx->type, err);
1603 	}
1604 
1605 	return err;
1606 }
1607 
1608 static int hifn_start_device(struct hifn_device *dev)
1609 {
1610 	int err;
1611 
1612 	dev->started = dev->active = 0;
1613 	hifn_reset_dma(dev, 1);
1614 
1615 	err = hifn_enable_crypto(dev);
1616 	if (err)
1617 		return err;
1618 
1619 	hifn_reset_puc(dev);
1620 
1621 	hifn_init_dma(dev);
1622 
1623 	hifn_init_registers(dev);
1624 
1625 	hifn_init_pubrng(dev);
1626 
1627 	return 0;
1628 }
1629 
1630 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1631 		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1632 {
1633 	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1634 	void *daddr;
1635 	int idx = 0;
1636 
1637 	if (srest < size || size > nbytes)
1638 		return -EINVAL;
1639 
1640 	while (size) {
1641 		copy = min3(srest, dst->length, size);
1642 
1643 		daddr = kmap_atomic(sg_page(dst));
1644 		memcpy(daddr + dst->offset + offset, saddr, copy);
1645 		kunmap_atomic(daddr);
1646 
1647 		nbytes -= copy;
1648 		size -= copy;
1649 		srest -= copy;
1650 		saddr += copy;
1651 		offset = 0;
1652 
1653 		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1654 			 __func__, copy, size, srest, nbytes);
1655 
1656 		dst++;
1657 		idx++;
1658 	}
1659 
1660 	*nbytesp = nbytes;
1661 	*srestp = srest;
1662 
1663 	return idx;
1664 }
1665 
1666 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1667 {
1668 	unsigned long flags;
1669 
1670 	spin_lock_irqsave(&dev->lock, flags);
1671 	dev->sa[i] = NULL;
1672 	dev->started--;
1673 	if (dev->started < 0)
1674 		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1675 			 dev->started);
1676 	spin_unlock_irqrestore(&dev->lock, flags);
1677 	BUG_ON(dev->started < 0);
1678 }
1679 
1680 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1681 {
1682 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1683 
1684 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1685 		unsigned int nbytes = req->nbytes;
1686 		int idx = 0, err;
1687 		struct scatterlist *dst, *t;
1688 		void *saddr;
1689 
1690 		while (nbytes) {
1691 			t = &rctx->walk.cache[idx];
1692 			dst = &req->dst[idx];
1693 
1694 			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1695 				"sg_page(dst): %p, dst->length: %u, "
1696 				"nbytes: %u.\n",
1697 				__func__, sg_page(t), t->length,
1698 				sg_page(dst), dst->length, nbytes);
1699 
1700 			if (!t->length) {
1701 				nbytes -= min(dst->length, nbytes);
1702 				idx++;
1703 				continue;
1704 			}
1705 
1706 			saddr = kmap_atomic(sg_page(t));
1707 
1708 			err = ablkcipher_get(saddr, &t->length, t->offset,
1709 					dst, nbytes, &nbytes);
1710 			if (err < 0) {
1711 				kunmap_atomic(saddr);
1712 				break;
1713 			}
1714 
1715 			idx += err;
1716 			kunmap_atomic(saddr);
1717 		}
1718 
1719 		hifn_cipher_walk_exit(&rctx->walk);
1720 	}
1721 
1722 	req->base.complete(&req->base, error);
1723 }
1724 
1725 static void hifn_clear_rings(struct hifn_device *dev, int error)
1726 {
1727 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1728 	int i, u;
1729 
1730 	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1731 			"k: %d.%d.%d.%d.\n",
1732 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1733 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1734 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1735 
1736 	i = dma->resk; u = dma->resu;
1737 	while (u != 0) {
1738 		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1739 			break;
1740 
1741 		if (dev->sa[i]) {
1742 			dev->success++;
1743 			dev->reset = 0;
1744 			hifn_process_ready(dev->sa[i], error);
1745 			hifn_complete_sa(dev, i);
1746 		}
1747 
1748 		if (++i == HIFN_D_RES_RSIZE)
1749 			i = 0;
1750 		u--;
1751 	}
1752 	dma->resk = i; dma->resu = u;
1753 
1754 	i = dma->srck; u = dma->srcu;
1755 	while (u != 0) {
1756 		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1757 			break;
1758 		if (++i == HIFN_D_SRC_RSIZE)
1759 			i = 0;
1760 		u--;
1761 	}
1762 	dma->srck = i; dma->srcu = u;
1763 
1764 	i = dma->cmdk; u = dma->cmdu;
1765 	while (u != 0) {
1766 		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1767 			break;
1768 		if (++i == HIFN_D_CMD_RSIZE)
1769 			i = 0;
1770 		u--;
1771 	}
1772 	dma->cmdk = i; dma->cmdu = u;
1773 
1774 	i = dma->dstk; u = dma->dstu;
1775 	while (u != 0) {
1776 		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1777 			break;
1778 		if (++i == HIFN_D_DST_RSIZE)
1779 			i = 0;
1780 		u--;
1781 	}
1782 	dma->dstk = i; dma->dstu = u;
1783 
1784 	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1785 			"k: %d.%d.%d.%d.\n",
1786 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1787 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1788 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1789 }
1790 
1791 static void hifn_work(struct work_struct *work)
1792 {
1793 	struct delayed_work *dw = to_delayed_work(work);
1794 	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1795 	unsigned long flags;
1796 	int reset = 0;
1797 	u32 r = 0;
1798 
1799 	spin_lock_irqsave(&dev->lock, flags);
1800 	if (dev->active == 0) {
1801 		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1802 
1803 		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1804 			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1805 			r |= HIFN_DMACSR_C_CTRL_DIS;
1806 		}
1807 		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1808 			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1809 			r |= HIFN_DMACSR_S_CTRL_DIS;
1810 		}
1811 		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1812 			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1813 			r |= HIFN_DMACSR_D_CTRL_DIS;
1814 		}
1815 		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1816 			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1817 			r |= HIFN_DMACSR_R_CTRL_DIS;
1818 		}
1819 		if (r)
1820 			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1821 	} else
1822 		dev->active--;
1823 
1824 	if ((dev->prev_success == dev->success) && dev->started)
1825 		reset = 1;
1826 	dev->prev_success = dev->success;
1827 	spin_unlock_irqrestore(&dev->lock, flags);
1828 
1829 	if (reset) {
1830 		if (++dev->reset >= 5) {
1831 			int i;
1832 			struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1833 
1834 			dev_info(&dev->pdev->dev,
1835 				 "r: %08x, active: %d, started: %d, "
1836 				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1837 				 r, dev->active, dev->started,
1838 				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1839 				 reset);
1840 
1841 			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1842 			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1843 				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1844 				if (dev->sa[i]) {
1845 					hifn_process_ready(dev->sa[i], -ENODEV);
1846 					hifn_complete_sa(dev, i);
1847 				}
1848 			}
1849 			pr_info("\n");
1850 
1851 			hifn_reset_dma(dev, 1);
1852 			hifn_stop_device(dev);
1853 			hifn_start_device(dev);
1854 			dev->reset = 0;
1855 		}
1856 
1857 		tasklet_schedule(&dev->tasklet);
1858 	}
1859 
1860 	schedule_delayed_work(&dev->work, HZ);
1861 }
1862 
1863 static irqreturn_t hifn_interrupt(int irq, void *data)
1864 {
1865 	struct hifn_device *dev = (struct hifn_device *)data;
1866 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1867 	u32 dmacsr, restart;
1868 
1869 	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1870 
1871 	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1872 			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1873 		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1874 		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1875 		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1876 
1877 	if ((dmacsr & dev->dmareg) == 0)
1878 		return IRQ_NONE;
1879 
1880 	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1881 
1882 	if (dmacsr & HIFN_DMACSR_ENGINE)
1883 		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1884 	if (dmacsr & HIFN_DMACSR_PUBDONE)
1885 		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1886 			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1887 
1888 	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1889 	if (restart) {
1890 		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1891 
1892 		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1893 			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1894 			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1895 			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1896 		if (!!(puisr & HIFN_PUISR_DSTOVER))
1897 			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1898 		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1899 					HIFN_DMACSR_D_OVER));
1900 	}
1901 
1902 	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1903 			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1904 	if (restart) {
1905 		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1906 			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1907 			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1908 			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1909 			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1910 		hifn_reset_dma(dev, 1);
1911 		hifn_init_dma(dev);
1912 		hifn_init_registers(dev);
1913 	}
1914 
1915 	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1916 		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1917 		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1918 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1919 	}
1920 
1921 	tasklet_schedule(&dev->tasklet);
1922 
1923 	return IRQ_HANDLED;
1924 }
1925 
1926 static void hifn_flush(struct hifn_device *dev)
1927 {
1928 	unsigned long flags;
1929 	struct crypto_async_request *async_req;
1930 	struct ablkcipher_request *req;
1931 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1932 	int i;
1933 
1934 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1935 		struct hifn_desc *d = &dma->resr[i];
1936 
1937 		if (dev->sa[i]) {
1938 			hifn_process_ready(dev->sa[i],
1939 				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1940 			hifn_complete_sa(dev, i);
1941 		}
1942 	}
1943 
1944 	spin_lock_irqsave(&dev->lock, flags);
1945 	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1946 		req = ablkcipher_request_cast(async_req);
1947 		spin_unlock_irqrestore(&dev->lock, flags);
1948 
1949 		hifn_process_ready(req, -ENODEV);
1950 
1951 		spin_lock_irqsave(&dev->lock, flags);
1952 	}
1953 	spin_unlock_irqrestore(&dev->lock, flags);
1954 }
1955 
1956 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1957 		unsigned int len)
1958 {
1959 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1960 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
1961 	struct hifn_device *dev = ctx->dev;
1962 
1963 	if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
1964 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1965 		return -1;
1966 	}
1967 
1968 	if (len == HIFN_DES_KEY_LENGTH) {
1969 		u32 tmp[DES_EXPKEY_WORDS];
1970 		int ret = des_ekey(tmp, key);
1971 
1972 		if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1973 			tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
1974 			return -EINVAL;
1975 		}
1976 	}
1977 
1978 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1979 
1980 	memcpy(ctx->key, key, len);
1981 	ctx->keysize = len;
1982 
1983 	return 0;
1984 }
1985 
1986 static int hifn_handle_req(struct ablkcipher_request *req)
1987 {
1988 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1989 	struct hifn_device *dev = ctx->dev;
1990 	int err = -EAGAIN;
1991 
1992 	if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1993 		err = hifn_setup_session(req);
1994 
1995 	if (err == -EAGAIN) {
1996 		unsigned long flags;
1997 
1998 		spin_lock_irqsave(&dev->lock, flags);
1999 		err = ablkcipher_enqueue_request(&dev->queue, req);
2000 		spin_unlock_irqrestore(&dev->lock, flags);
2001 	}
2002 
2003 	return err;
2004 }
2005 
2006 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2007 		u8 type, u8 mode)
2008 {
2009 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2010 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2011 	unsigned ivsize;
2012 
2013 	ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2014 
2015 	if (req->info && mode != ACRYPTO_MODE_ECB) {
2016 		if (type == ACRYPTO_TYPE_AES_128)
2017 			ivsize = HIFN_AES_IV_LENGTH;
2018 		else if (type == ACRYPTO_TYPE_DES)
2019 			ivsize = HIFN_DES_KEY_LENGTH;
2020 		else if (type == ACRYPTO_TYPE_3DES)
2021 			ivsize = HIFN_3DES_KEY_LENGTH;
2022 	}
2023 
2024 	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2025 		if (ctx->keysize == 24)
2026 			type = ACRYPTO_TYPE_AES_192;
2027 		else if (ctx->keysize == 32)
2028 			type = ACRYPTO_TYPE_AES_256;
2029 	}
2030 
2031 	rctx->op = op;
2032 	rctx->mode = mode;
2033 	rctx->type = type;
2034 	rctx->iv = req->info;
2035 	rctx->ivsize = ivsize;
2036 
2037 	/*
2038 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2039 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2040 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2041 	 */
2042 
2043 	return hifn_handle_req(req);
2044 }
2045 
2046 static int hifn_process_queue(struct hifn_device *dev)
2047 {
2048 	struct crypto_async_request *async_req, *backlog;
2049 	struct ablkcipher_request *req;
2050 	unsigned long flags;
2051 	int err = 0;
2052 
2053 	while (dev->started < HIFN_QUEUE_LENGTH) {
2054 		spin_lock_irqsave(&dev->lock, flags);
2055 		backlog = crypto_get_backlog(&dev->queue);
2056 		async_req = crypto_dequeue_request(&dev->queue);
2057 		spin_unlock_irqrestore(&dev->lock, flags);
2058 
2059 		if (!async_req)
2060 			break;
2061 
2062 		if (backlog)
2063 			backlog->complete(backlog, -EINPROGRESS);
2064 
2065 		req = ablkcipher_request_cast(async_req);
2066 
2067 		err = hifn_handle_req(req);
2068 		if (err)
2069 			break;
2070 	}
2071 
2072 	return err;
2073 }
2074 
2075 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2076 		u8 type, u8 mode)
2077 {
2078 	int err;
2079 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2080 	struct hifn_device *dev = ctx->dev;
2081 
2082 	err = hifn_setup_crypto_req(req, op, type, mode);
2083 	if (err)
2084 		return err;
2085 
2086 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2087 		hifn_process_queue(dev);
2088 
2089 	return -EINPROGRESS;
2090 }
2091 
2092 /*
2093  * AES ecryption functions.
2094  */
2095 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2096 {
2097 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2098 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2099 }
2100 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2101 {
2102 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2103 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2104 }
2105 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2106 {
2107 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2108 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2109 }
2110 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2111 {
2112 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2113 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2114 }
2115 
2116 /*
2117  * AES decryption functions.
2118  */
2119 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2120 {
2121 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2122 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2123 }
2124 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2125 {
2126 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2127 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2128 }
2129 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2130 {
2131 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2132 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2133 }
2134 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2135 {
2136 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2137 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2138 }
2139 
2140 /*
2141  * DES ecryption functions.
2142  */
2143 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2144 {
2145 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2146 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2147 }
2148 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2149 {
2150 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2151 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2152 }
2153 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2154 {
2155 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2156 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2157 }
2158 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2159 {
2160 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2161 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2162 }
2163 
2164 /*
2165  * DES decryption functions.
2166  */
2167 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2168 {
2169 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2170 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2171 }
2172 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2173 {
2174 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2175 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2176 }
2177 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2178 {
2179 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2180 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2181 }
2182 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2183 {
2184 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2185 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2186 }
2187 
2188 /*
2189  * 3DES ecryption functions.
2190  */
2191 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2192 {
2193 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2194 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2195 }
2196 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2197 {
2198 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2199 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2200 }
2201 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2202 {
2203 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2204 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2205 }
2206 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2207 {
2208 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2209 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2210 }
2211 
2212 /* 3DES decryption functions. */
2213 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2214 {
2215 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2216 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2217 }
2218 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2219 {
2220 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2221 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2222 }
2223 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2224 {
2225 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2226 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2227 }
2228 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2229 {
2230 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2231 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2232 }
2233 
2234 struct hifn_alg_template {
2235 	char name[CRYPTO_MAX_ALG_NAME];
2236 	char drv_name[CRYPTO_MAX_ALG_NAME];
2237 	unsigned int bsize;
2238 	struct ablkcipher_alg ablkcipher;
2239 };
2240 
2241 static struct hifn_alg_template hifn_alg_templates[] = {
2242 	/*
2243 	 * 3DES ECB, CBC, CFB and OFB modes.
2244 	 */
2245 	{
2246 		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2247 		.ablkcipher = {
2248 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2249 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2250 			.setkey		=	hifn_setkey,
2251 			.encrypt	=	hifn_encrypt_3des_cfb,
2252 			.decrypt	=	hifn_decrypt_3des_cfb,
2253 		},
2254 	},
2255 	{
2256 		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2257 		.ablkcipher = {
2258 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2259 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2260 			.setkey		=	hifn_setkey,
2261 			.encrypt	=	hifn_encrypt_3des_ofb,
2262 			.decrypt	=	hifn_decrypt_3des_ofb,
2263 		},
2264 	},
2265 	{
2266 		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2267 		.ablkcipher = {
2268 			.ivsize		=	HIFN_IV_LENGTH,
2269 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2270 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2271 			.setkey		=	hifn_setkey,
2272 			.encrypt	=	hifn_encrypt_3des_cbc,
2273 			.decrypt	=	hifn_decrypt_3des_cbc,
2274 		},
2275 	},
2276 	{
2277 		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2278 		.ablkcipher = {
2279 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2280 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2281 			.setkey		=	hifn_setkey,
2282 			.encrypt	=	hifn_encrypt_3des_ecb,
2283 			.decrypt	=	hifn_decrypt_3des_ecb,
2284 		},
2285 	},
2286 
2287 	/*
2288 	 * DES ECB, CBC, CFB and OFB modes.
2289 	 */
2290 	{
2291 		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2292 		.ablkcipher = {
2293 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2294 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2295 			.setkey		=	hifn_setkey,
2296 			.encrypt	=	hifn_encrypt_des_cfb,
2297 			.decrypt	=	hifn_decrypt_des_cfb,
2298 		},
2299 	},
2300 	{
2301 		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2302 		.ablkcipher = {
2303 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2304 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2305 			.setkey		=	hifn_setkey,
2306 			.encrypt	=	hifn_encrypt_des_ofb,
2307 			.decrypt	=	hifn_decrypt_des_ofb,
2308 		},
2309 	},
2310 	{
2311 		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2312 		.ablkcipher = {
2313 			.ivsize		=	HIFN_IV_LENGTH,
2314 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2315 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2316 			.setkey		=	hifn_setkey,
2317 			.encrypt	=	hifn_encrypt_des_cbc,
2318 			.decrypt	=	hifn_decrypt_des_cbc,
2319 		},
2320 	},
2321 	{
2322 		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2323 		.ablkcipher = {
2324 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2325 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2326 			.setkey		=	hifn_setkey,
2327 			.encrypt	=	hifn_encrypt_des_ecb,
2328 			.decrypt	=	hifn_decrypt_des_ecb,
2329 		},
2330 	},
2331 
2332 	/*
2333 	 * AES ECB, CBC, CFB and OFB modes.
2334 	 */
2335 	{
2336 		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2337 		.ablkcipher = {
2338 			.min_keysize	=	AES_MIN_KEY_SIZE,
2339 			.max_keysize	=	AES_MAX_KEY_SIZE,
2340 			.setkey		=	hifn_setkey,
2341 			.encrypt	=	hifn_encrypt_aes_ecb,
2342 			.decrypt	=	hifn_decrypt_aes_ecb,
2343 		},
2344 	},
2345 	{
2346 		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2347 		.ablkcipher = {
2348 			.ivsize		=	HIFN_AES_IV_LENGTH,
2349 			.min_keysize	=	AES_MIN_KEY_SIZE,
2350 			.max_keysize	=	AES_MAX_KEY_SIZE,
2351 			.setkey		=	hifn_setkey,
2352 			.encrypt	=	hifn_encrypt_aes_cbc,
2353 			.decrypt	=	hifn_decrypt_aes_cbc,
2354 		},
2355 	},
2356 	{
2357 		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2358 		.ablkcipher = {
2359 			.min_keysize	=	AES_MIN_KEY_SIZE,
2360 			.max_keysize	=	AES_MAX_KEY_SIZE,
2361 			.setkey		=	hifn_setkey,
2362 			.encrypt	=	hifn_encrypt_aes_cfb,
2363 			.decrypt	=	hifn_decrypt_aes_cfb,
2364 		},
2365 	},
2366 	{
2367 		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2368 		.ablkcipher = {
2369 			.min_keysize	=	AES_MIN_KEY_SIZE,
2370 			.max_keysize	=	AES_MAX_KEY_SIZE,
2371 			.setkey		=	hifn_setkey,
2372 			.encrypt	=	hifn_encrypt_aes_ofb,
2373 			.decrypt	=	hifn_decrypt_aes_ofb,
2374 		},
2375 	},
2376 };
2377 
2378 static int hifn_cra_init(struct crypto_tfm *tfm)
2379 {
2380 	struct crypto_alg *alg = tfm->__crt_alg;
2381 	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2382 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2383 
2384 	ctx->dev = ha->dev;
2385 	tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2386 	return 0;
2387 }
2388 
2389 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2390 {
2391 	struct hifn_crypto_alg *alg;
2392 	int err;
2393 
2394 	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2395 	if (!alg)
2396 		return -ENOMEM;
2397 
2398 	snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2399 	snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2400 		 t->drv_name, dev->name);
2401 
2402 	alg->alg.cra_priority = 300;
2403 	alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2404 				CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2405 	alg->alg.cra_blocksize = t->bsize;
2406 	alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2407 	alg->alg.cra_alignmask = 0;
2408 	alg->alg.cra_type = &crypto_ablkcipher_type;
2409 	alg->alg.cra_module = THIS_MODULE;
2410 	alg->alg.cra_u.ablkcipher = t->ablkcipher;
2411 	alg->alg.cra_init = hifn_cra_init;
2412 
2413 	alg->dev = dev;
2414 
2415 	list_add_tail(&alg->entry, &dev->alg_list);
2416 
2417 	err = crypto_register_alg(&alg->alg);
2418 	if (err) {
2419 		list_del(&alg->entry);
2420 		kfree(alg);
2421 	}
2422 
2423 	return err;
2424 }
2425 
2426 static void hifn_unregister_alg(struct hifn_device *dev)
2427 {
2428 	struct hifn_crypto_alg *a, *n;
2429 
2430 	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2431 		list_del(&a->entry);
2432 		crypto_unregister_alg(&a->alg);
2433 		kfree(a);
2434 	}
2435 }
2436 
2437 static int hifn_register_alg(struct hifn_device *dev)
2438 {
2439 	int i, err;
2440 
2441 	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2442 		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2443 		if (err)
2444 			goto err_out_exit;
2445 	}
2446 
2447 	return 0;
2448 
2449 err_out_exit:
2450 	hifn_unregister_alg(dev);
2451 	return err;
2452 }
2453 
2454 static void hifn_tasklet_callback(unsigned long data)
2455 {
2456 	struct hifn_device *dev = (struct hifn_device *)data;
2457 
2458 	/*
2459 	 * This is ok to call this without lock being held,
2460 	 * althogh it modifies some parameters used in parallel,
2461 	 * (like dev->success), but they are used in process
2462 	 * context or update is atomic (like setting dev->sa[i] to NULL).
2463 	 */
2464 	hifn_clear_rings(dev, 0);
2465 
2466 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2467 		hifn_process_queue(dev);
2468 }
2469 
2470 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2471 {
2472 	int err, i;
2473 	struct hifn_device *dev;
2474 	char name[8];
2475 
2476 	err = pci_enable_device(pdev);
2477 	if (err)
2478 		return err;
2479 	pci_set_master(pdev);
2480 
2481 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2482 	if (err)
2483 		goto err_out_disable_pci_device;
2484 
2485 	snprintf(name, sizeof(name), "hifn%d",
2486 			atomic_inc_return(&hifn_dev_number) - 1);
2487 
2488 	err = pci_request_regions(pdev, name);
2489 	if (err)
2490 		goto err_out_disable_pci_device;
2491 
2492 	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2493 	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2494 	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2495 		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2496 		err = -ENODEV;
2497 		goto err_out_free_regions;
2498 	}
2499 
2500 	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2501 			GFP_KERNEL);
2502 	if (!dev) {
2503 		err = -ENOMEM;
2504 		goto err_out_free_regions;
2505 	}
2506 
2507 	INIT_LIST_HEAD(&dev->alg_list);
2508 
2509 	snprintf(dev->name, sizeof(dev->name), "%s", name);
2510 	spin_lock_init(&dev->lock);
2511 
2512 	for (i = 0; i < 3; ++i) {
2513 		unsigned long addr, size;
2514 
2515 		addr = pci_resource_start(pdev, i);
2516 		size = pci_resource_len(pdev, i);
2517 
2518 		dev->bar[i] = ioremap_nocache(addr, size);
2519 		if (!dev->bar[i]) {
2520 			err = -ENOMEM;
2521 			goto err_out_unmap_bars;
2522 		}
2523 	}
2524 
2525 	dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2526 					       &dev->desc_dma);
2527 	if (!dev->desc_virt) {
2528 		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2529 		err = -ENOMEM;
2530 		goto err_out_unmap_bars;
2531 	}
2532 
2533 	dev->pdev = pdev;
2534 	dev->irq = pdev->irq;
2535 
2536 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2537 		dev->sa[i] = NULL;
2538 
2539 	pci_set_drvdata(pdev, dev);
2540 
2541 	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2542 
2543 	crypto_init_queue(&dev->queue, 1);
2544 
2545 	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2546 	if (err) {
2547 		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2548 			dev->irq, err);
2549 		dev->irq = 0;
2550 		goto err_out_free_desc;
2551 	}
2552 
2553 	err = hifn_start_device(dev);
2554 	if (err)
2555 		goto err_out_free_irq;
2556 
2557 	err = hifn_register_rng(dev);
2558 	if (err)
2559 		goto err_out_stop_device;
2560 
2561 	err = hifn_register_alg(dev);
2562 	if (err)
2563 		goto err_out_unregister_rng;
2564 
2565 	INIT_DELAYED_WORK(&dev->work, hifn_work);
2566 	schedule_delayed_work(&dev->work, HZ);
2567 
2568 	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2569 		"successfully registered as %s.\n",
2570 		pci_name(pdev), dev->name);
2571 
2572 	return 0;
2573 
2574 err_out_unregister_rng:
2575 	hifn_unregister_rng(dev);
2576 err_out_stop_device:
2577 	hifn_reset_dma(dev, 1);
2578 	hifn_stop_device(dev);
2579 err_out_free_irq:
2580 	free_irq(dev->irq, dev);
2581 	tasklet_kill(&dev->tasklet);
2582 err_out_free_desc:
2583 	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2584 			dev->desc_virt, dev->desc_dma);
2585 
2586 err_out_unmap_bars:
2587 	for (i = 0; i < 3; ++i)
2588 		if (dev->bar[i])
2589 			iounmap(dev->bar[i]);
2590 
2591 err_out_free_regions:
2592 	pci_release_regions(pdev);
2593 
2594 err_out_disable_pci_device:
2595 	pci_disable_device(pdev);
2596 
2597 	return err;
2598 }
2599 
2600 static void hifn_remove(struct pci_dev *pdev)
2601 {
2602 	int i;
2603 	struct hifn_device *dev;
2604 
2605 	dev = pci_get_drvdata(pdev);
2606 
2607 	if (dev) {
2608 		cancel_delayed_work_sync(&dev->work);
2609 
2610 		hifn_unregister_rng(dev);
2611 		hifn_unregister_alg(dev);
2612 		hifn_reset_dma(dev, 1);
2613 		hifn_stop_device(dev);
2614 
2615 		free_irq(dev->irq, dev);
2616 		tasklet_kill(&dev->tasklet);
2617 
2618 		hifn_flush(dev);
2619 
2620 		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2621 				dev->desc_virt, dev->desc_dma);
2622 		for (i = 0; i < 3; ++i)
2623 			if (dev->bar[i])
2624 				iounmap(dev->bar[i]);
2625 
2626 		kfree(dev);
2627 	}
2628 
2629 	pci_release_regions(pdev);
2630 	pci_disable_device(pdev);
2631 }
2632 
2633 static struct pci_device_id hifn_pci_tbl[] = {
2634 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2635 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2636 	{ 0 }
2637 };
2638 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2639 
2640 static struct pci_driver hifn_pci_driver = {
2641 	.name     = "hifn795x",
2642 	.id_table = hifn_pci_tbl,
2643 	.probe    = hifn_probe,
2644 	.remove   = hifn_remove,
2645 };
2646 
2647 static int __init hifn_init(void)
2648 {
2649 	unsigned int freq;
2650 	int err;
2651 
2652 	/* HIFN supports only 32-bit addresses */
2653 	BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2654 
2655 	if (strncmp(hifn_pll_ref, "ext", 3) &&
2656 	    strncmp(hifn_pll_ref, "pci", 3)) {
2657 		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2658 		return -EINVAL;
2659 	}
2660 
2661 	/*
2662 	 * For the 7955/7956 the reference clock frequency must be in the
2663 	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2664 	 * but this chip is currently not supported.
2665 	 */
2666 	if (hifn_pll_ref[3] != '\0') {
2667 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2668 		if (freq < 20 || freq > 100) {
2669 			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2670 			       "be in the range of 20-100");
2671 			return -EINVAL;
2672 		}
2673 	}
2674 
2675 	err = pci_register_driver(&hifn_pci_driver);
2676 	if (err < 0) {
2677 		pr_err("Failed to register PCI driver for %s device.\n",
2678 		       hifn_pci_driver.name);
2679 		return -ENODEV;
2680 	}
2681 
2682 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2683 		"has been successfully registered.\n");
2684 
2685 	return 0;
2686 }
2687 
2688 static void __exit hifn_fini(void)
2689 {
2690 	pci_unregister_driver(&hifn_pci_driver);
2691 
2692 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2693 		"has been successfully unregistered.\n");
2694 }
2695 
2696 module_init(hifn_init);
2697 module_exit(hifn_fini);
2698 
2699 MODULE_LICENSE("GPL");
2700 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2701 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2702