xref: /openbmc/linux/drivers/crypto/ccree/cc_aead.c (revision ccb01374)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
3 
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/aead.h>
8 #include <crypto/authenc.h>
9 #include <crypto/des.h>
10 #include <linux/rtnetlink.h>
11 #include "cc_driver.h"
12 #include "cc_buffer_mgr.h"
13 #include "cc_aead.h"
14 #include "cc_request_mgr.h"
15 #include "cc_hash.h"
16 #include "cc_sram_mgr.h"
17 
18 #define template_aead	template_u.aead
19 
20 #define MAX_AEAD_SETKEY_SEQ 12
21 #define MAX_AEAD_PROCESS_SEQ 23
22 
23 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
24 #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
25 
26 #define AES_CCM_RFC4309_NONCE_SIZE 3
27 #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
28 
29 /* Value of each ICV_CMP byte (of 8) in case of success */
30 #define ICV_VERIF_OK 0x01
31 
32 struct cc_aead_handle {
33 	cc_sram_addr_t sram_workspace_addr;
34 	struct list_head aead_list;
35 };
36 
37 struct cc_hmac_s {
38 	u8 *padded_authkey;
39 	u8 *ipad_opad; /* IPAD, OPAD*/
40 	dma_addr_t padded_authkey_dma_addr;
41 	dma_addr_t ipad_opad_dma_addr;
42 };
43 
44 struct cc_xcbc_s {
45 	u8 *xcbc_keys; /* K1,K2,K3 */
46 	dma_addr_t xcbc_keys_dma_addr;
47 };
48 
49 struct cc_aead_ctx {
50 	struct cc_drvdata *drvdata;
51 	u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
52 	u8 *enckey;
53 	dma_addr_t enckey_dma_addr;
54 	union {
55 		struct cc_hmac_s hmac;
56 		struct cc_xcbc_s xcbc;
57 	} auth_state;
58 	unsigned int enc_keylen;
59 	unsigned int auth_keylen;
60 	unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
61 	unsigned int hash_len;
62 	enum drv_cipher_mode cipher_mode;
63 	enum cc_flow_mode flow_mode;
64 	enum drv_hash_mode auth_mode;
65 };
66 
67 static inline bool valid_assoclen(struct aead_request *req)
68 {
69 	return ((req->assoclen == 16) || (req->assoclen == 20));
70 }
71 
72 static void cc_aead_exit(struct crypto_aead *tfm)
73 {
74 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
75 	struct device *dev = drvdata_to_dev(ctx->drvdata);
76 
77 	dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
78 		crypto_tfm_alg_name(&tfm->base));
79 
80 	/* Unmap enckey buffer */
81 	if (ctx->enckey) {
82 		dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
83 				  ctx->enckey_dma_addr);
84 		dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
85 			&ctx->enckey_dma_addr);
86 		ctx->enckey_dma_addr = 0;
87 		ctx->enckey = NULL;
88 	}
89 
90 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
91 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
92 
93 		if (xcbc->xcbc_keys) {
94 			dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
95 					  xcbc->xcbc_keys,
96 					  xcbc->xcbc_keys_dma_addr);
97 		}
98 		dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
99 			&xcbc->xcbc_keys_dma_addr);
100 		xcbc->xcbc_keys_dma_addr = 0;
101 		xcbc->xcbc_keys = NULL;
102 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
103 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
104 
105 		if (hmac->ipad_opad) {
106 			dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
107 					  hmac->ipad_opad,
108 					  hmac->ipad_opad_dma_addr);
109 			dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
110 				&hmac->ipad_opad_dma_addr);
111 			hmac->ipad_opad_dma_addr = 0;
112 			hmac->ipad_opad = NULL;
113 		}
114 		if (hmac->padded_authkey) {
115 			dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
116 					  hmac->padded_authkey,
117 					  hmac->padded_authkey_dma_addr);
118 			dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
119 				&hmac->padded_authkey_dma_addr);
120 			hmac->padded_authkey_dma_addr = 0;
121 			hmac->padded_authkey = NULL;
122 		}
123 	}
124 }
125 
126 static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
127 {
128 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
129 
130 	return cc_get_default_hash_len(ctx->drvdata);
131 }
132 
133 static int cc_aead_init(struct crypto_aead *tfm)
134 {
135 	struct aead_alg *alg = crypto_aead_alg(tfm);
136 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
137 	struct cc_crypto_alg *cc_alg =
138 			container_of(alg, struct cc_crypto_alg, aead_alg);
139 	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
140 
141 	dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
142 		crypto_tfm_alg_name(&tfm->base));
143 
144 	/* Initialize modes in instance */
145 	ctx->cipher_mode = cc_alg->cipher_mode;
146 	ctx->flow_mode = cc_alg->flow_mode;
147 	ctx->auth_mode = cc_alg->auth_mode;
148 	ctx->drvdata = cc_alg->drvdata;
149 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
150 
151 	/* Allocate key buffer, cache line aligned */
152 	ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
153 					 &ctx->enckey_dma_addr, GFP_KERNEL);
154 	if (!ctx->enckey) {
155 		dev_err(dev, "Failed allocating key buffer\n");
156 		goto init_failed;
157 	}
158 	dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
159 		ctx->enckey);
160 
161 	/* Set default authlen value */
162 
163 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
164 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
165 		const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
166 
167 		/* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
168 		/* (and temporary for user key - up to 256b) */
169 		xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
170 						     &xcbc->xcbc_keys_dma_addr,
171 						     GFP_KERNEL);
172 		if (!xcbc->xcbc_keys) {
173 			dev_err(dev, "Failed allocating buffer for XCBC keys\n");
174 			goto init_failed;
175 		}
176 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
177 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
178 		const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
179 		dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
180 
181 		/* Allocate dma-coherent buffer for IPAD + OPAD */
182 		hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
183 						     &hmac->ipad_opad_dma_addr,
184 						     GFP_KERNEL);
185 
186 		if (!hmac->ipad_opad) {
187 			dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
188 			goto init_failed;
189 		}
190 
191 		dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
192 			hmac->ipad_opad);
193 
194 		hmac->padded_authkey = dma_alloc_coherent(dev,
195 							  MAX_HMAC_BLOCK_SIZE,
196 							  pkey_dma,
197 							  GFP_KERNEL);
198 
199 		if (!hmac->padded_authkey) {
200 			dev_err(dev, "failed to allocate padded_authkey\n");
201 			goto init_failed;
202 		}
203 	} else {
204 		ctx->auth_state.hmac.ipad_opad = NULL;
205 		ctx->auth_state.hmac.padded_authkey = NULL;
206 	}
207 	ctx->hash_len = cc_get_aead_hash_len(tfm);
208 
209 	return 0;
210 
211 init_failed:
212 	cc_aead_exit(tfm);
213 	return -ENOMEM;
214 }
215 
216 static void cc_aead_complete(struct device *dev, void *cc_req, int err)
217 {
218 	struct aead_request *areq = (struct aead_request *)cc_req;
219 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
220 	struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
221 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
222 
223 	cc_unmap_aead_request(dev, areq);
224 
225 	/* Restore ordinary iv pointer */
226 	areq->iv = areq_ctx->backup_iv;
227 
228 	if (err)
229 		goto done;
230 
231 	if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
232 		if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
233 			   ctx->authsize) != 0) {
234 			dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
235 				ctx->authsize, ctx->cipher_mode);
236 			/* In case of payload authentication failure, MUST NOT
237 			 * revealed the decrypted message --> zero its memory.
238 			 */
239 			cc_zero_sgl(areq->dst, areq_ctx->cryptlen);
240 			err = -EBADMSG;
241 		}
242 	} else { /*ENCRYPT*/
243 		if (areq_ctx->is_icv_fragmented) {
244 			u32 skip = areq->cryptlen + areq_ctx->dst_offset;
245 
246 			cc_copy_sg_portion(dev, areq_ctx->mac_buf,
247 					   areq_ctx->dst_sgl, skip,
248 					   (skip + ctx->authsize),
249 					   CC_SG_FROM_BUF);
250 		}
251 
252 		/* If an IV was generated, copy it back to the user provided
253 		 * buffer.
254 		 */
255 		if (areq_ctx->backup_giv) {
256 			if (ctx->cipher_mode == DRV_CIPHER_CTR)
257 				memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv +
258 				       CTR_RFC3686_NONCE_SIZE,
259 				       CTR_RFC3686_IV_SIZE);
260 			else if (ctx->cipher_mode == DRV_CIPHER_CCM)
261 				memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv +
262 				       CCM_BLOCK_IV_OFFSET, CCM_BLOCK_IV_SIZE);
263 		}
264 	}
265 done:
266 	aead_request_complete(areq, err);
267 }
268 
269 static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
270 				struct cc_aead_ctx *ctx)
271 {
272 	/* Load the AES key */
273 	hw_desc_init(&desc[0]);
274 	/* We are using for the source/user key the same buffer
275 	 * as for the output keys, * because after this key loading it
276 	 * is not needed anymore
277 	 */
278 	set_din_type(&desc[0], DMA_DLLI,
279 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
280 		     NS_BIT);
281 	set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
282 	set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
283 	set_key_size_aes(&desc[0], ctx->auth_keylen);
284 	set_flow_mode(&desc[0], S_DIN_to_AES);
285 	set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
286 
287 	hw_desc_init(&desc[1]);
288 	set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
289 	set_flow_mode(&desc[1], DIN_AES_DOUT);
290 	set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
291 		      AES_KEYSIZE_128, NS_BIT, 0);
292 
293 	hw_desc_init(&desc[2]);
294 	set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
295 	set_flow_mode(&desc[2], DIN_AES_DOUT);
296 	set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
297 					 + AES_KEYSIZE_128),
298 			      AES_KEYSIZE_128, NS_BIT, 0);
299 
300 	hw_desc_init(&desc[3]);
301 	set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
302 	set_flow_mode(&desc[3], DIN_AES_DOUT);
303 	set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
304 					  + 2 * AES_KEYSIZE_128),
305 			      AES_KEYSIZE_128, NS_BIT, 0);
306 
307 	return 4;
308 }
309 
310 static int hmac_setkey(struct cc_hw_desc *desc, struct cc_aead_ctx *ctx)
311 {
312 	unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
313 	unsigned int digest_ofs = 0;
314 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
315 			DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
316 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
317 			CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
318 	struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
319 
320 	unsigned int idx = 0;
321 	int i;
322 
323 	/* calc derived HMAC key */
324 	for (i = 0; i < 2; i++) {
325 		/* Load hash initial state */
326 		hw_desc_init(&desc[idx]);
327 		set_cipher_mode(&desc[idx], hash_mode);
328 		set_din_sram(&desc[idx],
329 			     cc_larval_digest_addr(ctx->drvdata,
330 						   ctx->auth_mode),
331 			     digest_size);
332 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
333 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
334 		idx++;
335 
336 		/* Load the hash current length*/
337 		hw_desc_init(&desc[idx]);
338 		set_cipher_mode(&desc[idx], hash_mode);
339 		set_din_const(&desc[idx], 0, ctx->hash_len);
340 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
341 		set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
342 		idx++;
343 
344 		/* Prepare ipad key */
345 		hw_desc_init(&desc[idx]);
346 		set_xor_val(&desc[idx], hmac_pad_const[i]);
347 		set_cipher_mode(&desc[idx], hash_mode);
348 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
349 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
350 		idx++;
351 
352 		/* Perform HASH update */
353 		hw_desc_init(&desc[idx]);
354 		set_din_type(&desc[idx], DMA_DLLI,
355 			     hmac->padded_authkey_dma_addr,
356 			     SHA256_BLOCK_SIZE, NS_BIT);
357 		set_cipher_mode(&desc[idx], hash_mode);
358 		set_xor_active(&desc[idx]);
359 		set_flow_mode(&desc[idx], DIN_HASH);
360 		idx++;
361 
362 		/* Get the digset */
363 		hw_desc_init(&desc[idx]);
364 		set_cipher_mode(&desc[idx], hash_mode);
365 		set_dout_dlli(&desc[idx],
366 			      (hmac->ipad_opad_dma_addr + digest_ofs),
367 			      digest_size, NS_BIT, 0);
368 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
369 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
370 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
371 		idx++;
372 
373 		digest_ofs += digest_size;
374 	}
375 
376 	return idx;
377 }
378 
379 static int validate_keys_sizes(struct cc_aead_ctx *ctx)
380 {
381 	struct device *dev = drvdata_to_dev(ctx->drvdata);
382 
383 	dev_dbg(dev, "enc_keylen=%u  authkeylen=%u\n",
384 		ctx->enc_keylen, ctx->auth_keylen);
385 
386 	switch (ctx->auth_mode) {
387 	case DRV_HASH_SHA1:
388 	case DRV_HASH_SHA256:
389 		break;
390 	case DRV_HASH_XCBC_MAC:
391 		if (ctx->auth_keylen != AES_KEYSIZE_128 &&
392 		    ctx->auth_keylen != AES_KEYSIZE_192 &&
393 		    ctx->auth_keylen != AES_KEYSIZE_256)
394 			return -ENOTSUPP;
395 		break;
396 	case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
397 		if (ctx->auth_keylen > 0)
398 			return -EINVAL;
399 		break;
400 	default:
401 		dev_err(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
402 		return -EINVAL;
403 	}
404 	/* Check cipher key size */
405 	if (ctx->flow_mode == S_DIN_to_DES) {
406 		if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
407 			dev_err(dev, "Invalid cipher(3DES) key size: %u\n",
408 				ctx->enc_keylen);
409 			return -EINVAL;
410 		}
411 	} else { /* Default assumed to be AES ciphers */
412 		if (ctx->enc_keylen != AES_KEYSIZE_128 &&
413 		    ctx->enc_keylen != AES_KEYSIZE_192 &&
414 		    ctx->enc_keylen != AES_KEYSIZE_256) {
415 			dev_err(dev, "Invalid cipher(AES) key size: %u\n",
416 				ctx->enc_keylen);
417 			return -EINVAL;
418 		}
419 	}
420 
421 	return 0; /* All tests of keys sizes passed */
422 }
423 
424 /* This function prepers the user key so it can pass to the hmac processing
425  * (copy to intenral buffer or hash in case of key longer than block
426  */
427 static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *key,
428 				 unsigned int keylen)
429 {
430 	dma_addr_t key_dma_addr = 0;
431 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
432 	struct device *dev = drvdata_to_dev(ctx->drvdata);
433 	u32 larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode);
434 	struct cc_crypto_req cc_req = {};
435 	unsigned int blocksize;
436 	unsigned int digestsize;
437 	unsigned int hashmode;
438 	unsigned int idx = 0;
439 	int rc = 0;
440 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
441 	dma_addr_t padded_authkey_dma_addr =
442 		ctx->auth_state.hmac.padded_authkey_dma_addr;
443 
444 	switch (ctx->auth_mode) { /* auth_key required and >0 */
445 	case DRV_HASH_SHA1:
446 		blocksize = SHA1_BLOCK_SIZE;
447 		digestsize = SHA1_DIGEST_SIZE;
448 		hashmode = DRV_HASH_HW_SHA1;
449 		break;
450 	case DRV_HASH_SHA256:
451 	default:
452 		blocksize = SHA256_BLOCK_SIZE;
453 		digestsize = SHA256_DIGEST_SIZE;
454 		hashmode = DRV_HASH_HW_SHA256;
455 	}
456 
457 	if (keylen != 0) {
458 		key_dma_addr = dma_map_single(dev, (void *)key, keylen,
459 					      DMA_TO_DEVICE);
460 		if (dma_mapping_error(dev, key_dma_addr)) {
461 			dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
462 				key, keylen);
463 			return -ENOMEM;
464 		}
465 		if (keylen > blocksize) {
466 			/* Load hash initial state */
467 			hw_desc_init(&desc[idx]);
468 			set_cipher_mode(&desc[idx], hashmode);
469 			set_din_sram(&desc[idx], larval_addr, digestsize);
470 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
471 			set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
472 			idx++;
473 
474 			/* Load the hash current length*/
475 			hw_desc_init(&desc[idx]);
476 			set_cipher_mode(&desc[idx], hashmode);
477 			set_din_const(&desc[idx], 0, ctx->hash_len);
478 			set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
479 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
480 			set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
481 			idx++;
482 
483 			hw_desc_init(&desc[idx]);
484 			set_din_type(&desc[idx], DMA_DLLI,
485 				     key_dma_addr, keylen, NS_BIT);
486 			set_flow_mode(&desc[idx], DIN_HASH);
487 			idx++;
488 
489 			/* Get hashed key */
490 			hw_desc_init(&desc[idx]);
491 			set_cipher_mode(&desc[idx], hashmode);
492 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
493 				      digestsize, NS_BIT, 0);
494 			set_flow_mode(&desc[idx], S_HASH_to_DOUT);
495 			set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
496 			set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
497 			set_cipher_config0(&desc[idx],
498 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
499 			idx++;
500 
501 			hw_desc_init(&desc[idx]);
502 			set_din_const(&desc[idx], 0, (blocksize - digestsize));
503 			set_flow_mode(&desc[idx], BYPASS);
504 			set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
505 				      digestsize), (blocksize - digestsize),
506 				      NS_BIT, 0);
507 			idx++;
508 		} else {
509 			hw_desc_init(&desc[idx]);
510 			set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
511 				     keylen, NS_BIT);
512 			set_flow_mode(&desc[idx], BYPASS);
513 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
514 				      keylen, NS_BIT, 0);
515 			idx++;
516 
517 			if ((blocksize - keylen) != 0) {
518 				hw_desc_init(&desc[idx]);
519 				set_din_const(&desc[idx], 0,
520 					      (blocksize - keylen));
521 				set_flow_mode(&desc[idx], BYPASS);
522 				set_dout_dlli(&desc[idx],
523 					      (padded_authkey_dma_addr +
524 					       keylen),
525 					      (blocksize - keylen), NS_BIT, 0);
526 				idx++;
527 			}
528 		}
529 	} else {
530 		hw_desc_init(&desc[idx]);
531 		set_din_const(&desc[idx], 0, (blocksize - keylen));
532 		set_flow_mode(&desc[idx], BYPASS);
533 		set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
534 			      blocksize, NS_BIT, 0);
535 		idx++;
536 	}
537 
538 	rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
539 	if (rc)
540 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
541 
542 	if (key_dma_addr)
543 		dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
544 
545 	return rc;
546 }
547 
548 static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
549 			  unsigned int keylen)
550 {
551 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
552 	struct rtattr *rta = (struct rtattr *)key;
553 	struct cc_crypto_req cc_req = {};
554 	struct crypto_authenc_key_param *param;
555 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
556 	int rc = -EINVAL;
557 	unsigned int seq_len = 0;
558 	struct device *dev = drvdata_to_dev(ctx->drvdata);
559 
560 	dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
561 		ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
562 
563 	/* STAT_PHASE_0: Init and sanity checks */
564 
565 	if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
566 		if (!RTA_OK(rta, keylen))
567 			goto badkey;
568 		if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
569 			goto badkey;
570 		if (RTA_PAYLOAD(rta) < sizeof(*param))
571 			goto badkey;
572 		param = RTA_DATA(rta);
573 		ctx->enc_keylen = be32_to_cpu(param->enckeylen);
574 		key += RTA_ALIGN(rta->rta_len);
575 		keylen -= RTA_ALIGN(rta->rta_len);
576 		if (keylen < ctx->enc_keylen)
577 			goto badkey;
578 		ctx->auth_keylen = keylen - ctx->enc_keylen;
579 
580 		if (ctx->cipher_mode == DRV_CIPHER_CTR) {
581 			/* the nonce is stored in bytes at end of key */
582 			if (ctx->enc_keylen <
583 			    (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
584 				goto badkey;
585 			/* Copy nonce from last 4 bytes in CTR key to
586 			 *  first 4 bytes in CTR IV
587 			 */
588 			memcpy(ctx->ctr_nonce, key + ctx->auth_keylen +
589 			       ctx->enc_keylen - CTR_RFC3686_NONCE_SIZE,
590 			       CTR_RFC3686_NONCE_SIZE);
591 			/* Set CTR key size */
592 			ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
593 		}
594 	} else { /* non-authenc - has just one key */
595 		ctx->enc_keylen = keylen;
596 		ctx->auth_keylen = 0;
597 	}
598 
599 	rc = validate_keys_sizes(ctx);
600 	if (rc)
601 		goto badkey;
602 
603 	/* STAT_PHASE_1: Copy key to ctx */
604 
605 	/* Get key material */
606 	memcpy(ctx->enckey, key + ctx->auth_keylen, ctx->enc_keylen);
607 	if (ctx->enc_keylen == 24)
608 		memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
609 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
610 		memcpy(ctx->auth_state.xcbc.xcbc_keys, key, ctx->auth_keylen);
611 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
612 		rc = cc_get_plain_hmac_key(tfm, key, ctx->auth_keylen);
613 		if (rc)
614 			goto badkey;
615 	}
616 
617 	/* STAT_PHASE_2: Create sequence */
618 
619 	switch (ctx->auth_mode) {
620 	case DRV_HASH_SHA1:
621 	case DRV_HASH_SHA256:
622 		seq_len = hmac_setkey(desc, ctx);
623 		break;
624 	case DRV_HASH_XCBC_MAC:
625 		seq_len = xcbc_setkey(desc, ctx);
626 		break;
627 	case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
628 		break; /* No auth. key setup */
629 	default:
630 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
631 		rc = -ENOTSUPP;
632 		goto badkey;
633 	}
634 
635 	/* STAT_PHASE_3: Submit sequence to HW */
636 
637 	if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
638 		rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
639 		if (rc) {
640 			dev_err(dev, "send_request() failed (rc=%d)\n", rc);
641 			goto setkey_error;
642 		}
643 	}
644 
645 	/* Update STAT_PHASE_3 */
646 	return rc;
647 
648 badkey:
649 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
650 
651 setkey_error:
652 	return rc;
653 }
654 
655 static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
656 				 unsigned int keylen)
657 {
658 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
659 
660 	if (keylen < 3)
661 		return -EINVAL;
662 
663 	keylen -= 3;
664 	memcpy(ctx->ctr_nonce, key + keylen, 3);
665 
666 	return cc_aead_setkey(tfm, key, keylen);
667 }
668 
669 static int cc_aead_setauthsize(struct crypto_aead *authenc,
670 			       unsigned int authsize)
671 {
672 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
673 	struct device *dev = drvdata_to_dev(ctx->drvdata);
674 
675 	/* Unsupported auth. sizes */
676 	if (authsize == 0 ||
677 	    authsize > crypto_aead_maxauthsize(authenc)) {
678 		return -ENOTSUPP;
679 	}
680 
681 	ctx->authsize = authsize;
682 	dev_dbg(dev, "authlen=%d\n", ctx->authsize);
683 
684 	return 0;
685 }
686 
687 static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
688 				      unsigned int authsize)
689 {
690 	switch (authsize) {
691 	case 8:
692 	case 12:
693 	case 16:
694 		break;
695 	default:
696 		return -EINVAL;
697 	}
698 
699 	return cc_aead_setauthsize(authenc, authsize);
700 }
701 
702 static int cc_ccm_setauthsize(struct crypto_aead *authenc,
703 			      unsigned int authsize)
704 {
705 	switch (authsize) {
706 	case 4:
707 	case 6:
708 	case 8:
709 	case 10:
710 	case 12:
711 	case 14:
712 	case 16:
713 		break;
714 	default:
715 		return -EINVAL;
716 	}
717 
718 	return cc_aead_setauthsize(authenc, authsize);
719 }
720 
721 static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
722 			      struct cc_hw_desc desc[], unsigned int *seq_size)
723 {
724 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
725 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
726 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
727 	enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
728 	unsigned int idx = *seq_size;
729 	struct device *dev = drvdata_to_dev(ctx->drvdata);
730 
731 	switch (assoc_dma_type) {
732 	case CC_DMA_BUF_DLLI:
733 		dev_dbg(dev, "ASSOC buffer type DLLI\n");
734 		hw_desc_init(&desc[idx]);
735 		set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
736 			     areq->assoclen, NS_BIT);
737 		set_flow_mode(&desc[idx], flow_mode);
738 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
739 		    areq_ctx->cryptlen > 0)
740 			set_din_not_last_indication(&desc[idx]);
741 		break;
742 	case CC_DMA_BUF_MLLI:
743 		dev_dbg(dev, "ASSOC buffer type MLLI\n");
744 		hw_desc_init(&desc[idx]);
745 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
746 			     areq_ctx->assoc.mlli_nents, NS_BIT);
747 		set_flow_mode(&desc[idx], flow_mode);
748 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
749 		    areq_ctx->cryptlen > 0)
750 			set_din_not_last_indication(&desc[idx]);
751 		break;
752 	case CC_DMA_BUF_NULL:
753 	default:
754 		dev_err(dev, "Invalid ASSOC buffer type\n");
755 	}
756 
757 	*seq_size = (++idx);
758 }
759 
760 static void cc_proc_authen_desc(struct aead_request *areq,
761 				unsigned int flow_mode,
762 				struct cc_hw_desc desc[],
763 				unsigned int *seq_size, int direct)
764 {
765 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
766 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
767 	unsigned int idx = *seq_size;
768 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
769 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
770 	struct device *dev = drvdata_to_dev(ctx->drvdata);
771 
772 	switch (data_dma_type) {
773 	case CC_DMA_BUF_DLLI:
774 	{
775 		struct scatterlist *cipher =
776 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
777 			areq_ctx->dst_sgl : areq_ctx->src_sgl;
778 
779 		unsigned int offset =
780 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
781 			areq_ctx->dst_offset : areq_ctx->src_offset;
782 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
783 		hw_desc_init(&desc[idx]);
784 		set_din_type(&desc[idx], DMA_DLLI,
785 			     (sg_dma_address(cipher) + offset),
786 			     areq_ctx->cryptlen, NS_BIT);
787 		set_flow_mode(&desc[idx], flow_mode);
788 		break;
789 	}
790 	case CC_DMA_BUF_MLLI:
791 	{
792 		/* DOUBLE-PASS flow (as default)
793 		 * assoc. + iv + data -compact in one table
794 		 * if assoclen is ZERO only IV perform
795 		 */
796 		cc_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr;
797 		u32 mlli_nents = areq_ctx->assoc.mlli_nents;
798 
799 		if (areq_ctx->is_single_pass) {
800 			if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
801 				mlli_addr = areq_ctx->dst.sram_addr;
802 				mlli_nents = areq_ctx->dst.mlli_nents;
803 			} else {
804 				mlli_addr = areq_ctx->src.sram_addr;
805 				mlli_nents = areq_ctx->src.mlli_nents;
806 			}
807 		}
808 
809 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
810 		hw_desc_init(&desc[idx]);
811 		set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
812 			     NS_BIT);
813 		set_flow_mode(&desc[idx], flow_mode);
814 		break;
815 	}
816 	case CC_DMA_BUF_NULL:
817 	default:
818 		dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
819 	}
820 
821 	*seq_size = (++idx);
822 }
823 
824 static void cc_proc_cipher_desc(struct aead_request *areq,
825 				unsigned int flow_mode,
826 				struct cc_hw_desc desc[],
827 				unsigned int *seq_size)
828 {
829 	unsigned int idx = *seq_size;
830 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
831 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
832 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
833 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
834 	struct device *dev = drvdata_to_dev(ctx->drvdata);
835 
836 	if (areq_ctx->cryptlen == 0)
837 		return; /*null processing*/
838 
839 	switch (data_dma_type) {
840 	case CC_DMA_BUF_DLLI:
841 		dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
842 		hw_desc_init(&desc[idx]);
843 		set_din_type(&desc[idx], DMA_DLLI,
844 			     (sg_dma_address(areq_ctx->src_sgl) +
845 			      areq_ctx->src_offset), areq_ctx->cryptlen,
846 			      NS_BIT);
847 		set_dout_dlli(&desc[idx],
848 			      (sg_dma_address(areq_ctx->dst_sgl) +
849 			       areq_ctx->dst_offset),
850 			      areq_ctx->cryptlen, NS_BIT, 0);
851 		set_flow_mode(&desc[idx], flow_mode);
852 		break;
853 	case CC_DMA_BUF_MLLI:
854 		dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
855 		hw_desc_init(&desc[idx]);
856 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
857 			     areq_ctx->src.mlli_nents, NS_BIT);
858 		set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
859 			      areq_ctx->dst.mlli_nents, NS_BIT, 0);
860 		set_flow_mode(&desc[idx], flow_mode);
861 		break;
862 	case CC_DMA_BUF_NULL:
863 	default:
864 		dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
865 	}
866 
867 	*seq_size = (++idx);
868 }
869 
870 static void cc_proc_digest_desc(struct aead_request *req,
871 				struct cc_hw_desc desc[],
872 				unsigned int *seq_size)
873 {
874 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
875 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
876 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
877 	unsigned int idx = *seq_size;
878 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
879 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
880 	int direct = req_ctx->gen_ctx.op_type;
881 
882 	/* Get final ICV result */
883 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
884 		hw_desc_init(&desc[idx]);
885 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
886 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
887 		set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
888 			      NS_BIT, 1);
889 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
890 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
891 			set_aes_not_hash_mode(&desc[idx]);
892 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
893 		} else {
894 			set_cipher_config0(&desc[idx],
895 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
896 			set_cipher_mode(&desc[idx], hash_mode);
897 		}
898 	} else { /*Decrypt*/
899 		/* Get ICV out from hardware */
900 		hw_desc_init(&desc[idx]);
901 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
902 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
903 		set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
904 			      ctx->authsize, NS_BIT, 1);
905 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
906 		set_cipher_config0(&desc[idx],
907 				   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
908 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
909 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
910 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
911 			set_aes_not_hash_mode(&desc[idx]);
912 		} else {
913 			set_cipher_mode(&desc[idx], hash_mode);
914 		}
915 	}
916 
917 	*seq_size = (++idx);
918 }
919 
920 static void cc_set_cipher_desc(struct aead_request *req,
921 			       struct cc_hw_desc desc[],
922 			       unsigned int *seq_size)
923 {
924 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
925 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
926 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
927 	unsigned int hw_iv_size = req_ctx->hw_iv_size;
928 	unsigned int idx = *seq_size;
929 	int direct = req_ctx->gen_ctx.op_type;
930 
931 	/* Setup cipher state */
932 	hw_desc_init(&desc[idx]);
933 	set_cipher_config0(&desc[idx], direct);
934 	set_flow_mode(&desc[idx], ctx->flow_mode);
935 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
936 		     hw_iv_size, NS_BIT);
937 	if (ctx->cipher_mode == DRV_CIPHER_CTR)
938 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
939 	else
940 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
941 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
942 	idx++;
943 
944 	/* Setup enc. key */
945 	hw_desc_init(&desc[idx]);
946 	set_cipher_config0(&desc[idx], direct);
947 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
948 	set_flow_mode(&desc[idx], ctx->flow_mode);
949 	if (ctx->flow_mode == S_DIN_to_AES) {
950 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
951 			     ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
952 			      ctx->enc_keylen), NS_BIT);
953 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
954 	} else {
955 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
956 			     ctx->enc_keylen, NS_BIT);
957 		set_key_size_des(&desc[idx], ctx->enc_keylen);
958 	}
959 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
960 	idx++;
961 
962 	*seq_size = idx;
963 }
964 
965 static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
966 			   unsigned int *seq_size, unsigned int data_flow_mode)
967 {
968 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
969 	int direct = req_ctx->gen_ctx.op_type;
970 	unsigned int idx = *seq_size;
971 
972 	if (req_ctx->cryptlen == 0)
973 		return; /*null processing*/
974 
975 	cc_set_cipher_desc(req, desc, &idx);
976 	cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
977 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
978 		/* We must wait for DMA to write all cipher */
979 		hw_desc_init(&desc[idx]);
980 		set_din_no_dma(&desc[idx], 0, 0xfffff0);
981 		set_dout_no_dma(&desc[idx], 0, 0, 1);
982 		idx++;
983 	}
984 
985 	*seq_size = idx;
986 }
987 
988 static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
989 			     unsigned int *seq_size)
990 {
991 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
992 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
993 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
994 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
995 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
996 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
997 	unsigned int idx = *seq_size;
998 
999 	/* Loading hash ipad xor key state */
1000 	hw_desc_init(&desc[idx]);
1001 	set_cipher_mode(&desc[idx], hash_mode);
1002 	set_din_type(&desc[idx], DMA_DLLI,
1003 		     ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1004 		     NS_BIT);
1005 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1006 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1007 	idx++;
1008 
1009 	/* Load init. digest len (64 bytes) */
1010 	hw_desc_init(&desc[idx]);
1011 	set_cipher_mode(&desc[idx], hash_mode);
1012 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1013 		     ctx->hash_len);
1014 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1015 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1016 	idx++;
1017 
1018 	*seq_size = idx;
1019 }
1020 
1021 static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1022 			     unsigned int *seq_size)
1023 {
1024 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1025 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1026 	unsigned int idx = *seq_size;
1027 
1028 	/* Loading MAC state */
1029 	hw_desc_init(&desc[idx]);
1030 	set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1031 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1032 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1033 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1034 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1035 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1036 	set_aes_not_hash_mode(&desc[idx]);
1037 	idx++;
1038 
1039 	/* Setup XCBC MAC K1 */
1040 	hw_desc_init(&desc[idx]);
1041 	set_din_type(&desc[idx], DMA_DLLI,
1042 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1043 		     AES_KEYSIZE_128, NS_BIT);
1044 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1045 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1046 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1047 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1048 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1049 	set_aes_not_hash_mode(&desc[idx]);
1050 	idx++;
1051 
1052 	/* Setup XCBC MAC K2 */
1053 	hw_desc_init(&desc[idx]);
1054 	set_din_type(&desc[idx], DMA_DLLI,
1055 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1056 		      AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1057 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1058 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1059 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1060 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1061 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1062 	set_aes_not_hash_mode(&desc[idx]);
1063 	idx++;
1064 
1065 	/* Setup XCBC MAC K3 */
1066 	hw_desc_init(&desc[idx]);
1067 	set_din_type(&desc[idx], DMA_DLLI,
1068 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1069 		      2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1070 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1071 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1072 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1073 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1074 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1075 	set_aes_not_hash_mode(&desc[idx]);
1076 	idx++;
1077 
1078 	*seq_size = idx;
1079 }
1080 
1081 static void cc_proc_header_desc(struct aead_request *req,
1082 				struct cc_hw_desc desc[],
1083 				unsigned int *seq_size)
1084 {
1085 	unsigned int idx = *seq_size;
1086 	/* Hash associated data */
1087 	if (req->assoclen > 0)
1088 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1089 
1090 	/* Hash IV */
1091 	*seq_size = idx;
1092 }
1093 
1094 static void cc_proc_scheme_desc(struct aead_request *req,
1095 				struct cc_hw_desc desc[],
1096 				unsigned int *seq_size)
1097 {
1098 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1099 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1100 	struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1101 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1102 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1103 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1104 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1105 	unsigned int idx = *seq_size;
1106 
1107 	hw_desc_init(&desc[idx]);
1108 	set_cipher_mode(&desc[idx], hash_mode);
1109 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1110 		      ctx->hash_len);
1111 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1112 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1113 	set_cipher_do(&desc[idx], DO_PAD);
1114 	idx++;
1115 
1116 	/* Get final ICV result */
1117 	hw_desc_init(&desc[idx]);
1118 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1119 		      digest_size);
1120 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1121 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1122 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1123 	set_cipher_mode(&desc[idx], hash_mode);
1124 	idx++;
1125 
1126 	/* Loading hash opad xor key state */
1127 	hw_desc_init(&desc[idx]);
1128 	set_cipher_mode(&desc[idx], hash_mode);
1129 	set_din_type(&desc[idx], DMA_DLLI,
1130 		     (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1131 		     digest_size, NS_BIT);
1132 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1133 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1134 	idx++;
1135 
1136 	/* Load init. digest len (64 bytes) */
1137 	hw_desc_init(&desc[idx]);
1138 	set_cipher_mode(&desc[idx], hash_mode);
1139 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1140 		     ctx->hash_len);
1141 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1142 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1143 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1144 	idx++;
1145 
1146 	/* Perform HASH update */
1147 	hw_desc_init(&desc[idx]);
1148 	set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1149 		     digest_size);
1150 	set_flow_mode(&desc[idx], DIN_HASH);
1151 	idx++;
1152 
1153 	*seq_size = idx;
1154 }
1155 
1156 static void cc_mlli_to_sram(struct aead_request *req,
1157 			    struct cc_hw_desc desc[], unsigned int *seq_size)
1158 {
1159 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1160 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1161 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1162 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1163 
1164 	if (req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1165 	    req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1166 	    !req_ctx->is_single_pass) {
1167 		dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1168 			(unsigned int)ctx->drvdata->mlli_sram_addr,
1169 			req_ctx->mlli_params.mlli_len);
1170 		/* Copy MLLI table host-to-sram */
1171 		hw_desc_init(&desc[*seq_size]);
1172 		set_din_type(&desc[*seq_size], DMA_DLLI,
1173 			     req_ctx->mlli_params.mlli_dma_addr,
1174 			     req_ctx->mlli_params.mlli_len, NS_BIT);
1175 		set_dout_sram(&desc[*seq_size],
1176 			      ctx->drvdata->mlli_sram_addr,
1177 			      req_ctx->mlli_params.mlli_len);
1178 		set_flow_mode(&desc[*seq_size], BYPASS);
1179 		(*seq_size)++;
1180 	}
1181 }
1182 
1183 static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1184 					  enum cc_flow_mode setup_flow_mode,
1185 					  bool is_single_pass)
1186 {
1187 	enum cc_flow_mode data_flow_mode;
1188 
1189 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1190 		if (setup_flow_mode == S_DIN_to_AES)
1191 			data_flow_mode = is_single_pass ?
1192 				AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1193 		else
1194 			data_flow_mode = is_single_pass ?
1195 				DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1196 	} else { /* Decrypt */
1197 		if (setup_flow_mode == S_DIN_to_AES)
1198 			data_flow_mode = is_single_pass ?
1199 				AES_and_HASH : DIN_AES_DOUT;
1200 		else
1201 			data_flow_mode = is_single_pass ?
1202 				DES_and_HASH : DIN_DES_DOUT;
1203 	}
1204 
1205 	return data_flow_mode;
1206 }
1207 
1208 static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1209 			    unsigned int *seq_size)
1210 {
1211 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1212 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1213 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1214 	int direct = req_ctx->gen_ctx.op_type;
1215 	unsigned int data_flow_mode =
1216 		cc_get_data_flow(direct, ctx->flow_mode,
1217 				 req_ctx->is_single_pass);
1218 
1219 	if (req_ctx->is_single_pass) {
1220 		/**
1221 		 * Single-pass flow
1222 		 */
1223 		cc_set_hmac_desc(req, desc, seq_size);
1224 		cc_set_cipher_desc(req, desc, seq_size);
1225 		cc_proc_header_desc(req, desc, seq_size);
1226 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1227 		cc_proc_scheme_desc(req, desc, seq_size);
1228 		cc_proc_digest_desc(req, desc, seq_size);
1229 		return;
1230 	}
1231 
1232 	/**
1233 	 * Double-pass flow
1234 	 * Fallback for unsupported single-pass modes,
1235 	 * i.e. using assoc. data of non-word-multiple
1236 	 */
1237 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1238 		/* encrypt first.. */
1239 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1240 		/* authenc after..*/
1241 		cc_set_hmac_desc(req, desc, seq_size);
1242 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1243 		cc_proc_scheme_desc(req, desc, seq_size);
1244 		cc_proc_digest_desc(req, desc, seq_size);
1245 
1246 	} else { /*DECRYPT*/
1247 		/* authenc first..*/
1248 		cc_set_hmac_desc(req, desc, seq_size);
1249 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1250 		cc_proc_scheme_desc(req, desc, seq_size);
1251 		/* decrypt after.. */
1252 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1253 		/* read the digest result with setting the completion bit
1254 		 * must be after the cipher operation
1255 		 */
1256 		cc_proc_digest_desc(req, desc, seq_size);
1257 	}
1258 }
1259 
1260 static void
1261 cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1262 		unsigned int *seq_size)
1263 {
1264 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1265 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1266 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1267 	int direct = req_ctx->gen_ctx.op_type;
1268 	unsigned int data_flow_mode =
1269 		cc_get_data_flow(direct, ctx->flow_mode,
1270 				 req_ctx->is_single_pass);
1271 
1272 	if (req_ctx->is_single_pass) {
1273 		/**
1274 		 * Single-pass flow
1275 		 */
1276 		cc_set_xcbc_desc(req, desc, seq_size);
1277 		cc_set_cipher_desc(req, desc, seq_size);
1278 		cc_proc_header_desc(req, desc, seq_size);
1279 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1280 		cc_proc_digest_desc(req, desc, seq_size);
1281 		return;
1282 	}
1283 
1284 	/**
1285 	 * Double-pass flow
1286 	 * Fallback for unsupported single-pass modes,
1287 	 * i.e. using assoc. data of non-word-multiple
1288 	 */
1289 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1290 		/* encrypt first.. */
1291 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1292 		/* authenc after.. */
1293 		cc_set_xcbc_desc(req, desc, seq_size);
1294 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1295 		cc_proc_digest_desc(req, desc, seq_size);
1296 	} else { /*DECRYPT*/
1297 		/* authenc first.. */
1298 		cc_set_xcbc_desc(req, desc, seq_size);
1299 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1300 		/* decrypt after..*/
1301 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1302 		/* read the digest result with setting the completion bit
1303 		 * must be after the cipher operation
1304 		 */
1305 		cc_proc_digest_desc(req, desc, seq_size);
1306 	}
1307 }
1308 
1309 static int validate_data_size(struct cc_aead_ctx *ctx,
1310 			      enum drv_crypto_direction direct,
1311 			      struct aead_request *req)
1312 {
1313 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1314 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1315 	unsigned int assoclen = req->assoclen;
1316 	unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1317 			(req->cryptlen - ctx->authsize) : req->cryptlen;
1318 
1319 	if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1320 	    req->cryptlen < ctx->authsize)
1321 		goto data_size_err;
1322 
1323 	areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1324 
1325 	switch (ctx->flow_mode) {
1326 	case S_DIN_to_AES:
1327 		if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1328 		    !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1329 			goto data_size_err;
1330 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
1331 			break;
1332 		if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1333 			if (areq_ctx->plaintext_authenticate_only)
1334 				areq_ctx->is_single_pass = false;
1335 			break;
1336 		}
1337 
1338 		if (!IS_ALIGNED(assoclen, sizeof(u32)))
1339 			areq_ctx->is_single_pass = false;
1340 
1341 		if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1342 		    !IS_ALIGNED(cipherlen, sizeof(u32)))
1343 			areq_ctx->is_single_pass = false;
1344 
1345 		break;
1346 	case S_DIN_to_DES:
1347 		if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1348 			goto data_size_err;
1349 		if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1350 			areq_ctx->is_single_pass = false;
1351 		break;
1352 	default:
1353 		dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1354 		goto data_size_err;
1355 	}
1356 
1357 	return 0;
1358 
1359 data_size_err:
1360 	return -EINVAL;
1361 }
1362 
1363 static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1364 {
1365 	unsigned int len = 0;
1366 
1367 	if (header_size == 0)
1368 		return 0;
1369 
1370 	if (header_size < ((1UL << 16) - (1UL << 8))) {
1371 		len = 2;
1372 
1373 		pa0_buff[0] = (header_size >> 8) & 0xFF;
1374 		pa0_buff[1] = header_size & 0xFF;
1375 	} else {
1376 		len = 6;
1377 
1378 		pa0_buff[0] = 0xFF;
1379 		pa0_buff[1] = 0xFE;
1380 		pa0_buff[2] = (header_size >> 24) & 0xFF;
1381 		pa0_buff[3] = (header_size >> 16) & 0xFF;
1382 		pa0_buff[4] = (header_size >> 8) & 0xFF;
1383 		pa0_buff[5] = header_size & 0xFF;
1384 	}
1385 
1386 	return len;
1387 }
1388 
1389 static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1390 {
1391 	__be32 data;
1392 
1393 	memset(block, 0, csize);
1394 	block += csize;
1395 
1396 	if (csize >= 4)
1397 		csize = 4;
1398 	else if (msglen > (1 << (8 * csize)))
1399 		return -EOVERFLOW;
1400 
1401 	data = cpu_to_be32(msglen);
1402 	memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1403 
1404 	return 0;
1405 }
1406 
1407 static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1408 		  unsigned int *seq_size)
1409 {
1410 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1411 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1412 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1413 	unsigned int idx = *seq_size;
1414 	unsigned int cipher_flow_mode;
1415 	dma_addr_t mac_result;
1416 
1417 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1418 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1419 		mac_result = req_ctx->mac_buf_dma_addr;
1420 	} else { /* Encrypt */
1421 		cipher_flow_mode = AES_and_HASH;
1422 		mac_result = req_ctx->icv_dma_addr;
1423 	}
1424 
1425 	/* load key */
1426 	hw_desc_init(&desc[idx]);
1427 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1428 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1429 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1430 		      ctx->enc_keylen), NS_BIT);
1431 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1432 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1433 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1434 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1435 	idx++;
1436 
1437 	/* load ctr state */
1438 	hw_desc_init(&desc[idx]);
1439 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1440 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1441 	set_din_type(&desc[idx], DMA_DLLI,
1442 		     req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1443 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1444 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1445 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1446 	idx++;
1447 
1448 	/* load MAC key */
1449 	hw_desc_init(&desc[idx]);
1450 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1451 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1452 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1453 		      ctx->enc_keylen), NS_BIT);
1454 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1455 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1456 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1457 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1458 	set_aes_not_hash_mode(&desc[idx]);
1459 	idx++;
1460 
1461 	/* load MAC state */
1462 	hw_desc_init(&desc[idx]);
1463 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1464 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1465 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1466 		     AES_BLOCK_SIZE, NS_BIT);
1467 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1468 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1469 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1470 	set_aes_not_hash_mode(&desc[idx]);
1471 	idx++;
1472 
1473 	/* process assoc data */
1474 	if (req->assoclen > 0) {
1475 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1476 	} else {
1477 		hw_desc_init(&desc[idx]);
1478 		set_din_type(&desc[idx], DMA_DLLI,
1479 			     sg_dma_address(&req_ctx->ccm_adata_sg),
1480 			     AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1481 		set_flow_mode(&desc[idx], DIN_HASH);
1482 		idx++;
1483 	}
1484 
1485 	/* process the cipher */
1486 	if (req_ctx->cryptlen)
1487 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1488 
1489 	/* Read temporal MAC */
1490 	hw_desc_init(&desc[idx]);
1491 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1492 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1493 		      NS_BIT, 0);
1494 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1495 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1496 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1497 	set_aes_not_hash_mode(&desc[idx]);
1498 	idx++;
1499 
1500 	/* load AES-CTR state (for last MAC calculation)*/
1501 	hw_desc_init(&desc[idx]);
1502 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1503 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1504 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1505 		     AES_BLOCK_SIZE, NS_BIT);
1506 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1507 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1508 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1509 	idx++;
1510 
1511 	hw_desc_init(&desc[idx]);
1512 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1513 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1514 	idx++;
1515 
1516 	/* encrypt the "T" value and store MAC in mac_state */
1517 	hw_desc_init(&desc[idx]);
1518 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1519 		     ctx->authsize, NS_BIT);
1520 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1521 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1522 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1523 	idx++;
1524 
1525 	*seq_size = idx;
1526 	return 0;
1527 }
1528 
1529 static int config_ccm_adata(struct aead_request *req)
1530 {
1531 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1532 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1533 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1534 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1535 	//unsigned int size_of_a = 0, rem_a_size = 0;
1536 	unsigned int lp = req->iv[0];
1537 	/* Note: The code assume that req->iv[0] already contains the value
1538 	 * of L' of RFC3610
1539 	 */
1540 	unsigned int l = lp + 1;  /* This is L' of RFC 3610. */
1541 	unsigned int m = ctx->authsize;  /* This is M' of RFC 3610. */
1542 	u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1543 	u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1544 	u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1545 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1546 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1547 				req->cryptlen :
1548 				(req->cryptlen - ctx->authsize);
1549 	int rc;
1550 
1551 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1552 	memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1553 
1554 	/* taken from crypto/ccm.c */
1555 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1556 	if (l < 2 || l > 8) {
1557 		dev_err(dev, "illegal iv value %X\n", req->iv[0]);
1558 		return -EINVAL;
1559 	}
1560 	memcpy(b0, req->iv, AES_BLOCK_SIZE);
1561 
1562 	/* format control info per RFC 3610 and
1563 	 * NIST Special Publication 800-38C
1564 	 */
1565 	*b0 |= (8 * ((m - 2) / 2));
1566 	if (req->assoclen > 0)
1567 		*b0 |= 64;  /* Enable bit 6 if Adata exists. */
1568 
1569 	rc = set_msg_len(b0 + 16 - l, cryptlen, l);  /* Write L'. */
1570 	if (rc) {
1571 		dev_err(dev, "message len overflow detected");
1572 		return rc;
1573 	}
1574 	 /* END of "taken from crypto/ccm.c" */
1575 
1576 	/* l(a) - size of associated data. */
1577 	req_ctx->ccm_hdr_size = format_ccm_a0(a0, req->assoclen);
1578 
1579 	memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1580 	req->iv[15] = 1;
1581 
1582 	memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1583 	ctr_count_0[15] = 0;
1584 
1585 	return 0;
1586 }
1587 
1588 static void cc_proc_rfc4309_ccm(struct aead_request *req)
1589 {
1590 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1591 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1592 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1593 
1594 	/* L' */
1595 	memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1596 	/* For RFC 4309, always use 4 bytes for message length
1597 	 * (at most 2^32-1 bytes).
1598 	 */
1599 	areq_ctx->ctr_iv[0] = 3;
1600 
1601 	/* In RFC 4309 there is an 11-bytes nonce+IV part,
1602 	 * that we build here.
1603 	 */
1604 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1605 	       CCM_BLOCK_NONCE_SIZE);
1606 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1607 	       CCM_BLOCK_IV_SIZE);
1608 	req->iv = areq_ctx->ctr_iv;
1609 	req->assoclen -= CCM_BLOCK_IV_SIZE;
1610 }
1611 
1612 static void cc_set_ghash_desc(struct aead_request *req,
1613 			      struct cc_hw_desc desc[], unsigned int *seq_size)
1614 {
1615 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1616 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1617 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1618 	unsigned int idx = *seq_size;
1619 
1620 	/* load key to AES*/
1621 	hw_desc_init(&desc[idx]);
1622 	set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1623 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1624 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1625 		     ctx->enc_keylen, NS_BIT);
1626 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1627 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1628 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1629 	idx++;
1630 
1631 	/* process one zero block to generate hkey */
1632 	hw_desc_init(&desc[idx]);
1633 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1634 	set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1635 		      NS_BIT, 0);
1636 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1637 	idx++;
1638 
1639 	/* Memory Barrier */
1640 	hw_desc_init(&desc[idx]);
1641 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1642 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1643 	idx++;
1644 
1645 	/* Load GHASH subkey */
1646 	hw_desc_init(&desc[idx]);
1647 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1648 		     AES_BLOCK_SIZE, NS_BIT);
1649 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1650 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1651 	set_aes_not_hash_mode(&desc[idx]);
1652 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1653 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1654 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1655 	idx++;
1656 
1657 	/* Configure Hash Engine to work with GHASH.
1658 	 * Since it was not possible to extend HASH submodes to add GHASH,
1659 	 * The following command is necessary in order to
1660 	 * select GHASH (according to HW designers)
1661 	 */
1662 	hw_desc_init(&desc[idx]);
1663 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1664 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1665 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1666 	set_aes_not_hash_mode(&desc[idx]);
1667 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1668 	set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1669 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1670 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1671 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1672 	idx++;
1673 
1674 	/* Load GHASH initial STATE (which is 0). (for any hash there is an
1675 	 * initial state)
1676 	 */
1677 	hw_desc_init(&desc[idx]);
1678 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1679 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1680 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1681 	set_aes_not_hash_mode(&desc[idx]);
1682 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1683 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1684 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1685 	idx++;
1686 
1687 	*seq_size = idx;
1688 }
1689 
1690 static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1691 			     unsigned int *seq_size)
1692 {
1693 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1694 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1695 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1696 	unsigned int idx = *seq_size;
1697 
1698 	/* load key to AES*/
1699 	hw_desc_init(&desc[idx]);
1700 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1701 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1702 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1703 		     ctx->enc_keylen, NS_BIT);
1704 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1705 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1706 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1707 	idx++;
1708 
1709 	if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1710 		/* load AES/CTR initial CTR value inc by 2*/
1711 		hw_desc_init(&desc[idx]);
1712 		set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1713 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
1714 		set_din_type(&desc[idx], DMA_DLLI,
1715 			     req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1716 			     NS_BIT);
1717 		set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1718 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1719 		set_flow_mode(&desc[idx], S_DIN_to_AES);
1720 		idx++;
1721 	}
1722 
1723 	*seq_size = idx;
1724 }
1725 
1726 static void cc_proc_gcm_result(struct aead_request *req,
1727 			       struct cc_hw_desc desc[],
1728 			       unsigned int *seq_size)
1729 {
1730 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1731 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1732 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1733 	dma_addr_t mac_result;
1734 	unsigned int idx = *seq_size;
1735 
1736 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1737 		mac_result = req_ctx->mac_buf_dma_addr;
1738 	} else { /* Encrypt */
1739 		mac_result = req_ctx->icv_dma_addr;
1740 	}
1741 
1742 	/* process(ghash) gcm_block_len */
1743 	hw_desc_init(&desc[idx]);
1744 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1745 		     AES_BLOCK_SIZE, NS_BIT);
1746 	set_flow_mode(&desc[idx], DIN_HASH);
1747 	idx++;
1748 
1749 	/* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1750 	hw_desc_init(&desc[idx]);
1751 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1752 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1753 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1754 		      NS_BIT, 0);
1755 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1756 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1757 	set_aes_not_hash_mode(&desc[idx]);
1758 
1759 	idx++;
1760 
1761 	/* load AES/CTR initial CTR value inc by 1*/
1762 	hw_desc_init(&desc[idx]);
1763 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1764 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1765 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1766 		     AES_BLOCK_SIZE, NS_BIT);
1767 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1768 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1769 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1770 	idx++;
1771 
1772 	/* Memory Barrier */
1773 	hw_desc_init(&desc[idx]);
1774 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1775 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1776 	idx++;
1777 
1778 	/* process GCTR on stored GHASH and store MAC in mac_state*/
1779 	hw_desc_init(&desc[idx]);
1780 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1781 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1782 		     AES_BLOCK_SIZE, NS_BIT);
1783 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1784 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1785 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1786 	idx++;
1787 
1788 	*seq_size = idx;
1789 }
1790 
1791 static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1792 		  unsigned int *seq_size)
1793 {
1794 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1795 	unsigned int cipher_flow_mode;
1796 
1797 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1798 		cipher_flow_mode = AES_and_HASH;
1799 	} else { /* Encrypt */
1800 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1801 	}
1802 
1803 	//in RFC4543 no data to encrypt. just copy data from src to dest.
1804 	if (req_ctx->plaintext_authenticate_only) {
1805 		cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1806 		cc_set_ghash_desc(req, desc, seq_size);
1807 		/* process(ghash) assoc data */
1808 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1809 		cc_set_gctr_desc(req, desc, seq_size);
1810 		cc_proc_gcm_result(req, desc, seq_size);
1811 		return 0;
1812 	}
1813 
1814 	// for gcm and rfc4106.
1815 	cc_set_ghash_desc(req, desc, seq_size);
1816 	/* process(ghash) assoc data */
1817 	if (req->assoclen > 0)
1818 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1819 	cc_set_gctr_desc(req, desc, seq_size);
1820 	/* process(gctr+ghash) */
1821 	if (req_ctx->cryptlen)
1822 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1823 	cc_proc_gcm_result(req, desc, seq_size);
1824 
1825 	return 0;
1826 }
1827 
1828 static int config_gcm_context(struct aead_request *req)
1829 {
1830 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1831 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1832 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1833 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1834 
1835 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1836 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1837 				req->cryptlen :
1838 				(req->cryptlen - ctx->authsize);
1839 	__be32 counter = cpu_to_be32(2);
1840 
1841 	dev_dbg(dev, "%s() cryptlen = %d, req->assoclen = %d ctx->authsize = %d\n",
1842 		__func__, cryptlen, req->assoclen, ctx->authsize);
1843 
1844 	memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1845 
1846 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1847 
1848 	memcpy(req->iv + 12, &counter, 4);
1849 	memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1850 
1851 	counter = cpu_to_be32(1);
1852 	memcpy(req->iv + 12, &counter, 4);
1853 	memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1854 
1855 	if (!req_ctx->plaintext_authenticate_only) {
1856 		__be64 temp64;
1857 
1858 		temp64 = cpu_to_be64(req->assoclen * 8);
1859 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1860 		temp64 = cpu_to_be64(cryptlen * 8);
1861 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1862 	} else {
1863 		/* rfc4543=>  all data(AAD,IV,Plain) are considered additional
1864 		 * data that is nothing is encrypted.
1865 		 */
1866 		__be64 temp64;
1867 
1868 		temp64 = cpu_to_be64((req->assoclen + GCM_BLOCK_RFC4_IV_SIZE +
1869 				      cryptlen) * 8);
1870 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1871 		temp64 = 0;
1872 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1873 	}
1874 
1875 	return 0;
1876 }
1877 
1878 static void cc_proc_rfc4_gcm(struct aead_request *req)
1879 {
1880 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1881 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1882 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1883 
1884 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1885 	       ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1886 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1887 	       GCM_BLOCK_RFC4_IV_SIZE);
1888 	req->iv = areq_ctx->ctr_iv;
1889 	req->assoclen -= GCM_BLOCK_RFC4_IV_SIZE;
1890 }
1891 
1892 static int cc_proc_aead(struct aead_request *req,
1893 			enum drv_crypto_direction direct)
1894 {
1895 	int rc = 0;
1896 	int seq_len = 0;
1897 	struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1898 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1899 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1900 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1901 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1902 	struct cc_crypto_req cc_req = {};
1903 
1904 	dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1905 		((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1906 		ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1907 		sg_virt(req->dst), req->dst->offset, req->cryptlen);
1908 
1909 	/* STAT_PHASE_0: Init and sanity checks */
1910 
1911 	/* Check data length according to mode */
1912 	if (validate_data_size(ctx, direct, req)) {
1913 		dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1914 			req->cryptlen, req->assoclen);
1915 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
1916 		return -EINVAL;
1917 	}
1918 
1919 	/* Setup request structure */
1920 	cc_req.user_cb = (void *)cc_aead_complete;
1921 	cc_req.user_arg = (void *)req;
1922 
1923 	/* Setup request context */
1924 	areq_ctx->gen_ctx.op_type = direct;
1925 	areq_ctx->req_authsize = ctx->authsize;
1926 	areq_ctx->cipher_mode = ctx->cipher_mode;
1927 
1928 	/* STAT_PHASE_1: Map buffers */
1929 
1930 	if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1931 		/* Build CTR IV - Copy nonce from last 4 bytes in
1932 		 * CTR key to first 4 bytes in CTR IV
1933 		 */
1934 		memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1935 		       CTR_RFC3686_NONCE_SIZE);
1936 		if (!areq_ctx->backup_giv) /*User none-generated IV*/
1937 			memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE,
1938 			       req->iv, CTR_RFC3686_IV_SIZE);
1939 		/* Initialize counter portion of counter block */
1940 		*(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1941 			    CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1942 
1943 		/* Replace with counter iv */
1944 		req->iv = areq_ctx->ctr_iv;
1945 		areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1946 	} else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1947 		   (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1948 		areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1949 		if (areq_ctx->ctr_iv != req->iv) {
1950 			memcpy(areq_ctx->ctr_iv, req->iv,
1951 			       crypto_aead_ivsize(tfm));
1952 			req->iv = areq_ctx->ctr_iv;
1953 		}
1954 	}  else {
1955 		areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1956 	}
1957 
1958 	if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1959 		rc = config_ccm_adata(req);
1960 		if (rc) {
1961 			dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1962 				rc);
1963 			goto exit;
1964 		}
1965 	} else {
1966 		areq_ctx->ccm_hdr_size = ccm_header_size_null;
1967 	}
1968 
1969 	if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1970 		rc = config_gcm_context(req);
1971 		if (rc) {
1972 			dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1973 				rc);
1974 			goto exit;
1975 		}
1976 	}
1977 
1978 	rc = cc_map_aead_request(ctx->drvdata, req);
1979 	if (rc) {
1980 		dev_err(dev, "map_request() failed\n");
1981 		goto exit;
1982 	}
1983 
1984 	/* do we need to generate IV? */
1985 	if (areq_ctx->backup_giv) {
1986 		/* set the DMA mapped IV address*/
1987 		if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1988 			cc_req.ivgen_dma_addr[0] =
1989 				areq_ctx->gen_ctx.iv_dma_addr +
1990 				CTR_RFC3686_NONCE_SIZE;
1991 			cc_req.ivgen_dma_addr_len = 1;
1992 		} else if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1993 			/* In ccm, the IV needs to exist both inside B0 and
1994 			 * inside the counter.It is also copied to iv_dma_addr
1995 			 * for other reasons (like returning it to the user).
1996 			 * So, using 3 (identical) IV outputs.
1997 			 */
1998 			cc_req.ivgen_dma_addr[0] =
1999 				areq_ctx->gen_ctx.iv_dma_addr +
2000 				CCM_BLOCK_IV_OFFSET;
2001 			cc_req.ivgen_dma_addr[1] =
2002 				sg_dma_address(&areq_ctx->ccm_adata_sg) +
2003 				CCM_B0_OFFSET + CCM_BLOCK_IV_OFFSET;
2004 			cc_req.ivgen_dma_addr[2] =
2005 				sg_dma_address(&areq_ctx->ccm_adata_sg) +
2006 				CCM_CTR_COUNT_0_OFFSET + CCM_BLOCK_IV_OFFSET;
2007 			cc_req.ivgen_dma_addr_len = 3;
2008 		} else {
2009 			cc_req.ivgen_dma_addr[0] =
2010 				areq_ctx->gen_ctx.iv_dma_addr;
2011 			cc_req.ivgen_dma_addr_len = 1;
2012 		}
2013 
2014 		/* set the IV size (8/16 B long)*/
2015 		cc_req.ivgen_size = crypto_aead_ivsize(tfm);
2016 	}
2017 
2018 	/* STAT_PHASE_2: Create sequence */
2019 
2020 	/* Load MLLI tables to SRAM if necessary */
2021 	cc_mlli_to_sram(req, desc, &seq_len);
2022 
2023 	/*TODO: move seq len by reference */
2024 	switch (ctx->auth_mode) {
2025 	case DRV_HASH_SHA1:
2026 	case DRV_HASH_SHA256:
2027 		cc_hmac_authenc(req, desc, &seq_len);
2028 		break;
2029 	case DRV_HASH_XCBC_MAC:
2030 		cc_xcbc_authenc(req, desc, &seq_len);
2031 		break;
2032 	case DRV_HASH_NULL:
2033 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
2034 			cc_ccm(req, desc, &seq_len);
2035 		if (ctx->cipher_mode == DRV_CIPHER_GCTR)
2036 			cc_gcm(req, desc, &seq_len);
2037 		break;
2038 	default:
2039 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2040 		cc_unmap_aead_request(dev, req);
2041 		rc = -ENOTSUPP;
2042 		goto exit;
2043 	}
2044 
2045 	/* STAT_PHASE_3: Lock HW and push sequence */
2046 
2047 	rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2048 
2049 	if (rc != -EINPROGRESS && rc != -EBUSY) {
2050 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2051 		cc_unmap_aead_request(dev, req);
2052 	}
2053 
2054 exit:
2055 	return rc;
2056 }
2057 
2058 static int cc_aead_encrypt(struct aead_request *req)
2059 {
2060 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2061 	int rc;
2062 
2063 	/* No generated IV required */
2064 	areq_ctx->backup_iv = req->iv;
2065 	areq_ctx->backup_giv = NULL;
2066 	areq_ctx->is_gcm4543 = false;
2067 
2068 	areq_ctx->plaintext_authenticate_only = false;
2069 
2070 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2071 	if (rc != -EINPROGRESS && rc != -EBUSY)
2072 		req->iv = areq_ctx->backup_iv;
2073 
2074 	return rc;
2075 }
2076 
2077 static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2078 {
2079 	/* Very similar to cc_aead_encrypt() above. */
2080 
2081 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2082 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2083 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2084 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2085 	int rc = -EINVAL;
2086 
2087 	if (!valid_assoclen(req)) {
2088 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2089 		goto out;
2090 	}
2091 
2092 	/* No generated IV required */
2093 	areq_ctx->backup_iv = req->iv;
2094 	areq_ctx->backup_giv = NULL;
2095 	areq_ctx->is_gcm4543 = true;
2096 
2097 	cc_proc_rfc4309_ccm(req);
2098 
2099 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2100 	if (rc != -EINPROGRESS && rc != -EBUSY)
2101 		req->iv = areq_ctx->backup_iv;
2102 out:
2103 	return rc;
2104 }
2105 
2106 static int cc_aead_decrypt(struct aead_request *req)
2107 {
2108 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2109 	int rc;
2110 
2111 	/* No generated IV required */
2112 	areq_ctx->backup_iv = req->iv;
2113 	areq_ctx->backup_giv = NULL;
2114 	areq_ctx->is_gcm4543 = false;
2115 
2116 	areq_ctx->plaintext_authenticate_only = false;
2117 
2118 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2119 	if (rc != -EINPROGRESS && rc != -EBUSY)
2120 		req->iv = areq_ctx->backup_iv;
2121 
2122 	return rc;
2123 }
2124 
2125 static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2126 {
2127 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2128 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2129 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2130 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2131 	int rc = -EINVAL;
2132 
2133 	if (!valid_assoclen(req)) {
2134 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2135 		goto out;
2136 	}
2137 
2138 	/* No generated IV required */
2139 	areq_ctx->backup_iv = req->iv;
2140 	areq_ctx->backup_giv = NULL;
2141 
2142 	areq_ctx->is_gcm4543 = true;
2143 	cc_proc_rfc4309_ccm(req);
2144 
2145 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2146 	if (rc != -EINPROGRESS && rc != -EBUSY)
2147 		req->iv = areq_ctx->backup_iv;
2148 
2149 out:
2150 	return rc;
2151 }
2152 
2153 static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2154 				 unsigned int keylen)
2155 {
2156 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2157 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2158 
2159 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2160 
2161 	if (keylen < 4)
2162 		return -EINVAL;
2163 
2164 	keylen -= 4;
2165 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2166 
2167 	return cc_aead_setkey(tfm, key, keylen);
2168 }
2169 
2170 static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2171 				 unsigned int keylen)
2172 {
2173 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2174 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2175 
2176 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2177 
2178 	if (keylen < 4)
2179 		return -EINVAL;
2180 
2181 	keylen -= 4;
2182 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2183 
2184 	return cc_aead_setkey(tfm, key, keylen);
2185 }
2186 
2187 static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2188 			      unsigned int authsize)
2189 {
2190 	switch (authsize) {
2191 	case 4:
2192 	case 8:
2193 	case 12:
2194 	case 13:
2195 	case 14:
2196 	case 15:
2197 	case 16:
2198 		break;
2199 	default:
2200 		return -EINVAL;
2201 	}
2202 
2203 	return cc_aead_setauthsize(authenc, authsize);
2204 }
2205 
2206 static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2207 				      unsigned int authsize)
2208 {
2209 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2210 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2211 
2212 	dev_dbg(dev, "authsize %d\n", authsize);
2213 
2214 	switch (authsize) {
2215 	case 8:
2216 	case 12:
2217 	case 16:
2218 		break;
2219 	default:
2220 		return -EINVAL;
2221 	}
2222 
2223 	return cc_aead_setauthsize(authenc, authsize);
2224 }
2225 
2226 static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2227 				      unsigned int authsize)
2228 {
2229 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2230 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2231 
2232 	dev_dbg(dev, "authsize %d\n", authsize);
2233 
2234 	if (authsize != 16)
2235 		return -EINVAL;
2236 
2237 	return cc_aead_setauthsize(authenc, authsize);
2238 }
2239 
2240 static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2241 {
2242 	/* Very similar to cc_aead_encrypt() above. */
2243 
2244 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2245 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2246 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2247 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2248 	int rc = -EINVAL;
2249 
2250 	if (!valid_assoclen(req)) {
2251 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2252 		goto out;
2253 	}
2254 
2255 	/* No generated IV required */
2256 	areq_ctx->backup_iv = req->iv;
2257 	areq_ctx->backup_giv = NULL;
2258 
2259 	areq_ctx->plaintext_authenticate_only = false;
2260 
2261 	cc_proc_rfc4_gcm(req);
2262 	areq_ctx->is_gcm4543 = true;
2263 
2264 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2265 	if (rc != -EINPROGRESS && rc != -EBUSY)
2266 		req->iv = areq_ctx->backup_iv;
2267 out:
2268 	return rc;
2269 }
2270 
2271 static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2272 {
2273 	/* Very similar to cc_aead_encrypt() above. */
2274 
2275 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2276 	int rc;
2277 
2278 	//plaintext is not encryped with rfc4543
2279 	areq_ctx->plaintext_authenticate_only = true;
2280 
2281 	/* No generated IV required */
2282 	areq_ctx->backup_iv = req->iv;
2283 	areq_ctx->backup_giv = NULL;
2284 
2285 	cc_proc_rfc4_gcm(req);
2286 	areq_ctx->is_gcm4543 = true;
2287 
2288 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2289 	if (rc != -EINPROGRESS && rc != -EBUSY)
2290 		req->iv = areq_ctx->backup_iv;
2291 
2292 	return rc;
2293 }
2294 
2295 static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2296 {
2297 	/* Very similar to cc_aead_decrypt() above. */
2298 
2299 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2300 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2301 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2302 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2303 	int rc = -EINVAL;
2304 
2305 	if (!valid_assoclen(req)) {
2306 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2307 		goto out;
2308 	}
2309 
2310 	/* No generated IV required */
2311 	areq_ctx->backup_iv = req->iv;
2312 	areq_ctx->backup_giv = NULL;
2313 
2314 	areq_ctx->plaintext_authenticate_only = false;
2315 
2316 	cc_proc_rfc4_gcm(req);
2317 	areq_ctx->is_gcm4543 = true;
2318 
2319 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2320 	if (rc != -EINPROGRESS && rc != -EBUSY)
2321 		req->iv = areq_ctx->backup_iv;
2322 out:
2323 	return rc;
2324 }
2325 
2326 static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2327 {
2328 	/* Very similar to cc_aead_decrypt() above. */
2329 
2330 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2331 	int rc;
2332 
2333 	//plaintext is not decryped with rfc4543
2334 	areq_ctx->plaintext_authenticate_only = true;
2335 
2336 	/* No generated IV required */
2337 	areq_ctx->backup_iv = req->iv;
2338 	areq_ctx->backup_giv = NULL;
2339 
2340 	cc_proc_rfc4_gcm(req);
2341 	areq_ctx->is_gcm4543 = true;
2342 
2343 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2344 	if (rc != -EINPROGRESS && rc != -EBUSY)
2345 		req->iv = areq_ctx->backup_iv;
2346 
2347 	return rc;
2348 }
2349 
2350 /* aead alg */
2351 static struct cc_alg_template aead_algs[] = {
2352 	{
2353 		.name = "authenc(hmac(sha1),cbc(aes))",
2354 		.driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2355 		.blocksize = AES_BLOCK_SIZE,
2356 		.template_aead = {
2357 			.setkey = cc_aead_setkey,
2358 			.setauthsize = cc_aead_setauthsize,
2359 			.encrypt = cc_aead_encrypt,
2360 			.decrypt = cc_aead_decrypt,
2361 			.init = cc_aead_init,
2362 			.exit = cc_aead_exit,
2363 			.ivsize = AES_BLOCK_SIZE,
2364 			.maxauthsize = SHA1_DIGEST_SIZE,
2365 		},
2366 		.cipher_mode = DRV_CIPHER_CBC,
2367 		.flow_mode = S_DIN_to_AES,
2368 		.auth_mode = DRV_HASH_SHA1,
2369 		.min_hw_rev = CC_HW_REV_630,
2370 		.std_body = CC_STD_NIST,
2371 	},
2372 	{
2373 		.name = "authenc(hmac(sha1),cbc(des3_ede))",
2374 		.driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2375 		.blocksize = DES3_EDE_BLOCK_SIZE,
2376 		.template_aead = {
2377 			.setkey = cc_aead_setkey,
2378 			.setauthsize = cc_aead_setauthsize,
2379 			.encrypt = cc_aead_encrypt,
2380 			.decrypt = cc_aead_decrypt,
2381 			.init = cc_aead_init,
2382 			.exit = cc_aead_exit,
2383 			.ivsize = DES3_EDE_BLOCK_SIZE,
2384 			.maxauthsize = SHA1_DIGEST_SIZE,
2385 		},
2386 		.cipher_mode = DRV_CIPHER_CBC,
2387 		.flow_mode = S_DIN_to_DES,
2388 		.auth_mode = DRV_HASH_SHA1,
2389 		.min_hw_rev = CC_HW_REV_630,
2390 		.std_body = CC_STD_NIST,
2391 	},
2392 	{
2393 		.name = "authenc(hmac(sha256),cbc(aes))",
2394 		.driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2395 		.blocksize = AES_BLOCK_SIZE,
2396 		.template_aead = {
2397 			.setkey = cc_aead_setkey,
2398 			.setauthsize = cc_aead_setauthsize,
2399 			.encrypt = cc_aead_encrypt,
2400 			.decrypt = cc_aead_decrypt,
2401 			.init = cc_aead_init,
2402 			.exit = cc_aead_exit,
2403 			.ivsize = AES_BLOCK_SIZE,
2404 			.maxauthsize = SHA256_DIGEST_SIZE,
2405 		},
2406 		.cipher_mode = DRV_CIPHER_CBC,
2407 		.flow_mode = S_DIN_to_AES,
2408 		.auth_mode = DRV_HASH_SHA256,
2409 		.min_hw_rev = CC_HW_REV_630,
2410 		.std_body = CC_STD_NIST,
2411 	},
2412 	{
2413 		.name = "authenc(hmac(sha256),cbc(des3_ede))",
2414 		.driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2415 		.blocksize = DES3_EDE_BLOCK_SIZE,
2416 		.template_aead = {
2417 			.setkey = cc_aead_setkey,
2418 			.setauthsize = cc_aead_setauthsize,
2419 			.encrypt = cc_aead_encrypt,
2420 			.decrypt = cc_aead_decrypt,
2421 			.init = cc_aead_init,
2422 			.exit = cc_aead_exit,
2423 			.ivsize = DES3_EDE_BLOCK_SIZE,
2424 			.maxauthsize = SHA256_DIGEST_SIZE,
2425 		},
2426 		.cipher_mode = DRV_CIPHER_CBC,
2427 		.flow_mode = S_DIN_to_DES,
2428 		.auth_mode = DRV_HASH_SHA256,
2429 		.min_hw_rev = CC_HW_REV_630,
2430 		.std_body = CC_STD_NIST,
2431 	},
2432 	{
2433 		.name = "authenc(xcbc(aes),cbc(aes))",
2434 		.driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2435 		.blocksize = AES_BLOCK_SIZE,
2436 		.template_aead = {
2437 			.setkey = cc_aead_setkey,
2438 			.setauthsize = cc_aead_setauthsize,
2439 			.encrypt = cc_aead_encrypt,
2440 			.decrypt = cc_aead_decrypt,
2441 			.init = cc_aead_init,
2442 			.exit = cc_aead_exit,
2443 			.ivsize = AES_BLOCK_SIZE,
2444 			.maxauthsize = AES_BLOCK_SIZE,
2445 		},
2446 		.cipher_mode = DRV_CIPHER_CBC,
2447 		.flow_mode = S_DIN_to_AES,
2448 		.auth_mode = DRV_HASH_XCBC_MAC,
2449 		.min_hw_rev = CC_HW_REV_630,
2450 		.std_body = CC_STD_NIST,
2451 	},
2452 	{
2453 		.name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2454 		.driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2455 		.blocksize = 1,
2456 		.template_aead = {
2457 			.setkey = cc_aead_setkey,
2458 			.setauthsize = cc_aead_setauthsize,
2459 			.encrypt = cc_aead_encrypt,
2460 			.decrypt = cc_aead_decrypt,
2461 			.init = cc_aead_init,
2462 			.exit = cc_aead_exit,
2463 			.ivsize = CTR_RFC3686_IV_SIZE,
2464 			.maxauthsize = SHA1_DIGEST_SIZE,
2465 		},
2466 		.cipher_mode = DRV_CIPHER_CTR,
2467 		.flow_mode = S_DIN_to_AES,
2468 		.auth_mode = DRV_HASH_SHA1,
2469 		.min_hw_rev = CC_HW_REV_630,
2470 		.std_body = CC_STD_NIST,
2471 	},
2472 	{
2473 		.name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2474 		.driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2475 		.blocksize = 1,
2476 		.template_aead = {
2477 			.setkey = cc_aead_setkey,
2478 			.setauthsize = cc_aead_setauthsize,
2479 			.encrypt = cc_aead_encrypt,
2480 			.decrypt = cc_aead_decrypt,
2481 			.init = cc_aead_init,
2482 			.exit = cc_aead_exit,
2483 			.ivsize = CTR_RFC3686_IV_SIZE,
2484 			.maxauthsize = SHA256_DIGEST_SIZE,
2485 		},
2486 		.cipher_mode = DRV_CIPHER_CTR,
2487 		.flow_mode = S_DIN_to_AES,
2488 		.auth_mode = DRV_HASH_SHA256,
2489 		.min_hw_rev = CC_HW_REV_630,
2490 		.std_body = CC_STD_NIST,
2491 	},
2492 	{
2493 		.name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2494 		.driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2495 		.blocksize = 1,
2496 		.template_aead = {
2497 			.setkey = cc_aead_setkey,
2498 			.setauthsize = cc_aead_setauthsize,
2499 			.encrypt = cc_aead_encrypt,
2500 			.decrypt = cc_aead_decrypt,
2501 			.init = cc_aead_init,
2502 			.exit = cc_aead_exit,
2503 			.ivsize = CTR_RFC3686_IV_SIZE,
2504 			.maxauthsize = AES_BLOCK_SIZE,
2505 		},
2506 		.cipher_mode = DRV_CIPHER_CTR,
2507 		.flow_mode = S_DIN_to_AES,
2508 		.auth_mode = DRV_HASH_XCBC_MAC,
2509 		.min_hw_rev = CC_HW_REV_630,
2510 		.std_body = CC_STD_NIST,
2511 	},
2512 	{
2513 		.name = "ccm(aes)",
2514 		.driver_name = "ccm-aes-ccree",
2515 		.blocksize = 1,
2516 		.template_aead = {
2517 			.setkey = cc_aead_setkey,
2518 			.setauthsize = cc_ccm_setauthsize,
2519 			.encrypt = cc_aead_encrypt,
2520 			.decrypt = cc_aead_decrypt,
2521 			.init = cc_aead_init,
2522 			.exit = cc_aead_exit,
2523 			.ivsize = AES_BLOCK_SIZE,
2524 			.maxauthsize = AES_BLOCK_SIZE,
2525 		},
2526 		.cipher_mode = DRV_CIPHER_CCM,
2527 		.flow_mode = S_DIN_to_AES,
2528 		.auth_mode = DRV_HASH_NULL,
2529 		.min_hw_rev = CC_HW_REV_630,
2530 		.std_body = CC_STD_NIST,
2531 	},
2532 	{
2533 		.name = "rfc4309(ccm(aes))",
2534 		.driver_name = "rfc4309-ccm-aes-ccree",
2535 		.blocksize = 1,
2536 		.template_aead = {
2537 			.setkey = cc_rfc4309_ccm_setkey,
2538 			.setauthsize = cc_rfc4309_ccm_setauthsize,
2539 			.encrypt = cc_rfc4309_ccm_encrypt,
2540 			.decrypt = cc_rfc4309_ccm_decrypt,
2541 			.init = cc_aead_init,
2542 			.exit = cc_aead_exit,
2543 			.ivsize = CCM_BLOCK_IV_SIZE,
2544 			.maxauthsize = AES_BLOCK_SIZE,
2545 		},
2546 		.cipher_mode = DRV_CIPHER_CCM,
2547 		.flow_mode = S_DIN_to_AES,
2548 		.auth_mode = DRV_HASH_NULL,
2549 		.min_hw_rev = CC_HW_REV_630,
2550 		.std_body = CC_STD_NIST,
2551 	},
2552 	{
2553 		.name = "gcm(aes)",
2554 		.driver_name = "gcm-aes-ccree",
2555 		.blocksize = 1,
2556 		.template_aead = {
2557 			.setkey = cc_aead_setkey,
2558 			.setauthsize = cc_gcm_setauthsize,
2559 			.encrypt = cc_aead_encrypt,
2560 			.decrypt = cc_aead_decrypt,
2561 			.init = cc_aead_init,
2562 			.exit = cc_aead_exit,
2563 			.ivsize = 12,
2564 			.maxauthsize = AES_BLOCK_SIZE,
2565 		},
2566 		.cipher_mode = DRV_CIPHER_GCTR,
2567 		.flow_mode = S_DIN_to_AES,
2568 		.auth_mode = DRV_HASH_NULL,
2569 		.min_hw_rev = CC_HW_REV_630,
2570 		.std_body = CC_STD_NIST,
2571 	},
2572 	{
2573 		.name = "rfc4106(gcm(aes))",
2574 		.driver_name = "rfc4106-gcm-aes-ccree",
2575 		.blocksize = 1,
2576 		.template_aead = {
2577 			.setkey = cc_rfc4106_gcm_setkey,
2578 			.setauthsize = cc_rfc4106_gcm_setauthsize,
2579 			.encrypt = cc_rfc4106_gcm_encrypt,
2580 			.decrypt = cc_rfc4106_gcm_decrypt,
2581 			.init = cc_aead_init,
2582 			.exit = cc_aead_exit,
2583 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2584 			.maxauthsize = AES_BLOCK_SIZE,
2585 		},
2586 		.cipher_mode = DRV_CIPHER_GCTR,
2587 		.flow_mode = S_DIN_to_AES,
2588 		.auth_mode = DRV_HASH_NULL,
2589 		.min_hw_rev = CC_HW_REV_630,
2590 		.std_body = CC_STD_NIST,
2591 	},
2592 	{
2593 		.name = "rfc4543(gcm(aes))",
2594 		.driver_name = "rfc4543-gcm-aes-ccree",
2595 		.blocksize = 1,
2596 		.template_aead = {
2597 			.setkey = cc_rfc4543_gcm_setkey,
2598 			.setauthsize = cc_rfc4543_gcm_setauthsize,
2599 			.encrypt = cc_rfc4543_gcm_encrypt,
2600 			.decrypt = cc_rfc4543_gcm_decrypt,
2601 			.init = cc_aead_init,
2602 			.exit = cc_aead_exit,
2603 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2604 			.maxauthsize = AES_BLOCK_SIZE,
2605 		},
2606 		.cipher_mode = DRV_CIPHER_GCTR,
2607 		.flow_mode = S_DIN_to_AES,
2608 		.auth_mode = DRV_HASH_NULL,
2609 		.min_hw_rev = CC_HW_REV_630,
2610 		.std_body = CC_STD_NIST,
2611 	},
2612 };
2613 
2614 static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2615 						struct device *dev)
2616 {
2617 	struct cc_crypto_alg *t_alg;
2618 	struct aead_alg *alg;
2619 
2620 	t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
2621 	if (!t_alg)
2622 		return ERR_PTR(-ENOMEM);
2623 
2624 	alg = &tmpl->template_aead;
2625 
2626 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
2627 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2628 		 tmpl->driver_name);
2629 	alg->base.cra_module = THIS_MODULE;
2630 	alg->base.cra_priority = CC_CRA_PRIO;
2631 
2632 	alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2633 	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2634 	alg->init = cc_aead_init;
2635 	alg->exit = cc_aead_exit;
2636 
2637 	t_alg->aead_alg = *alg;
2638 
2639 	t_alg->cipher_mode = tmpl->cipher_mode;
2640 	t_alg->flow_mode = tmpl->flow_mode;
2641 	t_alg->auth_mode = tmpl->auth_mode;
2642 
2643 	return t_alg;
2644 }
2645 
2646 int cc_aead_free(struct cc_drvdata *drvdata)
2647 {
2648 	struct cc_crypto_alg *t_alg, *n;
2649 	struct cc_aead_handle *aead_handle =
2650 		(struct cc_aead_handle *)drvdata->aead_handle;
2651 
2652 	if (aead_handle) {
2653 		/* Remove registered algs */
2654 		list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list,
2655 					 entry) {
2656 			crypto_unregister_aead(&t_alg->aead_alg);
2657 			list_del(&t_alg->entry);
2658 			kfree(t_alg);
2659 		}
2660 		kfree(aead_handle);
2661 		drvdata->aead_handle = NULL;
2662 	}
2663 
2664 	return 0;
2665 }
2666 
2667 int cc_aead_alloc(struct cc_drvdata *drvdata)
2668 {
2669 	struct cc_aead_handle *aead_handle;
2670 	struct cc_crypto_alg *t_alg;
2671 	int rc = -ENOMEM;
2672 	int alg;
2673 	struct device *dev = drvdata_to_dev(drvdata);
2674 
2675 	aead_handle = kmalloc(sizeof(*aead_handle), GFP_KERNEL);
2676 	if (!aead_handle) {
2677 		rc = -ENOMEM;
2678 		goto fail0;
2679 	}
2680 
2681 	INIT_LIST_HEAD(&aead_handle->aead_list);
2682 	drvdata->aead_handle = aead_handle;
2683 
2684 	aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2685 							 MAX_HMAC_DIGEST_SIZE);
2686 
2687 	if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2688 		dev_err(dev, "SRAM pool exhausted\n");
2689 		rc = -ENOMEM;
2690 		goto fail1;
2691 	}
2692 
2693 	/* Linux crypto */
2694 	for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2695 		if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
2696 		    !(drvdata->std_bodies & aead_algs[alg].std_body))
2697 			continue;
2698 
2699 		t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2700 		if (IS_ERR(t_alg)) {
2701 			rc = PTR_ERR(t_alg);
2702 			dev_err(dev, "%s alg allocation failed\n",
2703 				aead_algs[alg].driver_name);
2704 			goto fail1;
2705 		}
2706 		t_alg->drvdata = drvdata;
2707 		rc = crypto_register_aead(&t_alg->aead_alg);
2708 		if (rc) {
2709 			dev_err(dev, "%s alg registration failed\n",
2710 				t_alg->aead_alg.base.cra_driver_name);
2711 			goto fail2;
2712 		} else {
2713 			list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2714 			dev_dbg(dev, "Registered %s\n",
2715 				t_alg->aead_alg.base.cra_driver_name);
2716 		}
2717 	}
2718 
2719 	return 0;
2720 
2721 fail2:
2722 	kfree(t_alg);
2723 fail1:
2724 	cc_aead_free(drvdata);
2725 fail0:
2726 	return rc;
2727 }
2728