xref: /openbmc/linux/drivers/crypto/hifn_795x.c (revision 1681baa7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4  * All rights reserved.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22 
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 
26 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
27 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
28 MODULE_PARM_DESC(hifn_pll_ref,
29 		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
30 
31 static atomic_t hifn_dev_number;
32 
33 #define ACRYPTO_OP_DECRYPT	0
34 #define ACRYPTO_OP_ENCRYPT	1
35 #define ACRYPTO_OP_HMAC		2
36 #define ACRYPTO_OP_RNG		3
37 
38 #define ACRYPTO_MODE_ECB		0
39 #define ACRYPTO_MODE_CBC		1
40 #define ACRYPTO_MODE_CFB		2
41 #define ACRYPTO_MODE_OFB		3
42 
43 #define ACRYPTO_TYPE_AES_128	0
44 #define ACRYPTO_TYPE_AES_192	1
45 #define ACRYPTO_TYPE_AES_256	2
46 #define ACRYPTO_TYPE_3DES	3
47 #define ACRYPTO_TYPE_DES	4
48 
49 #define PCI_VENDOR_ID_HIFN		0x13A3
50 #define PCI_DEVICE_ID_HIFN_7955		0x0020
51 #define	PCI_DEVICE_ID_HIFN_7956		0x001d
52 
53 /* I/O region sizes */
54 
55 #define HIFN_BAR0_SIZE			0x1000
56 #define HIFN_BAR1_SIZE			0x2000
57 #define HIFN_BAR2_SIZE			0x8000
58 
59 /* DMA registres */
60 
61 #define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
62 #define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
63 #define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
64 #define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
65 #define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
66 #define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
67 #define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
68 #define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
69 #define HIFN_CHIP_ID			0x98	/* Chip ID */
70 
71 /*
72  * Processing Unit Registers (offset from BASEREG0)
73  */
74 #define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
75 #define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
76 #define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
77 #define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
78 #define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
79 #define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
80 #define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
81 #define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
82 #define	HIFN_0_SPACESIZE	0x20	/* Register space size */
83 
84 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
85 #define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
86 #define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
87 #define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
88 #define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
89 #define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
90 
91 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
92 #define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
93 #define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
94 #define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
95 #define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
96 #define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
97 #define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
98 #define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
99 #define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
100 #define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
101 #define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
102 
103 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
104 #define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
105 #define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
106 #define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
107 #define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
108 #define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
109 #define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
110 #define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
111 #define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
112 #define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
113 #define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
114 #define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
115 #define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
116 #define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
117 #define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
118 #define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
119 #define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
120 #define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
121 #define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
122 #define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
123 #define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
124 #define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
125 #define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
126 #define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
127 
128 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
129 #define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
130 #define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
131 #define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
132 #define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
133 #define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
134 #define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
135 #define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
136 #define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
137 #define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
138 #define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
139 
140 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
141 #define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
142 #define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
143 #define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
144 #define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
145 #define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
146 #define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
147 #define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
148 #define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
149 #define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
150 #define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
151 #define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
152 #define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
153 #define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
154 #define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
155 #define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
156 #define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
157 #define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
158 
159 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
160 #define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
161 #define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
162 
163 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
164 #define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
165 
166 /*
167  * DMA Interface Registers (offset from BASEREG1)
168  */
169 #define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
170 #define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
171 #define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
172 #define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
173 #define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
174 #define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
175 #define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
176 #define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
177 #define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
178 #define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
179 #define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
180 #define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
181 #define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
182 #define	HIFN_1_REVID		0x98	/* Revision ID */
183 #define	HIFN_1_UNLOCK_SECRET1	0xf4
184 #define	HIFN_1_UNLOCK_SECRET2	0xfc
185 #define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
186 #define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
187 #define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
188 #define	HIFN_1_PUB_OP		0x308	/* Public Operand */
189 #define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
190 #define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
191 #define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
192 #define	HIFN_1_RNG_DATA		0x318	/* RNG data */
193 #define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
194 #define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
195 
196 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
197 #define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
198 #define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
199 #define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
200 #define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
201 #define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
202 #define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
203 #define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
204 #define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
205 #define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
206 #define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
207 #define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
208 #define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
209 #define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
210 #define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
211 #define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
212 #define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
213 #define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
214 #define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
215 #define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
216 #define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
217 #define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
218 #define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
219 #define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
220 #define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
221 #define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
222 #define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
223 #define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
224 #define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
225 #define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
226 #define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
227 #define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
228 #define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
229 #define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
230 #define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
231 #define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
232 #define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
233 #define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
234 #define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
235 
236 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
237 #define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
238 #define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
239 #define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
240 #define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
241 #define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
242 #define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
243 #define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
244 #define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
245 #define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
246 #define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
247 #define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
248 #define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
249 #define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
250 #define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
251 #define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
252 #define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
253 #define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
254 #define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
255 #define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
256 #define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
257 #define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
258 #define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
259 
260 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
261 #define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
262 #define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
263 #define	HIFN_DMACNFG_UNLOCK	0x00000800
264 #define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
265 #define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
266 #define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
267 #define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
268 #define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
269 
270 /* PLL configuration register */
271 #define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
272 #define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
273 #define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
274 #define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
275 #define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
276 #define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
277 #define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
278 #define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
279 #define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
280 #define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
281 #define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
282 #define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
283 #define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
284 #define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
285 #define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
286 #define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
287 #define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
288 
289 #define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
290 
291 /* Public key reset register (HIFN_1_PUB_RESET) */
292 #define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
293 
294 /* Public base address register (HIFN_1_PUB_BASE) */
295 #define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
296 
297 /* Public operand length register (HIFN_1_PUB_OPLEN) */
298 #define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
299 #define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
300 #define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
301 #define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
302 #define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
303 #define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
304 
305 /* Public operation register (HIFN_1_PUB_OP) */
306 #define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
307 #define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
308 #define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
309 #define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
310 #define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
311 #define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
312 #define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
313 #define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
314 #define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
315 #define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
316 #define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
317 #define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
318 #define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
319 #define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
320 #define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
321 #define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
322 #define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
323 #define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
324 #define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
325 #define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
326 
327 /* Public status register (HIFN_1_PUB_STATUS) */
328 #define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
329 #define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
330 
331 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
332 #define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
333 
334 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
335 #define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
336 
337 #define HIFN_NAMESIZE			32
338 #define HIFN_MAX_RESULT_ORDER		5
339 
340 #define	HIFN_D_CMD_RSIZE		(24 * 1)
341 #define	HIFN_D_SRC_RSIZE		(80 * 1)
342 #define	HIFN_D_DST_RSIZE		(80 * 1)
343 #define	HIFN_D_RES_RSIZE		(24 * 1)
344 
345 #define HIFN_D_DST_DALIGN		4
346 
347 #define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
348 
349 #define AES_MIN_KEY_SIZE		16
350 #define AES_MAX_KEY_SIZE		32
351 
352 #define HIFN_DES_KEY_LENGTH		8
353 #define HIFN_3DES_KEY_LENGTH		24
354 #define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
355 #define HIFN_IV_LENGTH			8
356 #define HIFN_AES_IV_LENGTH		16
357 #define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
358 
359 #define HIFN_MAC_KEY_LENGTH		64
360 #define HIFN_MD5_LENGTH			16
361 #define HIFN_SHA1_LENGTH		20
362 #define HIFN_MAC_TRUNC_LENGTH		12
363 
364 #define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
365 #define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
366 #define HIFN_USED_RESULT		12
367 
368 struct hifn_desc {
369 	volatile __le32		l;
370 	volatile __le32		p;
371 };
372 
373 struct hifn_dma {
374 	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
375 	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
376 	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
377 	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
378 
379 	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
380 	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
381 
382 	/*
383 	 *  Our current positions for insertion and removal from the descriptor
384 	 *  rings.
385 	 */
386 	volatile int		cmdi, srci, dsti, resi;
387 	volatile int		cmdu, srcu, dstu, resu;
388 	int			cmdk, srck, dstk, resk;
389 };
390 
391 #define HIFN_FLAG_CMD_BUSY	(1 << 0)
392 #define HIFN_FLAG_SRC_BUSY	(1 << 1)
393 #define HIFN_FLAG_DST_BUSY	(1 << 2)
394 #define HIFN_FLAG_RES_BUSY	(1 << 3)
395 #define HIFN_FLAG_OLD_KEY	(1 << 4)
396 
397 #define HIFN_DEFAULT_ACTIVE_NUM	5
398 
399 struct hifn_device {
400 	char			name[HIFN_NAMESIZE];
401 
402 	int			irq;
403 
404 	struct pci_dev		*pdev;
405 	void __iomem		*bar[3];
406 
407 	void			*desc_virt;
408 	dma_addr_t		desc_dma;
409 
410 	u32			dmareg;
411 
412 	void			*sa[HIFN_D_RES_RSIZE];
413 
414 	spinlock_t		lock;
415 
416 	u32			flags;
417 	int			active, started;
418 	struct delayed_work	work;
419 	unsigned long		reset;
420 	unsigned long		success;
421 	unsigned long		prev_success;
422 
423 	u8			snum;
424 
425 	struct tasklet_struct	tasklet;
426 
427 	struct crypto_queue	queue;
428 	struct list_head	alg_list;
429 
430 	unsigned int		pk_clk_freq;
431 
432 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
433 	unsigned int		rng_wait_time;
434 	ktime_t			rngtime;
435 	struct hwrng		rng;
436 #endif
437 };
438 
439 #define	HIFN_D_LENGTH			0x0000ffff
440 #define	HIFN_D_NOINVALID		0x01000000
441 #define	HIFN_D_MASKDONEIRQ		0x02000000
442 #define	HIFN_D_DESTOVER			0x04000000
443 #define	HIFN_D_OVER			0x08000000
444 #define	HIFN_D_LAST			0x20000000
445 #define	HIFN_D_JUMP			0x40000000
446 #define	HIFN_D_VALID			0x80000000
447 
448 struct hifn_base_command {
449 	volatile __le16		masks;
450 	volatile __le16		session_num;
451 	volatile __le16		total_source_count;
452 	volatile __le16		total_dest_count;
453 };
454 
455 #define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
456 #define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
457 #define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
458 #define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
459 #define	HIFN_BASE_CMD_DECODE		0x2000
460 #define	HIFN_BASE_CMD_SRCLEN_M		0xc000
461 #define	HIFN_BASE_CMD_SRCLEN_S		14
462 #define	HIFN_BASE_CMD_DSTLEN_M		0x3000
463 #define	HIFN_BASE_CMD_DSTLEN_S		12
464 #define	HIFN_BASE_CMD_LENMASK_HI	0x30000
465 #define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
466 
467 /*
468  * Structure to help build up the command data structure.
469  */
470 struct hifn_crypt_command {
471 	volatile __le16		masks;
472 	volatile __le16		header_skip;
473 	volatile __le16		source_count;
474 	volatile __le16		reserved;
475 };
476 
477 #define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
478 #define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
479 #define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
480 #define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
481 #define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
482 #define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
483 #define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
484 #define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
485 #define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
486 #define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
487 #define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
488 #define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
489 #define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
490 #define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
491 #define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
492 #define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
493 #define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
494 #define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
495 #define	HIFN_CRYPT_CMD_SRCLEN_S		14
496 
497 /*
498  * Structure to help build up the command data structure.
499  */
500 struct hifn_mac_command {
501 	volatile __le16	masks;
502 	volatile __le16	header_skip;
503 	volatile __le16	source_count;
504 	volatile __le16	reserved;
505 };
506 
507 #define	HIFN_MAC_CMD_ALG_MASK		0x0001
508 #define	HIFN_MAC_CMD_ALG_SHA1		0x0000
509 #define	HIFN_MAC_CMD_ALG_MD5		0x0001
510 #define	HIFN_MAC_CMD_MODE_MASK		0x000c
511 #define	HIFN_MAC_CMD_MODE_HMAC		0x0000
512 #define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
513 #define	HIFN_MAC_CMD_MODE_HASH		0x0008
514 #define	HIFN_MAC_CMD_MODE_FULL		0x0004
515 #define	HIFN_MAC_CMD_TRUNC		0x0010
516 #define	HIFN_MAC_CMD_RESULT		0x0020
517 #define	HIFN_MAC_CMD_APPEND		0x0040
518 #define	HIFN_MAC_CMD_SRCLEN_M		0xc000
519 #define	HIFN_MAC_CMD_SRCLEN_S		14
520 
521 /*
522  * MAC POS IPsec initiates authentication after encryption on encodes
523  * and before decryption on decodes.
524  */
525 #define	HIFN_MAC_CMD_POS_IPSEC		0x0200
526 #define	HIFN_MAC_CMD_NEW_KEY		0x0800
527 
528 struct hifn_comp_command {
529 	volatile __le16		masks;
530 	volatile __le16		header_skip;
531 	volatile __le16		source_count;
532 	volatile __le16		reserved;
533 };
534 
535 #define	HIFN_COMP_CMD_SRCLEN_M		0xc000
536 #define	HIFN_COMP_CMD_SRCLEN_S		14
537 #define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
538 #define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
539 #define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
540 #define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
541 #define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
542 #define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
543 #define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
544 #define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
545 
546 struct hifn_base_result {
547 	volatile __le16		flags;
548 	volatile __le16		session;
549 	volatile __le16		src_cnt;		/* 15:0 of source count */
550 	volatile __le16		dst_cnt;		/* 15:0 of dest count */
551 };
552 
553 #define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
554 #define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
555 #define	HIFN_BASE_RES_SRCLEN_S		14
556 #define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
557 #define	HIFN_BASE_RES_DSTLEN_S		12
558 
559 struct hifn_comp_result {
560 	volatile __le16		flags;
561 	volatile __le16		crc;
562 };
563 
564 #define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
565 #define	HIFN_COMP_RES_LCB_S		8
566 #define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
567 #define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
568 #define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
569 
570 struct hifn_mac_result {
571 	volatile __le16		flags;
572 	volatile __le16		reserved;
573 	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
574 };
575 
576 #define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
577 #define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
578 
579 struct hifn_crypt_result {
580 	volatile __le16		flags;
581 	volatile __le16		reserved;
582 };
583 
584 #define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
585 
586 #ifndef HIFN_POLL_FREQUENCY
587 #define	HIFN_POLL_FREQUENCY	0x1
588 #endif
589 
590 #ifndef HIFN_POLL_SCALAR
591 #define	HIFN_POLL_SCALAR	0x0
592 #endif
593 
594 #define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
595 #define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
596 
597 struct hifn_crypto_alg {
598 	struct list_head	entry;
599 	struct crypto_alg	alg;
600 	struct hifn_device	*dev;
601 };
602 
603 #define ASYNC_SCATTERLIST_CACHE	16
604 
605 #define ASYNC_FLAGS_MISALIGNED	(1 << 0)
606 
607 struct hifn_cipher_walk {
608 	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
609 	u32			flags;
610 	int			num;
611 };
612 
613 struct hifn_context {
614 	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
615 	struct hifn_device	*dev;
616 	unsigned int		keysize;
617 };
618 
619 struct hifn_request_context {
620 	u8			*iv;
621 	unsigned int		ivsize;
622 	u8			op, type, mode, unused;
623 	struct hifn_cipher_walk	walk;
624 };
625 
626 #define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
627 
628 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
629 {
630 	return readl(dev->bar[0] + reg);
631 }
632 
633 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
634 {
635 	return readl(dev->bar[1] + reg);
636 }
637 
638 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
639 {
640 	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
641 }
642 
643 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
644 {
645 	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
646 }
647 
648 static void hifn_wait_puc(struct hifn_device *dev)
649 {
650 	int i;
651 	u32 ret;
652 
653 	for (i = 10000; i > 0; --i) {
654 		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
655 		if (!(ret & HIFN_PUCTRL_RESET))
656 			break;
657 
658 		udelay(1);
659 	}
660 
661 	if (!i)
662 		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
663 }
664 
665 static void hifn_reset_puc(struct hifn_device *dev)
666 {
667 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
668 	hifn_wait_puc(dev);
669 }
670 
671 static void hifn_stop_device(struct hifn_device *dev)
672 {
673 	hifn_write_1(dev, HIFN_1_DMA_CSR,
674 		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
675 		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
676 	hifn_write_0(dev, HIFN_0_PUIER, 0);
677 	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
678 }
679 
680 static void hifn_reset_dma(struct hifn_device *dev, int full)
681 {
682 	hifn_stop_device(dev);
683 
684 	/*
685 	 * Setting poll frequency and others to 0.
686 	 */
687 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
688 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
689 	mdelay(1);
690 
691 	/*
692 	 * Reset DMA.
693 	 */
694 	if (full) {
695 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
696 		mdelay(1);
697 	} else {
698 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
699 				HIFN_DMACNFG_MSTRESET);
700 		hifn_reset_puc(dev);
701 	}
702 
703 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
704 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
705 
706 	hifn_reset_puc(dev);
707 }
708 
709 static u32 hifn_next_signature(u32 a, u_int cnt)
710 {
711 	int i;
712 	u32 v;
713 
714 	for (i = 0; i < cnt; i++) {
715 		/* get the parity */
716 		v = a & 0x80080125;
717 		v ^= v >> 16;
718 		v ^= v >> 8;
719 		v ^= v >> 4;
720 		v ^= v >> 2;
721 		v ^= v >> 1;
722 
723 		a = (v & 1) ^ (a << 1);
724 	}
725 
726 	return a;
727 }
728 
729 static struct pci2id {
730 	u_short		pci_vendor;
731 	u_short		pci_prod;
732 	char		card_id[13];
733 } pci2id[] = {
734 	{
735 		PCI_VENDOR_ID_HIFN,
736 		PCI_DEVICE_ID_HIFN_7955,
737 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
738 		  0x00, 0x00, 0x00, 0x00, 0x00 }
739 	},
740 	{
741 		PCI_VENDOR_ID_HIFN,
742 		PCI_DEVICE_ID_HIFN_7956,
743 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
744 		  0x00, 0x00, 0x00, 0x00, 0x00 }
745 	}
746 };
747 
748 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
749 static int hifn_rng_data_present(struct hwrng *rng, int wait)
750 {
751 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
752 	s64 nsec;
753 
754 	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
755 	nsec -= dev->rng_wait_time;
756 	if (nsec <= 0)
757 		return 1;
758 	if (!wait)
759 		return 0;
760 	ndelay(nsec);
761 	return 1;
762 }
763 
764 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
765 {
766 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
767 
768 	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
769 	dev->rngtime = ktime_get();
770 	return 4;
771 }
772 
773 static int hifn_register_rng(struct hifn_device *dev)
774 {
775 	/*
776 	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
777 	 */
778 	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
779 						   dev->pk_clk_freq) * 256;
780 
781 	dev->rng.name		= dev->name;
782 	dev->rng.data_present	= hifn_rng_data_present,
783 	dev->rng.data_read	= hifn_rng_data_read,
784 	dev->rng.priv		= (unsigned long)dev;
785 
786 	return hwrng_register(&dev->rng);
787 }
788 
789 static void hifn_unregister_rng(struct hifn_device *dev)
790 {
791 	hwrng_unregister(&dev->rng);
792 }
793 #else
794 #define hifn_register_rng(dev)		0
795 #define hifn_unregister_rng(dev)
796 #endif
797 
798 static int hifn_init_pubrng(struct hifn_device *dev)
799 {
800 	int i;
801 
802 	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
803 			HIFN_PUBRST_RESET);
804 
805 	for (i = 100; i > 0; --i) {
806 		mdelay(1);
807 
808 		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
809 			break;
810 	}
811 
812 	if (!i) {
813 		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
814 	} else {
815 		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
816 		dev->dmareg |= HIFN_DMAIER_PUBDONE;
817 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
818 
819 		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
820 	}
821 
822 	/* Enable RNG engine. */
823 
824 	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
825 			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
826 	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
827 
828 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
829 	/* First value must be discarded */
830 	hifn_read_1(dev, HIFN_1_RNG_DATA);
831 	dev->rngtime = ktime_get();
832 #endif
833 	return 0;
834 }
835 
836 static int hifn_enable_crypto(struct hifn_device *dev)
837 {
838 	u32 dmacfg, addr;
839 	char *offtbl = NULL;
840 	int i;
841 
842 	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
843 		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
844 				pci2id[i].pci_prod == dev->pdev->device) {
845 			offtbl = pci2id[i].card_id;
846 			break;
847 		}
848 	}
849 
850 	if (!offtbl) {
851 		dev_err(&dev->pdev->dev, "Unknown card!\n");
852 		return -ENODEV;
853 	}
854 
855 	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
856 
857 	hifn_write_1(dev, HIFN_1_DMA_CNFG,
858 			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
859 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
860 	mdelay(1);
861 	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
862 	mdelay(1);
863 	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
864 	mdelay(1);
865 
866 	for (i = 0; i < 12; ++i) {
867 		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
868 		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
869 
870 		mdelay(1);
871 	}
872 	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
873 
874 	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
875 
876 	return 0;
877 }
878 
879 static void hifn_init_dma(struct hifn_device *dev)
880 {
881 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
882 	u32 dptr = dev->desc_dma;
883 	int i;
884 
885 	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
886 		dma->cmdr[i].p = __cpu_to_le32(dptr +
887 				offsetof(struct hifn_dma, command_bufs[i][0]));
888 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
889 		dma->resr[i].p = __cpu_to_le32(dptr +
890 				offsetof(struct hifn_dma, result_bufs[i][0]));
891 
892 	/* Setup LAST descriptors. */
893 	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
894 			offsetof(struct hifn_dma, cmdr[0]));
895 	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
896 			offsetof(struct hifn_dma, srcr[0]));
897 	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
898 			offsetof(struct hifn_dma, dstr[0]));
899 	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
900 			offsetof(struct hifn_dma, resr[0]));
901 
902 	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
903 	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
904 	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
905 }
906 
907 /*
908  * Initialize the PLL. We need to know the frequency of the reference clock
909  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
910  * allows us to operate without the risk of overclocking the chip. If it
911  * actually uses 33MHz, the chip will operate at half the speed, this can be
912  * overridden by specifying the frequency as module parameter (pci33).
913  *
914  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
915  * stable clock and the PCI clock frequency may vary, so the default is the
916  * external clock. There is no way to find out its frequency, we default to
917  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
918  * has an external crystal populated at 66MHz.
919  */
920 static void hifn_init_pll(struct hifn_device *dev)
921 {
922 	unsigned int freq, m;
923 	u32 pllcfg;
924 
925 	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
926 
927 	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
928 		pllcfg |= HIFN_PLL_REF_CLK_PLL;
929 	else
930 		pllcfg |= HIFN_PLL_REF_CLK_HBI;
931 
932 	if (hifn_pll_ref[3] != '\0')
933 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
934 	else {
935 		freq = 66;
936 		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
937 			 freq, hifn_pll_ref);
938 	}
939 
940 	m = HIFN_PLL_FCK_MAX / freq;
941 
942 	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
943 	if (m <= 8)
944 		pllcfg |= HIFN_PLL_IS_1_8;
945 	else
946 		pllcfg |= HIFN_PLL_IS_9_12;
947 
948 	/* Select clock source and enable clock bypass */
949 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
950 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
951 
952 	/* Let the chip lock to the input clock */
953 	mdelay(10);
954 
955 	/* Disable clock bypass */
956 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
957 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
958 
959 	/* Switch the engines to the PLL */
960 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
961 		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
962 
963 	/*
964 	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
965 	 * calculate the minimum time between two reads of the rng. Since 33MHz
966 	 * is actually 33.333... we overestimate the frequency here, resulting
967 	 * in slightly larger intervals.
968 	 */
969 	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
970 }
971 
972 static void hifn_init_registers(struct hifn_device *dev)
973 {
974 	u32 dptr = dev->desc_dma;
975 
976 	/* Initialization magic... */
977 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
978 	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
979 	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
980 
981 	/* write all 4 ring address registers */
982 	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
983 				offsetof(struct hifn_dma, cmdr[0]));
984 	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
985 				offsetof(struct hifn_dma, srcr[0]));
986 	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
987 				offsetof(struct hifn_dma, dstr[0]));
988 	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
989 				offsetof(struct hifn_dma, resr[0]));
990 
991 	mdelay(2);
992 #if 0
993 	hifn_write_1(dev, HIFN_1_DMA_CSR,
994 	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
995 	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
996 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
997 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
998 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
999 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1000 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1001 	    HIFN_DMACSR_S_WAIT |
1002 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1003 	    HIFN_DMACSR_C_WAIT |
1004 	    HIFN_DMACSR_ENGINE |
1005 	    HIFN_DMACSR_PUBDONE);
1006 #else
1007 	hifn_write_1(dev, HIFN_1_DMA_CSR,
1008 	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1009 	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1010 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1011 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1012 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1013 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1014 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1015 	    HIFN_DMACSR_S_WAIT |
1016 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1017 	    HIFN_DMACSR_C_WAIT |
1018 	    HIFN_DMACSR_ENGINE |
1019 	    HIFN_DMACSR_PUBDONE);
1020 #endif
1021 	hifn_read_1(dev, HIFN_1_DMA_CSR);
1022 
1023 	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1024 	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1025 	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1026 	    HIFN_DMAIER_ENGINE;
1027 	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1028 
1029 	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1030 	hifn_read_1(dev, HIFN_1_DMA_IER);
1031 #if 0
1032 	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1033 		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1034 		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1035 		    HIFN_PUCNFG_DRAM);
1036 #else
1037 	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1038 #endif
1039 	hifn_init_pll(dev);
1040 
1041 	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1042 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1043 	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1044 	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1045 	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1046 }
1047 
1048 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1049 		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1050 {
1051 	struct hifn_base_command *base_cmd;
1052 	u8 *buf_pos = buf;
1053 
1054 	base_cmd = (struct hifn_base_command *)buf_pos;
1055 	base_cmd->masks = __cpu_to_le16(mask);
1056 	base_cmd->total_source_count =
1057 		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1058 	base_cmd->total_dest_count =
1059 		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1060 
1061 	dlen >>= 16;
1062 	slen >>= 16;
1063 	base_cmd->session_num = __cpu_to_le16(snum |
1064 	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1065 	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1066 
1067 	return sizeof(struct hifn_base_command);
1068 }
1069 
1070 static int hifn_setup_crypto_command(struct hifn_device *dev,
1071 		u8 *buf, unsigned dlen, unsigned slen,
1072 		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1073 {
1074 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1075 	struct hifn_crypt_command *cry_cmd;
1076 	u8 *buf_pos = buf;
1077 	u16 cmd_len;
1078 
1079 	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1080 
1081 	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1082 	dlen >>= 16;
1083 	cry_cmd->masks = __cpu_to_le16(mode |
1084 			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1085 			 HIFN_CRYPT_CMD_SRCLEN_M));
1086 	cry_cmd->header_skip = 0;
1087 	cry_cmd->reserved = 0;
1088 
1089 	buf_pos += sizeof(struct hifn_crypt_command);
1090 
1091 	dma->cmdu++;
1092 	if (dma->cmdu > 1) {
1093 		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1094 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1095 	}
1096 
1097 	if (keylen) {
1098 		memcpy(buf_pos, key, keylen);
1099 		buf_pos += keylen;
1100 	}
1101 	if (ivsize) {
1102 		memcpy(buf_pos, iv, ivsize);
1103 		buf_pos += ivsize;
1104 	}
1105 
1106 	cmd_len = buf_pos - buf;
1107 
1108 	return cmd_len;
1109 }
1110 
1111 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1112 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1113 		void *priv, unsigned int nbytes)
1114 {
1115 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1116 	int cmd_len, sa_idx;
1117 	u8 *buf, *buf_pos;
1118 	u16 mask;
1119 
1120 	sa_idx = dma->cmdi;
1121 	buf_pos = buf = dma->command_bufs[dma->cmdi];
1122 
1123 	mask = 0;
1124 	switch (rctx->op) {
1125 	case ACRYPTO_OP_DECRYPT:
1126 		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1127 		break;
1128 	case ACRYPTO_OP_ENCRYPT:
1129 		mask = HIFN_BASE_CMD_CRYPT;
1130 		break;
1131 	case ACRYPTO_OP_HMAC:
1132 		mask = HIFN_BASE_CMD_MAC;
1133 		break;
1134 	default:
1135 		goto err_out;
1136 	}
1137 
1138 	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1139 			nbytes, mask, dev->snum);
1140 
1141 	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1142 		u16 md = 0;
1143 
1144 		if (ctx->keysize)
1145 			md |= HIFN_CRYPT_CMD_NEW_KEY;
1146 		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1147 			md |= HIFN_CRYPT_CMD_NEW_IV;
1148 
1149 		switch (rctx->mode) {
1150 		case ACRYPTO_MODE_ECB:
1151 			md |= HIFN_CRYPT_CMD_MODE_ECB;
1152 			break;
1153 		case ACRYPTO_MODE_CBC:
1154 			md |= HIFN_CRYPT_CMD_MODE_CBC;
1155 			break;
1156 		case ACRYPTO_MODE_CFB:
1157 			md |= HIFN_CRYPT_CMD_MODE_CFB;
1158 			break;
1159 		case ACRYPTO_MODE_OFB:
1160 			md |= HIFN_CRYPT_CMD_MODE_OFB;
1161 			break;
1162 		default:
1163 			goto err_out;
1164 		}
1165 
1166 		switch (rctx->type) {
1167 		case ACRYPTO_TYPE_AES_128:
1168 			if (ctx->keysize != 16)
1169 				goto err_out;
1170 			md |= HIFN_CRYPT_CMD_KSZ_128 |
1171 				HIFN_CRYPT_CMD_ALG_AES;
1172 			break;
1173 		case ACRYPTO_TYPE_AES_192:
1174 			if (ctx->keysize != 24)
1175 				goto err_out;
1176 			md |= HIFN_CRYPT_CMD_KSZ_192 |
1177 				HIFN_CRYPT_CMD_ALG_AES;
1178 			break;
1179 		case ACRYPTO_TYPE_AES_256:
1180 			if (ctx->keysize != 32)
1181 				goto err_out;
1182 			md |= HIFN_CRYPT_CMD_KSZ_256 |
1183 				HIFN_CRYPT_CMD_ALG_AES;
1184 			break;
1185 		case ACRYPTO_TYPE_3DES:
1186 			if (ctx->keysize != 24)
1187 				goto err_out;
1188 			md |= HIFN_CRYPT_CMD_ALG_3DES;
1189 			break;
1190 		case ACRYPTO_TYPE_DES:
1191 			if (ctx->keysize != 8)
1192 				goto err_out;
1193 			md |= HIFN_CRYPT_CMD_ALG_DES;
1194 			break;
1195 		default:
1196 			goto err_out;
1197 		}
1198 
1199 		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1200 				nbytes, nbytes, ctx->key, ctx->keysize,
1201 				rctx->iv, rctx->ivsize, md);
1202 	}
1203 
1204 	dev->sa[sa_idx] = priv;
1205 	dev->started++;
1206 
1207 	cmd_len = buf_pos - buf;
1208 	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1209 			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1210 
1211 	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1212 		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1213 			HIFN_D_VALID | HIFN_D_LAST |
1214 			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1215 		dma->cmdi = 0;
1216 	} else {
1217 		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1218 	}
1219 
1220 	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1221 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1222 		dev->flags |= HIFN_FLAG_CMD_BUSY;
1223 	}
1224 	return 0;
1225 
1226 err_out:
1227 	return -EINVAL;
1228 }
1229 
1230 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1231 		unsigned int offset, unsigned int size, int last)
1232 {
1233 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1234 	int idx;
1235 	dma_addr_t addr;
1236 
1237 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1238 
1239 	idx = dma->srci;
1240 
1241 	dma->srcr[idx].p = __cpu_to_le32(addr);
1242 	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1243 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1244 
1245 	if (++idx == HIFN_D_SRC_RSIZE) {
1246 		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1247 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1248 				(last ? HIFN_D_LAST : 0));
1249 		idx = 0;
1250 	}
1251 
1252 	dma->srci = idx;
1253 	dma->srcu++;
1254 
1255 	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1256 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1257 		dev->flags |= HIFN_FLAG_SRC_BUSY;
1258 	}
1259 
1260 	return size;
1261 }
1262 
1263 static void hifn_setup_res_desc(struct hifn_device *dev)
1264 {
1265 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1266 
1267 	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1268 			HIFN_D_VALID | HIFN_D_LAST);
1269 	/*
1270 	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1271 	 *					HIFN_D_LAST);
1272 	 */
1273 
1274 	if (++dma->resi == HIFN_D_RES_RSIZE) {
1275 		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1276 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1277 		dma->resi = 0;
1278 	}
1279 
1280 	dma->resu++;
1281 
1282 	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1283 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1284 		dev->flags |= HIFN_FLAG_RES_BUSY;
1285 	}
1286 }
1287 
1288 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1289 		unsigned offset, unsigned size, int last)
1290 {
1291 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1292 	int idx;
1293 	dma_addr_t addr;
1294 
1295 	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1296 
1297 	idx = dma->dsti;
1298 	dma->dstr[idx].p = __cpu_to_le32(addr);
1299 	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1300 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1301 
1302 	if (++idx == HIFN_D_DST_RSIZE) {
1303 		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1304 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1305 				(last ? HIFN_D_LAST : 0));
1306 		idx = 0;
1307 	}
1308 	dma->dsti = idx;
1309 	dma->dstu++;
1310 
1311 	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1312 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1313 		dev->flags |= HIFN_FLAG_DST_BUSY;
1314 	}
1315 }
1316 
1317 static int hifn_setup_dma(struct hifn_device *dev,
1318 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1319 		struct scatterlist *src, struct scatterlist *dst,
1320 		unsigned int nbytes, void *priv)
1321 {
1322 	struct scatterlist *t;
1323 	struct page *spage, *dpage;
1324 	unsigned int soff, doff;
1325 	unsigned int n, len;
1326 
1327 	n = nbytes;
1328 	while (n) {
1329 		spage = sg_page(src);
1330 		soff = src->offset;
1331 		len = min(src->length, n);
1332 
1333 		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1334 
1335 		src++;
1336 		n -= len;
1337 	}
1338 
1339 	t = &rctx->walk.cache[0];
1340 	n = nbytes;
1341 	while (n) {
1342 		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1343 			BUG_ON(!sg_page(t));
1344 			dpage = sg_page(t);
1345 			doff = 0;
1346 			len = t->length;
1347 		} else {
1348 			BUG_ON(!sg_page(dst));
1349 			dpage = sg_page(dst);
1350 			doff = dst->offset;
1351 			len = dst->length;
1352 		}
1353 		len = min(len, n);
1354 
1355 		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1356 
1357 		dst++;
1358 		t++;
1359 		n -= len;
1360 	}
1361 
1362 	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1363 	hifn_setup_res_desc(dev);
1364 	return 0;
1365 }
1366 
1367 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1368 		int num, gfp_t gfp_flags)
1369 {
1370 	int i;
1371 
1372 	num = min(ASYNC_SCATTERLIST_CACHE, num);
1373 	sg_init_table(w->cache, num);
1374 
1375 	w->num = 0;
1376 	for (i = 0; i < num; ++i) {
1377 		struct page *page = alloc_page(gfp_flags);
1378 		struct scatterlist *s;
1379 
1380 		if (!page)
1381 			break;
1382 
1383 		s = &w->cache[i];
1384 
1385 		sg_set_page(s, page, PAGE_SIZE, 0);
1386 		w->num++;
1387 	}
1388 
1389 	return i;
1390 }
1391 
1392 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1393 {
1394 	int i;
1395 
1396 	for (i = 0; i < w->num; ++i) {
1397 		struct scatterlist *s = &w->cache[i];
1398 
1399 		__free_page(sg_page(s));
1400 
1401 		s->length = 0;
1402 	}
1403 
1404 	w->num = 0;
1405 }
1406 
1407 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1408 		unsigned int size, unsigned int *nbytesp)
1409 {
1410 	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1411 	int idx = 0;
1412 
1413 	if (drest < size || size > nbytes)
1414 		return -EINVAL;
1415 
1416 	while (size) {
1417 		copy = min3(drest, size, dst->length);
1418 
1419 		size -= copy;
1420 		drest -= copy;
1421 		nbytes -= copy;
1422 
1423 		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1424 			 __func__, copy, size, drest, nbytes);
1425 
1426 		dst++;
1427 		idx++;
1428 	}
1429 
1430 	*nbytesp = nbytes;
1431 	*drestp = drest;
1432 
1433 	return idx;
1434 }
1435 
1436 static int hifn_cipher_walk(struct ablkcipher_request *req,
1437 		struct hifn_cipher_walk *w)
1438 {
1439 	struct scatterlist *dst, *t;
1440 	unsigned int nbytes = req->nbytes, offset, copy, diff;
1441 	int idx, tidx, err;
1442 
1443 	tidx = idx = 0;
1444 	offset = 0;
1445 	while (nbytes) {
1446 		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1447 			return -EINVAL;
1448 
1449 		dst = &req->dst[idx];
1450 
1451 		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1452 			 __func__, dst->length, dst->offset, offset, nbytes);
1453 
1454 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1455 		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1456 		    offset) {
1457 			unsigned slen = min(dst->length - offset, nbytes);
1458 			unsigned dlen = PAGE_SIZE;
1459 
1460 			t = &w->cache[idx];
1461 
1462 			err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1463 			if (err < 0)
1464 				return err;
1465 
1466 			idx += err;
1467 
1468 			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1469 			diff = slen & (HIFN_D_DST_DALIGN - 1);
1470 
1471 			if (dlen < nbytes) {
1472 				/*
1473 				 * Destination page does not have enough space
1474 				 * to put there additional blocksized chunk,
1475 				 * so we mark that page as containing only
1476 				 * blocksize aligned chunks:
1477 				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1478 				 * and increase number of bytes to be processed
1479 				 * in next chunk:
1480 				 *	nbytes += diff;
1481 				 */
1482 				nbytes += diff;
1483 
1484 				/*
1485 				 * Temporary of course...
1486 				 * Kick author if you will catch this one.
1487 				 */
1488 				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1489 				       __func__, dlen, nbytes, slen, offset);
1490 				pr_err("%s: please contact author to fix this "
1491 				       "issue, generally you should not catch "
1492 				       "this path under any condition but who "
1493 				       "knows how did you use crypto code.\n"
1494 				       "Thank you.\n",	__func__);
1495 				BUG();
1496 			} else {
1497 				copy += diff + nbytes;
1498 
1499 				dst = &req->dst[idx];
1500 
1501 				err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1502 				if (err < 0)
1503 					return err;
1504 
1505 				idx += err;
1506 			}
1507 
1508 			t->length = copy;
1509 			t->offset = offset;
1510 		} else {
1511 			nbytes -= min(dst->length, nbytes);
1512 			idx++;
1513 		}
1514 
1515 		tidx++;
1516 	}
1517 
1518 	return tidx;
1519 }
1520 
1521 static int hifn_setup_session(struct ablkcipher_request *req)
1522 {
1523 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1524 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1525 	struct hifn_device *dev = ctx->dev;
1526 	unsigned long dlen, flags;
1527 	unsigned int nbytes = req->nbytes, idx = 0;
1528 	int err = -EINVAL, sg_num;
1529 	struct scatterlist *dst;
1530 
1531 	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1532 		goto err_out_exit;
1533 
1534 	rctx->walk.flags = 0;
1535 
1536 	while (nbytes) {
1537 		dst = &req->dst[idx];
1538 		dlen = min(dst->length, nbytes);
1539 
1540 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1541 		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1542 			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1543 
1544 		nbytes -= dlen;
1545 		idx++;
1546 	}
1547 
1548 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1549 		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1550 		if (err < 0)
1551 			return err;
1552 	}
1553 
1554 	sg_num = hifn_cipher_walk(req, &rctx->walk);
1555 	if (sg_num < 0) {
1556 		err = sg_num;
1557 		goto err_out_exit;
1558 	}
1559 
1560 	spin_lock_irqsave(&dev->lock, flags);
1561 	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1562 		err = -EAGAIN;
1563 		goto err_out;
1564 	}
1565 
1566 	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1567 	if (err)
1568 		goto err_out;
1569 
1570 	dev->snum++;
1571 
1572 	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1573 	spin_unlock_irqrestore(&dev->lock, flags);
1574 
1575 	return 0;
1576 
1577 err_out:
1578 	spin_unlock_irqrestore(&dev->lock, flags);
1579 err_out_exit:
1580 	if (err) {
1581 		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1582 			 "type: %u, err: %d.\n",
1583 			 rctx->iv, rctx->ivsize,
1584 			 ctx->key, ctx->keysize,
1585 			 rctx->mode, rctx->op, rctx->type, err);
1586 	}
1587 
1588 	return err;
1589 }
1590 
1591 static int hifn_start_device(struct hifn_device *dev)
1592 {
1593 	int err;
1594 
1595 	dev->started = dev->active = 0;
1596 	hifn_reset_dma(dev, 1);
1597 
1598 	err = hifn_enable_crypto(dev);
1599 	if (err)
1600 		return err;
1601 
1602 	hifn_reset_puc(dev);
1603 
1604 	hifn_init_dma(dev);
1605 
1606 	hifn_init_registers(dev);
1607 
1608 	hifn_init_pubrng(dev);
1609 
1610 	return 0;
1611 }
1612 
1613 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1614 		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1615 {
1616 	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1617 	void *daddr;
1618 	int idx = 0;
1619 
1620 	if (srest < size || size > nbytes)
1621 		return -EINVAL;
1622 
1623 	while (size) {
1624 		copy = min3(srest, dst->length, size);
1625 
1626 		daddr = kmap_atomic(sg_page(dst));
1627 		memcpy(daddr + dst->offset + offset, saddr, copy);
1628 		kunmap_atomic(daddr);
1629 
1630 		nbytes -= copy;
1631 		size -= copy;
1632 		srest -= copy;
1633 		saddr += copy;
1634 		offset = 0;
1635 
1636 		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1637 			 __func__, copy, size, srest, nbytes);
1638 
1639 		dst++;
1640 		idx++;
1641 	}
1642 
1643 	*nbytesp = nbytes;
1644 	*srestp = srest;
1645 
1646 	return idx;
1647 }
1648 
1649 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1650 {
1651 	unsigned long flags;
1652 
1653 	spin_lock_irqsave(&dev->lock, flags);
1654 	dev->sa[i] = NULL;
1655 	dev->started--;
1656 	if (dev->started < 0)
1657 		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1658 			 dev->started);
1659 	spin_unlock_irqrestore(&dev->lock, flags);
1660 	BUG_ON(dev->started < 0);
1661 }
1662 
1663 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1664 {
1665 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1666 
1667 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1668 		unsigned int nbytes = req->nbytes;
1669 		int idx = 0, err;
1670 		struct scatterlist *dst, *t;
1671 		void *saddr;
1672 
1673 		while (nbytes) {
1674 			t = &rctx->walk.cache[idx];
1675 			dst = &req->dst[idx];
1676 
1677 			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1678 				"sg_page(dst): %p, dst->length: %u, "
1679 				"nbytes: %u.\n",
1680 				__func__, sg_page(t), t->length,
1681 				sg_page(dst), dst->length, nbytes);
1682 
1683 			if (!t->length) {
1684 				nbytes -= min(dst->length, nbytes);
1685 				idx++;
1686 				continue;
1687 			}
1688 
1689 			saddr = kmap_atomic(sg_page(t));
1690 
1691 			err = ablkcipher_get(saddr, &t->length, t->offset,
1692 					dst, nbytes, &nbytes);
1693 			if (err < 0) {
1694 				kunmap_atomic(saddr);
1695 				break;
1696 			}
1697 
1698 			idx += err;
1699 			kunmap_atomic(saddr);
1700 		}
1701 
1702 		hifn_cipher_walk_exit(&rctx->walk);
1703 	}
1704 
1705 	req->base.complete(&req->base, error);
1706 }
1707 
1708 static void hifn_clear_rings(struct hifn_device *dev, int error)
1709 {
1710 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1711 	int i, u;
1712 
1713 	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1714 			"k: %d.%d.%d.%d.\n",
1715 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1716 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1717 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1718 
1719 	i = dma->resk; u = dma->resu;
1720 	while (u != 0) {
1721 		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1722 			break;
1723 
1724 		if (dev->sa[i]) {
1725 			dev->success++;
1726 			dev->reset = 0;
1727 			hifn_process_ready(dev->sa[i], error);
1728 			hifn_complete_sa(dev, i);
1729 		}
1730 
1731 		if (++i == HIFN_D_RES_RSIZE)
1732 			i = 0;
1733 		u--;
1734 	}
1735 	dma->resk = i; dma->resu = u;
1736 
1737 	i = dma->srck; u = dma->srcu;
1738 	while (u != 0) {
1739 		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1740 			break;
1741 		if (++i == HIFN_D_SRC_RSIZE)
1742 			i = 0;
1743 		u--;
1744 	}
1745 	dma->srck = i; dma->srcu = u;
1746 
1747 	i = dma->cmdk; u = dma->cmdu;
1748 	while (u != 0) {
1749 		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1750 			break;
1751 		if (++i == HIFN_D_CMD_RSIZE)
1752 			i = 0;
1753 		u--;
1754 	}
1755 	dma->cmdk = i; dma->cmdu = u;
1756 
1757 	i = dma->dstk; u = dma->dstu;
1758 	while (u != 0) {
1759 		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1760 			break;
1761 		if (++i == HIFN_D_DST_RSIZE)
1762 			i = 0;
1763 		u--;
1764 	}
1765 	dma->dstk = i; dma->dstu = u;
1766 
1767 	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1768 			"k: %d.%d.%d.%d.\n",
1769 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1770 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1771 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1772 }
1773 
1774 static void hifn_work(struct work_struct *work)
1775 {
1776 	struct delayed_work *dw = to_delayed_work(work);
1777 	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1778 	unsigned long flags;
1779 	int reset = 0;
1780 	u32 r = 0;
1781 
1782 	spin_lock_irqsave(&dev->lock, flags);
1783 	if (dev->active == 0) {
1784 		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1785 
1786 		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1787 			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1788 			r |= HIFN_DMACSR_C_CTRL_DIS;
1789 		}
1790 		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1791 			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1792 			r |= HIFN_DMACSR_S_CTRL_DIS;
1793 		}
1794 		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1795 			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1796 			r |= HIFN_DMACSR_D_CTRL_DIS;
1797 		}
1798 		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1799 			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1800 			r |= HIFN_DMACSR_R_CTRL_DIS;
1801 		}
1802 		if (r)
1803 			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1804 	} else
1805 		dev->active--;
1806 
1807 	if ((dev->prev_success == dev->success) && dev->started)
1808 		reset = 1;
1809 	dev->prev_success = dev->success;
1810 	spin_unlock_irqrestore(&dev->lock, flags);
1811 
1812 	if (reset) {
1813 		if (++dev->reset >= 5) {
1814 			int i;
1815 			struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1816 
1817 			dev_info(&dev->pdev->dev,
1818 				 "r: %08x, active: %d, started: %d, "
1819 				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1820 				 r, dev->active, dev->started,
1821 				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1822 				 reset);
1823 
1824 			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1825 			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1826 				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1827 				if (dev->sa[i]) {
1828 					hifn_process_ready(dev->sa[i], -ENODEV);
1829 					hifn_complete_sa(dev, i);
1830 				}
1831 			}
1832 			pr_info("\n");
1833 
1834 			hifn_reset_dma(dev, 1);
1835 			hifn_stop_device(dev);
1836 			hifn_start_device(dev);
1837 			dev->reset = 0;
1838 		}
1839 
1840 		tasklet_schedule(&dev->tasklet);
1841 	}
1842 
1843 	schedule_delayed_work(&dev->work, HZ);
1844 }
1845 
1846 static irqreturn_t hifn_interrupt(int irq, void *data)
1847 {
1848 	struct hifn_device *dev = (struct hifn_device *)data;
1849 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1850 	u32 dmacsr, restart;
1851 
1852 	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1853 
1854 	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1855 			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1856 		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1857 		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1858 		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1859 
1860 	if ((dmacsr & dev->dmareg) == 0)
1861 		return IRQ_NONE;
1862 
1863 	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1864 
1865 	if (dmacsr & HIFN_DMACSR_ENGINE)
1866 		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1867 	if (dmacsr & HIFN_DMACSR_PUBDONE)
1868 		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1869 			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1870 
1871 	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1872 	if (restart) {
1873 		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1874 
1875 		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1876 			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1877 			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1878 			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1879 		if (!!(puisr & HIFN_PUISR_DSTOVER))
1880 			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1881 		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1882 					HIFN_DMACSR_D_OVER));
1883 	}
1884 
1885 	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1886 			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1887 	if (restart) {
1888 		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1889 			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1890 			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1891 			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1892 			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1893 		hifn_reset_dma(dev, 1);
1894 		hifn_init_dma(dev);
1895 		hifn_init_registers(dev);
1896 	}
1897 
1898 	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1899 		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1900 		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1901 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1902 	}
1903 
1904 	tasklet_schedule(&dev->tasklet);
1905 
1906 	return IRQ_HANDLED;
1907 }
1908 
1909 static void hifn_flush(struct hifn_device *dev)
1910 {
1911 	unsigned long flags;
1912 	struct crypto_async_request *async_req;
1913 	struct ablkcipher_request *req;
1914 	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1915 	int i;
1916 
1917 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1918 		struct hifn_desc *d = &dma->resr[i];
1919 
1920 		if (dev->sa[i]) {
1921 			hifn_process_ready(dev->sa[i],
1922 				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1923 			hifn_complete_sa(dev, i);
1924 		}
1925 	}
1926 
1927 	spin_lock_irqsave(&dev->lock, flags);
1928 	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1929 		req = ablkcipher_request_cast(async_req);
1930 		spin_unlock_irqrestore(&dev->lock, flags);
1931 
1932 		hifn_process_ready(req, -ENODEV);
1933 
1934 		spin_lock_irqsave(&dev->lock, flags);
1935 	}
1936 	spin_unlock_irqrestore(&dev->lock, flags);
1937 }
1938 
1939 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1940 		unsigned int len)
1941 {
1942 	struct hifn_context *ctx = crypto_ablkcipher_ctx(cipher);
1943 	struct hifn_device *dev = ctx->dev;
1944 	int err;
1945 
1946 	err = verify_ablkcipher_des_key(cipher, key);
1947 	if (err)
1948 		return err;
1949 
1950 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1951 
1952 	memcpy(ctx->key, key, len);
1953 	ctx->keysize = len;
1954 
1955 	return 0;
1956 }
1957 
1958 static int hifn_des3_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1959 			    unsigned int len)
1960 {
1961 	struct hifn_context *ctx = crypto_ablkcipher_ctx(cipher);
1962 	struct hifn_device *dev = ctx->dev;
1963 	int err;
1964 
1965 	err = verify_ablkcipher_des3_key(cipher, key);
1966 	if (err)
1967 		return err;
1968 
1969 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1970 
1971 	memcpy(ctx->key, key, len);
1972 	ctx->keysize = len;
1973 
1974 	return 0;
1975 }
1976 
1977 static int hifn_handle_req(struct ablkcipher_request *req)
1978 {
1979 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1980 	struct hifn_device *dev = ctx->dev;
1981 	int err = -EAGAIN;
1982 
1983 	if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1984 		err = hifn_setup_session(req);
1985 
1986 	if (err == -EAGAIN) {
1987 		unsigned long flags;
1988 
1989 		spin_lock_irqsave(&dev->lock, flags);
1990 		err = ablkcipher_enqueue_request(&dev->queue, req);
1991 		spin_unlock_irqrestore(&dev->lock, flags);
1992 	}
1993 
1994 	return err;
1995 }
1996 
1997 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
1998 		u8 type, u8 mode)
1999 {
2000 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2001 	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2002 	unsigned ivsize;
2003 
2004 	ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2005 
2006 	if (req->info && mode != ACRYPTO_MODE_ECB) {
2007 		if (type == ACRYPTO_TYPE_AES_128)
2008 			ivsize = HIFN_AES_IV_LENGTH;
2009 		else if (type == ACRYPTO_TYPE_DES)
2010 			ivsize = HIFN_DES_KEY_LENGTH;
2011 		else if (type == ACRYPTO_TYPE_3DES)
2012 			ivsize = HIFN_3DES_KEY_LENGTH;
2013 	}
2014 
2015 	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2016 		if (ctx->keysize == 24)
2017 			type = ACRYPTO_TYPE_AES_192;
2018 		else if (ctx->keysize == 32)
2019 			type = ACRYPTO_TYPE_AES_256;
2020 	}
2021 
2022 	rctx->op = op;
2023 	rctx->mode = mode;
2024 	rctx->type = type;
2025 	rctx->iv = req->info;
2026 	rctx->ivsize = ivsize;
2027 
2028 	/*
2029 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2030 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2031 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032 	 */
2033 
2034 	return hifn_handle_req(req);
2035 }
2036 
2037 static int hifn_process_queue(struct hifn_device *dev)
2038 {
2039 	struct crypto_async_request *async_req, *backlog;
2040 	struct ablkcipher_request *req;
2041 	unsigned long flags;
2042 	int err = 0;
2043 
2044 	while (dev->started < HIFN_QUEUE_LENGTH) {
2045 		spin_lock_irqsave(&dev->lock, flags);
2046 		backlog = crypto_get_backlog(&dev->queue);
2047 		async_req = crypto_dequeue_request(&dev->queue);
2048 		spin_unlock_irqrestore(&dev->lock, flags);
2049 
2050 		if (!async_req)
2051 			break;
2052 
2053 		if (backlog)
2054 			backlog->complete(backlog, -EINPROGRESS);
2055 
2056 		req = ablkcipher_request_cast(async_req);
2057 
2058 		err = hifn_handle_req(req);
2059 		if (err)
2060 			break;
2061 	}
2062 
2063 	return err;
2064 }
2065 
2066 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2067 		u8 type, u8 mode)
2068 {
2069 	int err;
2070 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2071 	struct hifn_device *dev = ctx->dev;
2072 
2073 	err = hifn_setup_crypto_req(req, op, type, mode);
2074 	if (err)
2075 		return err;
2076 
2077 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2078 		hifn_process_queue(dev);
2079 
2080 	return -EINPROGRESS;
2081 }
2082 
2083 /*
2084  * AES ecryption functions.
2085  */
2086 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2087 {
2088 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2089 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2090 }
2091 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2092 {
2093 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2094 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2095 }
2096 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2097 {
2098 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2099 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2100 }
2101 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2102 {
2103 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2104 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2105 }
2106 
2107 /*
2108  * AES decryption functions.
2109  */
2110 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2111 {
2112 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2113 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2114 }
2115 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2116 {
2117 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2118 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2119 }
2120 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2121 {
2122 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2123 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2124 }
2125 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2126 {
2127 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2128 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2129 }
2130 
2131 /*
2132  * DES ecryption functions.
2133  */
2134 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2135 {
2136 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2137 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2138 }
2139 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2140 {
2141 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2142 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2143 }
2144 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2145 {
2146 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2147 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2148 }
2149 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2150 {
2151 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2152 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2153 }
2154 
2155 /*
2156  * DES decryption functions.
2157  */
2158 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2159 {
2160 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2161 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2162 }
2163 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2164 {
2165 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2166 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2167 }
2168 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2169 {
2170 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2171 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2172 }
2173 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2174 {
2175 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2176 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2177 }
2178 
2179 /*
2180  * 3DES ecryption functions.
2181  */
2182 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2183 {
2184 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2185 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2186 }
2187 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2188 {
2189 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2190 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2191 }
2192 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2193 {
2194 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2195 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2196 }
2197 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2198 {
2199 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2200 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2201 }
2202 
2203 /* 3DES decryption functions. */
2204 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2205 {
2206 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2207 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2208 }
2209 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2210 {
2211 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2212 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2213 }
2214 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2215 {
2216 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2217 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2218 }
2219 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2220 {
2221 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2222 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2223 }
2224 
2225 struct hifn_alg_template {
2226 	char name[CRYPTO_MAX_ALG_NAME];
2227 	char drv_name[CRYPTO_MAX_ALG_NAME];
2228 	unsigned int bsize;
2229 	struct ablkcipher_alg ablkcipher;
2230 };
2231 
2232 static struct hifn_alg_template hifn_alg_templates[] = {
2233 	/*
2234 	 * 3DES ECB, CBC, CFB and OFB modes.
2235 	 */
2236 	{
2237 		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2238 		.ablkcipher = {
2239 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2240 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2241 			.setkey		=	hifn_des3_setkey,
2242 			.encrypt	=	hifn_encrypt_3des_cfb,
2243 			.decrypt	=	hifn_decrypt_3des_cfb,
2244 		},
2245 	},
2246 	{
2247 		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2248 		.ablkcipher = {
2249 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2250 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2251 			.setkey		=	hifn_des3_setkey,
2252 			.encrypt	=	hifn_encrypt_3des_ofb,
2253 			.decrypt	=	hifn_decrypt_3des_ofb,
2254 		},
2255 	},
2256 	{
2257 		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2258 		.ablkcipher = {
2259 			.ivsize		=	HIFN_IV_LENGTH,
2260 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2261 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2262 			.setkey		=	hifn_des3_setkey,
2263 			.encrypt	=	hifn_encrypt_3des_cbc,
2264 			.decrypt	=	hifn_decrypt_3des_cbc,
2265 		},
2266 	},
2267 	{
2268 		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2269 		.ablkcipher = {
2270 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2271 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2272 			.setkey		=	hifn_des3_setkey,
2273 			.encrypt	=	hifn_encrypt_3des_ecb,
2274 			.decrypt	=	hifn_decrypt_3des_ecb,
2275 		},
2276 	},
2277 
2278 	/*
2279 	 * DES ECB, CBC, CFB and OFB modes.
2280 	 */
2281 	{
2282 		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2283 		.ablkcipher = {
2284 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2285 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2286 			.setkey		=	hifn_setkey,
2287 			.encrypt	=	hifn_encrypt_des_cfb,
2288 			.decrypt	=	hifn_decrypt_des_cfb,
2289 		},
2290 	},
2291 	{
2292 		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2293 		.ablkcipher = {
2294 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2295 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2296 			.setkey		=	hifn_setkey,
2297 			.encrypt	=	hifn_encrypt_des_ofb,
2298 			.decrypt	=	hifn_decrypt_des_ofb,
2299 		},
2300 	},
2301 	{
2302 		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2303 		.ablkcipher = {
2304 			.ivsize		=	HIFN_IV_LENGTH,
2305 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2306 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2307 			.setkey		=	hifn_setkey,
2308 			.encrypt	=	hifn_encrypt_des_cbc,
2309 			.decrypt	=	hifn_decrypt_des_cbc,
2310 		},
2311 	},
2312 	{
2313 		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2314 		.ablkcipher = {
2315 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2316 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2317 			.setkey		=	hifn_setkey,
2318 			.encrypt	=	hifn_encrypt_des_ecb,
2319 			.decrypt	=	hifn_decrypt_des_ecb,
2320 		},
2321 	},
2322 
2323 	/*
2324 	 * AES ECB, CBC, CFB and OFB modes.
2325 	 */
2326 	{
2327 		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2328 		.ablkcipher = {
2329 			.min_keysize	=	AES_MIN_KEY_SIZE,
2330 			.max_keysize	=	AES_MAX_KEY_SIZE,
2331 			.setkey		=	hifn_setkey,
2332 			.encrypt	=	hifn_encrypt_aes_ecb,
2333 			.decrypt	=	hifn_decrypt_aes_ecb,
2334 		},
2335 	},
2336 	{
2337 		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2338 		.ablkcipher = {
2339 			.ivsize		=	HIFN_AES_IV_LENGTH,
2340 			.min_keysize	=	AES_MIN_KEY_SIZE,
2341 			.max_keysize	=	AES_MAX_KEY_SIZE,
2342 			.setkey		=	hifn_setkey,
2343 			.encrypt	=	hifn_encrypt_aes_cbc,
2344 			.decrypt	=	hifn_decrypt_aes_cbc,
2345 		},
2346 	},
2347 	{
2348 		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2349 		.ablkcipher = {
2350 			.min_keysize	=	AES_MIN_KEY_SIZE,
2351 			.max_keysize	=	AES_MAX_KEY_SIZE,
2352 			.setkey		=	hifn_setkey,
2353 			.encrypt	=	hifn_encrypt_aes_cfb,
2354 			.decrypt	=	hifn_decrypt_aes_cfb,
2355 		},
2356 	},
2357 	{
2358 		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2359 		.ablkcipher = {
2360 			.min_keysize	=	AES_MIN_KEY_SIZE,
2361 			.max_keysize	=	AES_MAX_KEY_SIZE,
2362 			.setkey		=	hifn_setkey,
2363 			.encrypt	=	hifn_encrypt_aes_ofb,
2364 			.decrypt	=	hifn_decrypt_aes_ofb,
2365 		},
2366 	},
2367 };
2368 
2369 static int hifn_cra_init(struct crypto_tfm *tfm)
2370 {
2371 	struct crypto_alg *alg = tfm->__crt_alg;
2372 	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2373 	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2374 
2375 	ctx->dev = ha->dev;
2376 	tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2377 	return 0;
2378 }
2379 
2380 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2381 {
2382 	struct hifn_crypto_alg *alg;
2383 	int err;
2384 
2385 	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2386 	if (!alg)
2387 		return -ENOMEM;
2388 
2389 	snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2390 	snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2391 		 t->drv_name, dev->name);
2392 
2393 	alg->alg.cra_priority = 300;
2394 	alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2395 				CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2396 	alg->alg.cra_blocksize = t->bsize;
2397 	alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2398 	alg->alg.cra_alignmask = 0;
2399 	alg->alg.cra_type = &crypto_ablkcipher_type;
2400 	alg->alg.cra_module = THIS_MODULE;
2401 	alg->alg.cra_u.ablkcipher = t->ablkcipher;
2402 	alg->alg.cra_init = hifn_cra_init;
2403 
2404 	alg->dev = dev;
2405 
2406 	list_add_tail(&alg->entry, &dev->alg_list);
2407 
2408 	err = crypto_register_alg(&alg->alg);
2409 	if (err) {
2410 		list_del(&alg->entry);
2411 		kfree(alg);
2412 	}
2413 
2414 	return err;
2415 }
2416 
2417 static void hifn_unregister_alg(struct hifn_device *dev)
2418 {
2419 	struct hifn_crypto_alg *a, *n;
2420 
2421 	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2422 		list_del(&a->entry);
2423 		crypto_unregister_alg(&a->alg);
2424 		kfree(a);
2425 	}
2426 }
2427 
2428 static int hifn_register_alg(struct hifn_device *dev)
2429 {
2430 	int i, err;
2431 
2432 	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2433 		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2434 		if (err)
2435 			goto err_out_exit;
2436 	}
2437 
2438 	return 0;
2439 
2440 err_out_exit:
2441 	hifn_unregister_alg(dev);
2442 	return err;
2443 }
2444 
2445 static void hifn_tasklet_callback(unsigned long data)
2446 {
2447 	struct hifn_device *dev = (struct hifn_device *)data;
2448 
2449 	/*
2450 	 * This is ok to call this without lock being held,
2451 	 * althogh it modifies some parameters used in parallel,
2452 	 * (like dev->success), but they are used in process
2453 	 * context or update is atomic (like setting dev->sa[i] to NULL).
2454 	 */
2455 	hifn_clear_rings(dev, 0);
2456 
2457 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2458 		hifn_process_queue(dev);
2459 }
2460 
2461 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2462 {
2463 	int err, i;
2464 	struct hifn_device *dev;
2465 	char name[8];
2466 
2467 	err = pci_enable_device(pdev);
2468 	if (err)
2469 		return err;
2470 	pci_set_master(pdev);
2471 
2472 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2473 	if (err)
2474 		goto err_out_disable_pci_device;
2475 
2476 	snprintf(name, sizeof(name), "hifn%d",
2477 			atomic_inc_return(&hifn_dev_number) - 1);
2478 
2479 	err = pci_request_regions(pdev, name);
2480 	if (err)
2481 		goto err_out_disable_pci_device;
2482 
2483 	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2484 	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2485 	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2486 		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2487 		err = -ENODEV;
2488 		goto err_out_free_regions;
2489 	}
2490 
2491 	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2492 			GFP_KERNEL);
2493 	if (!dev) {
2494 		err = -ENOMEM;
2495 		goto err_out_free_regions;
2496 	}
2497 
2498 	INIT_LIST_HEAD(&dev->alg_list);
2499 
2500 	snprintf(dev->name, sizeof(dev->name), "%s", name);
2501 	spin_lock_init(&dev->lock);
2502 
2503 	for (i = 0; i < 3; ++i) {
2504 		unsigned long addr, size;
2505 
2506 		addr = pci_resource_start(pdev, i);
2507 		size = pci_resource_len(pdev, i);
2508 
2509 		dev->bar[i] = ioremap_nocache(addr, size);
2510 		if (!dev->bar[i]) {
2511 			err = -ENOMEM;
2512 			goto err_out_unmap_bars;
2513 		}
2514 	}
2515 
2516 	dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2517 					       &dev->desc_dma);
2518 	if (!dev->desc_virt) {
2519 		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2520 		err = -ENOMEM;
2521 		goto err_out_unmap_bars;
2522 	}
2523 
2524 	dev->pdev = pdev;
2525 	dev->irq = pdev->irq;
2526 
2527 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2528 		dev->sa[i] = NULL;
2529 
2530 	pci_set_drvdata(pdev, dev);
2531 
2532 	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2533 
2534 	crypto_init_queue(&dev->queue, 1);
2535 
2536 	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2537 	if (err) {
2538 		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2539 			dev->irq, err);
2540 		dev->irq = 0;
2541 		goto err_out_free_desc;
2542 	}
2543 
2544 	err = hifn_start_device(dev);
2545 	if (err)
2546 		goto err_out_free_irq;
2547 
2548 	err = hifn_register_rng(dev);
2549 	if (err)
2550 		goto err_out_stop_device;
2551 
2552 	err = hifn_register_alg(dev);
2553 	if (err)
2554 		goto err_out_unregister_rng;
2555 
2556 	INIT_DELAYED_WORK(&dev->work, hifn_work);
2557 	schedule_delayed_work(&dev->work, HZ);
2558 
2559 	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2560 		"successfully registered as %s.\n",
2561 		pci_name(pdev), dev->name);
2562 
2563 	return 0;
2564 
2565 err_out_unregister_rng:
2566 	hifn_unregister_rng(dev);
2567 err_out_stop_device:
2568 	hifn_reset_dma(dev, 1);
2569 	hifn_stop_device(dev);
2570 err_out_free_irq:
2571 	free_irq(dev->irq, dev);
2572 	tasklet_kill(&dev->tasklet);
2573 err_out_free_desc:
2574 	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2575 			dev->desc_virt, dev->desc_dma);
2576 
2577 err_out_unmap_bars:
2578 	for (i = 0; i < 3; ++i)
2579 		if (dev->bar[i])
2580 			iounmap(dev->bar[i]);
2581 	kfree(dev);
2582 
2583 err_out_free_regions:
2584 	pci_release_regions(pdev);
2585 
2586 err_out_disable_pci_device:
2587 	pci_disable_device(pdev);
2588 
2589 	return err;
2590 }
2591 
2592 static void hifn_remove(struct pci_dev *pdev)
2593 {
2594 	int i;
2595 	struct hifn_device *dev;
2596 
2597 	dev = pci_get_drvdata(pdev);
2598 
2599 	if (dev) {
2600 		cancel_delayed_work_sync(&dev->work);
2601 
2602 		hifn_unregister_rng(dev);
2603 		hifn_unregister_alg(dev);
2604 		hifn_reset_dma(dev, 1);
2605 		hifn_stop_device(dev);
2606 
2607 		free_irq(dev->irq, dev);
2608 		tasklet_kill(&dev->tasklet);
2609 
2610 		hifn_flush(dev);
2611 
2612 		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2613 				dev->desc_virt, dev->desc_dma);
2614 		for (i = 0; i < 3; ++i)
2615 			if (dev->bar[i])
2616 				iounmap(dev->bar[i]);
2617 
2618 		kfree(dev);
2619 	}
2620 
2621 	pci_release_regions(pdev);
2622 	pci_disable_device(pdev);
2623 }
2624 
2625 static struct pci_device_id hifn_pci_tbl[] = {
2626 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2627 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2628 	{ 0 }
2629 };
2630 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2631 
2632 static struct pci_driver hifn_pci_driver = {
2633 	.name     = "hifn795x",
2634 	.id_table = hifn_pci_tbl,
2635 	.probe    = hifn_probe,
2636 	.remove   = hifn_remove,
2637 };
2638 
2639 static int __init hifn_init(void)
2640 {
2641 	unsigned int freq;
2642 	int err;
2643 
2644 	/* HIFN supports only 32-bit addresses */
2645 	BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2646 
2647 	if (strncmp(hifn_pll_ref, "ext", 3) &&
2648 	    strncmp(hifn_pll_ref, "pci", 3)) {
2649 		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2650 		return -EINVAL;
2651 	}
2652 
2653 	/*
2654 	 * For the 7955/7956 the reference clock frequency must be in the
2655 	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2656 	 * but this chip is currently not supported.
2657 	 */
2658 	if (hifn_pll_ref[3] != '\0') {
2659 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2660 		if (freq < 20 || freq > 100) {
2661 			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2662 			       "be in the range of 20-100");
2663 			return -EINVAL;
2664 		}
2665 	}
2666 
2667 	err = pci_register_driver(&hifn_pci_driver);
2668 	if (err < 0) {
2669 		pr_err("Failed to register PCI driver for %s device.\n",
2670 		       hifn_pci_driver.name);
2671 		return -ENODEV;
2672 	}
2673 
2674 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2675 		"has been successfully registered.\n");
2676 
2677 	return 0;
2678 }
2679 
2680 static void __exit hifn_fini(void)
2681 {
2682 	pci_unregister_driver(&hifn_pci_driver);
2683 
2684 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2685 		"has been successfully unregistered.\n");
2686 }
2687 
2688 module_init(hifn_init);
2689 module_exit(hifn_fini);
2690 
2691 MODULE_LICENSE("GPL");
2692 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2693 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2694