xref: /openbmc/linux/drivers/crypto/ccree/cc_aead.c (revision da2ef666)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
3 
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/aead.h>
8 #include <crypto/authenc.h>
9 #include <crypto/des.h>
10 #include <linux/rtnetlink.h>
11 #include "cc_driver.h"
12 #include "cc_buffer_mgr.h"
13 #include "cc_aead.h"
14 #include "cc_request_mgr.h"
15 #include "cc_hash.h"
16 #include "cc_sram_mgr.h"
17 
18 #define template_aead	template_u.aead
19 
20 #define MAX_AEAD_SETKEY_SEQ 12
21 #define MAX_AEAD_PROCESS_SEQ 23
22 
23 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
24 #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
25 
26 #define AES_CCM_RFC4309_NONCE_SIZE 3
27 #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
28 
29 /* Value of each ICV_CMP byte (of 8) in case of success */
30 #define ICV_VERIF_OK 0x01
31 
32 struct cc_aead_handle {
33 	cc_sram_addr_t sram_workspace_addr;
34 	struct list_head aead_list;
35 };
36 
37 struct cc_hmac_s {
38 	u8 *padded_authkey;
39 	u8 *ipad_opad; /* IPAD, OPAD*/
40 	dma_addr_t padded_authkey_dma_addr;
41 	dma_addr_t ipad_opad_dma_addr;
42 };
43 
44 struct cc_xcbc_s {
45 	u8 *xcbc_keys; /* K1,K2,K3 */
46 	dma_addr_t xcbc_keys_dma_addr;
47 };
48 
49 struct cc_aead_ctx {
50 	struct cc_drvdata *drvdata;
51 	u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
52 	u8 *enckey;
53 	dma_addr_t enckey_dma_addr;
54 	union {
55 		struct cc_hmac_s hmac;
56 		struct cc_xcbc_s xcbc;
57 	} auth_state;
58 	unsigned int enc_keylen;
59 	unsigned int auth_keylen;
60 	unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
61 	enum drv_cipher_mode cipher_mode;
62 	enum cc_flow_mode flow_mode;
63 	enum drv_hash_mode auth_mode;
64 };
65 
66 static inline bool valid_assoclen(struct aead_request *req)
67 {
68 	return ((req->assoclen == 16) || (req->assoclen == 20));
69 }
70 
71 static void cc_aead_exit(struct crypto_aead *tfm)
72 {
73 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
74 	struct device *dev = drvdata_to_dev(ctx->drvdata);
75 
76 	dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
77 		crypto_tfm_alg_name(&tfm->base));
78 
79 	/* Unmap enckey buffer */
80 	if (ctx->enckey) {
81 		dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
82 				  ctx->enckey_dma_addr);
83 		dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
84 			&ctx->enckey_dma_addr);
85 		ctx->enckey_dma_addr = 0;
86 		ctx->enckey = NULL;
87 	}
88 
89 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
90 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
91 
92 		if (xcbc->xcbc_keys) {
93 			dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
94 					  xcbc->xcbc_keys,
95 					  xcbc->xcbc_keys_dma_addr);
96 		}
97 		dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
98 			&xcbc->xcbc_keys_dma_addr);
99 		xcbc->xcbc_keys_dma_addr = 0;
100 		xcbc->xcbc_keys = NULL;
101 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
102 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
103 
104 		if (hmac->ipad_opad) {
105 			dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
106 					  hmac->ipad_opad,
107 					  hmac->ipad_opad_dma_addr);
108 			dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
109 				&hmac->ipad_opad_dma_addr);
110 			hmac->ipad_opad_dma_addr = 0;
111 			hmac->ipad_opad = NULL;
112 		}
113 		if (hmac->padded_authkey) {
114 			dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
115 					  hmac->padded_authkey,
116 					  hmac->padded_authkey_dma_addr);
117 			dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
118 				&hmac->padded_authkey_dma_addr);
119 			hmac->padded_authkey_dma_addr = 0;
120 			hmac->padded_authkey = NULL;
121 		}
122 	}
123 }
124 
125 static int cc_aead_init(struct crypto_aead *tfm)
126 {
127 	struct aead_alg *alg = crypto_aead_alg(tfm);
128 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
129 	struct cc_crypto_alg *cc_alg =
130 			container_of(alg, struct cc_crypto_alg, aead_alg);
131 	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
132 
133 	dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
134 		crypto_tfm_alg_name(&tfm->base));
135 
136 	/* Initialize modes in instance */
137 	ctx->cipher_mode = cc_alg->cipher_mode;
138 	ctx->flow_mode = cc_alg->flow_mode;
139 	ctx->auth_mode = cc_alg->auth_mode;
140 	ctx->drvdata = cc_alg->drvdata;
141 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
142 
143 	/* Allocate key buffer, cache line aligned */
144 	ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
145 					 &ctx->enckey_dma_addr, GFP_KERNEL);
146 	if (!ctx->enckey) {
147 		dev_err(dev, "Failed allocating key buffer\n");
148 		goto init_failed;
149 	}
150 	dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
151 		ctx->enckey);
152 
153 	/* Set default authlen value */
154 
155 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
156 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
157 		const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
158 
159 		/* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
160 		/* (and temporary for user key - up to 256b) */
161 		xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
162 						     &xcbc->xcbc_keys_dma_addr,
163 						     GFP_KERNEL);
164 		if (!xcbc->xcbc_keys) {
165 			dev_err(dev, "Failed allocating buffer for XCBC keys\n");
166 			goto init_failed;
167 		}
168 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
169 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
170 		const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
171 		dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
172 
173 		/* Allocate dma-coherent buffer for IPAD + OPAD */
174 		hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
175 						     &hmac->ipad_opad_dma_addr,
176 						     GFP_KERNEL);
177 
178 		if (!hmac->ipad_opad) {
179 			dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
180 			goto init_failed;
181 		}
182 
183 		dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
184 			hmac->ipad_opad);
185 
186 		hmac->padded_authkey = dma_alloc_coherent(dev,
187 							  MAX_HMAC_BLOCK_SIZE,
188 							  pkey_dma,
189 							  GFP_KERNEL);
190 
191 		if (!hmac->padded_authkey) {
192 			dev_err(dev, "failed to allocate padded_authkey\n");
193 			goto init_failed;
194 		}
195 	} else {
196 		ctx->auth_state.hmac.ipad_opad = NULL;
197 		ctx->auth_state.hmac.padded_authkey = NULL;
198 	}
199 
200 	return 0;
201 
202 init_failed:
203 	cc_aead_exit(tfm);
204 	return -ENOMEM;
205 }
206 
207 static void cc_aead_complete(struct device *dev, void *cc_req, int err)
208 {
209 	struct aead_request *areq = (struct aead_request *)cc_req;
210 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
211 	struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
212 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
213 
214 	cc_unmap_aead_request(dev, areq);
215 
216 	/* Restore ordinary iv pointer */
217 	areq->iv = areq_ctx->backup_iv;
218 
219 	if (err)
220 		goto done;
221 
222 	if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
223 		if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
224 			   ctx->authsize) != 0) {
225 			dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
226 				ctx->authsize, ctx->cipher_mode);
227 			/* In case of payload authentication failure, MUST NOT
228 			 * revealed the decrypted message --> zero its memory.
229 			 */
230 			cc_zero_sgl(areq->dst, areq_ctx->cryptlen);
231 			err = -EBADMSG;
232 		}
233 	} else { /*ENCRYPT*/
234 		if (areq_ctx->is_icv_fragmented) {
235 			u32 skip = areq->cryptlen + areq_ctx->dst_offset;
236 
237 			cc_copy_sg_portion(dev, areq_ctx->mac_buf,
238 					   areq_ctx->dst_sgl, skip,
239 					   (skip + ctx->authsize),
240 					   CC_SG_FROM_BUF);
241 		}
242 
243 		/* If an IV was generated, copy it back to the user provided
244 		 * buffer.
245 		 */
246 		if (areq_ctx->backup_giv) {
247 			if (ctx->cipher_mode == DRV_CIPHER_CTR)
248 				memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv +
249 				       CTR_RFC3686_NONCE_SIZE,
250 				       CTR_RFC3686_IV_SIZE);
251 			else if (ctx->cipher_mode == DRV_CIPHER_CCM)
252 				memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv +
253 				       CCM_BLOCK_IV_OFFSET, CCM_BLOCK_IV_SIZE);
254 		}
255 	}
256 done:
257 	aead_request_complete(areq, err);
258 }
259 
260 static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
261 				struct cc_aead_ctx *ctx)
262 {
263 	/* Load the AES key */
264 	hw_desc_init(&desc[0]);
265 	/* We are using for the source/user key the same buffer
266 	 * as for the output keys, * because after this key loading it
267 	 * is not needed anymore
268 	 */
269 	set_din_type(&desc[0], DMA_DLLI,
270 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
271 		     NS_BIT);
272 	set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
273 	set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
274 	set_key_size_aes(&desc[0], ctx->auth_keylen);
275 	set_flow_mode(&desc[0], S_DIN_to_AES);
276 	set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
277 
278 	hw_desc_init(&desc[1]);
279 	set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
280 	set_flow_mode(&desc[1], DIN_AES_DOUT);
281 	set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
282 		      AES_KEYSIZE_128, NS_BIT, 0);
283 
284 	hw_desc_init(&desc[2]);
285 	set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
286 	set_flow_mode(&desc[2], DIN_AES_DOUT);
287 	set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
288 					 + AES_KEYSIZE_128),
289 			      AES_KEYSIZE_128, NS_BIT, 0);
290 
291 	hw_desc_init(&desc[3]);
292 	set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
293 	set_flow_mode(&desc[3], DIN_AES_DOUT);
294 	set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
295 					  + 2 * AES_KEYSIZE_128),
296 			      AES_KEYSIZE_128, NS_BIT, 0);
297 
298 	return 4;
299 }
300 
301 static int hmac_setkey(struct cc_hw_desc *desc, struct cc_aead_ctx *ctx)
302 {
303 	unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
304 	unsigned int digest_ofs = 0;
305 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
306 			DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
307 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
308 			CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
309 	struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
310 
311 	unsigned int idx = 0;
312 	int i;
313 
314 	/* calc derived HMAC key */
315 	for (i = 0; i < 2; i++) {
316 		/* Load hash initial state */
317 		hw_desc_init(&desc[idx]);
318 		set_cipher_mode(&desc[idx], hash_mode);
319 		set_din_sram(&desc[idx],
320 			     cc_larval_digest_addr(ctx->drvdata,
321 						   ctx->auth_mode),
322 			     digest_size);
323 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
324 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
325 		idx++;
326 
327 		/* Load the hash current length*/
328 		hw_desc_init(&desc[idx]);
329 		set_cipher_mode(&desc[idx], hash_mode);
330 		set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
331 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
332 		set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
333 		idx++;
334 
335 		/* Prepare ipad key */
336 		hw_desc_init(&desc[idx]);
337 		set_xor_val(&desc[idx], hmac_pad_const[i]);
338 		set_cipher_mode(&desc[idx], hash_mode);
339 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
340 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
341 		idx++;
342 
343 		/* Perform HASH update */
344 		hw_desc_init(&desc[idx]);
345 		set_din_type(&desc[idx], DMA_DLLI,
346 			     hmac->padded_authkey_dma_addr,
347 			     SHA256_BLOCK_SIZE, NS_BIT);
348 		set_cipher_mode(&desc[idx], hash_mode);
349 		set_xor_active(&desc[idx]);
350 		set_flow_mode(&desc[idx], DIN_HASH);
351 		idx++;
352 
353 		/* Get the digset */
354 		hw_desc_init(&desc[idx]);
355 		set_cipher_mode(&desc[idx], hash_mode);
356 		set_dout_dlli(&desc[idx],
357 			      (hmac->ipad_opad_dma_addr + digest_ofs),
358 			      digest_size, NS_BIT, 0);
359 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
360 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
361 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
362 		idx++;
363 
364 		digest_ofs += digest_size;
365 	}
366 
367 	return idx;
368 }
369 
370 static int validate_keys_sizes(struct cc_aead_ctx *ctx)
371 {
372 	struct device *dev = drvdata_to_dev(ctx->drvdata);
373 
374 	dev_dbg(dev, "enc_keylen=%u  authkeylen=%u\n",
375 		ctx->enc_keylen, ctx->auth_keylen);
376 
377 	switch (ctx->auth_mode) {
378 	case DRV_HASH_SHA1:
379 	case DRV_HASH_SHA256:
380 		break;
381 	case DRV_HASH_XCBC_MAC:
382 		if (ctx->auth_keylen != AES_KEYSIZE_128 &&
383 		    ctx->auth_keylen != AES_KEYSIZE_192 &&
384 		    ctx->auth_keylen != AES_KEYSIZE_256)
385 			return -ENOTSUPP;
386 		break;
387 	case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
388 		if (ctx->auth_keylen > 0)
389 			return -EINVAL;
390 		break;
391 	default:
392 		dev_err(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
393 		return -EINVAL;
394 	}
395 	/* Check cipher key size */
396 	if (ctx->flow_mode == S_DIN_to_DES) {
397 		if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
398 			dev_err(dev, "Invalid cipher(3DES) key size: %u\n",
399 				ctx->enc_keylen);
400 			return -EINVAL;
401 		}
402 	} else { /* Default assumed to be AES ciphers */
403 		if (ctx->enc_keylen != AES_KEYSIZE_128 &&
404 		    ctx->enc_keylen != AES_KEYSIZE_192 &&
405 		    ctx->enc_keylen != AES_KEYSIZE_256) {
406 			dev_err(dev, "Invalid cipher(AES) key size: %u\n",
407 				ctx->enc_keylen);
408 			return -EINVAL;
409 		}
410 	}
411 
412 	return 0; /* All tests of keys sizes passed */
413 }
414 
415 /* This function prepers the user key so it can pass to the hmac processing
416  * (copy to intenral buffer or hash in case of key longer than block
417  */
418 static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *key,
419 				 unsigned int keylen)
420 {
421 	dma_addr_t key_dma_addr = 0;
422 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
423 	struct device *dev = drvdata_to_dev(ctx->drvdata);
424 	u32 larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode);
425 	struct cc_crypto_req cc_req = {};
426 	unsigned int blocksize;
427 	unsigned int digestsize;
428 	unsigned int hashmode;
429 	unsigned int idx = 0;
430 	int rc = 0;
431 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
432 	dma_addr_t padded_authkey_dma_addr =
433 		ctx->auth_state.hmac.padded_authkey_dma_addr;
434 
435 	switch (ctx->auth_mode) { /* auth_key required and >0 */
436 	case DRV_HASH_SHA1:
437 		blocksize = SHA1_BLOCK_SIZE;
438 		digestsize = SHA1_DIGEST_SIZE;
439 		hashmode = DRV_HASH_HW_SHA1;
440 		break;
441 	case DRV_HASH_SHA256:
442 	default:
443 		blocksize = SHA256_BLOCK_SIZE;
444 		digestsize = SHA256_DIGEST_SIZE;
445 		hashmode = DRV_HASH_HW_SHA256;
446 	}
447 
448 	if (keylen != 0) {
449 		key_dma_addr = dma_map_single(dev, (void *)key, keylen,
450 					      DMA_TO_DEVICE);
451 		if (dma_mapping_error(dev, key_dma_addr)) {
452 			dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
453 				key, keylen);
454 			return -ENOMEM;
455 		}
456 		if (keylen > blocksize) {
457 			/* Load hash initial state */
458 			hw_desc_init(&desc[idx]);
459 			set_cipher_mode(&desc[idx], hashmode);
460 			set_din_sram(&desc[idx], larval_addr, digestsize);
461 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
462 			set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
463 			idx++;
464 
465 			/* Load the hash current length*/
466 			hw_desc_init(&desc[idx]);
467 			set_cipher_mode(&desc[idx], hashmode);
468 			set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
469 			set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
470 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
471 			set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
472 			idx++;
473 
474 			hw_desc_init(&desc[idx]);
475 			set_din_type(&desc[idx], DMA_DLLI,
476 				     key_dma_addr, keylen, NS_BIT);
477 			set_flow_mode(&desc[idx], DIN_HASH);
478 			idx++;
479 
480 			/* Get hashed key */
481 			hw_desc_init(&desc[idx]);
482 			set_cipher_mode(&desc[idx], hashmode);
483 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
484 				      digestsize, NS_BIT, 0);
485 			set_flow_mode(&desc[idx], S_HASH_to_DOUT);
486 			set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
487 			set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
488 			set_cipher_config0(&desc[idx],
489 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
490 			idx++;
491 
492 			hw_desc_init(&desc[idx]);
493 			set_din_const(&desc[idx], 0, (blocksize - digestsize));
494 			set_flow_mode(&desc[idx], BYPASS);
495 			set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
496 				      digestsize), (blocksize - digestsize),
497 				      NS_BIT, 0);
498 			idx++;
499 		} else {
500 			hw_desc_init(&desc[idx]);
501 			set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
502 				     keylen, NS_BIT);
503 			set_flow_mode(&desc[idx], BYPASS);
504 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
505 				      keylen, NS_BIT, 0);
506 			idx++;
507 
508 			if ((blocksize - keylen) != 0) {
509 				hw_desc_init(&desc[idx]);
510 				set_din_const(&desc[idx], 0,
511 					      (blocksize - keylen));
512 				set_flow_mode(&desc[idx], BYPASS);
513 				set_dout_dlli(&desc[idx],
514 					      (padded_authkey_dma_addr +
515 					       keylen),
516 					      (blocksize - keylen), NS_BIT, 0);
517 				idx++;
518 			}
519 		}
520 	} else {
521 		hw_desc_init(&desc[idx]);
522 		set_din_const(&desc[idx], 0, (blocksize - keylen));
523 		set_flow_mode(&desc[idx], BYPASS);
524 		set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
525 			      blocksize, NS_BIT, 0);
526 		idx++;
527 	}
528 
529 	rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
530 	if (rc)
531 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
532 
533 	if (key_dma_addr)
534 		dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
535 
536 	return rc;
537 }
538 
539 static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
540 			  unsigned int keylen)
541 {
542 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
543 	struct rtattr *rta = (struct rtattr *)key;
544 	struct cc_crypto_req cc_req = {};
545 	struct crypto_authenc_key_param *param;
546 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
547 	int rc = -EINVAL;
548 	unsigned int seq_len = 0;
549 	struct device *dev = drvdata_to_dev(ctx->drvdata);
550 
551 	dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
552 		ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
553 
554 	/* STAT_PHASE_0: Init and sanity checks */
555 
556 	if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
557 		if (!RTA_OK(rta, keylen))
558 			goto badkey;
559 		if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
560 			goto badkey;
561 		if (RTA_PAYLOAD(rta) < sizeof(*param))
562 			goto badkey;
563 		param = RTA_DATA(rta);
564 		ctx->enc_keylen = be32_to_cpu(param->enckeylen);
565 		key += RTA_ALIGN(rta->rta_len);
566 		keylen -= RTA_ALIGN(rta->rta_len);
567 		if (keylen < ctx->enc_keylen)
568 			goto badkey;
569 		ctx->auth_keylen = keylen - ctx->enc_keylen;
570 
571 		if (ctx->cipher_mode == DRV_CIPHER_CTR) {
572 			/* the nonce is stored in bytes at end of key */
573 			if (ctx->enc_keylen <
574 			    (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
575 				goto badkey;
576 			/* Copy nonce from last 4 bytes in CTR key to
577 			 *  first 4 bytes in CTR IV
578 			 */
579 			memcpy(ctx->ctr_nonce, key + ctx->auth_keylen +
580 			       ctx->enc_keylen - CTR_RFC3686_NONCE_SIZE,
581 			       CTR_RFC3686_NONCE_SIZE);
582 			/* Set CTR key size */
583 			ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
584 		}
585 	} else { /* non-authenc - has just one key */
586 		ctx->enc_keylen = keylen;
587 		ctx->auth_keylen = 0;
588 	}
589 
590 	rc = validate_keys_sizes(ctx);
591 	if (rc)
592 		goto badkey;
593 
594 	/* STAT_PHASE_1: Copy key to ctx */
595 
596 	/* Get key material */
597 	memcpy(ctx->enckey, key + ctx->auth_keylen, ctx->enc_keylen);
598 	if (ctx->enc_keylen == 24)
599 		memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
600 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
601 		memcpy(ctx->auth_state.xcbc.xcbc_keys, key, ctx->auth_keylen);
602 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
603 		rc = cc_get_plain_hmac_key(tfm, key, ctx->auth_keylen);
604 		if (rc)
605 			goto badkey;
606 	}
607 
608 	/* STAT_PHASE_2: Create sequence */
609 
610 	switch (ctx->auth_mode) {
611 	case DRV_HASH_SHA1:
612 	case DRV_HASH_SHA256:
613 		seq_len = hmac_setkey(desc, ctx);
614 		break;
615 	case DRV_HASH_XCBC_MAC:
616 		seq_len = xcbc_setkey(desc, ctx);
617 		break;
618 	case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
619 		break; /* No auth. key setup */
620 	default:
621 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
622 		rc = -ENOTSUPP;
623 		goto badkey;
624 	}
625 
626 	/* STAT_PHASE_3: Submit sequence to HW */
627 
628 	if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
629 		rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
630 		if (rc) {
631 			dev_err(dev, "send_request() failed (rc=%d)\n", rc);
632 			goto setkey_error;
633 		}
634 	}
635 
636 	/* Update STAT_PHASE_3 */
637 	return rc;
638 
639 badkey:
640 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
641 
642 setkey_error:
643 	return rc;
644 }
645 
646 static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
647 				 unsigned int keylen)
648 {
649 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
650 
651 	if (keylen < 3)
652 		return -EINVAL;
653 
654 	keylen -= 3;
655 	memcpy(ctx->ctr_nonce, key + keylen, 3);
656 
657 	return cc_aead_setkey(tfm, key, keylen);
658 }
659 
660 static int cc_aead_setauthsize(struct crypto_aead *authenc,
661 			       unsigned int authsize)
662 {
663 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
664 	struct device *dev = drvdata_to_dev(ctx->drvdata);
665 
666 	/* Unsupported auth. sizes */
667 	if (authsize == 0 ||
668 	    authsize > crypto_aead_maxauthsize(authenc)) {
669 		return -ENOTSUPP;
670 	}
671 
672 	ctx->authsize = authsize;
673 	dev_dbg(dev, "authlen=%d\n", ctx->authsize);
674 
675 	return 0;
676 }
677 
678 static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
679 				      unsigned int authsize)
680 {
681 	switch (authsize) {
682 	case 8:
683 	case 12:
684 	case 16:
685 		break;
686 	default:
687 		return -EINVAL;
688 	}
689 
690 	return cc_aead_setauthsize(authenc, authsize);
691 }
692 
693 static int cc_ccm_setauthsize(struct crypto_aead *authenc,
694 			      unsigned int authsize)
695 {
696 	switch (authsize) {
697 	case 4:
698 	case 6:
699 	case 8:
700 	case 10:
701 	case 12:
702 	case 14:
703 	case 16:
704 		break;
705 	default:
706 		return -EINVAL;
707 	}
708 
709 	return cc_aead_setauthsize(authenc, authsize);
710 }
711 
712 static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
713 			      struct cc_hw_desc desc[], unsigned int *seq_size)
714 {
715 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
716 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
717 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
718 	enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
719 	unsigned int idx = *seq_size;
720 	struct device *dev = drvdata_to_dev(ctx->drvdata);
721 
722 	switch (assoc_dma_type) {
723 	case CC_DMA_BUF_DLLI:
724 		dev_dbg(dev, "ASSOC buffer type DLLI\n");
725 		hw_desc_init(&desc[idx]);
726 		set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
727 			     areq->assoclen, NS_BIT);
728 		set_flow_mode(&desc[idx], flow_mode);
729 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
730 		    areq_ctx->cryptlen > 0)
731 			set_din_not_last_indication(&desc[idx]);
732 		break;
733 	case CC_DMA_BUF_MLLI:
734 		dev_dbg(dev, "ASSOC buffer type MLLI\n");
735 		hw_desc_init(&desc[idx]);
736 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
737 			     areq_ctx->assoc.mlli_nents, NS_BIT);
738 		set_flow_mode(&desc[idx], flow_mode);
739 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
740 		    areq_ctx->cryptlen > 0)
741 			set_din_not_last_indication(&desc[idx]);
742 		break;
743 	case CC_DMA_BUF_NULL:
744 	default:
745 		dev_err(dev, "Invalid ASSOC buffer type\n");
746 	}
747 
748 	*seq_size = (++idx);
749 }
750 
751 static void cc_proc_authen_desc(struct aead_request *areq,
752 				unsigned int flow_mode,
753 				struct cc_hw_desc desc[],
754 				unsigned int *seq_size, int direct)
755 {
756 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
757 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
758 	unsigned int idx = *seq_size;
759 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
760 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
761 	struct device *dev = drvdata_to_dev(ctx->drvdata);
762 
763 	switch (data_dma_type) {
764 	case CC_DMA_BUF_DLLI:
765 	{
766 		struct scatterlist *cipher =
767 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
768 			areq_ctx->dst_sgl : areq_ctx->src_sgl;
769 
770 		unsigned int offset =
771 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
772 			areq_ctx->dst_offset : areq_ctx->src_offset;
773 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
774 		hw_desc_init(&desc[idx]);
775 		set_din_type(&desc[idx], DMA_DLLI,
776 			     (sg_dma_address(cipher) + offset),
777 			     areq_ctx->cryptlen, NS_BIT);
778 		set_flow_mode(&desc[idx], flow_mode);
779 		break;
780 	}
781 	case CC_DMA_BUF_MLLI:
782 	{
783 		/* DOUBLE-PASS flow (as default)
784 		 * assoc. + iv + data -compact in one table
785 		 * if assoclen is ZERO only IV perform
786 		 */
787 		cc_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr;
788 		u32 mlli_nents = areq_ctx->assoc.mlli_nents;
789 
790 		if (areq_ctx->is_single_pass) {
791 			if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
792 				mlli_addr = areq_ctx->dst.sram_addr;
793 				mlli_nents = areq_ctx->dst.mlli_nents;
794 			} else {
795 				mlli_addr = areq_ctx->src.sram_addr;
796 				mlli_nents = areq_ctx->src.mlli_nents;
797 			}
798 		}
799 
800 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
801 		hw_desc_init(&desc[idx]);
802 		set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
803 			     NS_BIT);
804 		set_flow_mode(&desc[idx], flow_mode);
805 		break;
806 	}
807 	case CC_DMA_BUF_NULL:
808 	default:
809 		dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
810 	}
811 
812 	*seq_size = (++idx);
813 }
814 
815 static void cc_proc_cipher_desc(struct aead_request *areq,
816 				unsigned int flow_mode,
817 				struct cc_hw_desc desc[],
818 				unsigned int *seq_size)
819 {
820 	unsigned int idx = *seq_size;
821 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
822 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
823 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
824 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
825 	struct device *dev = drvdata_to_dev(ctx->drvdata);
826 
827 	if (areq_ctx->cryptlen == 0)
828 		return; /*null processing*/
829 
830 	switch (data_dma_type) {
831 	case CC_DMA_BUF_DLLI:
832 		dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
833 		hw_desc_init(&desc[idx]);
834 		set_din_type(&desc[idx], DMA_DLLI,
835 			     (sg_dma_address(areq_ctx->src_sgl) +
836 			      areq_ctx->src_offset), areq_ctx->cryptlen,
837 			      NS_BIT);
838 		set_dout_dlli(&desc[idx],
839 			      (sg_dma_address(areq_ctx->dst_sgl) +
840 			       areq_ctx->dst_offset),
841 			      areq_ctx->cryptlen, NS_BIT, 0);
842 		set_flow_mode(&desc[idx], flow_mode);
843 		break;
844 	case CC_DMA_BUF_MLLI:
845 		dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
846 		hw_desc_init(&desc[idx]);
847 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
848 			     areq_ctx->src.mlli_nents, NS_BIT);
849 		set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
850 			      areq_ctx->dst.mlli_nents, NS_BIT, 0);
851 		set_flow_mode(&desc[idx], flow_mode);
852 		break;
853 	case CC_DMA_BUF_NULL:
854 	default:
855 		dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
856 	}
857 
858 	*seq_size = (++idx);
859 }
860 
861 static void cc_proc_digest_desc(struct aead_request *req,
862 				struct cc_hw_desc desc[],
863 				unsigned int *seq_size)
864 {
865 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
866 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
867 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
868 	unsigned int idx = *seq_size;
869 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
870 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
871 	int direct = req_ctx->gen_ctx.op_type;
872 
873 	/* Get final ICV result */
874 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
875 		hw_desc_init(&desc[idx]);
876 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
877 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
878 		set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
879 			      NS_BIT, 1);
880 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
881 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
882 			set_aes_not_hash_mode(&desc[idx]);
883 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
884 		} else {
885 			set_cipher_config0(&desc[idx],
886 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
887 			set_cipher_mode(&desc[idx], hash_mode);
888 		}
889 	} else { /*Decrypt*/
890 		/* Get ICV out from hardware */
891 		hw_desc_init(&desc[idx]);
892 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
893 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
894 		set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
895 			      ctx->authsize, NS_BIT, 1);
896 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
897 		set_cipher_config0(&desc[idx],
898 				   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
899 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
900 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
901 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
902 			set_aes_not_hash_mode(&desc[idx]);
903 		} else {
904 			set_cipher_mode(&desc[idx], hash_mode);
905 		}
906 	}
907 
908 	*seq_size = (++idx);
909 }
910 
911 static void cc_set_cipher_desc(struct aead_request *req,
912 			       struct cc_hw_desc desc[],
913 			       unsigned int *seq_size)
914 {
915 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
916 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
917 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
918 	unsigned int hw_iv_size = req_ctx->hw_iv_size;
919 	unsigned int idx = *seq_size;
920 	int direct = req_ctx->gen_ctx.op_type;
921 
922 	/* Setup cipher state */
923 	hw_desc_init(&desc[idx]);
924 	set_cipher_config0(&desc[idx], direct);
925 	set_flow_mode(&desc[idx], ctx->flow_mode);
926 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
927 		     hw_iv_size, NS_BIT);
928 	if (ctx->cipher_mode == DRV_CIPHER_CTR)
929 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
930 	else
931 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
932 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
933 	idx++;
934 
935 	/* Setup enc. key */
936 	hw_desc_init(&desc[idx]);
937 	set_cipher_config0(&desc[idx], direct);
938 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
939 	set_flow_mode(&desc[idx], ctx->flow_mode);
940 	if (ctx->flow_mode == S_DIN_to_AES) {
941 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
942 			     ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
943 			      ctx->enc_keylen), NS_BIT);
944 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
945 	} else {
946 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
947 			     ctx->enc_keylen, NS_BIT);
948 		set_key_size_des(&desc[idx], ctx->enc_keylen);
949 	}
950 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
951 	idx++;
952 
953 	*seq_size = idx;
954 }
955 
956 static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
957 			   unsigned int *seq_size, unsigned int data_flow_mode)
958 {
959 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
960 	int direct = req_ctx->gen_ctx.op_type;
961 	unsigned int idx = *seq_size;
962 
963 	if (req_ctx->cryptlen == 0)
964 		return; /*null processing*/
965 
966 	cc_set_cipher_desc(req, desc, &idx);
967 	cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
968 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
969 		/* We must wait for DMA to write all cipher */
970 		hw_desc_init(&desc[idx]);
971 		set_din_no_dma(&desc[idx], 0, 0xfffff0);
972 		set_dout_no_dma(&desc[idx], 0, 0, 1);
973 		idx++;
974 	}
975 
976 	*seq_size = idx;
977 }
978 
979 static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
980 			     unsigned int *seq_size)
981 {
982 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
983 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
984 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
985 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
986 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
987 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
988 	unsigned int idx = *seq_size;
989 
990 	/* Loading hash ipad xor key state */
991 	hw_desc_init(&desc[idx]);
992 	set_cipher_mode(&desc[idx], hash_mode);
993 	set_din_type(&desc[idx], DMA_DLLI,
994 		     ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
995 		     NS_BIT);
996 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
997 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
998 	idx++;
999 
1000 	/* Load init. digest len (64 bytes) */
1001 	hw_desc_init(&desc[idx]);
1002 	set_cipher_mode(&desc[idx], hash_mode);
1003 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1004 		     ctx->drvdata->hash_len_sz);
1005 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1006 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1007 	idx++;
1008 
1009 	*seq_size = idx;
1010 }
1011 
1012 static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1013 			     unsigned int *seq_size)
1014 {
1015 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1016 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1017 	unsigned int idx = *seq_size;
1018 
1019 	/* Loading MAC state */
1020 	hw_desc_init(&desc[idx]);
1021 	set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1022 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1023 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1024 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1025 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1026 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1027 	set_aes_not_hash_mode(&desc[idx]);
1028 	idx++;
1029 
1030 	/* Setup XCBC MAC K1 */
1031 	hw_desc_init(&desc[idx]);
1032 	set_din_type(&desc[idx], DMA_DLLI,
1033 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1034 		     AES_KEYSIZE_128, NS_BIT);
1035 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1036 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1037 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1038 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1039 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1040 	set_aes_not_hash_mode(&desc[idx]);
1041 	idx++;
1042 
1043 	/* Setup XCBC MAC K2 */
1044 	hw_desc_init(&desc[idx]);
1045 	set_din_type(&desc[idx], DMA_DLLI,
1046 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1047 		      AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1048 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1049 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1050 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1051 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1052 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1053 	set_aes_not_hash_mode(&desc[idx]);
1054 	idx++;
1055 
1056 	/* Setup XCBC MAC K3 */
1057 	hw_desc_init(&desc[idx]);
1058 	set_din_type(&desc[idx], DMA_DLLI,
1059 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1060 		      2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1061 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1062 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1063 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1064 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1065 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1066 	set_aes_not_hash_mode(&desc[idx]);
1067 	idx++;
1068 
1069 	*seq_size = idx;
1070 }
1071 
1072 static void cc_proc_header_desc(struct aead_request *req,
1073 				struct cc_hw_desc desc[],
1074 				unsigned int *seq_size)
1075 {
1076 	unsigned int idx = *seq_size;
1077 	/* Hash associated data */
1078 	if (req->assoclen > 0)
1079 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1080 
1081 	/* Hash IV */
1082 	*seq_size = idx;
1083 }
1084 
1085 static void cc_proc_scheme_desc(struct aead_request *req,
1086 				struct cc_hw_desc desc[],
1087 				unsigned int *seq_size)
1088 {
1089 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1090 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1091 	struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1092 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1093 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1094 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1095 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1096 	unsigned int idx = *seq_size;
1097 
1098 	hw_desc_init(&desc[idx]);
1099 	set_cipher_mode(&desc[idx], hash_mode);
1100 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1101 		      ctx->drvdata->hash_len_sz);
1102 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1103 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1104 	set_cipher_do(&desc[idx], DO_PAD);
1105 	idx++;
1106 
1107 	/* Get final ICV result */
1108 	hw_desc_init(&desc[idx]);
1109 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1110 		      digest_size);
1111 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1112 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1113 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1114 	set_cipher_mode(&desc[idx], hash_mode);
1115 	idx++;
1116 
1117 	/* Loading hash opad xor key state */
1118 	hw_desc_init(&desc[idx]);
1119 	set_cipher_mode(&desc[idx], hash_mode);
1120 	set_din_type(&desc[idx], DMA_DLLI,
1121 		     (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1122 		     digest_size, NS_BIT);
1123 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1124 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1125 	idx++;
1126 
1127 	/* Load init. digest len (64 bytes) */
1128 	hw_desc_init(&desc[idx]);
1129 	set_cipher_mode(&desc[idx], hash_mode);
1130 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1131 		     ctx->drvdata->hash_len_sz);
1132 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1133 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1134 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1135 	idx++;
1136 
1137 	/* Perform HASH update */
1138 	hw_desc_init(&desc[idx]);
1139 	set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1140 		     digest_size);
1141 	set_flow_mode(&desc[idx], DIN_HASH);
1142 	idx++;
1143 
1144 	*seq_size = idx;
1145 }
1146 
1147 static void cc_mlli_to_sram(struct aead_request *req,
1148 			    struct cc_hw_desc desc[], unsigned int *seq_size)
1149 {
1150 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1151 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1152 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1153 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1154 
1155 	if (req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1156 	    req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1157 	    !req_ctx->is_single_pass) {
1158 		dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1159 			(unsigned int)ctx->drvdata->mlli_sram_addr,
1160 			req_ctx->mlli_params.mlli_len);
1161 		/* Copy MLLI table host-to-sram */
1162 		hw_desc_init(&desc[*seq_size]);
1163 		set_din_type(&desc[*seq_size], DMA_DLLI,
1164 			     req_ctx->mlli_params.mlli_dma_addr,
1165 			     req_ctx->mlli_params.mlli_len, NS_BIT);
1166 		set_dout_sram(&desc[*seq_size],
1167 			      ctx->drvdata->mlli_sram_addr,
1168 			      req_ctx->mlli_params.mlli_len);
1169 		set_flow_mode(&desc[*seq_size], BYPASS);
1170 		(*seq_size)++;
1171 	}
1172 }
1173 
1174 static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1175 					  enum cc_flow_mode setup_flow_mode,
1176 					  bool is_single_pass)
1177 {
1178 	enum cc_flow_mode data_flow_mode;
1179 
1180 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1181 		if (setup_flow_mode == S_DIN_to_AES)
1182 			data_flow_mode = is_single_pass ?
1183 				AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1184 		else
1185 			data_flow_mode = is_single_pass ?
1186 				DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1187 	} else { /* Decrypt */
1188 		if (setup_flow_mode == S_DIN_to_AES)
1189 			data_flow_mode = is_single_pass ?
1190 				AES_and_HASH : DIN_AES_DOUT;
1191 		else
1192 			data_flow_mode = is_single_pass ?
1193 				DES_and_HASH : DIN_DES_DOUT;
1194 	}
1195 
1196 	return data_flow_mode;
1197 }
1198 
1199 static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1200 			    unsigned int *seq_size)
1201 {
1202 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1203 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1204 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1205 	int direct = req_ctx->gen_ctx.op_type;
1206 	unsigned int data_flow_mode =
1207 		cc_get_data_flow(direct, ctx->flow_mode,
1208 				 req_ctx->is_single_pass);
1209 
1210 	if (req_ctx->is_single_pass) {
1211 		/**
1212 		 * Single-pass flow
1213 		 */
1214 		cc_set_hmac_desc(req, desc, seq_size);
1215 		cc_set_cipher_desc(req, desc, seq_size);
1216 		cc_proc_header_desc(req, desc, seq_size);
1217 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1218 		cc_proc_scheme_desc(req, desc, seq_size);
1219 		cc_proc_digest_desc(req, desc, seq_size);
1220 		return;
1221 	}
1222 
1223 	/**
1224 	 * Double-pass flow
1225 	 * Fallback for unsupported single-pass modes,
1226 	 * i.e. using assoc. data of non-word-multiple
1227 	 */
1228 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1229 		/* encrypt first.. */
1230 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1231 		/* authenc after..*/
1232 		cc_set_hmac_desc(req, desc, seq_size);
1233 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1234 		cc_proc_scheme_desc(req, desc, seq_size);
1235 		cc_proc_digest_desc(req, desc, seq_size);
1236 
1237 	} else { /*DECRYPT*/
1238 		/* authenc first..*/
1239 		cc_set_hmac_desc(req, desc, seq_size);
1240 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1241 		cc_proc_scheme_desc(req, desc, seq_size);
1242 		/* decrypt after.. */
1243 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1244 		/* read the digest result with setting the completion bit
1245 		 * must be after the cipher operation
1246 		 */
1247 		cc_proc_digest_desc(req, desc, seq_size);
1248 	}
1249 }
1250 
1251 static void
1252 cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1253 		unsigned int *seq_size)
1254 {
1255 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1256 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1257 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1258 	int direct = req_ctx->gen_ctx.op_type;
1259 	unsigned int data_flow_mode =
1260 		cc_get_data_flow(direct, ctx->flow_mode,
1261 				 req_ctx->is_single_pass);
1262 
1263 	if (req_ctx->is_single_pass) {
1264 		/**
1265 		 * Single-pass flow
1266 		 */
1267 		cc_set_xcbc_desc(req, desc, seq_size);
1268 		cc_set_cipher_desc(req, desc, seq_size);
1269 		cc_proc_header_desc(req, desc, seq_size);
1270 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1271 		cc_proc_digest_desc(req, desc, seq_size);
1272 		return;
1273 	}
1274 
1275 	/**
1276 	 * Double-pass flow
1277 	 * Fallback for unsupported single-pass modes,
1278 	 * i.e. using assoc. data of non-word-multiple
1279 	 */
1280 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1281 		/* encrypt first.. */
1282 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1283 		/* authenc after.. */
1284 		cc_set_xcbc_desc(req, desc, seq_size);
1285 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1286 		cc_proc_digest_desc(req, desc, seq_size);
1287 	} else { /*DECRYPT*/
1288 		/* authenc first.. */
1289 		cc_set_xcbc_desc(req, desc, seq_size);
1290 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1291 		/* decrypt after..*/
1292 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1293 		/* read the digest result with setting the completion bit
1294 		 * must be after the cipher operation
1295 		 */
1296 		cc_proc_digest_desc(req, desc, seq_size);
1297 	}
1298 }
1299 
1300 static int validate_data_size(struct cc_aead_ctx *ctx,
1301 			      enum drv_crypto_direction direct,
1302 			      struct aead_request *req)
1303 {
1304 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1305 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1306 	unsigned int assoclen = req->assoclen;
1307 	unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1308 			(req->cryptlen - ctx->authsize) : req->cryptlen;
1309 
1310 	if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1311 	    req->cryptlen < ctx->authsize)
1312 		goto data_size_err;
1313 
1314 	areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1315 
1316 	switch (ctx->flow_mode) {
1317 	case S_DIN_to_AES:
1318 		if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1319 		    !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1320 			goto data_size_err;
1321 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
1322 			break;
1323 		if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1324 			if (areq_ctx->plaintext_authenticate_only)
1325 				areq_ctx->is_single_pass = false;
1326 			break;
1327 		}
1328 
1329 		if (!IS_ALIGNED(assoclen, sizeof(u32)))
1330 			areq_ctx->is_single_pass = false;
1331 
1332 		if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1333 		    !IS_ALIGNED(cipherlen, sizeof(u32)))
1334 			areq_ctx->is_single_pass = false;
1335 
1336 		break;
1337 	case S_DIN_to_DES:
1338 		if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1339 			goto data_size_err;
1340 		if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1341 			areq_ctx->is_single_pass = false;
1342 		break;
1343 	default:
1344 		dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1345 		goto data_size_err;
1346 	}
1347 
1348 	return 0;
1349 
1350 data_size_err:
1351 	return -EINVAL;
1352 }
1353 
1354 static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1355 {
1356 	unsigned int len = 0;
1357 
1358 	if (header_size == 0)
1359 		return 0;
1360 
1361 	if (header_size < ((1UL << 16) - (1UL << 8))) {
1362 		len = 2;
1363 
1364 		pa0_buff[0] = (header_size >> 8) & 0xFF;
1365 		pa0_buff[1] = header_size & 0xFF;
1366 	} else {
1367 		len = 6;
1368 
1369 		pa0_buff[0] = 0xFF;
1370 		pa0_buff[1] = 0xFE;
1371 		pa0_buff[2] = (header_size >> 24) & 0xFF;
1372 		pa0_buff[3] = (header_size >> 16) & 0xFF;
1373 		pa0_buff[4] = (header_size >> 8) & 0xFF;
1374 		pa0_buff[5] = header_size & 0xFF;
1375 	}
1376 
1377 	return len;
1378 }
1379 
1380 static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1381 {
1382 	__be32 data;
1383 
1384 	memset(block, 0, csize);
1385 	block += csize;
1386 
1387 	if (csize >= 4)
1388 		csize = 4;
1389 	else if (msglen > (1 << (8 * csize)))
1390 		return -EOVERFLOW;
1391 
1392 	data = cpu_to_be32(msglen);
1393 	memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1394 
1395 	return 0;
1396 }
1397 
1398 static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1399 		  unsigned int *seq_size)
1400 {
1401 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1402 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1403 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1404 	unsigned int idx = *seq_size;
1405 	unsigned int cipher_flow_mode;
1406 	dma_addr_t mac_result;
1407 
1408 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1409 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1410 		mac_result = req_ctx->mac_buf_dma_addr;
1411 	} else { /* Encrypt */
1412 		cipher_flow_mode = AES_and_HASH;
1413 		mac_result = req_ctx->icv_dma_addr;
1414 	}
1415 
1416 	/* load key */
1417 	hw_desc_init(&desc[idx]);
1418 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1419 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1420 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1421 		      ctx->enc_keylen), NS_BIT);
1422 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1423 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1424 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1425 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1426 	idx++;
1427 
1428 	/* load ctr state */
1429 	hw_desc_init(&desc[idx]);
1430 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1431 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1432 	set_din_type(&desc[idx], DMA_DLLI,
1433 		     req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1434 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1435 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1436 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1437 	idx++;
1438 
1439 	/* load MAC key */
1440 	hw_desc_init(&desc[idx]);
1441 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1442 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1443 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1444 		      ctx->enc_keylen), NS_BIT);
1445 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1446 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1447 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1448 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1449 	set_aes_not_hash_mode(&desc[idx]);
1450 	idx++;
1451 
1452 	/* load MAC state */
1453 	hw_desc_init(&desc[idx]);
1454 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1455 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1456 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1457 		     AES_BLOCK_SIZE, NS_BIT);
1458 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1459 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1460 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1461 	set_aes_not_hash_mode(&desc[idx]);
1462 	idx++;
1463 
1464 	/* process assoc data */
1465 	if (req->assoclen > 0) {
1466 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1467 	} else {
1468 		hw_desc_init(&desc[idx]);
1469 		set_din_type(&desc[idx], DMA_DLLI,
1470 			     sg_dma_address(&req_ctx->ccm_adata_sg),
1471 			     AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1472 		set_flow_mode(&desc[idx], DIN_HASH);
1473 		idx++;
1474 	}
1475 
1476 	/* process the cipher */
1477 	if (req_ctx->cryptlen)
1478 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1479 
1480 	/* Read temporal MAC */
1481 	hw_desc_init(&desc[idx]);
1482 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1483 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1484 		      NS_BIT, 0);
1485 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1486 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1487 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1488 	set_aes_not_hash_mode(&desc[idx]);
1489 	idx++;
1490 
1491 	/* load AES-CTR state (for last MAC calculation)*/
1492 	hw_desc_init(&desc[idx]);
1493 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1494 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1495 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1496 		     AES_BLOCK_SIZE, NS_BIT);
1497 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1498 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1499 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1500 	idx++;
1501 
1502 	hw_desc_init(&desc[idx]);
1503 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1504 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1505 	idx++;
1506 
1507 	/* encrypt the "T" value and store MAC in mac_state */
1508 	hw_desc_init(&desc[idx]);
1509 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1510 		     ctx->authsize, NS_BIT);
1511 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1512 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1513 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1514 	idx++;
1515 
1516 	*seq_size = idx;
1517 	return 0;
1518 }
1519 
1520 static int config_ccm_adata(struct aead_request *req)
1521 {
1522 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1523 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1524 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1525 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1526 	//unsigned int size_of_a = 0, rem_a_size = 0;
1527 	unsigned int lp = req->iv[0];
1528 	/* Note: The code assume that req->iv[0] already contains the value
1529 	 * of L' of RFC3610
1530 	 */
1531 	unsigned int l = lp + 1;  /* This is L' of RFC 3610. */
1532 	unsigned int m = ctx->authsize;  /* This is M' of RFC 3610. */
1533 	u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1534 	u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1535 	u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1536 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1537 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1538 				req->cryptlen :
1539 				(req->cryptlen - ctx->authsize);
1540 	int rc;
1541 
1542 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1543 	memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1544 
1545 	/* taken from crypto/ccm.c */
1546 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1547 	if (l < 2 || l > 8) {
1548 		dev_err(dev, "illegal iv value %X\n", req->iv[0]);
1549 		return -EINVAL;
1550 	}
1551 	memcpy(b0, req->iv, AES_BLOCK_SIZE);
1552 
1553 	/* format control info per RFC 3610 and
1554 	 * NIST Special Publication 800-38C
1555 	 */
1556 	*b0 |= (8 * ((m - 2) / 2));
1557 	if (req->assoclen > 0)
1558 		*b0 |= 64;  /* Enable bit 6 if Adata exists. */
1559 
1560 	rc = set_msg_len(b0 + 16 - l, cryptlen, l);  /* Write L'. */
1561 	if (rc) {
1562 		dev_err(dev, "message len overflow detected");
1563 		return rc;
1564 	}
1565 	 /* END of "taken from crypto/ccm.c" */
1566 
1567 	/* l(a) - size of associated data. */
1568 	req_ctx->ccm_hdr_size = format_ccm_a0(a0, req->assoclen);
1569 
1570 	memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1571 	req->iv[15] = 1;
1572 
1573 	memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1574 	ctr_count_0[15] = 0;
1575 
1576 	return 0;
1577 }
1578 
1579 static void cc_proc_rfc4309_ccm(struct aead_request *req)
1580 {
1581 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1582 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1583 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1584 
1585 	/* L' */
1586 	memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1587 	/* For RFC 4309, always use 4 bytes for message length
1588 	 * (at most 2^32-1 bytes).
1589 	 */
1590 	areq_ctx->ctr_iv[0] = 3;
1591 
1592 	/* In RFC 4309 there is an 11-bytes nonce+IV part,
1593 	 * that we build here.
1594 	 */
1595 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1596 	       CCM_BLOCK_NONCE_SIZE);
1597 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1598 	       CCM_BLOCK_IV_SIZE);
1599 	req->iv = areq_ctx->ctr_iv;
1600 	req->assoclen -= CCM_BLOCK_IV_SIZE;
1601 }
1602 
1603 static void cc_set_ghash_desc(struct aead_request *req,
1604 			      struct cc_hw_desc desc[], unsigned int *seq_size)
1605 {
1606 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1607 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1608 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1609 	unsigned int idx = *seq_size;
1610 
1611 	/* load key to AES*/
1612 	hw_desc_init(&desc[idx]);
1613 	set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1614 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1615 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1616 		     ctx->enc_keylen, NS_BIT);
1617 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1618 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1619 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1620 	idx++;
1621 
1622 	/* process one zero block to generate hkey */
1623 	hw_desc_init(&desc[idx]);
1624 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1625 	set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1626 		      NS_BIT, 0);
1627 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1628 	idx++;
1629 
1630 	/* Memory Barrier */
1631 	hw_desc_init(&desc[idx]);
1632 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1633 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1634 	idx++;
1635 
1636 	/* Load GHASH subkey */
1637 	hw_desc_init(&desc[idx]);
1638 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1639 		     AES_BLOCK_SIZE, NS_BIT);
1640 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1641 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1642 	set_aes_not_hash_mode(&desc[idx]);
1643 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1644 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1645 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1646 	idx++;
1647 
1648 	/* Configure Hash Engine to work with GHASH.
1649 	 * Since it was not possible to extend HASH submodes to add GHASH,
1650 	 * The following command is necessary in order to
1651 	 * select GHASH (according to HW designers)
1652 	 */
1653 	hw_desc_init(&desc[idx]);
1654 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1655 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1656 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1657 	set_aes_not_hash_mode(&desc[idx]);
1658 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1659 	set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1660 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1661 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1662 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1663 	idx++;
1664 
1665 	/* Load GHASH initial STATE (which is 0). (for any hash there is an
1666 	 * initial state)
1667 	 */
1668 	hw_desc_init(&desc[idx]);
1669 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1670 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1671 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1672 	set_aes_not_hash_mode(&desc[idx]);
1673 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1674 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1675 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1676 	idx++;
1677 
1678 	*seq_size = idx;
1679 }
1680 
1681 static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1682 			     unsigned int *seq_size)
1683 {
1684 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1685 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1686 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1687 	unsigned int idx = *seq_size;
1688 
1689 	/* load key to AES*/
1690 	hw_desc_init(&desc[idx]);
1691 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1692 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1693 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1694 		     ctx->enc_keylen, NS_BIT);
1695 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1696 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1697 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1698 	idx++;
1699 
1700 	if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1701 		/* load AES/CTR initial CTR value inc by 2*/
1702 		hw_desc_init(&desc[idx]);
1703 		set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1704 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
1705 		set_din_type(&desc[idx], DMA_DLLI,
1706 			     req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1707 			     NS_BIT);
1708 		set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1709 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1710 		set_flow_mode(&desc[idx], S_DIN_to_AES);
1711 		idx++;
1712 	}
1713 
1714 	*seq_size = idx;
1715 }
1716 
1717 static void cc_proc_gcm_result(struct aead_request *req,
1718 			       struct cc_hw_desc desc[],
1719 			       unsigned int *seq_size)
1720 {
1721 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1722 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1723 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1724 	dma_addr_t mac_result;
1725 	unsigned int idx = *seq_size;
1726 
1727 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1728 		mac_result = req_ctx->mac_buf_dma_addr;
1729 	} else { /* Encrypt */
1730 		mac_result = req_ctx->icv_dma_addr;
1731 	}
1732 
1733 	/* process(ghash) gcm_block_len */
1734 	hw_desc_init(&desc[idx]);
1735 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1736 		     AES_BLOCK_SIZE, NS_BIT);
1737 	set_flow_mode(&desc[idx], DIN_HASH);
1738 	idx++;
1739 
1740 	/* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1741 	hw_desc_init(&desc[idx]);
1742 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1743 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1744 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1745 		      NS_BIT, 0);
1746 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1747 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1748 	set_aes_not_hash_mode(&desc[idx]);
1749 
1750 	idx++;
1751 
1752 	/* load AES/CTR initial CTR value inc by 1*/
1753 	hw_desc_init(&desc[idx]);
1754 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1755 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1756 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1757 		     AES_BLOCK_SIZE, NS_BIT);
1758 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1759 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1760 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1761 	idx++;
1762 
1763 	/* Memory Barrier */
1764 	hw_desc_init(&desc[idx]);
1765 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1766 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1767 	idx++;
1768 
1769 	/* process GCTR on stored GHASH and store MAC in mac_state*/
1770 	hw_desc_init(&desc[idx]);
1771 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1772 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1773 		     AES_BLOCK_SIZE, NS_BIT);
1774 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1775 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1776 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1777 	idx++;
1778 
1779 	*seq_size = idx;
1780 }
1781 
1782 static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1783 		  unsigned int *seq_size)
1784 {
1785 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1786 	unsigned int cipher_flow_mode;
1787 
1788 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1789 		cipher_flow_mode = AES_and_HASH;
1790 	} else { /* Encrypt */
1791 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1792 	}
1793 
1794 	//in RFC4543 no data to encrypt. just copy data from src to dest.
1795 	if (req_ctx->plaintext_authenticate_only) {
1796 		cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1797 		cc_set_ghash_desc(req, desc, seq_size);
1798 		/* process(ghash) assoc data */
1799 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1800 		cc_set_gctr_desc(req, desc, seq_size);
1801 		cc_proc_gcm_result(req, desc, seq_size);
1802 		return 0;
1803 	}
1804 
1805 	// for gcm and rfc4106.
1806 	cc_set_ghash_desc(req, desc, seq_size);
1807 	/* process(ghash) assoc data */
1808 	if (req->assoclen > 0)
1809 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1810 	cc_set_gctr_desc(req, desc, seq_size);
1811 	/* process(gctr+ghash) */
1812 	if (req_ctx->cryptlen)
1813 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1814 	cc_proc_gcm_result(req, desc, seq_size);
1815 
1816 	return 0;
1817 }
1818 
1819 static int config_gcm_context(struct aead_request *req)
1820 {
1821 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1822 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1823 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1824 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1825 
1826 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1827 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1828 				req->cryptlen :
1829 				(req->cryptlen - ctx->authsize);
1830 	__be32 counter = cpu_to_be32(2);
1831 
1832 	dev_dbg(dev, "%s() cryptlen = %d, req->assoclen = %d ctx->authsize = %d\n",
1833 		__func__, cryptlen, req->assoclen, ctx->authsize);
1834 
1835 	memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1836 
1837 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1838 
1839 	memcpy(req->iv + 12, &counter, 4);
1840 	memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1841 
1842 	counter = cpu_to_be32(1);
1843 	memcpy(req->iv + 12, &counter, 4);
1844 	memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1845 
1846 	if (!req_ctx->plaintext_authenticate_only) {
1847 		__be64 temp64;
1848 
1849 		temp64 = cpu_to_be64(req->assoclen * 8);
1850 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1851 		temp64 = cpu_to_be64(cryptlen * 8);
1852 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1853 	} else {
1854 		/* rfc4543=>  all data(AAD,IV,Plain) are considered additional
1855 		 * data that is nothing is encrypted.
1856 		 */
1857 		__be64 temp64;
1858 
1859 		temp64 = cpu_to_be64((req->assoclen + GCM_BLOCK_RFC4_IV_SIZE +
1860 				      cryptlen) * 8);
1861 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1862 		temp64 = 0;
1863 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 static void cc_proc_rfc4_gcm(struct aead_request *req)
1870 {
1871 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1872 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1873 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1874 
1875 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1876 	       ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1877 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1878 	       GCM_BLOCK_RFC4_IV_SIZE);
1879 	req->iv = areq_ctx->ctr_iv;
1880 	req->assoclen -= GCM_BLOCK_RFC4_IV_SIZE;
1881 }
1882 
1883 static int cc_proc_aead(struct aead_request *req,
1884 			enum drv_crypto_direction direct)
1885 {
1886 	int rc = 0;
1887 	int seq_len = 0;
1888 	struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1889 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1890 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1891 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1892 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1893 	struct cc_crypto_req cc_req = {};
1894 
1895 	dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1896 		((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1897 		ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1898 		sg_virt(req->dst), req->dst->offset, req->cryptlen);
1899 
1900 	/* STAT_PHASE_0: Init and sanity checks */
1901 
1902 	/* Check data length according to mode */
1903 	if (validate_data_size(ctx, direct, req)) {
1904 		dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1905 			req->cryptlen, req->assoclen);
1906 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
1907 		return -EINVAL;
1908 	}
1909 
1910 	/* Setup request structure */
1911 	cc_req.user_cb = (void *)cc_aead_complete;
1912 	cc_req.user_arg = (void *)req;
1913 
1914 	/* Setup request context */
1915 	areq_ctx->gen_ctx.op_type = direct;
1916 	areq_ctx->req_authsize = ctx->authsize;
1917 	areq_ctx->cipher_mode = ctx->cipher_mode;
1918 
1919 	/* STAT_PHASE_1: Map buffers */
1920 
1921 	if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1922 		/* Build CTR IV - Copy nonce from last 4 bytes in
1923 		 * CTR key to first 4 bytes in CTR IV
1924 		 */
1925 		memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1926 		       CTR_RFC3686_NONCE_SIZE);
1927 		if (!areq_ctx->backup_giv) /*User none-generated IV*/
1928 			memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE,
1929 			       req->iv, CTR_RFC3686_IV_SIZE);
1930 		/* Initialize counter portion of counter block */
1931 		*(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1932 			    CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1933 
1934 		/* Replace with counter iv */
1935 		req->iv = areq_ctx->ctr_iv;
1936 		areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1937 	} else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1938 		   (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1939 		areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1940 		if (areq_ctx->ctr_iv != req->iv) {
1941 			memcpy(areq_ctx->ctr_iv, req->iv,
1942 			       crypto_aead_ivsize(tfm));
1943 			req->iv = areq_ctx->ctr_iv;
1944 		}
1945 	}  else {
1946 		areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1947 	}
1948 
1949 	if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1950 		rc = config_ccm_adata(req);
1951 		if (rc) {
1952 			dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1953 				rc);
1954 			goto exit;
1955 		}
1956 	} else {
1957 		areq_ctx->ccm_hdr_size = ccm_header_size_null;
1958 	}
1959 
1960 	if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1961 		rc = config_gcm_context(req);
1962 		if (rc) {
1963 			dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1964 				rc);
1965 			goto exit;
1966 		}
1967 	}
1968 
1969 	rc = cc_map_aead_request(ctx->drvdata, req);
1970 	if (rc) {
1971 		dev_err(dev, "map_request() failed\n");
1972 		goto exit;
1973 	}
1974 
1975 	/* do we need to generate IV? */
1976 	if (areq_ctx->backup_giv) {
1977 		/* set the DMA mapped IV address*/
1978 		if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1979 			cc_req.ivgen_dma_addr[0] =
1980 				areq_ctx->gen_ctx.iv_dma_addr +
1981 				CTR_RFC3686_NONCE_SIZE;
1982 			cc_req.ivgen_dma_addr_len = 1;
1983 		} else if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1984 			/* In ccm, the IV needs to exist both inside B0 and
1985 			 * inside the counter.It is also copied to iv_dma_addr
1986 			 * for other reasons (like returning it to the user).
1987 			 * So, using 3 (identical) IV outputs.
1988 			 */
1989 			cc_req.ivgen_dma_addr[0] =
1990 				areq_ctx->gen_ctx.iv_dma_addr +
1991 				CCM_BLOCK_IV_OFFSET;
1992 			cc_req.ivgen_dma_addr[1] =
1993 				sg_dma_address(&areq_ctx->ccm_adata_sg) +
1994 				CCM_B0_OFFSET + CCM_BLOCK_IV_OFFSET;
1995 			cc_req.ivgen_dma_addr[2] =
1996 				sg_dma_address(&areq_ctx->ccm_adata_sg) +
1997 				CCM_CTR_COUNT_0_OFFSET + CCM_BLOCK_IV_OFFSET;
1998 			cc_req.ivgen_dma_addr_len = 3;
1999 		} else {
2000 			cc_req.ivgen_dma_addr[0] =
2001 				areq_ctx->gen_ctx.iv_dma_addr;
2002 			cc_req.ivgen_dma_addr_len = 1;
2003 		}
2004 
2005 		/* set the IV size (8/16 B long)*/
2006 		cc_req.ivgen_size = crypto_aead_ivsize(tfm);
2007 	}
2008 
2009 	/* STAT_PHASE_2: Create sequence */
2010 
2011 	/* Load MLLI tables to SRAM if necessary */
2012 	cc_mlli_to_sram(req, desc, &seq_len);
2013 
2014 	/*TODO: move seq len by reference */
2015 	switch (ctx->auth_mode) {
2016 	case DRV_HASH_SHA1:
2017 	case DRV_HASH_SHA256:
2018 		cc_hmac_authenc(req, desc, &seq_len);
2019 		break;
2020 	case DRV_HASH_XCBC_MAC:
2021 		cc_xcbc_authenc(req, desc, &seq_len);
2022 		break;
2023 	case DRV_HASH_NULL:
2024 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
2025 			cc_ccm(req, desc, &seq_len);
2026 		if (ctx->cipher_mode == DRV_CIPHER_GCTR)
2027 			cc_gcm(req, desc, &seq_len);
2028 		break;
2029 	default:
2030 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2031 		cc_unmap_aead_request(dev, req);
2032 		rc = -ENOTSUPP;
2033 		goto exit;
2034 	}
2035 
2036 	/* STAT_PHASE_3: Lock HW and push sequence */
2037 
2038 	rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2039 
2040 	if (rc != -EINPROGRESS && rc != -EBUSY) {
2041 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2042 		cc_unmap_aead_request(dev, req);
2043 	}
2044 
2045 exit:
2046 	return rc;
2047 }
2048 
2049 static int cc_aead_encrypt(struct aead_request *req)
2050 {
2051 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2052 	int rc;
2053 
2054 	/* No generated IV required */
2055 	areq_ctx->backup_iv = req->iv;
2056 	areq_ctx->backup_giv = NULL;
2057 	areq_ctx->is_gcm4543 = false;
2058 
2059 	areq_ctx->plaintext_authenticate_only = false;
2060 
2061 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2062 	if (rc != -EINPROGRESS && rc != -EBUSY)
2063 		req->iv = areq_ctx->backup_iv;
2064 
2065 	return rc;
2066 }
2067 
2068 static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2069 {
2070 	/* Very similar to cc_aead_encrypt() above. */
2071 
2072 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2073 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2074 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2075 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2076 	int rc = -EINVAL;
2077 
2078 	if (!valid_assoclen(req)) {
2079 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2080 		goto out;
2081 	}
2082 
2083 	/* No generated IV required */
2084 	areq_ctx->backup_iv = req->iv;
2085 	areq_ctx->backup_giv = NULL;
2086 	areq_ctx->is_gcm4543 = true;
2087 
2088 	cc_proc_rfc4309_ccm(req);
2089 
2090 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2091 	if (rc != -EINPROGRESS && rc != -EBUSY)
2092 		req->iv = areq_ctx->backup_iv;
2093 out:
2094 	return rc;
2095 }
2096 
2097 static int cc_aead_decrypt(struct aead_request *req)
2098 {
2099 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2100 	int rc;
2101 
2102 	/* No generated IV required */
2103 	areq_ctx->backup_iv = req->iv;
2104 	areq_ctx->backup_giv = NULL;
2105 	areq_ctx->is_gcm4543 = false;
2106 
2107 	areq_ctx->plaintext_authenticate_only = false;
2108 
2109 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2110 	if (rc != -EINPROGRESS && rc != -EBUSY)
2111 		req->iv = areq_ctx->backup_iv;
2112 
2113 	return rc;
2114 }
2115 
2116 static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2117 {
2118 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2119 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2120 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2121 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2122 	int rc = -EINVAL;
2123 
2124 	if (!valid_assoclen(req)) {
2125 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2126 		goto out;
2127 	}
2128 
2129 	/* No generated IV required */
2130 	areq_ctx->backup_iv = req->iv;
2131 	areq_ctx->backup_giv = NULL;
2132 
2133 	areq_ctx->is_gcm4543 = true;
2134 	cc_proc_rfc4309_ccm(req);
2135 
2136 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2137 	if (rc != -EINPROGRESS && rc != -EBUSY)
2138 		req->iv = areq_ctx->backup_iv;
2139 
2140 out:
2141 	return rc;
2142 }
2143 
2144 static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2145 				 unsigned int keylen)
2146 {
2147 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2148 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2149 
2150 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2151 
2152 	if (keylen < 4)
2153 		return -EINVAL;
2154 
2155 	keylen -= 4;
2156 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2157 
2158 	return cc_aead_setkey(tfm, key, keylen);
2159 }
2160 
2161 static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2162 				 unsigned int keylen)
2163 {
2164 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2165 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2166 
2167 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2168 
2169 	if (keylen < 4)
2170 		return -EINVAL;
2171 
2172 	keylen -= 4;
2173 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2174 
2175 	return cc_aead_setkey(tfm, key, keylen);
2176 }
2177 
2178 static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2179 			      unsigned int authsize)
2180 {
2181 	switch (authsize) {
2182 	case 4:
2183 	case 8:
2184 	case 12:
2185 	case 13:
2186 	case 14:
2187 	case 15:
2188 	case 16:
2189 		break;
2190 	default:
2191 		return -EINVAL;
2192 	}
2193 
2194 	return cc_aead_setauthsize(authenc, authsize);
2195 }
2196 
2197 static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2198 				      unsigned int authsize)
2199 {
2200 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2201 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2202 
2203 	dev_dbg(dev, "authsize %d\n", authsize);
2204 
2205 	switch (authsize) {
2206 	case 8:
2207 	case 12:
2208 	case 16:
2209 		break;
2210 	default:
2211 		return -EINVAL;
2212 	}
2213 
2214 	return cc_aead_setauthsize(authenc, authsize);
2215 }
2216 
2217 static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2218 				      unsigned int authsize)
2219 {
2220 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2221 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2222 
2223 	dev_dbg(dev, "authsize %d\n", authsize);
2224 
2225 	if (authsize != 16)
2226 		return -EINVAL;
2227 
2228 	return cc_aead_setauthsize(authenc, authsize);
2229 }
2230 
2231 static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2232 {
2233 	/* Very similar to cc_aead_encrypt() above. */
2234 
2235 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2236 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2237 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2238 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2239 	int rc = -EINVAL;
2240 
2241 	if (!valid_assoclen(req)) {
2242 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2243 		goto out;
2244 	}
2245 
2246 	/* No generated IV required */
2247 	areq_ctx->backup_iv = req->iv;
2248 	areq_ctx->backup_giv = NULL;
2249 
2250 	areq_ctx->plaintext_authenticate_only = false;
2251 
2252 	cc_proc_rfc4_gcm(req);
2253 	areq_ctx->is_gcm4543 = true;
2254 
2255 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2256 	if (rc != -EINPROGRESS && rc != -EBUSY)
2257 		req->iv = areq_ctx->backup_iv;
2258 out:
2259 	return rc;
2260 }
2261 
2262 static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2263 {
2264 	/* Very similar to cc_aead_encrypt() above. */
2265 
2266 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2267 	int rc;
2268 
2269 	//plaintext is not encryped with rfc4543
2270 	areq_ctx->plaintext_authenticate_only = true;
2271 
2272 	/* No generated IV required */
2273 	areq_ctx->backup_iv = req->iv;
2274 	areq_ctx->backup_giv = NULL;
2275 
2276 	cc_proc_rfc4_gcm(req);
2277 	areq_ctx->is_gcm4543 = true;
2278 
2279 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2280 	if (rc != -EINPROGRESS && rc != -EBUSY)
2281 		req->iv = areq_ctx->backup_iv;
2282 
2283 	return rc;
2284 }
2285 
2286 static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2287 {
2288 	/* Very similar to cc_aead_decrypt() above. */
2289 
2290 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2291 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2292 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2293 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2294 	int rc = -EINVAL;
2295 
2296 	if (!valid_assoclen(req)) {
2297 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2298 		goto out;
2299 	}
2300 
2301 	/* No generated IV required */
2302 	areq_ctx->backup_iv = req->iv;
2303 	areq_ctx->backup_giv = NULL;
2304 
2305 	areq_ctx->plaintext_authenticate_only = false;
2306 
2307 	cc_proc_rfc4_gcm(req);
2308 	areq_ctx->is_gcm4543 = true;
2309 
2310 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2311 	if (rc != -EINPROGRESS && rc != -EBUSY)
2312 		req->iv = areq_ctx->backup_iv;
2313 out:
2314 	return rc;
2315 }
2316 
2317 static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2318 {
2319 	/* Very similar to cc_aead_decrypt() above. */
2320 
2321 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2322 	int rc;
2323 
2324 	//plaintext is not decryped with rfc4543
2325 	areq_ctx->plaintext_authenticate_only = true;
2326 
2327 	/* No generated IV required */
2328 	areq_ctx->backup_iv = req->iv;
2329 	areq_ctx->backup_giv = NULL;
2330 
2331 	cc_proc_rfc4_gcm(req);
2332 	areq_ctx->is_gcm4543 = true;
2333 
2334 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2335 	if (rc != -EINPROGRESS && rc != -EBUSY)
2336 		req->iv = areq_ctx->backup_iv;
2337 
2338 	return rc;
2339 }
2340 
2341 /* aead alg */
2342 static struct cc_alg_template aead_algs[] = {
2343 	{
2344 		.name = "authenc(hmac(sha1),cbc(aes))",
2345 		.driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2346 		.blocksize = AES_BLOCK_SIZE,
2347 		.template_aead = {
2348 			.setkey = cc_aead_setkey,
2349 			.setauthsize = cc_aead_setauthsize,
2350 			.encrypt = cc_aead_encrypt,
2351 			.decrypt = cc_aead_decrypt,
2352 			.init = cc_aead_init,
2353 			.exit = cc_aead_exit,
2354 			.ivsize = AES_BLOCK_SIZE,
2355 			.maxauthsize = SHA1_DIGEST_SIZE,
2356 		},
2357 		.cipher_mode = DRV_CIPHER_CBC,
2358 		.flow_mode = S_DIN_to_AES,
2359 		.auth_mode = DRV_HASH_SHA1,
2360 		.min_hw_rev = CC_HW_REV_630,
2361 	},
2362 	{
2363 		.name = "authenc(hmac(sha1),cbc(des3_ede))",
2364 		.driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2365 		.blocksize = DES3_EDE_BLOCK_SIZE,
2366 		.template_aead = {
2367 			.setkey = cc_aead_setkey,
2368 			.setauthsize = cc_aead_setauthsize,
2369 			.encrypt = cc_aead_encrypt,
2370 			.decrypt = cc_aead_decrypt,
2371 			.init = cc_aead_init,
2372 			.exit = cc_aead_exit,
2373 			.ivsize = DES3_EDE_BLOCK_SIZE,
2374 			.maxauthsize = SHA1_DIGEST_SIZE,
2375 		},
2376 		.cipher_mode = DRV_CIPHER_CBC,
2377 		.flow_mode = S_DIN_to_DES,
2378 		.auth_mode = DRV_HASH_SHA1,
2379 		.min_hw_rev = CC_HW_REV_630,
2380 	},
2381 	{
2382 		.name = "authenc(hmac(sha256),cbc(aes))",
2383 		.driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2384 		.blocksize = AES_BLOCK_SIZE,
2385 		.template_aead = {
2386 			.setkey = cc_aead_setkey,
2387 			.setauthsize = cc_aead_setauthsize,
2388 			.encrypt = cc_aead_encrypt,
2389 			.decrypt = cc_aead_decrypt,
2390 			.init = cc_aead_init,
2391 			.exit = cc_aead_exit,
2392 			.ivsize = AES_BLOCK_SIZE,
2393 			.maxauthsize = SHA256_DIGEST_SIZE,
2394 		},
2395 		.cipher_mode = DRV_CIPHER_CBC,
2396 		.flow_mode = S_DIN_to_AES,
2397 		.auth_mode = DRV_HASH_SHA256,
2398 		.min_hw_rev = CC_HW_REV_630,
2399 	},
2400 	{
2401 		.name = "authenc(hmac(sha256),cbc(des3_ede))",
2402 		.driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2403 		.blocksize = DES3_EDE_BLOCK_SIZE,
2404 		.template_aead = {
2405 			.setkey = cc_aead_setkey,
2406 			.setauthsize = cc_aead_setauthsize,
2407 			.encrypt = cc_aead_encrypt,
2408 			.decrypt = cc_aead_decrypt,
2409 			.init = cc_aead_init,
2410 			.exit = cc_aead_exit,
2411 			.ivsize = DES3_EDE_BLOCK_SIZE,
2412 			.maxauthsize = SHA256_DIGEST_SIZE,
2413 		},
2414 		.cipher_mode = DRV_CIPHER_CBC,
2415 		.flow_mode = S_DIN_to_DES,
2416 		.auth_mode = DRV_HASH_SHA256,
2417 		.min_hw_rev = CC_HW_REV_630,
2418 	},
2419 	{
2420 		.name = "authenc(xcbc(aes),cbc(aes))",
2421 		.driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2422 		.blocksize = AES_BLOCK_SIZE,
2423 		.template_aead = {
2424 			.setkey = cc_aead_setkey,
2425 			.setauthsize = cc_aead_setauthsize,
2426 			.encrypt = cc_aead_encrypt,
2427 			.decrypt = cc_aead_decrypt,
2428 			.init = cc_aead_init,
2429 			.exit = cc_aead_exit,
2430 			.ivsize = AES_BLOCK_SIZE,
2431 			.maxauthsize = AES_BLOCK_SIZE,
2432 		},
2433 		.cipher_mode = DRV_CIPHER_CBC,
2434 		.flow_mode = S_DIN_to_AES,
2435 		.auth_mode = DRV_HASH_XCBC_MAC,
2436 		.min_hw_rev = CC_HW_REV_630,
2437 	},
2438 	{
2439 		.name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2440 		.driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2441 		.blocksize = 1,
2442 		.template_aead = {
2443 			.setkey = cc_aead_setkey,
2444 			.setauthsize = cc_aead_setauthsize,
2445 			.encrypt = cc_aead_encrypt,
2446 			.decrypt = cc_aead_decrypt,
2447 			.init = cc_aead_init,
2448 			.exit = cc_aead_exit,
2449 			.ivsize = CTR_RFC3686_IV_SIZE,
2450 			.maxauthsize = SHA1_DIGEST_SIZE,
2451 		},
2452 		.cipher_mode = DRV_CIPHER_CTR,
2453 		.flow_mode = S_DIN_to_AES,
2454 		.auth_mode = DRV_HASH_SHA1,
2455 		.min_hw_rev = CC_HW_REV_630,
2456 	},
2457 	{
2458 		.name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2459 		.driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2460 		.blocksize = 1,
2461 		.template_aead = {
2462 			.setkey = cc_aead_setkey,
2463 			.setauthsize = cc_aead_setauthsize,
2464 			.encrypt = cc_aead_encrypt,
2465 			.decrypt = cc_aead_decrypt,
2466 			.init = cc_aead_init,
2467 			.exit = cc_aead_exit,
2468 			.ivsize = CTR_RFC3686_IV_SIZE,
2469 			.maxauthsize = SHA256_DIGEST_SIZE,
2470 		},
2471 		.cipher_mode = DRV_CIPHER_CTR,
2472 		.flow_mode = S_DIN_to_AES,
2473 		.auth_mode = DRV_HASH_SHA256,
2474 		.min_hw_rev = CC_HW_REV_630,
2475 	},
2476 	{
2477 		.name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2478 		.driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2479 		.blocksize = 1,
2480 		.template_aead = {
2481 			.setkey = cc_aead_setkey,
2482 			.setauthsize = cc_aead_setauthsize,
2483 			.encrypt = cc_aead_encrypt,
2484 			.decrypt = cc_aead_decrypt,
2485 			.init = cc_aead_init,
2486 			.exit = cc_aead_exit,
2487 			.ivsize = CTR_RFC3686_IV_SIZE,
2488 			.maxauthsize = AES_BLOCK_SIZE,
2489 		},
2490 		.cipher_mode = DRV_CIPHER_CTR,
2491 		.flow_mode = S_DIN_to_AES,
2492 		.auth_mode = DRV_HASH_XCBC_MAC,
2493 		.min_hw_rev = CC_HW_REV_630,
2494 	},
2495 	{
2496 		.name = "ccm(aes)",
2497 		.driver_name = "ccm-aes-ccree",
2498 		.blocksize = 1,
2499 		.template_aead = {
2500 			.setkey = cc_aead_setkey,
2501 			.setauthsize = cc_ccm_setauthsize,
2502 			.encrypt = cc_aead_encrypt,
2503 			.decrypt = cc_aead_decrypt,
2504 			.init = cc_aead_init,
2505 			.exit = cc_aead_exit,
2506 			.ivsize = AES_BLOCK_SIZE,
2507 			.maxauthsize = AES_BLOCK_SIZE,
2508 		},
2509 		.cipher_mode = DRV_CIPHER_CCM,
2510 		.flow_mode = S_DIN_to_AES,
2511 		.auth_mode = DRV_HASH_NULL,
2512 		.min_hw_rev = CC_HW_REV_630,
2513 	},
2514 	{
2515 		.name = "rfc4309(ccm(aes))",
2516 		.driver_name = "rfc4309-ccm-aes-ccree",
2517 		.blocksize = 1,
2518 		.template_aead = {
2519 			.setkey = cc_rfc4309_ccm_setkey,
2520 			.setauthsize = cc_rfc4309_ccm_setauthsize,
2521 			.encrypt = cc_rfc4309_ccm_encrypt,
2522 			.decrypt = cc_rfc4309_ccm_decrypt,
2523 			.init = cc_aead_init,
2524 			.exit = cc_aead_exit,
2525 			.ivsize = CCM_BLOCK_IV_SIZE,
2526 			.maxauthsize = AES_BLOCK_SIZE,
2527 		},
2528 		.cipher_mode = DRV_CIPHER_CCM,
2529 		.flow_mode = S_DIN_to_AES,
2530 		.auth_mode = DRV_HASH_NULL,
2531 		.min_hw_rev = CC_HW_REV_630,
2532 	},
2533 	{
2534 		.name = "gcm(aes)",
2535 		.driver_name = "gcm-aes-ccree",
2536 		.blocksize = 1,
2537 		.template_aead = {
2538 			.setkey = cc_aead_setkey,
2539 			.setauthsize = cc_gcm_setauthsize,
2540 			.encrypt = cc_aead_encrypt,
2541 			.decrypt = cc_aead_decrypt,
2542 			.init = cc_aead_init,
2543 			.exit = cc_aead_exit,
2544 			.ivsize = 12,
2545 			.maxauthsize = AES_BLOCK_SIZE,
2546 		},
2547 		.cipher_mode = DRV_CIPHER_GCTR,
2548 		.flow_mode = S_DIN_to_AES,
2549 		.auth_mode = DRV_HASH_NULL,
2550 		.min_hw_rev = CC_HW_REV_630,
2551 	},
2552 	{
2553 		.name = "rfc4106(gcm(aes))",
2554 		.driver_name = "rfc4106-gcm-aes-ccree",
2555 		.blocksize = 1,
2556 		.template_aead = {
2557 			.setkey = cc_rfc4106_gcm_setkey,
2558 			.setauthsize = cc_rfc4106_gcm_setauthsize,
2559 			.encrypt = cc_rfc4106_gcm_encrypt,
2560 			.decrypt = cc_rfc4106_gcm_decrypt,
2561 			.init = cc_aead_init,
2562 			.exit = cc_aead_exit,
2563 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2564 			.maxauthsize = AES_BLOCK_SIZE,
2565 		},
2566 		.cipher_mode = DRV_CIPHER_GCTR,
2567 		.flow_mode = S_DIN_to_AES,
2568 		.auth_mode = DRV_HASH_NULL,
2569 		.min_hw_rev = CC_HW_REV_630,
2570 	},
2571 	{
2572 		.name = "rfc4543(gcm(aes))",
2573 		.driver_name = "rfc4543-gcm-aes-ccree",
2574 		.blocksize = 1,
2575 		.template_aead = {
2576 			.setkey = cc_rfc4543_gcm_setkey,
2577 			.setauthsize = cc_rfc4543_gcm_setauthsize,
2578 			.encrypt = cc_rfc4543_gcm_encrypt,
2579 			.decrypt = cc_rfc4543_gcm_decrypt,
2580 			.init = cc_aead_init,
2581 			.exit = cc_aead_exit,
2582 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2583 			.maxauthsize = AES_BLOCK_SIZE,
2584 		},
2585 		.cipher_mode = DRV_CIPHER_GCTR,
2586 		.flow_mode = S_DIN_to_AES,
2587 		.auth_mode = DRV_HASH_NULL,
2588 		.min_hw_rev = CC_HW_REV_630,
2589 	},
2590 };
2591 
2592 static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2593 						struct device *dev)
2594 {
2595 	struct cc_crypto_alg *t_alg;
2596 	struct aead_alg *alg;
2597 
2598 	t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
2599 	if (!t_alg)
2600 		return ERR_PTR(-ENOMEM);
2601 
2602 	alg = &tmpl->template_aead;
2603 
2604 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
2605 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2606 		 tmpl->driver_name);
2607 	alg->base.cra_module = THIS_MODULE;
2608 	alg->base.cra_priority = CC_CRA_PRIO;
2609 
2610 	alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2611 	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2612 	alg->init = cc_aead_init;
2613 	alg->exit = cc_aead_exit;
2614 
2615 	t_alg->aead_alg = *alg;
2616 
2617 	t_alg->cipher_mode = tmpl->cipher_mode;
2618 	t_alg->flow_mode = tmpl->flow_mode;
2619 	t_alg->auth_mode = tmpl->auth_mode;
2620 
2621 	return t_alg;
2622 }
2623 
2624 int cc_aead_free(struct cc_drvdata *drvdata)
2625 {
2626 	struct cc_crypto_alg *t_alg, *n;
2627 	struct cc_aead_handle *aead_handle =
2628 		(struct cc_aead_handle *)drvdata->aead_handle;
2629 
2630 	if (aead_handle) {
2631 		/* Remove registered algs */
2632 		list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list,
2633 					 entry) {
2634 			crypto_unregister_aead(&t_alg->aead_alg);
2635 			list_del(&t_alg->entry);
2636 			kfree(t_alg);
2637 		}
2638 		kfree(aead_handle);
2639 		drvdata->aead_handle = NULL;
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 int cc_aead_alloc(struct cc_drvdata *drvdata)
2646 {
2647 	struct cc_aead_handle *aead_handle;
2648 	struct cc_crypto_alg *t_alg;
2649 	int rc = -ENOMEM;
2650 	int alg;
2651 	struct device *dev = drvdata_to_dev(drvdata);
2652 
2653 	aead_handle = kmalloc(sizeof(*aead_handle), GFP_KERNEL);
2654 	if (!aead_handle) {
2655 		rc = -ENOMEM;
2656 		goto fail0;
2657 	}
2658 
2659 	INIT_LIST_HEAD(&aead_handle->aead_list);
2660 	drvdata->aead_handle = aead_handle;
2661 
2662 	aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2663 							 MAX_HMAC_DIGEST_SIZE);
2664 
2665 	if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2666 		dev_err(dev, "SRAM pool exhausted\n");
2667 		rc = -ENOMEM;
2668 		goto fail1;
2669 	}
2670 
2671 	/* Linux crypto */
2672 	for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2673 		if (aead_algs[alg].min_hw_rev > drvdata->hw_rev)
2674 			continue;
2675 
2676 		t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2677 		if (IS_ERR(t_alg)) {
2678 			rc = PTR_ERR(t_alg);
2679 			dev_err(dev, "%s alg allocation failed\n",
2680 				aead_algs[alg].driver_name);
2681 			goto fail1;
2682 		}
2683 		t_alg->drvdata = drvdata;
2684 		rc = crypto_register_aead(&t_alg->aead_alg);
2685 		if (rc) {
2686 			dev_err(dev, "%s alg registration failed\n",
2687 				t_alg->aead_alg.base.cra_driver_name);
2688 			goto fail2;
2689 		} else {
2690 			list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2691 			dev_dbg(dev, "Registered %s\n",
2692 				t_alg->aead_alg.base.cra_driver_name);
2693 		}
2694 	}
2695 
2696 	return 0;
2697 
2698 fail2:
2699 	kfree(t_alg);
2700 fail1:
2701 	cc_aead_free(drvdata);
2702 fail0:
2703 	return rc;
2704 }
2705