1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4 * All rights reserved.
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 #include <crypto/internal/skcipher.h>
26
27 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29 MODULE_PARM_DESC(hifn_pll_ref,
30 "PLL reference clock (pci[freq] or ext[freq], default ext)");
31
32 static atomic_t hifn_dev_number;
33
34 #define ACRYPTO_OP_DECRYPT 0
35 #define ACRYPTO_OP_ENCRYPT 1
36 #define ACRYPTO_OP_HMAC 2
37 #define ACRYPTO_OP_RNG 3
38
39 #define ACRYPTO_MODE_ECB 0
40 #define ACRYPTO_MODE_CBC 1
41 #define ACRYPTO_MODE_CFB 2
42 #define ACRYPTO_MODE_OFB 3
43
44 #define ACRYPTO_TYPE_AES_128 0
45 #define ACRYPTO_TYPE_AES_192 1
46 #define ACRYPTO_TYPE_AES_256 2
47 #define ACRYPTO_TYPE_3DES 3
48 #define ACRYPTO_TYPE_DES 4
49
50 #define PCI_VENDOR_ID_HIFN 0x13A3
51 #define PCI_DEVICE_ID_HIFN_7955 0x0020
52 #define PCI_DEVICE_ID_HIFN_7956 0x001d
53
54 /* I/O region sizes */
55
56 #define HIFN_BAR0_SIZE 0x1000
57 #define HIFN_BAR1_SIZE 0x2000
58 #define HIFN_BAR2_SIZE 0x8000
59
60 /* DMA registres */
61
62 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
63 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
64 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
65 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
66 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
67 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
68 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
69 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
70 #define HIFN_CHIP_ID 0x98 /* Chip ID */
71
72 /*
73 * Processing Unit Registers (offset from BASEREG0)
74 */
75 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
76 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
77 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
78 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
79 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
80 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
81 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
82 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
83 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
84
85 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
86 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
87 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
88 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
89 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
90 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
91
92 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
94 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
95 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
96 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
97 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
98 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
99 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
100 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
101 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
102 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
103
104 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
106 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
107 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
108 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
109 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
110 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
111 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
112 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
113 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
114 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
115 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
116 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
117 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
118 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
119 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
120 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
121 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
122 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
123 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
124 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
125 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
126 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
127 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
128
129 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
131 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
132 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
133 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
134 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
135 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
136 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
137 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
138 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
139 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
140
141 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
143 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
144 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
145 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
146 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
147 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
148 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
149 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
150 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
151 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
152 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
153 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
154 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
155 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
156 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
157 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
158 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
159
160 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
161 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
162 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
163
164 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
166
167 /*
168 * DMA Interface Registers (offset from BASEREG1)
169 */
170 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
171 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
172 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
173 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
174 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
175 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
176 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
177 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
178 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
179 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
180 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
181 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
182 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
183 #define HIFN_1_REVID 0x98 /* Revision ID */
184 #define HIFN_1_UNLOCK_SECRET1 0xf4
185 #define HIFN_1_UNLOCK_SECRET2 0xfc
186 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
187 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
188 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
189 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
190 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
191 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
192 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
193 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
194 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
195 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
196
197 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
199 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
200 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
201 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
202 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
203 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
204 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
205 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
206 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
207 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
208 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
209 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
210 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
211 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
212 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
213 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
214 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
215 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
216 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
217 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
218 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
219 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
220 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
221 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
222 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
223 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
224 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
225 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
226 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
227 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
228 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
229 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
230 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
231 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
232 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
233 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
234 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
235 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
236
237 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
239 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
240 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
241 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
242 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
243 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
244 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
245 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
246 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
247 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
248 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
249 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
250 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
251 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
252 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
253 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
254 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
255 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
256 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
257 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
258 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
259 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
260
261 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
263 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
264 #define HIFN_DMACNFG_UNLOCK 0x00000800
265 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
266 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
267 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
268 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
269 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
270
271 /* PLL configuration register */
272 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
273 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
274 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
275 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
276 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
277 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
278 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
279 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
280 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
281 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
282 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
283 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
284 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
285 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
286 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
287 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
288 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
289
290 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
291
292 /* Public key reset register (HIFN_1_PUB_RESET) */
293 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
294
295 /* Public base address register (HIFN_1_PUB_BASE) */
296 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
297
298 /* Public operand length register (HIFN_1_PUB_OPLEN) */
299 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
300 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
301 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
302 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
303 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
304 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
305
306 /* Public operation register (HIFN_1_PUB_OP) */
307 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
308 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
309 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
310 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
311 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
312 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
313 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
314 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
315 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
316 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
317 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
318 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
319 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
320 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
321 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
322 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
323 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
324 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
325 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
326 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
327
328 /* Public status register (HIFN_1_PUB_STATUS) */
329 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
330 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
331
332 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
333 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
334
335 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
336 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
337
338 #define HIFN_NAMESIZE 32
339 #define HIFN_MAX_RESULT_ORDER 5
340
341 #define HIFN_D_CMD_RSIZE (24 * 1)
342 #define HIFN_D_SRC_RSIZE (80 * 1)
343 #define HIFN_D_DST_RSIZE (80 * 1)
344 #define HIFN_D_RES_RSIZE (24 * 1)
345
346 #define HIFN_D_DST_DALIGN 4
347
348 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
349
350 #define AES_MIN_KEY_SIZE 16
351 #define AES_MAX_KEY_SIZE 32
352
353 #define HIFN_DES_KEY_LENGTH 8
354 #define HIFN_3DES_KEY_LENGTH 24
355 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
356 #define HIFN_IV_LENGTH 8
357 #define HIFN_AES_IV_LENGTH 16
358 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
359
360 #define HIFN_MAC_KEY_LENGTH 64
361 #define HIFN_MD5_LENGTH 16
362 #define HIFN_SHA1_LENGTH 20
363 #define HIFN_MAC_TRUNC_LENGTH 12
364
365 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
366 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
367 #define HIFN_USED_RESULT 12
368
369 struct hifn_desc {
370 volatile __le32 l;
371 volatile __le32 p;
372 };
373
374 struct hifn_dma {
375 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
376 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
377 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
378 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
379
380 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382
383 /*
384 * Our current positions for insertion and removal from the descriptor
385 * rings.
386 */
387 volatile int cmdi, srci, dsti, resi;
388 volatile int cmdu, srcu, dstu, resu;
389 int cmdk, srck, dstk, resk;
390 };
391
392 #define HIFN_FLAG_CMD_BUSY (1 << 0)
393 #define HIFN_FLAG_SRC_BUSY (1 << 1)
394 #define HIFN_FLAG_DST_BUSY (1 << 2)
395 #define HIFN_FLAG_RES_BUSY (1 << 3)
396 #define HIFN_FLAG_OLD_KEY (1 << 4)
397
398 #define HIFN_DEFAULT_ACTIVE_NUM 5
399
400 struct hifn_device {
401 char name[HIFN_NAMESIZE];
402
403 int irq;
404
405 struct pci_dev *pdev;
406 void __iomem *bar[3];
407
408 void *desc_virt;
409 dma_addr_t desc_dma;
410
411 u32 dmareg;
412
413 void *sa[HIFN_D_RES_RSIZE];
414
415 spinlock_t lock;
416
417 u32 flags;
418 int active, started;
419 struct delayed_work work;
420 unsigned long reset;
421 unsigned long success;
422 unsigned long prev_success;
423
424 u8 snum;
425
426 struct tasklet_struct tasklet;
427
428 struct crypto_queue queue;
429 struct list_head alg_list;
430
431 unsigned int pk_clk_freq;
432
433 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434 unsigned int rng_wait_time;
435 ktime_t rngtime;
436 struct hwrng rng;
437 #endif
438 };
439
440 #define HIFN_D_LENGTH 0x0000ffff
441 #define HIFN_D_NOINVALID 0x01000000
442 #define HIFN_D_MASKDONEIRQ 0x02000000
443 #define HIFN_D_DESTOVER 0x04000000
444 #define HIFN_D_OVER 0x08000000
445 #define HIFN_D_LAST 0x20000000
446 #define HIFN_D_JUMP 0x40000000
447 #define HIFN_D_VALID 0x80000000
448
449 struct hifn_base_command {
450 volatile __le16 masks;
451 volatile __le16 session_num;
452 volatile __le16 total_source_count;
453 volatile __le16 total_dest_count;
454 };
455
456 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
457 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
458 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
459 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
460 #define HIFN_BASE_CMD_DECODE 0x2000
461 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
462 #define HIFN_BASE_CMD_SRCLEN_S 14
463 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
464 #define HIFN_BASE_CMD_DSTLEN_S 12
465 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
466 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
467
468 /*
469 * Structure to help build up the command data structure.
470 */
471 struct hifn_crypt_command {
472 volatile __le16 masks;
473 volatile __le16 header_skip;
474 volatile __le16 source_count;
475 volatile __le16 reserved;
476 };
477
478 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
479 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
480 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
481 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
482 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
483 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
484 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
485 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
486 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
487 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
488 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
489 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
490 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
491 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
492 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
493 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
494 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
495 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
496 #define HIFN_CRYPT_CMD_SRCLEN_S 14
497
498 /*
499 * Structure to help build up the command data structure.
500 */
501 struct hifn_mac_command {
502 volatile __le16 masks;
503 volatile __le16 header_skip;
504 volatile __le16 source_count;
505 volatile __le16 reserved;
506 };
507
508 #define HIFN_MAC_CMD_ALG_MASK 0x0001
509 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
510 #define HIFN_MAC_CMD_ALG_MD5 0x0001
511 #define HIFN_MAC_CMD_MODE_MASK 0x000c
512 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
513 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
514 #define HIFN_MAC_CMD_MODE_HASH 0x0008
515 #define HIFN_MAC_CMD_MODE_FULL 0x0004
516 #define HIFN_MAC_CMD_TRUNC 0x0010
517 #define HIFN_MAC_CMD_RESULT 0x0020
518 #define HIFN_MAC_CMD_APPEND 0x0040
519 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
520 #define HIFN_MAC_CMD_SRCLEN_S 14
521
522 /*
523 * MAC POS IPsec initiates authentication after encryption on encodes
524 * and before decryption on decodes.
525 */
526 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
527 #define HIFN_MAC_CMD_NEW_KEY 0x0800
528
529 struct hifn_comp_command {
530 volatile __le16 masks;
531 volatile __le16 header_skip;
532 volatile __le16 source_count;
533 volatile __le16 reserved;
534 };
535
536 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
537 #define HIFN_COMP_CMD_SRCLEN_S 14
538 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
539 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
540 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
541 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
542 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
543 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
544 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
545 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
546
547 struct hifn_base_result {
548 volatile __le16 flags;
549 volatile __le16 session;
550 volatile __le16 src_cnt; /* 15:0 of source count */
551 volatile __le16 dst_cnt; /* 15:0 of dest count */
552 };
553
554 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
555 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
556 #define HIFN_BASE_RES_SRCLEN_S 14
557 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
558 #define HIFN_BASE_RES_DSTLEN_S 12
559
560 struct hifn_comp_result {
561 volatile __le16 flags;
562 volatile __le16 crc;
563 };
564
565 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
566 #define HIFN_COMP_RES_LCB_S 8
567 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
568 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
569 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
570
571 struct hifn_mac_result {
572 volatile __le16 flags;
573 volatile __le16 reserved;
574 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
575 };
576
577 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
578 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
579
580 struct hifn_crypt_result {
581 volatile __le16 flags;
582 volatile __le16 reserved;
583 };
584
585 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
586
587 #ifndef HIFN_POLL_FREQUENCY
588 #define HIFN_POLL_FREQUENCY 0x1
589 #endif
590
591 #ifndef HIFN_POLL_SCALAR
592 #define HIFN_POLL_SCALAR 0x0
593 #endif
594
595 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
596 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
597
598 struct hifn_crypto_alg {
599 struct list_head entry;
600 struct skcipher_alg alg;
601 struct hifn_device *dev;
602 };
603
604 #define ASYNC_SCATTERLIST_CACHE 16
605
606 #define ASYNC_FLAGS_MISALIGNED (1 << 0)
607
608 struct hifn_cipher_walk {
609 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
610 u32 flags;
611 int num;
612 };
613
614 struct hifn_context {
615 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
616 struct hifn_device *dev;
617 unsigned int keysize;
618 };
619
620 struct hifn_request_context {
621 u8 *iv;
622 unsigned int ivsize;
623 u8 op, type, mode, unused;
624 struct hifn_cipher_walk walk;
625 };
626
627 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
628
hifn_read_0(struct hifn_device * dev,u32 reg)629 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
630 {
631 return readl(dev->bar[0] + reg);
632 }
633
hifn_read_1(struct hifn_device * dev,u32 reg)634 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
635 {
636 return readl(dev->bar[1] + reg);
637 }
638
hifn_write_0(struct hifn_device * dev,u32 reg,u32 val)639 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
640 {
641 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
642 }
643
hifn_write_1(struct hifn_device * dev,u32 reg,u32 val)644 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
645 {
646 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
647 }
648
hifn_wait_puc(struct hifn_device * dev)649 static void hifn_wait_puc(struct hifn_device *dev)
650 {
651 int i;
652 u32 ret;
653
654 for (i = 10000; i > 0; --i) {
655 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
656 if (!(ret & HIFN_PUCTRL_RESET))
657 break;
658
659 udelay(1);
660 }
661
662 if (!i)
663 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
664 }
665
hifn_reset_puc(struct hifn_device * dev)666 static void hifn_reset_puc(struct hifn_device *dev)
667 {
668 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
669 hifn_wait_puc(dev);
670 }
671
hifn_stop_device(struct hifn_device * dev)672 static void hifn_stop_device(struct hifn_device *dev)
673 {
674 hifn_write_1(dev, HIFN_1_DMA_CSR,
675 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
676 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
677 hifn_write_0(dev, HIFN_0_PUIER, 0);
678 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
679 }
680
hifn_reset_dma(struct hifn_device * dev,int full)681 static void hifn_reset_dma(struct hifn_device *dev, int full)
682 {
683 hifn_stop_device(dev);
684
685 /*
686 * Setting poll frequency and others to 0.
687 */
688 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
689 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
690 mdelay(1);
691
692 /*
693 * Reset DMA.
694 */
695 if (full) {
696 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
697 mdelay(1);
698 } else {
699 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
700 HIFN_DMACNFG_MSTRESET);
701 hifn_reset_puc(dev);
702 }
703
704 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
705 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
706
707 hifn_reset_puc(dev);
708 }
709
hifn_next_signature(u32 a,u_int cnt)710 static u32 hifn_next_signature(u32 a, u_int cnt)
711 {
712 int i;
713 u32 v;
714
715 for (i = 0; i < cnt; i++) {
716 /* get the parity */
717 v = a & 0x80080125;
718 v ^= v >> 16;
719 v ^= v >> 8;
720 v ^= v >> 4;
721 v ^= v >> 2;
722 v ^= v >> 1;
723
724 a = (v & 1) ^ (a << 1);
725 }
726
727 return a;
728 }
729
730 static struct pci2id {
731 u_short pci_vendor;
732 u_short pci_prod;
733 char card_id[13];
734 } pci2id[] = {
735 {
736 PCI_VENDOR_ID_HIFN,
737 PCI_DEVICE_ID_HIFN_7955,
738 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
739 0x00, 0x00, 0x00, 0x00, 0x00 }
740 },
741 {
742 PCI_VENDOR_ID_HIFN,
743 PCI_DEVICE_ID_HIFN_7956,
744 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
745 0x00, 0x00, 0x00, 0x00, 0x00 }
746 }
747 };
748
749 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
hifn_rng_data_present(struct hwrng * rng,int wait)750 static int hifn_rng_data_present(struct hwrng *rng, int wait)
751 {
752 struct hifn_device *dev = (struct hifn_device *)rng->priv;
753 s64 nsec;
754
755 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
756 nsec -= dev->rng_wait_time;
757 if (nsec <= 0)
758 return 1;
759 if (!wait)
760 return 0;
761 ndelay(nsec);
762 return 1;
763 }
764
hifn_rng_data_read(struct hwrng * rng,u32 * data)765 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
766 {
767 struct hifn_device *dev = (struct hifn_device *)rng->priv;
768
769 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
770 dev->rngtime = ktime_get();
771 return 4;
772 }
773
hifn_register_rng(struct hifn_device * dev)774 static int hifn_register_rng(struct hifn_device *dev)
775 {
776 /*
777 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
778 */
779 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
780 dev->pk_clk_freq) * 256;
781
782 dev->rng.name = dev->name;
783 dev->rng.data_present = hifn_rng_data_present;
784 dev->rng.data_read = hifn_rng_data_read;
785 dev->rng.priv = (unsigned long)dev;
786
787 return hwrng_register(&dev->rng);
788 }
789
hifn_unregister_rng(struct hifn_device * dev)790 static void hifn_unregister_rng(struct hifn_device *dev)
791 {
792 hwrng_unregister(&dev->rng);
793 }
794 #else
795 #define hifn_register_rng(dev) 0
796 #define hifn_unregister_rng(dev)
797 #endif
798
hifn_init_pubrng(struct hifn_device * dev)799 static int hifn_init_pubrng(struct hifn_device *dev)
800 {
801 int i;
802
803 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
804 HIFN_PUBRST_RESET);
805
806 for (i = 100; i > 0; --i) {
807 mdelay(1);
808
809 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
810 break;
811 }
812
813 if (!i) {
814 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
815 } else {
816 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
817 dev->dmareg |= HIFN_DMAIER_PUBDONE;
818 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
819
820 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
821 }
822
823 /* Enable RNG engine. */
824
825 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
826 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
827 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
828
829 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
830 /* First value must be discarded */
831 hifn_read_1(dev, HIFN_1_RNG_DATA);
832 dev->rngtime = ktime_get();
833 #endif
834 return 0;
835 }
836
hifn_enable_crypto(struct hifn_device * dev)837 static int hifn_enable_crypto(struct hifn_device *dev)
838 {
839 u32 dmacfg, addr;
840 char *offtbl = NULL;
841 int i;
842
843 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
844 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
845 pci2id[i].pci_prod == dev->pdev->device) {
846 offtbl = pci2id[i].card_id;
847 break;
848 }
849 }
850
851 if (!offtbl) {
852 dev_err(&dev->pdev->dev, "Unknown card!\n");
853 return -ENODEV;
854 }
855
856 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
857
858 hifn_write_1(dev, HIFN_1_DMA_CNFG,
859 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
860 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
861 mdelay(1);
862 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
863 mdelay(1);
864 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
865 mdelay(1);
866
867 for (i = 0; i < 12; ++i) {
868 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
869 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
870
871 mdelay(1);
872 }
873 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
874
875 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
876
877 return 0;
878 }
879
hifn_init_dma(struct hifn_device * dev)880 static void hifn_init_dma(struct hifn_device *dev)
881 {
882 struct hifn_dma *dma = dev->desc_virt;
883 u32 dptr = dev->desc_dma;
884 int i;
885
886 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
887 dma->cmdr[i].p = __cpu_to_le32(dptr +
888 offsetof(struct hifn_dma, command_bufs[i][0]));
889 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
890 dma->resr[i].p = __cpu_to_le32(dptr +
891 offsetof(struct hifn_dma, result_bufs[i][0]));
892
893 /* Setup LAST descriptors. */
894 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
895 offsetof(struct hifn_dma, cmdr[0]));
896 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
897 offsetof(struct hifn_dma, srcr[0]));
898 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
899 offsetof(struct hifn_dma, dstr[0]));
900 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
901 offsetof(struct hifn_dma, resr[0]));
902
903 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
904 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
905 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
906 }
907
908 /*
909 * Initialize the PLL. We need to know the frequency of the reference clock
910 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
911 * allows us to operate without the risk of overclocking the chip. If it
912 * actually uses 33MHz, the chip will operate at half the speed, this can be
913 * overridden by specifying the frequency as module parameter (pci33).
914 *
915 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
916 * stable clock and the PCI clock frequency may vary, so the default is the
917 * external clock. There is no way to find out its frequency, we default to
918 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
919 * has an external crystal populated at 66MHz.
920 */
hifn_init_pll(struct hifn_device * dev)921 static void hifn_init_pll(struct hifn_device *dev)
922 {
923 unsigned int freq, m;
924 u32 pllcfg;
925
926 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
927
928 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
929 pllcfg |= HIFN_PLL_REF_CLK_PLL;
930 else
931 pllcfg |= HIFN_PLL_REF_CLK_HBI;
932
933 if (hifn_pll_ref[3] != '\0')
934 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
935 else {
936 freq = 66;
937 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
938 freq, hifn_pll_ref);
939 }
940
941 m = HIFN_PLL_FCK_MAX / freq;
942
943 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
944 if (m <= 8)
945 pllcfg |= HIFN_PLL_IS_1_8;
946 else
947 pllcfg |= HIFN_PLL_IS_9_12;
948
949 /* Select clock source and enable clock bypass */
950 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
951 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
952
953 /* Let the chip lock to the input clock */
954 mdelay(10);
955
956 /* Disable clock bypass */
957 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
958 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
959
960 /* Switch the engines to the PLL */
961 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
962 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
963
964 /*
965 * The Fpk_clk runs at half the total speed. Its frequency is needed to
966 * calculate the minimum time between two reads of the rng. Since 33MHz
967 * is actually 33.333... we overestimate the frequency here, resulting
968 * in slightly larger intervals.
969 */
970 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
971 }
972
hifn_init_registers(struct hifn_device * dev)973 static void hifn_init_registers(struct hifn_device *dev)
974 {
975 u32 dptr = dev->desc_dma;
976
977 /* Initialization magic... */
978 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
979 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
980 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
981
982 /* write all 4 ring address registers */
983 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
984 offsetof(struct hifn_dma, cmdr[0]));
985 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
986 offsetof(struct hifn_dma, srcr[0]));
987 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
988 offsetof(struct hifn_dma, dstr[0]));
989 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
990 offsetof(struct hifn_dma, resr[0]));
991
992 mdelay(2);
993 #if 0
994 hifn_write_1(dev, HIFN_1_DMA_CSR,
995 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
996 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
997 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
998 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
999 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1000 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1001 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1002 HIFN_DMACSR_S_WAIT |
1003 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1004 HIFN_DMACSR_C_WAIT |
1005 HIFN_DMACSR_ENGINE |
1006 HIFN_DMACSR_PUBDONE);
1007 #else
1008 hifn_write_1(dev, HIFN_1_DMA_CSR,
1009 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1010 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1011 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1012 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1013 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1014 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1015 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1016 HIFN_DMACSR_S_WAIT |
1017 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1018 HIFN_DMACSR_C_WAIT |
1019 HIFN_DMACSR_ENGINE |
1020 HIFN_DMACSR_PUBDONE);
1021 #endif
1022 hifn_read_1(dev, HIFN_1_DMA_CSR);
1023
1024 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1025 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1026 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1027 HIFN_DMAIER_ENGINE;
1028 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1029
1030 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1031 hifn_read_1(dev, HIFN_1_DMA_IER);
1032 #if 0
1033 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1034 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1035 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1036 HIFN_PUCNFG_DRAM);
1037 #else
1038 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1039 #endif
1040 hifn_init_pll(dev);
1041
1042 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1043 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1044 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1045 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1046 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1047 }
1048
hifn_setup_base_command(struct hifn_device * dev,u8 * buf,unsigned dlen,unsigned slen,u16 mask,u8 snum)1049 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1050 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1051 {
1052 struct hifn_base_command *base_cmd;
1053 u8 *buf_pos = buf;
1054
1055 base_cmd = (struct hifn_base_command *)buf_pos;
1056 base_cmd->masks = __cpu_to_le16(mask);
1057 base_cmd->total_source_count =
1058 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1059 base_cmd->total_dest_count =
1060 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1061
1062 dlen >>= 16;
1063 slen >>= 16;
1064 base_cmd->session_num = __cpu_to_le16(snum |
1065 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1066 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1067
1068 return sizeof(struct hifn_base_command);
1069 }
1070
hifn_setup_crypto_command(struct hifn_device * dev,u8 * buf,unsigned dlen,unsigned slen,u8 * key,int keylen,u8 * iv,int ivsize,u16 mode)1071 static int hifn_setup_crypto_command(struct hifn_device *dev,
1072 u8 *buf, unsigned dlen, unsigned slen,
1073 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1074 {
1075 struct hifn_dma *dma = dev->desc_virt;
1076 struct hifn_crypt_command *cry_cmd;
1077 u8 *buf_pos = buf;
1078 u16 cmd_len;
1079
1080 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1081
1082 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1083 dlen >>= 16;
1084 cry_cmd->masks = __cpu_to_le16(mode |
1085 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1086 HIFN_CRYPT_CMD_SRCLEN_M));
1087 cry_cmd->header_skip = 0;
1088 cry_cmd->reserved = 0;
1089
1090 buf_pos += sizeof(struct hifn_crypt_command);
1091
1092 dma->cmdu++;
1093 if (dma->cmdu > 1) {
1094 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1095 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1096 }
1097
1098 if (keylen) {
1099 memcpy(buf_pos, key, keylen);
1100 buf_pos += keylen;
1101 }
1102 if (ivsize) {
1103 memcpy(buf_pos, iv, ivsize);
1104 buf_pos += ivsize;
1105 }
1106
1107 cmd_len = buf_pos - buf;
1108
1109 return cmd_len;
1110 }
1111
hifn_setup_cmd_desc(struct hifn_device * dev,struct hifn_context * ctx,struct hifn_request_context * rctx,void * priv,unsigned int nbytes)1112 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1113 struct hifn_context *ctx, struct hifn_request_context *rctx,
1114 void *priv, unsigned int nbytes)
1115 {
1116 struct hifn_dma *dma = dev->desc_virt;
1117 int cmd_len, sa_idx;
1118 u8 *buf, *buf_pos;
1119 u16 mask;
1120
1121 sa_idx = dma->cmdi;
1122 buf_pos = buf = dma->command_bufs[dma->cmdi];
1123
1124 mask = 0;
1125 switch (rctx->op) {
1126 case ACRYPTO_OP_DECRYPT:
1127 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1128 break;
1129 case ACRYPTO_OP_ENCRYPT:
1130 mask = HIFN_BASE_CMD_CRYPT;
1131 break;
1132 case ACRYPTO_OP_HMAC:
1133 mask = HIFN_BASE_CMD_MAC;
1134 break;
1135 default:
1136 goto err_out;
1137 }
1138
1139 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1140 nbytes, mask, dev->snum);
1141
1142 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1143 u16 md = 0;
1144
1145 if (ctx->keysize)
1146 md |= HIFN_CRYPT_CMD_NEW_KEY;
1147 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1148 md |= HIFN_CRYPT_CMD_NEW_IV;
1149
1150 switch (rctx->mode) {
1151 case ACRYPTO_MODE_ECB:
1152 md |= HIFN_CRYPT_CMD_MODE_ECB;
1153 break;
1154 case ACRYPTO_MODE_CBC:
1155 md |= HIFN_CRYPT_CMD_MODE_CBC;
1156 break;
1157 case ACRYPTO_MODE_CFB:
1158 md |= HIFN_CRYPT_CMD_MODE_CFB;
1159 break;
1160 case ACRYPTO_MODE_OFB:
1161 md |= HIFN_CRYPT_CMD_MODE_OFB;
1162 break;
1163 default:
1164 goto err_out;
1165 }
1166
1167 switch (rctx->type) {
1168 case ACRYPTO_TYPE_AES_128:
1169 if (ctx->keysize != 16)
1170 goto err_out;
1171 md |= HIFN_CRYPT_CMD_KSZ_128 |
1172 HIFN_CRYPT_CMD_ALG_AES;
1173 break;
1174 case ACRYPTO_TYPE_AES_192:
1175 if (ctx->keysize != 24)
1176 goto err_out;
1177 md |= HIFN_CRYPT_CMD_KSZ_192 |
1178 HIFN_CRYPT_CMD_ALG_AES;
1179 break;
1180 case ACRYPTO_TYPE_AES_256:
1181 if (ctx->keysize != 32)
1182 goto err_out;
1183 md |= HIFN_CRYPT_CMD_KSZ_256 |
1184 HIFN_CRYPT_CMD_ALG_AES;
1185 break;
1186 case ACRYPTO_TYPE_3DES:
1187 if (ctx->keysize != 24)
1188 goto err_out;
1189 md |= HIFN_CRYPT_CMD_ALG_3DES;
1190 break;
1191 case ACRYPTO_TYPE_DES:
1192 if (ctx->keysize != 8)
1193 goto err_out;
1194 md |= HIFN_CRYPT_CMD_ALG_DES;
1195 break;
1196 default:
1197 goto err_out;
1198 }
1199
1200 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1201 nbytes, nbytes, ctx->key, ctx->keysize,
1202 rctx->iv, rctx->ivsize, md);
1203 }
1204
1205 dev->sa[sa_idx] = priv;
1206 dev->started++;
1207
1208 cmd_len = buf_pos - buf;
1209 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1210 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1211
1212 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1213 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1214 HIFN_D_VALID | HIFN_D_LAST |
1215 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1216 dma->cmdi = 0;
1217 } else {
1218 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1219 }
1220
1221 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1222 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1223 dev->flags |= HIFN_FLAG_CMD_BUSY;
1224 }
1225 return 0;
1226
1227 err_out:
1228 return -EINVAL;
1229 }
1230
hifn_setup_src_desc(struct hifn_device * dev,struct page * page,unsigned int offset,unsigned int size,int last)1231 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1232 unsigned int offset, unsigned int size, int last)
1233 {
1234 struct hifn_dma *dma = dev->desc_virt;
1235 int idx;
1236 dma_addr_t addr;
1237
1238 addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1239 DMA_TO_DEVICE);
1240
1241 idx = dma->srci;
1242
1243 dma->srcr[idx].p = __cpu_to_le32(addr);
1244 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1245 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1246
1247 if (++idx == HIFN_D_SRC_RSIZE) {
1248 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1249 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1250 (last ? HIFN_D_LAST : 0));
1251 idx = 0;
1252 }
1253
1254 dma->srci = idx;
1255 dma->srcu++;
1256
1257 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1258 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1259 dev->flags |= HIFN_FLAG_SRC_BUSY;
1260 }
1261
1262 return size;
1263 }
1264
hifn_setup_res_desc(struct hifn_device * dev)1265 static void hifn_setup_res_desc(struct hifn_device *dev)
1266 {
1267 struct hifn_dma *dma = dev->desc_virt;
1268
1269 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1270 HIFN_D_VALID | HIFN_D_LAST);
1271 /*
1272 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1273 * HIFN_D_LAST);
1274 */
1275
1276 if (++dma->resi == HIFN_D_RES_RSIZE) {
1277 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1278 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1279 dma->resi = 0;
1280 }
1281
1282 dma->resu++;
1283
1284 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1285 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1286 dev->flags |= HIFN_FLAG_RES_BUSY;
1287 }
1288 }
1289
hifn_setup_dst_desc(struct hifn_device * dev,struct page * page,unsigned offset,unsigned size,int last)1290 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1291 unsigned offset, unsigned size, int last)
1292 {
1293 struct hifn_dma *dma = dev->desc_virt;
1294 int idx;
1295 dma_addr_t addr;
1296
1297 addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1298 DMA_FROM_DEVICE);
1299
1300 idx = dma->dsti;
1301 dma->dstr[idx].p = __cpu_to_le32(addr);
1302 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1303 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1304
1305 if (++idx == HIFN_D_DST_RSIZE) {
1306 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1307 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1308 (last ? HIFN_D_LAST : 0));
1309 idx = 0;
1310 }
1311 dma->dsti = idx;
1312 dma->dstu++;
1313
1314 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1315 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1316 dev->flags |= HIFN_FLAG_DST_BUSY;
1317 }
1318 }
1319
hifn_setup_dma(struct hifn_device * dev,struct hifn_context * ctx,struct hifn_request_context * rctx,struct scatterlist * src,struct scatterlist * dst,unsigned int nbytes,void * priv)1320 static int hifn_setup_dma(struct hifn_device *dev,
1321 struct hifn_context *ctx, struct hifn_request_context *rctx,
1322 struct scatterlist *src, struct scatterlist *dst,
1323 unsigned int nbytes, void *priv)
1324 {
1325 struct scatterlist *t;
1326 struct page *spage, *dpage;
1327 unsigned int soff, doff;
1328 unsigned int n, len;
1329
1330 n = nbytes;
1331 while (n) {
1332 spage = sg_page(src);
1333 soff = src->offset;
1334 len = min(src->length, n);
1335
1336 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1337
1338 src++;
1339 n -= len;
1340 }
1341
1342 t = &rctx->walk.cache[0];
1343 n = nbytes;
1344 while (n) {
1345 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1346 BUG_ON(!sg_page(t));
1347 dpage = sg_page(t);
1348 doff = 0;
1349 len = t->length;
1350 } else {
1351 BUG_ON(!sg_page(dst));
1352 dpage = sg_page(dst);
1353 doff = dst->offset;
1354 len = dst->length;
1355 }
1356 len = min(len, n);
1357
1358 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1359
1360 dst++;
1361 t++;
1362 n -= len;
1363 }
1364
1365 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1366 hifn_setup_res_desc(dev);
1367 return 0;
1368 }
1369
hifn_cipher_walk_init(struct hifn_cipher_walk * w,int num,gfp_t gfp_flags)1370 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1371 int num, gfp_t gfp_flags)
1372 {
1373 int i;
1374
1375 num = min(ASYNC_SCATTERLIST_CACHE, num);
1376 sg_init_table(w->cache, num);
1377
1378 w->num = 0;
1379 for (i = 0; i < num; ++i) {
1380 struct page *page = alloc_page(gfp_flags);
1381 struct scatterlist *s;
1382
1383 if (!page)
1384 break;
1385
1386 s = &w->cache[i];
1387
1388 sg_set_page(s, page, PAGE_SIZE, 0);
1389 w->num++;
1390 }
1391
1392 return i;
1393 }
1394
hifn_cipher_walk_exit(struct hifn_cipher_walk * w)1395 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1396 {
1397 int i;
1398
1399 for (i = 0; i < w->num; ++i) {
1400 struct scatterlist *s = &w->cache[i];
1401
1402 __free_page(sg_page(s));
1403
1404 s->length = 0;
1405 }
1406
1407 w->num = 0;
1408 }
1409
skcipher_add(unsigned int * drestp,struct scatterlist * dst,unsigned int size,unsigned int * nbytesp)1410 static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1411 unsigned int size, unsigned int *nbytesp)
1412 {
1413 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1414 int idx = 0;
1415
1416 if (drest < size || size > nbytes)
1417 return -EINVAL;
1418
1419 while (size) {
1420 copy = min3(drest, size, dst->length);
1421
1422 size -= copy;
1423 drest -= copy;
1424 nbytes -= copy;
1425
1426 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1427 __func__, copy, size, drest, nbytes);
1428
1429 dst++;
1430 idx++;
1431 }
1432
1433 *nbytesp = nbytes;
1434 *drestp = drest;
1435
1436 return idx;
1437 }
1438
hifn_cipher_walk(struct skcipher_request * req,struct hifn_cipher_walk * w)1439 static int hifn_cipher_walk(struct skcipher_request *req,
1440 struct hifn_cipher_walk *w)
1441 {
1442 struct scatterlist *dst, *t;
1443 unsigned int nbytes = req->cryptlen, offset, copy, diff;
1444 int idx, tidx, err;
1445
1446 tidx = idx = 0;
1447 offset = 0;
1448 while (nbytes) {
1449 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1450 return -EINVAL;
1451
1452 dst = &req->dst[idx];
1453
1454 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1455 __func__, dst->length, dst->offset, offset, nbytes);
1456
1457 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1458 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1459 offset) {
1460 unsigned slen = min(dst->length - offset, nbytes);
1461 unsigned dlen = PAGE_SIZE;
1462
1463 t = &w->cache[idx];
1464
1465 err = skcipher_add(&dlen, dst, slen, &nbytes);
1466 if (err < 0)
1467 return err;
1468
1469 idx += err;
1470
1471 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1472 diff = slen & (HIFN_D_DST_DALIGN - 1);
1473
1474 if (dlen < nbytes) {
1475 /*
1476 * Destination page does not have enough space
1477 * to put there additional blocksized chunk,
1478 * so we mark that page as containing only
1479 * blocksize aligned chunks:
1480 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1481 * and increase number of bytes to be processed
1482 * in next chunk:
1483 * nbytes += diff;
1484 */
1485 nbytes += diff;
1486
1487 /*
1488 * Temporary of course...
1489 * Kick author if you will catch this one.
1490 */
1491 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1492 __func__, dlen, nbytes, slen, offset);
1493 pr_err("%s: please contact author to fix this "
1494 "issue, generally you should not catch "
1495 "this path under any condition but who "
1496 "knows how did you use crypto code.\n"
1497 "Thank you.\n", __func__);
1498 BUG();
1499 } else {
1500 copy += diff + nbytes;
1501
1502 dst = &req->dst[idx];
1503
1504 err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1505 if (err < 0)
1506 return err;
1507
1508 idx += err;
1509 }
1510
1511 t->length = copy;
1512 t->offset = offset;
1513 } else {
1514 nbytes -= min(dst->length, nbytes);
1515 idx++;
1516 }
1517
1518 tidx++;
1519 }
1520
1521 return tidx;
1522 }
1523
hifn_setup_session(struct skcipher_request * req)1524 static int hifn_setup_session(struct skcipher_request *req)
1525 {
1526 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1527 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1528 struct hifn_device *dev = ctx->dev;
1529 unsigned long dlen, flags;
1530 unsigned int nbytes = req->cryptlen, idx = 0;
1531 int err = -EINVAL, sg_num;
1532 struct scatterlist *dst;
1533
1534 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1535 goto err_out_exit;
1536
1537 rctx->walk.flags = 0;
1538
1539 while (nbytes) {
1540 dst = &req->dst[idx];
1541 dlen = min(dst->length, nbytes);
1542
1543 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1544 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1545 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1546
1547 nbytes -= dlen;
1548 idx++;
1549 }
1550
1551 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1552 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1553 if (err < 0)
1554 return err;
1555 }
1556
1557 sg_num = hifn_cipher_walk(req, &rctx->walk);
1558 if (sg_num < 0) {
1559 err = sg_num;
1560 goto err_out_exit;
1561 }
1562
1563 spin_lock_irqsave(&dev->lock, flags);
1564 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1565 err = -EAGAIN;
1566 goto err_out;
1567 }
1568
1569 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1570 if (err)
1571 goto err_out;
1572
1573 dev->snum++;
1574
1575 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1576 spin_unlock_irqrestore(&dev->lock, flags);
1577
1578 return 0;
1579
1580 err_out:
1581 spin_unlock_irqrestore(&dev->lock, flags);
1582 err_out_exit:
1583 if (err) {
1584 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1585 "type: %u, err: %d.\n",
1586 rctx->iv, rctx->ivsize,
1587 ctx->key, ctx->keysize,
1588 rctx->mode, rctx->op, rctx->type, err);
1589 }
1590
1591 return err;
1592 }
1593
hifn_start_device(struct hifn_device * dev)1594 static int hifn_start_device(struct hifn_device *dev)
1595 {
1596 int err;
1597
1598 dev->started = dev->active = 0;
1599 hifn_reset_dma(dev, 1);
1600
1601 err = hifn_enable_crypto(dev);
1602 if (err)
1603 return err;
1604
1605 hifn_reset_puc(dev);
1606
1607 hifn_init_dma(dev);
1608
1609 hifn_init_registers(dev);
1610
1611 hifn_init_pubrng(dev);
1612
1613 return 0;
1614 }
1615
skcipher_get(void * saddr,unsigned int * srestp,unsigned int offset,struct scatterlist * dst,unsigned int size,unsigned int * nbytesp)1616 static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1617 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1618 {
1619 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1620 void *daddr;
1621 int idx = 0;
1622
1623 if (srest < size || size > nbytes)
1624 return -EINVAL;
1625
1626 while (size) {
1627 copy = min3(srest, dst->length, size);
1628
1629 daddr = kmap_atomic(sg_page(dst));
1630 memcpy(daddr + dst->offset + offset, saddr, copy);
1631 kunmap_atomic(daddr);
1632
1633 nbytes -= copy;
1634 size -= copy;
1635 srest -= copy;
1636 saddr += copy;
1637 offset = 0;
1638
1639 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1640 __func__, copy, size, srest, nbytes);
1641
1642 dst++;
1643 idx++;
1644 }
1645
1646 *nbytesp = nbytes;
1647 *srestp = srest;
1648
1649 return idx;
1650 }
1651
hifn_complete_sa(struct hifn_device * dev,int i)1652 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1653 {
1654 unsigned long flags;
1655
1656 spin_lock_irqsave(&dev->lock, flags);
1657 dev->sa[i] = NULL;
1658 dev->started--;
1659 if (dev->started < 0)
1660 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1661 dev->started);
1662 spin_unlock_irqrestore(&dev->lock, flags);
1663 BUG_ON(dev->started < 0);
1664 }
1665
hifn_process_ready(struct skcipher_request * req,int error)1666 static void hifn_process_ready(struct skcipher_request *req, int error)
1667 {
1668 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1669
1670 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1671 unsigned int nbytes = req->cryptlen;
1672 int idx = 0, err;
1673 struct scatterlist *dst, *t;
1674 void *saddr;
1675
1676 while (nbytes) {
1677 t = &rctx->walk.cache[idx];
1678 dst = &req->dst[idx];
1679
1680 pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1681 "sg_page(dst): %p, dst->length: %u, "
1682 "nbytes: %u.\n",
1683 __func__, sg_page(t), t->length,
1684 sg_page(dst), dst->length, nbytes);
1685
1686 if (!t->length) {
1687 nbytes -= min(dst->length, nbytes);
1688 idx++;
1689 continue;
1690 }
1691
1692 saddr = kmap_atomic(sg_page(t));
1693
1694 err = skcipher_get(saddr, &t->length, t->offset,
1695 dst, nbytes, &nbytes);
1696 if (err < 0) {
1697 kunmap_atomic(saddr);
1698 break;
1699 }
1700
1701 idx += err;
1702 kunmap_atomic(saddr);
1703 }
1704
1705 hifn_cipher_walk_exit(&rctx->walk);
1706 }
1707
1708 skcipher_request_complete(req, error);
1709 }
1710
hifn_clear_rings(struct hifn_device * dev,int error)1711 static void hifn_clear_rings(struct hifn_device *dev, int error)
1712 {
1713 struct hifn_dma *dma = dev->desc_virt;
1714 int i, u;
1715
1716 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1717 "k: %d.%d.%d.%d.\n",
1718 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1719 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1720 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1721
1722 i = dma->resk; u = dma->resu;
1723 while (u != 0) {
1724 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1725 break;
1726
1727 if (dev->sa[i]) {
1728 dev->success++;
1729 dev->reset = 0;
1730 hifn_process_ready(dev->sa[i], error);
1731 hifn_complete_sa(dev, i);
1732 }
1733
1734 if (++i == HIFN_D_RES_RSIZE)
1735 i = 0;
1736 u--;
1737 }
1738 dma->resk = i; dma->resu = u;
1739
1740 i = dma->srck; u = dma->srcu;
1741 while (u != 0) {
1742 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1743 break;
1744 if (++i == HIFN_D_SRC_RSIZE)
1745 i = 0;
1746 u--;
1747 }
1748 dma->srck = i; dma->srcu = u;
1749
1750 i = dma->cmdk; u = dma->cmdu;
1751 while (u != 0) {
1752 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1753 break;
1754 if (++i == HIFN_D_CMD_RSIZE)
1755 i = 0;
1756 u--;
1757 }
1758 dma->cmdk = i; dma->cmdu = u;
1759
1760 i = dma->dstk; u = dma->dstu;
1761 while (u != 0) {
1762 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1763 break;
1764 if (++i == HIFN_D_DST_RSIZE)
1765 i = 0;
1766 u--;
1767 }
1768 dma->dstk = i; dma->dstu = u;
1769
1770 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1771 "k: %d.%d.%d.%d.\n",
1772 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1773 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1774 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1775 }
1776
hifn_work(struct work_struct * work)1777 static void hifn_work(struct work_struct *work)
1778 {
1779 struct delayed_work *dw = to_delayed_work(work);
1780 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1781 unsigned long flags;
1782 int reset = 0;
1783 u32 r = 0;
1784
1785 spin_lock_irqsave(&dev->lock, flags);
1786 if (dev->active == 0) {
1787 struct hifn_dma *dma = dev->desc_virt;
1788
1789 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1790 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1791 r |= HIFN_DMACSR_C_CTRL_DIS;
1792 }
1793 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1794 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1795 r |= HIFN_DMACSR_S_CTRL_DIS;
1796 }
1797 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1798 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1799 r |= HIFN_DMACSR_D_CTRL_DIS;
1800 }
1801 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1802 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1803 r |= HIFN_DMACSR_R_CTRL_DIS;
1804 }
1805 if (r)
1806 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1807 } else
1808 dev->active--;
1809
1810 if ((dev->prev_success == dev->success) && dev->started)
1811 reset = 1;
1812 dev->prev_success = dev->success;
1813 spin_unlock_irqrestore(&dev->lock, flags);
1814
1815 if (reset) {
1816 if (++dev->reset >= 5) {
1817 int i;
1818 struct hifn_dma *dma = dev->desc_virt;
1819
1820 dev_info(&dev->pdev->dev,
1821 "r: %08x, active: %d, started: %d, "
1822 "success: %lu: qlen: %u/%u, reset: %d.\n",
1823 r, dev->active, dev->started,
1824 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1825 reset);
1826
1827 dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1828 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1829 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1830 if (dev->sa[i]) {
1831 hifn_process_ready(dev->sa[i], -ENODEV);
1832 hifn_complete_sa(dev, i);
1833 }
1834 }
1835 pr_info("\n");
1836
1837 hifn_reset_dma(dev, 1);
1838 hifn_stop_device(dev);
1839 hifn_start_device(dev);
1840 dev->reset = 0;
1841 }
1842
1843 tasklet_schedule(&dev->tasklet);
1844 }
1845
1846 schedule_delayed_work(&dev->work, HZ);
1847 }
1848
hifn_interrupt(int irq,void * data)1849 static irqreturn_t hifn_interrupt(int irq, void *data)
1850 {
1851 struct hifn_device *dev = data;
1852 struct hifn_dma *dma = dev->desc_virt;
1853 u32 dmacsr, restart;
1854
1855 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1856
1857 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1858 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1859 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1860 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1861 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1862
1863 if ((dmacsr & dev->dmareg) == 0)
1864 return IRQ_NONE;
1865
1866 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1867
1868 if (dmacsr & HIFN_DMACSR_ENGINE)
1869 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1870 if (dmacsr & HIFN_DMACSR_PUBDONE)
1871 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1872 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1873
1874 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1875 if (restart) {
1876 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1877
1878 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1879 !!(dmacsr & HIFN_DMACSR_R_OVER),
1880 !!(dmacsr & HIFN_DMACSR_D_OVER),
1881 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1882 if (!!(puisr & HIFN_PUISR_DSTOVER))
1883 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1884 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1885 HIFN_DMACSR_D_OVER));
1886 }
1887
1888 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1889 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1890 if (restart) {
1891 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1892 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1893 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1894 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1895 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1896 hifn_reset_dma(dev, 1);
1897 hifn_init_dma(dev);
1898 hifn_init_registers(dev);
1899 }
1900
1901 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1902 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1903 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1904 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1905 }
1906
1907 tasklet_schedule(&dev->tasklet);
1908
1909 return IRQ_HANDLED;
1910 }
1911
hifn_flush(struct hifn_device * dev)1912 static void hifn_flush(struct hifn_device *dev)
1913 {
1914 unsigned long flags;
1915 struct crypto_async_request *async_req;
1916 struct skcipher_request *req;
1917 struct hifn_dma *dma = dev->desc_virt;
1918 int i;
1919
1920 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1921 struct hifn_desc *d = &dma->resr[i];
1922
1923 if (dev->sa[i]) {
1924 hifn_process_ready(dev->sa[i],
1925 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1926 hifn_complete_sa(dev, i);
1927 }
1928 }
1929
1930 spin_lock_irqsave(&dev->lock, flags);
1931 while ((async_req = crypto_dequeue_request(&dev->queue))) {
1932 req = skcipher_request_cast(async_req);
1933 spin_unlock_irqrestore(&dev->lock, flags);
1934
1935 hifn_process_ready(req, -ENODEV);
1936
1937 spin_lock_irqsave(&dev->lock, flags);
1938 }
1939 spin_unlock_irqrestore(&dev->lock, flags);
1940 }
1941
hifn_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int len)1942 static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1943 unsigned int len)
1944 {
1945 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1946 struct hifn_device *dev = ctx->dev;
1947 int err;
1948
1949 err = verify_skcipher_des_key(cipher, key);
1950 if (err)
1951 return err;
1952
1953 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1954
1955 memcpy(ctx->key, key, len);
1956 ctx->keysize = len;
1957
1958 return 0;
1959 }
1960
hifn_des3_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int len)1961 static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1962 unsigned int len)
1963 {
1964 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1965 struct hifn_device *dev = ctx->dev;
1966 int err;
1967
1968 err = verify_skcipher_des3_key(cipher, key);
1969 if (err)
1970 return err;
1971
1972 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1973
1974 memcpy(ctx->key, key, len);
1975 ctx->keysize = len;
1976
1977 return 0;
1978 }
1979
hifn_handle_req(struct skcipher_request * req)1980 static int hifn_handle_req(struct skcipher_request *req)
1981 {
1982 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1983 struct hifn_device *dev = ctx->dev;
1984 int err = -EAGAIN;
1985
1986 if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1987 err = hifn_setup_session(req);
1988
1989 if (err == -EAGAIN) {
1990 unsigned long flags;
1991
1992 spin_lock_irqsave(&dev->lock, flags);
1993 err = crypto_enqueue_request(&dev->queue, &req->base);
1994 spin_unlock_irqrestore(&dev->lock, flags);
1995 }
1996
1997 return err;
1998 }
1999
hifn_setup_crypto_req(struct skcipher_request * req,u8 op,u8 type,u8 mode)2000 static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
2001 u8 type, u8 mode)
2002 {
2003 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2004 struct hifn_request_context *rctx = skcipher_request_ctx(req);
2005 unsigned ivsize;
2006
2007 ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
2008
2009 if (req->iv && mode != ACRYPTO_MODE_ECB) {
2010 if (type == ACRYPTO_TYPE_AES_128)
2011 ivsize = HIFN_AES_IV_LENGTH;
2012 else if (type == ACRYPTO_TYPE_DES)
2013 ivsize = HIFN_DES_KEY_LENGTH;
2014 else if (type == ACRYPTO_TYPE_3DES)
2015 ivsize = HIFN_3DES_KEY_LENGTH;
2016 }
2017
2018 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2019 if (ctx->keysize == 24)
2020 type = ACRYPTO_TYPE_AES_192;
2021 else if (ctx->keysize == 32)
2022 type = ACRYPTO_TYPE_AES_256;
2023 }
2024
2025 rctx->op = op;
2026 rctx->mode = mode;
2027 rctx->type = type;
2028 rctx->iv = req->iv;
2029 rctx->ivsize = ivsize;
2030
2031 /*
2032 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2034 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2035 */
2036
2037 return hifn_handle_req(req);
2038 }
2039
hifn_process_queue(struct hifn_device * dev)2040 static int hifn_process_queue(struct hifn_device *dev)
2041 {
2042 struct crypto_async_request *async_req, *backlog;
2043 struct skcipher_request *req;
2044 unsigned long flags;
2045 int err = 0;
2046
2047 while (dev->started < HIFN_QUEUE_LENGTH) {
2048 spin_lock_irqsave(&dev->lock, flags);
2049 backlog = crypto_get_backlog(&dev->queue);
2050 async_req = crypto_dequeue_request(&dev->queue);
2051 spin_unlock_irqrestore(&dev->lock, flags);
2052
2053 if (!async_req)
2054 break;
2055
2056 if (backlog)
2057 crypto_request_complete(backlog, -EINPROGRESS);
2058
2059 req = skcipher_request_cast(async_req);
2060
2061 err = hifn_handle_req(req);
2062 if (err)
2063 break;
2064 }
2065
2066 return err;
2067 }
2068
hifn_setup_crypto(struct skcipher_request * req,u8 op,u8 type,u8 mode)2069 static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2070 u8 type, u8 mode)
2071 {
2072 int err;
2073 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2074 struct hifn_device *dev = ctx->dev;
2075
2076 err = hifn_setup_crypto_req(req, op, type, mode);
2077 if (err)
2078 return err;
2079
2080 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2081 hifn_process_queue(dev);
2082
2083 return -EINPROGRESS;
2084 }
2085
2086 /*
2087 * AES ecryption functions.
2088 */
hifn_encrypt_aes_ecb(struct skcipher_request * req)2089 static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2090 {
2091 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2092 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2093 }
hifn_encrypt_aes_cbc(struct skcipher_request * req)2094 static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2095 {
2096 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2097 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2098 }
hifn_encrypt_aes_cfb(struct skcipher_request * req)2099 static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req)
2100 {
2101 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2102 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2103 }
hifn_encrypt_aes_ofb(struct skcipher_request * req)2104 static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req)
2105 {
2106 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2107 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2108 }
2109
2110 /*
2111 * AES decryption functions.
2112 */
hifn_decrypt_aes_ecb(struct skcipher_request * req)2113 static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2114 {
2115 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2116 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2117 }
hifn_decrypt_aes_cbc(struct skcipher_request * req)2118 static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2119 {
2120 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2121 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2122 }
hifn_decrypt_aes_cfb(struct skcipher_request * req)2123 static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req)
2124 {
2125 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2126 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2127 }
hifn_decrypt_aes_ofb(struct skcipher_request * req)2128 static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req)
2129 {
2130 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2131 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2132 }
2133
2134 /*
2135 * DES ecryption functions.
2136 */
hifn_encrypt_des_ecb(struct skcipher_request * req)2137 static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2138 {
2139 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2140 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2141 }
hifn_encrypt_des_cbc(struct skcipher_request * req)2142 static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2143 {
2144 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2145 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2146 }
hifn_encrypt_des_cfb(struct skcipher_request * req)2147 static inline int hifn_encrypt_des_cfb(struct skcipher_request *req)
2148 {
2149 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2150 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2151 }
hifn_encrypt_des_ofb(struct skcipher_request * req)2152 static inline int hifn_encrypt_des_ofb(struct skcipher_request *req)
2153 {
2154 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2155 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2156 }
2157
2158 /*
2159 * DES decryption functions.
2160 */
hifn_decrypt_des_ecb(struct skcipher_request * req)2161 static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2162 {
2163 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2164 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2165 }
hifn_decrypt_des_cbc(struct skcipher_request * req)2166 static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2167 {
2168 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2169 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2170 }
hifn_decrypt_des_cfb(struct skcipher_request * req)2171 static inline int hifn_decrypt_des_cfb(struct skcipher_request *req)
2172 {
2173 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2174 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2175 }
hifn_decrypt_des_ofb(struct skcipher_request * req)2176 static inline int hifn_decrypt_des_ofb(struct skcipher_request *req)
2177 {
2178 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2179 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2180 }
2181
2182 /*
2183 * 3DES ecryption functions.
2184 */
hifn_encrypt_3des_ecb(struct skcipher_request * req)2185 static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2186 {
2187 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2188 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2189 }
hifn_encrypt_3des_cbc(struct skcipher_request * req)2190 static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2191 {
2192 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2193 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2194 }
hifn_encrypt_3des_cfb(struct skcipher_request * req)2195 static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req)
2196 {
2197 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2198 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2199 }
hifn_encrypt_3des_ofb(struct skcipher_request * req)2200 static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req)
2201 {
2202 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2203 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2204 }
2205
2206 /* 3DES decryption functions. */
hifn_decrypt_3des_ecb(struct skcipher_request * req)2207 static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2208 {
2209 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2210 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2211 }
hifn_decrypt_3des_cbc(struct skcipher_request * req)2212 static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2213 {
2214 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2215 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2216 }
hifn_decrypt_3des_cfb(struct skcipher_request * req)2217 static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req)
2218 {
2219 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2220 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2221 }
hifn_decrypt_3des_ofb(struct skcipher_request * req)2222 static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req)
2223 {
2224 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2225 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2226 }
2227
2228 struct hifn_alg_template {
2229 char name[CRYPTO_MAX_ALG_NAME];
2230 char drv_name[CRYPTO_MAX_ALG_NAME];
2231 unsigned int bsize;
2232 struct skcipher_alg skcipher;
2233 };
2234
2235 static const struct hifn_alg_template hifn_alg_templates[] = {
2236 /*
2237 * 3DES ECB, CBC, CFB and OFB modes.
2238 */
2239 {
2240 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2241 .skcipher = {
2242 .min_keysize = HIFN_3DES_KEY_LENGTH,
2243 .max_keysize = HIFN_3DES_KEY_LENGTH,
2244 .setkey = hifn_des3_setkey,
2245 .encrypt = hifn_encrypt_3des_cfb,
2246 .decrypt = hifn_decrypt_3des_cfb,
2247 },
2248 },
2249 {
2250 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2251 .skcipher = {
2252 .min_keysize = HIFN_3DES_KEY_LENGTH,
2253 .max_keysize = HIFN_3DES_KEY_LENGTH,
2254 .setkey = hifn_des3_setkey,
2255 .encrypt = hifn_encrypt_3des_ofb,
2256 .decrypt = hifn_decrypt_3des_ofb,
2257 },
2258 },
2259 {
2260 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2261 .skcipher = {
2262 .ivsize = HIFN_IV_LENGTH,
2263 .min_keysize = HIFN_3DES_KEY_LENGTH,
2264 .max_keysize = HIFN_3DES_KEY_LENGTH,
2265 .setkey = hifn_des3_setkey,
2266 .encrypt = hifn_encrypt_3des_cbc,
2267 .decrypt = hifn_decrypt_3des_cbc,
2268 },
2269 },
2270 {
2271 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2272 .skcipher = {
2273 .min_keysize = HIFN_3DES_KEY_LENGTH,
2274 .max_keysize = HIFN_3DES_KEY_LENGTH,
2275 .setkey = hifn_des3_setkey,
2276 .encrypt = hifn_encrypt_3des_ecb,
2277 .decrypt = hifn_decrypt_3des_ecb,
2278 },
2279 },
2280
2281 /*
2282 * DES ECB, CBC, CFB and OFB modes.
2283 */
2284 {
2285 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2286 .skcipher = {
2287 .min_keysize = HIFN_DES_KEY_LENGTH,
2288 .max_keysize = HIFN_DES_KEY_LENGTH,
2289 .setkey = hifn_setkey,
2290 .encrypt = hifn_encrypt_des_cfb,
2291 .decrypt = hifn_decrypt_des_cfb,
2292 },
2293 },
2294 {
2295 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2296 .skcipher = {
2297 .min_keysize = HIFN_DES_KEY_LENGTH,
2298 .max_keysize = HIFN_DES_KEY_LENGTH,
2299 .setkey = hifn_setkey,
2300 .encrypt = hifn_encrypt_des_ofb,
2301 .decrypt = hifn_decrypt_des_ofb,
2302 },
2303 },
2304 {
2305 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2306 .skcipher = {
2307 .ivsize = HIFN_IV_LENGTH,
2308 .min_keysize = HIFN_DES_KEY_LENGTH,
2309 .max_keysize = HIFN_DES_KEY_LENGTH,
2310 .setkey = hifn_setkey,
2311 .encrypt = hifn_encrypt_des_cbc,
2312 .decrypt = hifn_decrypt_des_cbc,
2313 },
2314 },
2315 {
2316 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2317 .skcipher = {
2318 .min_keysize = HIFN_DES_KEY_LENGTH,
2319 .max_keysize = HIFN_DES_KEY_LENGTH,
2320 .setkey = hifn_setkey,
2321 .encrypt = hifn_encrypt_des_ecb,
2322 .decrypt = hifn_decrypt_des_ecb,
2323 },
2324 },
2325
2326 /*
2327 * AES ECB, CBC, CFB and OFB modes.
2328 */
2329 {
2330 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2331 .skcipher = {
2332 .min_keysize = AES_MIN_KEY_SIZE,
2333 .max_keysize = AES_MAX_KEY_SIZE,
2334 .setkey = hifn_setkey,
2335 .encrypt = hifn_encrypt_aes_ecb,
2336 .decrypt = hifn_decrypt_aes_ecb,
2337 },
2338 },
2339 {
2340 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2341 .skcipher = {
2342 .ivsize = HIFN_AES_IV_LENGTH,
2343 .min_keysize = AES_MIN_KEY_SIZE,
2344 .max_keysize = AES_MAX_KEY_SIZE,
2345 .setkey = hifn_setkey,
2346 .encrypt = hifn_encrypt_aes_cbc,
2347 .decrypt = hifn_decrypt_aes_cbc,
2348 },
2349 },
2350 {
2351 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2352 .skcipher = {
2353 .min_keysize = AES_MIN_KEY_SIZE,
2354 .max_keysize = AES_MAX_KEY_SIZE,
2355 .setkey = hifn_setkey,
2356 .encrypt = hifn_encrypt_aes_cfb,
2357 .decrypt = hifn_decrypt_aes_cfb,
2358 },
2359 },
2360 {
2361 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2362 .skcipher = {
2363 .min_keysize = AES_MIN_KEY_SIZE,
2364 .max_keysize = AES_MAX_KEY_SIZE,
2365 .setkey = hifn_setkey,
2366 .encrypt = hifn_encrypt_aes_ofb,
2367 .decrypt = hifn_decrypt_aes_ofb,
2368 },
2369 },
2370 };
2371
hifn_init_tfm(struct crypto_skcipher * tfm)2372 static int hifn_init_tfm(struct crypto_skcipher *tfm)
2373 {
2374 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2375 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2376 struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2377
2378 ctx->dev = ha->dev;
2379 crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2380
2381 return 0;
2382 }
2383
hifn_alg_alloc(struct hifn_device * dev,const struct hifn_alg_template * t)2384 static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2385 {
2386 struct hifn_crypto_alg *alg;
2387 int err;
2388
2389 alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2390 if (!alg)
2391 return -ENOMEM;
2392
2393 alg->alg = t->skcipher;
2394 alg->alg.init = hifn_init_tfm;
2395
2396 snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2397 snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2398 t->drv_name, dev->name);
2399
2400 alg->alg.base.cra_priority = 300;
2401 alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2402 alg->alg.base.cra_blocksize = t->bsize;
2403 alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2404 alg->alg.base.cra_alignmask = 0;
2405 alg->alg.base.cra_module = THIS_MODULE;
2406
2407 alg->dev = dev;
2408
2409 list_add_tail(&alg->entry, &dev->alg_list);
2410
2411 err = crypto_register_skcipher(&alg->alg);
2412 if (err) {
2413 list_del(&alg->entry);
2414 kfree(alg);
2415 }
2416
2417 return err;
2418 }
2419
hifn_unregister_alg(struct hifn_device * dev)2420 static void hifn_unregister_alg(struct hifn_device *dev)
2421 {
2422 struct hifn_crypto_alg *a, *n;
2423
2424 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2425 list_del(&a->entry);
2426 crypto_unregister_skcipher(&a->alg);
2427 kfree(a);
2428 }
2429 }
2430
hifn_register_alg(struct hifn_device * dev)2431 static int hifn_register_alg(struct hifn_device *dev)
2432 {
2433 int i, err;
2434
2435 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2436 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2437 if (err)
2438 goto err_out_exit;
2439 }
2440
2441 return 0;
2442
2443 err_out_exit:
2444 hifn_unregister_alg(dev);
2445 return err;
2446 }
2447
hifn_tasklet_callback(unsigned long data)2448 static void hifn_tasklet_callback(unsigned long data)
2449 {
2450 struct hifn_device *dev = (struct hifn_device *)data;
2451
2452 /*
2453 * This is ok to call this without lock being held,
2454 * althogh it modifies some parameters used in parallel,
2455 * (like dev->success), but they are used in process
2456 * context or update is atomic (like setting dev->sa[i] to NULL).
2457 */
2458 hifn_clear_rings(dev, 0);
2459
2460 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2461 hifn_process_queue(dev);
2462 }
2463
hifn_probe(struct pci_dev * pdev,const struct pci_device_id * id)2464 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2465 {
2466 int err, i;
2467 struct hifn_device *dev;
2468 char name[8];
2469
2470 err = pci_enable_device(pdev);
2471 if (err)
2472 return err;
2473 pci_set_master(pdev);
2474
2475 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2476 if (err)
2477 goto err_out_disable_pci_device;
2478
2479 snprintf(name, sizeof(name), "hifn%d",
2480 atomic_inc_return(&hifn_dev_number) - 1);
2481
2482 err = pci_request_regions(pdev, name);
2483 if (err)
2484 goto err_out_disable_pci_device;
2485
2486 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2487 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2488 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2489 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2490 err = -ENODEV;
2491 goto err_out_free_regions;
2492 }
2493
2494 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2495 GFP_KERNEL);
2496 if (!dev) {
2497 err = -ENOMEM;
2498 goto err_out_free_regions;
2499 }
2500
2501 INIT_LIST_HEAD(&dev->alg_list);
2502
2503 snprintf(dev->name, sizeof(dev->name), "%s", name);
2504 spin_lock_init(&dev->lock);
2505
2506 for (i = 0; i < 3; ++i) {
2507 unsigned long addr, size;
2508
2509 addr = pci_resource_start(pdev, i);
2510 size = pci_resource_len(pdev, i);
2511
2512 dev->bar[i] = ioremap(addr, size);
2513 if (!dev->bar[i]) {
2514 err = -ENOMEM;
2515 goto err_out_unmap_bars;
2516 }
2517 }
2518
2519 dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2520 sizeof(struct hifn_dma),
2521 &dev->desc_dma, GFP_KERNEL);
2522 if (!dev->desc_virt) {
2523 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2524 err = -ENOMEM;
2525 goto err_out_unmap_bars;
2526 }
2527
2528 dev->pdev = pdev;
2529 dev->irq = pdev->irq;
2530
2531 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2532 dev->sa[i] = NULL;
2533
2534 pci_set_drvdata(pdev, dev);
2535
2536 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2537
2538 crypto_init_queue(&dev->queue, 1);
2539
2540 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2541 if (err) {
2542 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2543 dev->irq, err);
2544 dev->irq = 0;
2545 goto err_out_free_desc;
2546 }
2547
2548 err = hifn_start_device(dev);
2549 if (err)
2550 goto err_out_free_irq;
2551
2552 err = hifn_register_rng(dev);
2553 if (err)
2554 goto err_out_stop_device;
2555
2556 err = hifn_register_alg(dev);
2557 if (err)
2558 goto err_out_unregister_rng;
2559
2560 INIT_DELAYED_WORK(&dev->work, hifn_work);
2561 schedule_delayed_work(&dev->work, HZ);
2562
2563 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2564 "successfully registered as %s.\n",
2565 pci_name(pdev), dev->name);
2566
2567 return 0;
2568
2569 err_out_unregister_rng:
2570 hifn_unregister_rng(dev);
2571 err_out_stop_device:
2572 hifn_reset_dma(dev, 1);
2573 hifn_stop_device(dev);
2574 err_out_free_irq:
2575 free_irq(dev->irq, dev);
2576 tasklet_kill(&dev->tasklet);
2577 err_out_free_desc:
2578 dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2579 dev->desc_dma);
2580
2581 err_out_unmap_bars:
2582 for (i = 0; i < 3; ++i)
2583 if (dev->bar[i])
2584 iounmap(dev->bar[i]);
2585 kfree(dev);
2586
2587 err_out_free_regions:
2588 pci_release_regions(pdev);
2589
2590 err_out_disable_pci_device:
2591 pci_disable_device(pdev);
2592
2593 return err;
2594 }
2595
hifn_remove(struct pci_dev * pdev)2596 static void hifn_remove(struct pci_dev *pdev)
2597 {
2598 int i;
2599 struct hifn_device *dev;
2600
2601 dev = pci_get_drvdata(pdev);
2602
2603 if (dev) {
2604 cancel_delayed_work_sync(&dev->work);
2605
2606 hifn_unregister_rng(dev);
2607 hifn_unregister_alg(dev);
2608 hifn_reset_dma(dev, 1);
2609 hifn_stop_device(dev);
2610
2611 free_irq(dev->irq, dev);
2612 tasklet_kill(&dev->tasklet);
2613
2614 hifn_flush(dev);
2615
2616 dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2617 dev->desc_virt, dev->desc_dma);
2618 for (i = 0; i < 3; ++i)
2619 if (dev->bar[i])
2620 iounmap(dev->bar[i]);
2621
2622 kfree(dev);
2623 }
2624
2625 pci_release_regions(pdev);
2626 pci_disable_device(pdev);
2627 }
2628
2629 static struct pci_device_id hifn_pci_tbl[] = {
2630 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2631 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2632 { 0 }
2633 };
2634 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2635
2636 static struct pci_driver hifn_pci_driver = {
2637 .name = "hifn795x",
2638 .id_table = hifn_pci_tbl,
2639 .probe = hifn_probe,
2640 .remove = hifn_remove,
2641 };
2642
hifn_init(void)2643 static int __init hifn_init(void)
2644 {
2645 unsigned int freq;
2646 int err;
2647
2648 if (strncmp(hifn_pll_ref, "ext", 3) &&
2649 strncmp(hifn_pll_ref, "pci", 3)) {
2650 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2651 return -EINVAL;
2652 }
2653
2654 /*
2655 * For the 7955/7956 the reference clock frequency must be in the
2656 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2657 * but this chip is currently not supported.
2658 */
2659 if (hifn_pll_ref[3] != '\0') {
2660 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2661 if (freq < 20 || freq > 100) {
2662 pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2663 "be in the range of 20-100");
2664 return -EINVAL;
2665 }
2666 }
2667
2668 err = pci_register_driver(&hifn_pci_driver);
2669 if (err < 0) {
2670 pr_err("Failed to register PCI driver for %s device.\n",
2671 hifn_pci_driver.name);
2672 return -ENODEV;
2673 }
2674
2675 pr_info("Driver for HIFN 795x crypto accelerator chip "
2676 "has been successfully registered.\n");
2677
2678 return 0;
2679 }
2680
hifn_fini(void)2681 static void __exit hifn_fini(void)
2682 {
2683 pci_unregister_driver(&hifn_pci_driver);
2684
2685 pr_info("Driver for HIFN 795x crypto accelerator chip "
2686 "has been successfully unregistered.\n");
2687 }
2688
2689 module_init(hifn_init);
2690 module_exit(hifn_fini);
2691
2692 MODULE_LICENSE("GPL");
2693 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2694 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2695