xref: /openbmc/linux/drivers/crypto/ccree/cc_aead.c (revision b58c6630)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3 
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/aead.h>
8 #include <crypto/authenc.h>
9 #include <crypto/gcm.h>
10 #include <linux/rtnetlink.h>
11 #include <crypto/internal/des.h>
12 #include "cc_driver.h"
13 #include "cc_buffer_mgr.h"
14 #include "cc_aead.h"
15 #include "cc_request_mgr.h"
16 #include "cc_hash.h"
17 #include "cc_sram_mgr.h"
18 
19 #define template_aead	template_u.aead
20 
21 #define MAX_AEAD_SETKEY_SEQ 12
22 #define MAX_AEAD_PROCESS_SEQ 23
23 
24 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
25 #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
26 
27 #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
28 
29 struct cc_aead_handle {
30 	u32 sram_workspace_addr;
31 	struct list_head aead_list;
32 };
33 
34 struct cc_hmac_s {
35 	u8 *padded_authkey;
36 	u8 *ipad_opad; /* IPAD, OPAD*/
37 	dma_addr_t padded_authkey_dma_addr;
38 	dma_addr_t ipad_opad_dma_addr;
39 };
40 
41 struct cc_xcbc_s {
42 	u8 *xcbc_keys; /* K1,K2,K3 */
43 	dma_addr_t xcbc_keys_dma_addr;
44 };
45 
46 struct cc_aead_ctx {
47 	struct cc_drvdata *drvdata;
48 	u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
49 	u8 *enckey;
50 	dma_addr_t enckey_dma_addr;
51 	union {
52 		struct cc_hmac_s hmac;
53 		struct cc_xcbc_s xcbc;
54 	} auth_state;
55 	unsigned int enc_keylen;
56 	unsigned int auth_keylen;
57 	unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
58 	unsigned int hash_len;
59 	enum drv_cipher_mode cipher_mode;
60 	enum cc_flow_mode flow_mode;
61 	enum drv_hash_mode auth_mode;
62 };
63 
64 static void cc_aead_exit(struct crypto_aead *tfm)
65 {
66 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
67 	struct device *dev = drvdata_to_dev(ctx->drvdata);
68 
69 	dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
70 		crypto_tfm_alg_name(&tfm->base));
71 
72 	/* Unmap enckey buffer */
73 	if (ctx->enckey) {
74 		dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
75 				  ctx->enckey_dma_addr);
76 		dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
77 			&ctx->enckey_dma_addr);
78 		ctx->enckey_dma_addr = 0;
79 		ctx->enckey = NULL;
80 	}
81 
82 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
83 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
84 
85 		if (xcbc->xcbc_keys) {
86 			dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
87 					  xcbc->xcbc_keys,
88 					  xcbc->xcbc_keys_dma_addr);
89 		}
90 		dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
91 			&xcbc->xcbc_keys_dma_addr);
92 		xcbc->xcbc_keys_dma_addr = 0;
93 		xcbc->xcbc_keys = NULL;
94 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
95 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
96 
97 		if (hmac->ipad_opad) {
98 			dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
99 					  hmac->ipad_opad,
100 					  hmac->ipad_opad_dma_addr);
101 			dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
102 				&hmac->ipad_opad_dma_addr);
103 			hmac->ipad_opad_dma_addr = 0;
104 			hmac->ipad_opad = NULL;
105 		}
106 		if (hmac->padded_authkey) {
107 			dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
108 					  hmac->padded_authkey,
109 					  hmac->padded_authkey_dma_addr);
110 			dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
111 				&hmac->padded_authkey_dma_addr);
112 			hmac->padded_authkey_dma_addr = 0;
113 			hmac->padded_authkey = NULL;
114 		}
115 	}
116 }
117 
118 static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
119 {
120 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
121 
122 	return cc_get_default_hash_len(ctx->drvdata);
123 }
124 
125 static int cc_aead_init(struct crypto_aead *tfm)
126 {
127 	struct aead_alg *alg = crypto_aead_alg(tfm);
128 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
129 	struct cc_crypto_alg *cc_alg =
130 			container_of(alg, struct cc_crypto_alg, aead_alg);
131 	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
132 
133 	dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
134 		crypto_tfm_alg_name(&tfm->base));
135 
136 	/* Initialize modes in instance */
137 	ctx->cipher_mode = cc_alg->cipher_mode;
138 	ctx->flow_mode = cc_alg->flow_mode;
139 	ctx->auth_mode = cc_alg->auth_mode;
140 	ctx->drvdata = cc_alg->drvdata;
141 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
142 
143 	/* Allocate key buffer, cache line aligned */
144 	ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
145 					 &ctx->enckey_dma_addr, GFP_KERNEL);
146 	if (!ctx->enckey) {
147 		dev_err(dev, "Failed allocating key buffer\n");
148 		goto init_failed;
149 	}
150 	dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
151 		ctx->enckey);
152 
153 	/* Set default authlen value */
154 
155 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
156 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
157 		const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
158 
159 		/* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
160 		/* (and temporary for user key - up to 256b) */
161 		xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
162 						     &xcbc->xcbc_keys_dma_addr,
163 						     GFP_KERNEL);
164 		if (!xcbc->xcbc_keys) {
165 			dev_err(dev, "Failed allocating buffer for XCBC keys\n");
166 			goto init_failed;
167 		}
168 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
169 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
170 		const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
171 		dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
172 
173 		/* Allocate dma-coherent buffer for IPAD + OPAD */
174 		hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
175 						     &hmac->ipad_opad_dma_addr,
176 						     GFP_KERNEL);
177 
178 		if (!hmac->ipad_opad) {
179 			dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
180 			goto init_failed;
181 		}
182 
183 		dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
184 			hmac->ipad_opad);
185 
186 		hmac->padded_authkey = dma_alloc_coherent(dev,
187 							  MAX_HMAC_BLOCK_SIZE,
188 							  pkey_dma,
189 							  GFP_KERNEL);
190 
191 		if (!hmac->padded_authkey) {
192 			dev_err(dev, "failed to allocate padded_authkey\n");
193 			goto init_failed;
194 		}
195 	} else {
196 		ctx->auth_state.hmac.ipad_opad = NULL;
197 		ctx->auth_state.hmac.padded_authkey = NULL;
198 	}
199 	ctx->hash_len = cc_get_aead_hash_len(tfm);
200 
201 	return 0;
202 
203 init_failed:
204 	cc_aead_exit(tfm);
205 	return -ENOMEM;
206 }
207 
208 static void cc_aead_complete(struct device *dev, void *cc_req, int err)
209 {
210 	struct aead_request *areq = (struct aead_request *)cc_req;
211 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
212 	struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
213 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
214 
215 	/* BACKLOG notification */
216 	if (err == -EINPROGRESS)
217 		goto done;
218 
219 	cc_unmap_aead_request(dev, areq);
220 
221 	/* Restore ordinary iv pointer */
222 	areq->iv = areq_ctx->backup_iv;
223 
224 	if (err)
225 		goto done;
226 
227 	if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
228 		if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
229 			   ctx->authsize) != 0) {
230 			dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
231 				ctx->authsize, ctx->cipher_mode);
232 			/* In case of payload authentication failure, MUST NOT
233 			 * revealed the decrypted message --> zero its memory.
234 			 */
235 			sg_zero_buffer(areq->dst, sg_nents(areq->dst),
236 				       areq->cryptlen, areq->assoclen);
237 			err = -EBADMSG;
238 		}
239 	/*ENCRYPT*/
240 	} else if (areq_ctx->is_icv_fragmented) {
241 		u32 skip = areq->cryptlen + areq_ctx->dst_offset;
242 
243 		cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl,
244 				   skip, (skip + ctx->authsize),
245 				   CC_SG_FROM_BUF);
246 	}
247 done:
248 	aead_request_complete(areq, err);
249 }
250 
251 static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
252 				struct cc_aead_ctx *ctx)
253 {
254 	/* Load the AES key */
255 	hw_desc_init(&desc[0]);
256 	/* We are using for the source/user key the same buffer
257 	 * as for the output keys, * because after this key loading it
258 	 * is not needed anymore
259 	 */
260 	set_din_type(&desc[0], DMA_DLLI,
261 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
262 		     NS_BIT);
263 	set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
264 	set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
265 	set_key_size_aes(&desc[0], ctx->auth_keylen);
266 	set_flow_mode(&desc[0], S_DIN_to_AES);
267 	set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
268 
269 	hw_desc_init(&desc[1]);
270 	set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
271 	set_flow_mode(&desc[1], DIN_AES_DOUT);
272 	set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
273 		      AES_KEYSIZE_128, NS_BIT, 0);
274 
275 	hw_desc_init(&desc[2]);
276 	set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
277 	set_flow_mode(&desc[2], DIN_AES_DOUT);
278 	set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
279 					 + AES_KEYSIZE_128),
280 			      AES_KEYSIZE_128, NS_BIT, 0);
281 
282 	hw_desc_init(&desc[3]);
283 	set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
284 	set_flow_mode(&desc[3], DIN_AES_DOUT);
285 	set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
286 					  + 2 * AES_KEYSIZE_128),
287 			      AES_KEYSIZE_128, NS_BIT, 0);
288 
289 	return 4;
290 }
291 
292 static unsigned int hmac_setkey(struct cc_hw_desc *desc,
293 				struct cc_aead_ctx *ctx)
294 {
295 	unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
296 	unsigned int digest_ofs = 0;
297 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
298 			DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
299 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
300 			CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
301 	struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
302 
303 	unsigned int idx = 0;
304 	int i;
305 
306 	/* calc derived HMAC key */
307 	for (i = 0; i < 2; i++) {
308 		/* Load hash initial state */
309 		hw_desc_init(&desc[idx]);
310 		set_cipher_mode(&desc[idx], hash_mode);
311 		set_din_sram(&desc[idx],
312 			     cc_larval_digest_addr(ctx->drvdata,
313 						   ctx->auth_mode),
314 			     digest_size);
315 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
316 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
317 		idx++;
318 
319 		/* Load the hash current length*/
320 		hw_desc_init(&desc[idx]);
321 		set_cipher_mode(&desc[idx], hash_mode);
322 		set_din_const(&desc[idx], 0, ctx->hash_len);
323 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
324 		set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
325 		idx++;
326 
327 		/* Prepare ipad key */
328 		hw_desc_init(&desc[idx]);
329 		set_xor_val(&desc[idx], hmac_pad_const[i]);
330 		set_cipher_mode(&desc[idx], hash_mode);
331 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
332 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
333 		idx++;
334 
335 		/* Perform HASH update */
336 		hw_desc_init(&desc[idx]);
337 		set_din_type(&desc[idx], DMA_DLLI,
338 			     hmac->padded_authkey_dma_addr,
339 			     SHA256_BLOCK_SIZE, NS_BIT);
340 		set_cipher_mode(&desc[idx], hash_mode);
341 		set_xor_active(&desc[idx]);
342 		set_flow_mode(&desc[idx], DIN_HASH);
343 		idx++;
344 
345 		/* Get the digset */
346 		hw_desc_init(&desc[idx]);
347 		set_cipher_mode(&desc[idx], hash_mode);
348 		set_dout_dlli(&desc[idx],
349 			      (hmac->ipad_opad_dma_addr + digest_ofs),
350 			      digest_size, NS_BIT, 0);
351 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
352 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
353 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
354 		idx++;
355 
356 		digest_ofs += digest_size;
357 	}
358 
359 	return idx;
360 }
361 
362 static int validate_keys_sizes(struct cc_aead_ctx *ctx)
363 {
364 	struct device *dev = drvdata_to_dev(ctx->drvdata);
365 
366 	dev_dbg(dev, "enc_keylen=%u  authkeylen=%u\n",
367 		ctx->enc_keylen, ctx->auth_keylen);
368 
369 	switch (ctx->auth_mode) {
370 	case DRV_HASH_SHA1:
371 	case DRV_HASH_SHA256:
372 		break;
373 	case DRV_HASH_XCBC_MAC:
374 		if (ctx->auth_keylen != AES_KEYSIZE_128 &&
375 		    ctx->auth_keylen != AES_KEYSIZE_192 &&
376 		    ctx->auth_keylen != AES_KEYSIZE_256)
377 			return -ENOTSUPP;
378 		break;
379 	case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
380 		if (ctx->auth_keylen > 0)
381 			return -EINVAL;
382 		break;
383 	default:
384 		dev_dbg(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
385 		return -EINVAL;
386 	}
387 	/* Check cipher key size */
388 	if (ctx->flow_mode == S_DIN_to_DES) {
389 		if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
390 			dev_dbg(dev, "Invalid cipher(3DES) key size: %u\n",
391 				ctx->enc_keylen);
392 			return -EINVAL;
393 		}
394 	} else { /* Default assumed to be AES ciphers */
395 		if (ctx->enc_keylen != AES_KEYSIZE_128 &&
396 		    ctx->enc_keylen != AES_KEYSIZE_192 &&
397 		    ctx->enc_keylen != AES_KEYSIZE_256) {
398 			dev_dbg(dev, "Invalid cipher(AES) key size: %u\n",
399 				ctx->enc_keylen);
400 			return -EINVAL;
401 		}
402 	}
403 
404 	return 0; /* All tests of keys sizes passed */
405 }
406 
407 /* This function prepers the user key so it can pass to the hmac processing
408  * (copy to intenral buffer or hash in case of key longer than block
409  */
410 static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
411 				 unsigned int keylen)
412 {
413 	dma_addr_t key_dma_addr = 0;
414 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
415 	struct device *dev = drvdata_to_dev(ctx->drvdata);
416 	u32 larval_addr;
417 	struct cc_crypto_req cc_req = {};
418 	unsigned int blocksize;
419 	unsigned int digestsize;
420 	unsigned int hashmode;
421 	unsigned int idx = 0;
422 	int rc = 0;
423 	u8 *key = NULL;
424 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
425 	dma_addr_t padded_authkey_dma_addr =
426 		ctx->auth_state.hmac.padded_authkey_dma_addr;
427 
428 	switch (ctx->auth_mode) { /* auth_key required and >0 */
429 	case DRV_HASH_SHA1:
430 		blocksize = SHA1_BLOCK_SIZE;
431 		digestsize = SHA1_DIGEST_SIZE;
432 		hashmode = DRV_HASH_HW_SHA1;
433 		break;
434 	case DRV_HASH_SHA256:
435 	default:
436 		blocksize = SHA256_BLOCK_SIZE;
437 		digestsize = SHA256_DIGEST_SIZE;
438 		hashmode = DRV_HASH_HW_SHA256;
439 	}
440 
441 	if (keylen != 0) {
442 
443 		key = kmemdup(authkey, keylen, GFP_KERNEL);
444 		if (!key)
445 			return -ENOMEM;
446 
447 		key_dma_addr = dma_map_single(dev, key, keylen, DMA_TO_DEVICE);
448 		if (dma_mapping_error(dev, key_dma_addr)) {
449 			dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
450 				key, keylen);
451 			kzfree(key);
452 			return -ENOMEM;
453 		}
454 		if (keylen > blocksize) {
455 			/* Load hash initial state */
456 			hw_desc_init(&desc[idx]);
457 			set_cipher_mode(&desc[idx], hashmode);
458 			larval_addr = cc_larval_digest_addr(ctx->drvdata,
459 							    ctx->auth_mode);
460 			set_din_sram(&desc[idx], larval_addr, digestsize);
461 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
462 			set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
463 			idx++;
464 
465 			/* Load the hash current length*/
466 			hw_desc_init(&desc[idx]);
467 			set_cipher_mode(&desc[idx], hashmode);
468 			set_din_const(&desc[idx], 0, ctx->hash_len);
469 			set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
470 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
471 			set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
472 			idx++;
473 
474 			hw_desc_init(&desc[idx]);
475 			set_din_type(&desc[idx], DMA_DLLI,
476 				     key_dma_addr, keylen, NS_BIT);
477 			set_flow_mode(&desc[idx], DIN_HASH);
478 			idx++;
479 
480 			/* Get hashed key */
481 			hw_desc_init(&desc[idx]);
482 			set_cipher_mode(&desc[idx], hashmode);
483 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
484 				      digestsize, NS_BIT, 0);
485 			set_flow_mode(&desc[idx], S_HASH_to_DOUT);
486 			set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
487 			set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
488 			set_cipher_config0(&desc[idx],
489 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
490 			idx++;
491 
492 			hw_desc_init(&desc[idx]);
493 			set_din_const(&desc[idx], 0, (blocksize - digestsize));
494 			set_flow_mode(&desc[idx], BYPASS);
495 			set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
496 				      digestsize), (blocksize - digestsize),
497 				      NS_BIT, 0);
498 			idx++;
499 		} else {
500 			hw_desc_init(&desc[idx]);
501 			set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
502 				     keylen, NS_BIT);
503 			set_flow_mode(&desc[idx], BYPASS);
504 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
505 				      keylen, NS_BIT, 0);
506 			idx++;
507 
508 			if ((blocksize - keylen) != 0) {
509 				hw_desc_init(&desc[idx]);
510 				set_din_const(&desc[idx], 0,
511 					      (blocksize - keylen));
512 				set_flow_mode(&desc[idx], BYPASS);
513 				set_dout_dlli(&desc[idx],
514 					      (padded_authkey_dma_addr +
515 					       keylen),
516 					      (blocksize - keylen), NS_BIT, 0);
517 				idx++;
518 			}
519 		}
520 	} else {
521 		hw_desc_init(&desc[idx]);
522 		set_din_const(&desc[idx], 0, (blocksize - keylen));
523 		set_flow_mode(&desc[idx], BYPASS);
524 		set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
525 			      blocksize, NS_BIT, 0);
526 		idx++;
527 	}
528 
529 	rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
530 	if (rc)
531 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
532 
533 	if (key_dma_addr)
534 		dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
535 
536 	kzfree(key);
537 
538 	return rc;
539 }
540 
541 static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
542 			  unsigned int keylen)
543 {
544 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
545 	struct cc_crypto_req cc_req = {};
546 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
547 	unsigned int seq_len = 0;
548 	struct device *dev = drvdata_to_dev(ctx->drvdata);
549 	const u8 *enckey, *authkey;
550 	int rc;
551 
552 	dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
553 		ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
554 
555 	/* STAT_PHASE_0: Init and sanity checks */
556 
557 	if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
558 		struct crypto_authenc_keys keys;
559 
560 		rc = crypto_authenc_extractkeys(&keys, key, keylen);
561 		if (rc)
562 			return rc;
563 		enckey = keys.enckey;
564 		authkey = keys.authkey;
565 		ctx->enc_keylen = keys.enckeylen;
566 		ctx->auth_keylen = keys.authkeylen;
567 
568 		if (ctx->cipher_mode == DRV_CIPHER_CTR) {
569 			/* the nonce is stored in bytes at end of key */
570 			if (ctx->enc_keylen <
571 			    (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
572 				return -EINVAL;
573 			/* Copy nonce from last 4 bytes in CTR key to
574 			 *  first 4 bytes in CTR IV
575 			 */
576 			memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
577 			       CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
578 			/* Set CTR key size */
579 			ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
580 		}
581 	} else { /* non-authenc - has just one key */
582 		enckey = key;
583 		authkey = NULL;
584 		ctx->enc_keylen = keylen;
585 		ctx->auth_keylen = 0;
586 	}
587 
588 	rc = validate_keys_sizes(ctx);
589 	if (rc)
590 		return rc;
591 
592 	/* STAT_PHASE_1: Copy key to ctx */
593 
594 	/* Get key material */
595 	memcpy(ctx->enckey, enckey, ctx->enc_keylen);
596 	if (ctx->enc_keylen == 24)
597 		memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
598 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
599 		memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
600 		       ctx->auth_keylen);
601 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
602 		rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
603 		if (rc)
604 			return rc;
605 	}
606 
607 	/* STAT_PHASE_2: Create sequence */
608 
609 	switch (ctx->auth_mode) {
610 	case DRV_HASH_SHA1:
611 	case DRV_HASH_SHA256:
612 		seq_len = hmac_setkey(desc, ctx);
613 		break;
614 	case DRV_HASH_XCBC_MAC:
615 		seq_len = xcbc_setkey(desc, ctx);
616 		break;
617 	case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
618 		break; /* No auth. key setup */
619 	default:
620 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
621 		return -ENOTSUPP;
622 	}
623 
624 	/* STAT_PHASE_3: Submit sequence to HW */
625 
626 	if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
627 		rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
628 		if (rc) {
629 			dev_err(dev, "send_request() failed (rc=%d)\n", rc);
630 			return rc;
631 		}
632 	}
633 
634 	/* Update STAT_PHASE_3 */
635 	return rc;
636 }
637 
638 static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
639 			       unsigned int keylen)
640 {
641 	struct crypto_authenc_keys keys;
642 	int err;
643 
644 	err = crypto_authenc_extractkeys(&keys, key, keylen);
645 	if (unlikely(err))
646 		return err;
647 
648 	err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
649 	      cc_aead_setkey(aead, key, keylen);
650 
651 	memzero_explicit(&keys, sizeof(keys));
652 	return err;
653 }
654 
655 static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
656 				 unsigned int keylen)
657 {
658 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
659 
660 	if (keylen < 3)
661 		return -EINVAL;
662 
663 	keylen -= 3;
664 	memcpy(ctx->ctr_nonce, key + keylen, 3);
665 
666 	return cc_aead_setkey(tfm, key, keylen);
667 }
668 
669 static int cc_aead_setauthsize(struct crypto_aead *authenc,
670 			       unsigned int authsize)
671 {
672 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
673 	struct device *dev = drvdata_to_dev(ctx->drvdata);
674 
675 	/* Unsupported auth. sizes */
676 	if (authsize == 0 ||
677 	    authsize > crypto_aead_maxauthsize(authenc)) {
678 		return -ENOTSUPP;
679 	}
680 
681 	ctx->authsize = authsize;
682 	dev_dbg(dev, "authlen=%d\n", ctx->authsize);
683 
684 	return 0;
685 }
686 
687 static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
688 				      unsigned int authsize)
689 {
690 	switch (authsize) {
691 	case 8:
692 	case 12:
693 	case 16:
694 		break;
695 	default:
696 		return -EINVAL;
697 	}
698 
699 	return cc_aead_setauthsize(authenc, authsize);
700 }
701 
702 static int cc_ccm_setauthsize(struct crypto_aead *authenc,
703 			      unsigned int authsize)
704 {
705 	switch (authsize) {
706 	case 4:
707 	case 6:
708 	case 8:
709 	case 10:
710 	case 12:
711 	case 14:
712 	case 16:
713 		break;
714 	default:
715 		return -EINVAL;
716 	}
717 
718 	return cc_aead_setauthsize(authenc, authsize);
719 }
720 
721 static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
722 			      struct cc_hw_desc desc[], unsigned int *seq_size)
723 {
724 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
725 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
726 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
727 	enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
728 	unsigned int idx = *seq_size;
729 	struct device *dev = drvdata_to_dev(ctx->drvdata);
730 
731 	switch (assoc_dma_type) {
732 	case CC_DMA_BUF_DLLI:
733 		dev_dbg(dev, "ASSOC buffer type DLLI\n");
734 		hw_desc_init(&desc[idx]);
735 		set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
736 			     areq_ctx->assoclen, NS_BIT);
737 		set_flow_mode(&desc[idx], flow_mode);
738 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
739 		    areq_ctx->cryptlen > 0)
740 			set_din_not_last_indication(&desc[idx]);
741 		break;
742 	case CC_DMA_BUF_MLLI:
743 		dev_dbg(dev, "ASSOC buffer type MLLI\n");
744 		hw_desc_init(&desc[idx]);
745 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
746 			     areq_ctx->assoc.mlli_nents, NS_BIT);
747 		set_flow_mode(&desc[idx], flow_mode);
748 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
749 		    areq_ctx->cryptlen > 0)
750 			set_din_not_last_indication(&desc[idx]);
751 		break;
752 	case CC_DMA_BUF_NULL:
753 	default:
754 		dev_err(dev, "Invalid ASSOC buffer type\n");
755 	}
756 
757 	*seq_size = (++idx);
758 }
759 
760 static void cc_proc_authen_desc(struct aead_request *areq,
761 				unsigned int flow_mode,
762 				struct cc_hw_desc desc[],
763 				unsigned int *seq_size, int direct)
764 {
765 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
766 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
767 	unsigned int idx = *seq_size;
768 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
769 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
770 	struct device *dev = drvdata_to_dev(ctx->drvdata);
771 
772 	switch (data_dma_type) {
773 	case CC_DMA_BUF_DLLI:
774 	{
775 		struct scatterlist *cipher =
776 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
777 			areq_ctx->dst_sgl : areq_ctx->src_sgl;
778 
779 		unsigned int offset =
780 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
781 			areq_ctx->dst_offset : areq_ctx->src_offset;
782 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
783 		hw_desc_init(&desc[idx]);
784 		set_din_type(&desc[idx], DMA_DLLI,
785 			     (sg_dma_address(cipher) + offset),
786 			     areq_ctx->cryptlen, NS_BIT);
787 		set_flow_mode(&desc[idx], flow_mode);
788 		break;
789 	}
790 	case CC_DMA_BUF_MLLI:
791 	{
792 		/* DOUBLE-PASS flow (as default)
793 		 * assoc. + iv + data -compact in one table
794 		 * if assoclen is ZERO only IV perform
795 		 */
796 		u32 mlli_addr = areq_ctx->assoc.sram_addr;
797 		u32 mlli_nents = areq_ctx->assoc.mlli_nents;
798 
799 		if (areq_ctx->is_single_pass) {
800 			if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
801 				mlli_addr = areq_ctx->dst.sram_addr;
802 				mlli_nents = areq_ctx->dst.mlli_nents;
803 			} else {
804 				mlli_addr = areq_ctx->src.sram_addr;
805 				mlli_nents = areq_ctx->src.mlli_nents;
806 			}
807 		}
808 
809 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
810 		hw_desc_init(&desc[idx]);
811 		set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
812 			     NS_BIT);
813 		set_flow_mode(&desc[idx], flow_mode);
814 		break;
815 	}
816 	case CC_DMA_BUF_NULL:
817 	default:
818 		dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
819 	}
820 
821 	*seq_size = (++idx);
822 }
823 
824 static void cc_proc_cipher_desc(struct aead_request *areq,
825 				unsigned int flow_mode,
826 				struct cc_hw_desc desc[],
827 				unsigned int *seq_size)
828 {
829 	unsigned int idx = *seq_size;
830 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
831 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
832 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
833 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
834 	struct device *dev = drvdata_to_dev(ctx->drvdata);
835 
836 	if (areq_ctx->cryptlen == 0)
837 		return; /*null processing*/
838 
839 	switch (data_dma_type) {
840 	case CC_DMA_BUF_DLLI:
841 		dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
842 		hw_desc_init(&desc[idx]);
843 		set_din_type(&desc[idx], DMA_DLLI,
844 			     (sg_dma_address(areq_ctx->src_sgl) +
845 			      areq_ctx->src_offset), areq_ctx->cryptlen,
846 			      NS_BIT);
847 		set_dout_dlli(&desc[idx],
848 			      (sg_dma_address(areq_ctx->dst_sgl) +
849 			       areq_ctx->dst_offset),
850 			      areq_ctx->cryptlen, NS_BIT, 0);
851 		set_flow_mode(&desc[idx], flow_mode);
852 		break;
853 	case CC_DMA_BUF_MLLI:
854 		dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
855 		hw_desc_init(&desc[idx]);
856 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
857 			     areq_ctx->src.mlli_nents, NS_BIT);
858 		set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
859 			      areq_ctx->dst.mlli_nents, NS_BIT, 0);
860 		set_flow_mode(&desc[idx], flow_mode);
861 		break;
862 	case CC_DMA_BUF_NULL:
863 	default:
864 		dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
865 	}
866 
867 	*seq_size = (++idx);
868 }
869 
870 static void cc_proc_digest_desc(struct aead_request *req,
871 				struct cc_hw_desc desc[],
872 				unsigned int *seq_size)
873 {
874 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
875 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
876 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
877 	unsigned int idx = *seq_size;
878 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
879 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
880 	int direct = req_ctx->gen_ctx.op_type;
881 
882 	/* Get final ICV result */
883 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
884 		hw_desc_init(&desc[idx]);
885 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
886 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
887 		set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
888 			      NS_BIT, 1);
889 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
890 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
891 			set_aes_not_hash_mode(&desc[idx]);
892 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
893 		} else {
894 			set_cipher_config0(&desc[idx],
895 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
896 			set_cipher_mode(&desc[idx], hash_mode);
897 		}
898 	} else { /*Decrypt*/
899 		/* Get ICV out from hardware */
900 		hw_desc_init(&desc[idx]);
901 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
902 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
903 		set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
904 			      ctx->authsize, NS_BIT, 1);
905 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
906 		set_cipher_config0(&desc[idx],
907 				   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
908 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
909 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
910 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
911 			set_aes_not_hash_mode(&desc[idx]);
912 		} else {
913 			set_cipher_mode(&desc[idx], hash_mode);
914 		}
915 	}
916 
917 	*seq_size = (++idx);
918 }
919 
920 static void cc_set_cipher_desc(struct aead_request *req,
921 			       struct cc_hw_desc desc[],
922 			       unsigned int *seq_size)
923 {
924 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
925 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
926 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
927 	unsigned int hw_iv_size = req_ctx->hw_iv_size;
928 	unsigned int idx = *seq_size;
929 	int direct = req_ctx->gen_ctx.op_type;
930 
931 	/* Setup cipher state */
932 	hw_desc_init(&desc[idx]);
933 	set_cipher_config0(&desc[idx], direct);
934 	set_flow_mode(&desc[idx], ctx->flow_mode);
935 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
936 		     hw_iv_size, NS_BIT);
937 	if (ctx->cipher_mode == DRV_CIPHER_CTR)
938 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
939 	else
940 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
941 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
942 	idx++;
943 
944 	/* Setup enc. key */
945 	hw_desc_init(&desc[idx]);
946 	set_cipher_config0(&desc[idx], direct);
947 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
948 	set_flow_mode(&desc[idx], ctx->flow_mode);
949 	if (ctx->flow_mode == S_DIN_to_AES) {
950 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
951 			     ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
952 			      ctx->enc_keylen), NS_BIT);
953 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
954 	} else {
955 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
956 			     ctx->enc_keylen, NS_BIT);
957 		set_key_size_des(&desc[idx], ctx->enc_keylen);
958 	}
959 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
960 	idx++;
961 
962 	*seq_size = idx;
963 }
964 
965 static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
966 			   unsigned int *seq_size, unsigned int data_flow_mode)
967 {
968 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
969 	int direct = req_ctx->gen_ctx.op_type;
970 	unsigned int idx = *seq_size;
971 
972 	if (req_ctx->cryptlen == 0)
973 		return; /*null processing*/
974 
975 	cc_set_cipher_desc(req, desc, &idx);
976 	cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
977 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
978 		/* We must wait for DMA to write all cipher */
979 		hw_desc_init(&desc[idx]);
980 		set_din_no_dma(&desc[idx], 0, 0xfffff0);
981 		set_dout_no_dma(&desc[idx], 0, 0, 1);
982 		idx++;
983 	}
984 
985 	*seq_size = idx;
986 }
987 
988 static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
989 			     unsigned int *seq_size)
990 {
991 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
992 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
993 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
994 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
995 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
996 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
997 	unsigned int idx = *seq_size;
998 
999 	/* Loading hash ipad xor key state */
1000 	hw_desc_init(&desc[idx]);
1001 	set_cipher_mode(&desc[idx], hash_mode);
1002 	set_din_type(&desc[idx], DMA_DLLI,
1003 		     ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1004 		     NS_BIT);
1005 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1006 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1007 	idx++;
1008 
1009 	/* Load init. digest len (64 bytes) */
1010 	hw_desc_init(&desc[idx]);
1011 	set_cipher_mode(&desc[idx], hash_mode);
1012 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1013 		     ctx->hash_len);
1014 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1015 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1016 	idx++;
1017 
1018 	*seq_size = idx;
1019 }
1020 
1021 static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1022 			     unsigned int *seq_size)
1023 {
1024 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1025 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1026 	unsigned int idx = *seq_size;
1027 
1028 	/* Loading MAC state */
1029 	hw_desc_init(&desc[idx]);
1030 	set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1031 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1032 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1033 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1034 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1035 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1036 	set_aes_not_hash_mode(&desc[idx]);
1037 	idx++;
1038 
1039 	/* Setup XCBC MAC K1 */
1040 	hw_desc_init(&desc[idx]);
1041 	set_din_type(&desc[idx], DMA_DLLI,
1042 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1043 		     AES_KEYSIZE_128, NS_BIT);
1044 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1045 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1046 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1047 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1048 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1049 	set_aes_not_hash_mode(&desc[idx]);
1050 	idx++;
1051 
1052 	/* Setup XCBC MAC K2 */
1053 	hw_desc_init(&desc[idx]);
1054 	set_din_type(&desc[idx], DMA_DLLI,
1055 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1056 		      AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1057 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1058 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1059 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1060 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1061 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1062 	set_aes_not_hash_mode(&desc[idx]);
1063 	idx++;
1064 
1065 	/* Setup XCBC MAC K3 */
1066 	hw_desc_init(&desc[idx]);
1067 	set_din_type(&desc[idx], DMA_DLLI,
1068 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1069 		      2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1070 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1071 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1072 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1073 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1074 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1075 	set_aes_not_hash_mode(&desc[idx]);
1076 	idx++;
1077 
1078 	*seq_size = idx;
1079 }
1080 
1081 static void cc_proc_header_desc(struct aead_request *req,
1082 				struct cc_hw_desc desc[],
1083 				unsigned int *seq_size)
1084 {
1085 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1086 	unsigned int idx = *seq_size;
1087 
1088 	/* Hash associated data */
1089 	if (areq_ctx->assoclen > 0)
1090 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1091 
1092 	/* Hash IV */
1093 	*seq_size = idx;
1094 }
1095 
1096 static void cc_proc_scheme_desc(struct aead_request *req,
1097 				struct cc_hw_desc desc[],
1098 				unsigned int *seq_size)
1099 {
1100 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1101 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1102 	struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1103 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1104 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1105 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1106 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1107 	unsigned int idx = *seq_size;
1108 
1109 	hw_desc_init(&desc[idx]);
1110 	set_cipher_mode(&desc[idx], hash_mode);
1111 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1112 		      ctx->hash_len);
1113 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1114 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1115 	set_cipher_do(&desc[idx], DO_PAD);
1116 	idx++;
1117 
1118 	/* Get final ICV result */
1119 	hw_desc_init(&desc[idx]);
1120 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1121 		      digest_size);
1122 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1123 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1124 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1125 	set_cipher_mode(&desc[idx], hash_mode);
1126 	idx++;
1127 
1128 	/* Loading hash opad xor key state */
1129 	hw_desc_init(&desc[idx]);
1130 	set_cipher_mode(&desc[idx], hash_mode);
1131 	set_din_type(&desc[idx], DMA_DLLI,
1132 		     (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1133 		     digest_size, NS_BIT);
1134 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1135 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1136 	idx++;
1137 
1138 	/* Load init. digest len (64 bytes) */
1139 	hw_desc_init(&desc[idx]);
1140 	set_cipher_mode(&desc[idx], hash_mode);
1141 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1142 		     ctx->hash_len);
1143 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1144 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1145 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1146 	idx++;
1147 
1148 	/* Perform HASH update */
1149 	hw_desc_init(&desc[idx]);
1150 	set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1151 		     digest_size);
1152 	set_flow_mode(&desc[idx], DIN_HASH);
1153 	idx++;
1154 
1155 	*seq_size = idx;
1156 }
1157 
1158 static void cc_mlli_to_sram(struct aead_request *req,
1159 			    struct cc_hw_desc desc[], unsigned int *seq_size)
1160 {
1161 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1162 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1163 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1164 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1165 
1166 	if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1167 	    req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1168 	    !req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) {
1169 		dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1170 			ctx->drvdata->mlli_sram_addr,
1171 			req_ctx->mlli_params.mlli_len);
1172 		/* Copy MLLI table host-to-sram */
1173 		hw_desc_init(&desc[*seq_size]);
1174 		set_din_type(&desc[*seq_size], DMA_DLLI,
1175 			     req_ctx->mlli_params.mlli_dma_addr,
1176 			     req_ctx->mlli_params.mlli_len, NS_BIT);
1177 		set_dout_sram(&desc[*seq_size],
1178 			      ctx->drvdata->mlli_sram_addr,
1179 			      req_ctx->mlli_params.mlli_len);
1180 		set_flow_mode(&desc[*seq_size], BYPASS);
1181 		(*seq_size)++;
1182 	}
1183 }
1184 
1185 static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1186 					  enum cc_flow_mode setup_flow_mode,
1187 					  bool is_single_pass)
1188 {
1189 	enum cc_flow_mode data_flow_mode;
1190 
1191 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1192 		if (setup_flow_mode == S_DIN_to_AES)
1193 			data_flow_mode = is_single_pass ?
1194 				AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1195 		else
1196 			data_flow_mode = is_single_pass ?
1197 				DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1198 	} else { /* Decrypt */
1199 		if (setup_flow_mode == S_DIN_to_AES)
1200 			data_flow_mode = is_single_pass ?
1201 				AES_and_HASH : DIN_AES_DOUT;
1202 		else
1203 			data_flow_mode = is_single_pass ?
1204 				DES_and_HASH : DIN_DES_DOUT;
1205 	}
1206 
1207 	return data_flow_mode;
1208 }
1209 
1210 static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1211 			    unsigned int *seq_size)
1212 {
1213 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1214 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1215 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1216 	int direct = req_ctx->gen_ctx.op_type;
1217 	unsigned int data_flow_mode =
1218 		cc_get_data_flow(direct, ctx->flow_mode,
1219 				 req_ctx->is_single_pass);
1220 
1221 	if (req_ctx->is_single_pass) {
1222 		/*
1223 		 * Single-pass flow
1224 		 */
1225 		cc_set_hmac_desc(req, desc, seq_size);
1226 		cc_set_cipher_desc(req, desc, seq_size);
1227 		cc_proc_header_desc(req, desc, seq_size);
1228 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1229 		cc_proc_scheme_desc(req, desc, seq_size);
1230 		cc_proc_digest_desc(req, desc, seq_size);
1231 		return;
1232 	}
1233 
1234 	/*
1235 	 * Double-pass flow
1236 	 * Fallback for unsupported single-pass modes,
1237 	 * i.e. using assoc. data of non-word-multiple
1238 	 */
1239 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1240 		/* encrypt first.. */
1241 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1242 		/* authenc after..*/
1243 		cc_set_hmac_desc(req, desc, seq_size);
1244 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1245 		cc_proc_scheme_desc(req, desc, seq_size);
1246 		cc_proc_digest_desc(req, desc, seq_size);
1247 
1248 	} else { /*DECRYPT*/
1249 		/* authenc first..*/
1250 		cc_set_hmac_desc(req, desc, seq_size);
1251 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1252 		cc_proc_scheme_desc(req, desc, seq_size);
1253 		/* decrypt after.. */
1254 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1255 		/* read the digest result with setting the completion bit
1256 		 * must be after the cipher operation
1257 		 */
1258 		cc_proc_digest_desc(req, desc, seq_size);
1259 	}
1260 }
1261 
1262 static void
1263 cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1264 		unsigned int *seq_size)
1265 {
1266 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1267 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1268 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1269 	int direct = req_ctx->gen_ctx.op_type;
1270 	unsigned int data_flow_mode =
1271 		cc_get_data_flow(direct, ctx->flow_mode,
1272 				 req_ctx->is_single_pass);
1273 
1274 	if (req_ctx->is_single_pass) {
1275 		/*
1276 		 * Single-pass flow
1277 		 */
1278 		cc_set_xcbc_desc(req, desc, seq_size);
1279 		cc_set_cipher_desc(req, desc, seq_size);
1280 		cc_proc_header_desc(req, desc, seq_size);
1281 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1282 		cc_proc_digest_desc(req, desc, seq_size);
1283 		return;
1284 	}
1285 
1286 	/*
1287 	 * Double-pass flow
1288 	 * Fallback for unsupported single-pass modes,
1289 	 * i.e. using assoc. data of non-word-multiple
1290 	 */
1291 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1292 		/* encrypt first.. */
1293 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1294 		/* authenc after.. */
1295 		cc_set_xcbc_desc(req, desc, seq_size);
1296 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1297 		cc_proc_digest_desc(req, desc, seq_size);
1298 	} else { /*DECRYPT*/
1299 		/* authenc first.. */
1300 		cc_set_xcbc_desc(req, desc, seq_size);
1301 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1302 		/* decrypt after..*/
1303 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1304 		/* read the digest result with setting the completion bit
1305 		 * must be after the cipher operation
1306 		 */
1307 		cc_proc_digest_desc(req, desc, seq_size);
1308 	}
1309 }
1310 
1311 static int validate_data_size(struct cc_aead_ctx *ctx,
1312 			      enum drv_crypto_direction direct,
1313 			      struct aead_request *req)
1314 {
1315 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1316 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1317 	unsigned int assoclen = areq_ctx->assoclen;
1318 	unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1319 			(req->cryptlen - ctx->authsize) : req->cryptlen;
1320 
1321 	if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1322 	    req->cryptlen < ctx->authsize)
1323 		goto data_size_err;
1324 
1325 	areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1326 
1327 	switch (ctx->flow_mode) {
1328 	case S_DIN_to_AES:
1329 		if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1330 		    !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1331 			goto data_size_err;
1332 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
1333 			break;
1334 		if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1335 			if (areq_ctx->plaintext_authenticate_only)
1336 				areq_ctx->is_single_pass = false;
1337 			break;
1338 		}
1339 
1340 		if (!IS_ALIGNED(assoclen, sizeof(u32)))
1341 			areq_ctx->is_single_pass = false;
1342 
1343 		if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1344 		    !IS_ALIGNED(cipherlen, sizeof(u32)))
1345 			areq_ctx->is_single_pass = false;
1346 
1347 		break;
1348 	case S_DIN_to_DES:
1349 		if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1350 			goto data_size_err;
1351 		if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1352 			areq_ctx->is_single_pass = false;
1353 		break;
1354 	default:
1355 		dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1356 		goto data_size_err;
1357 	}
1358 
1359 	return 0;
1360 
1361 data_size_err:
1362 	return -EINVAL;
1363 }
1364 
1365 static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1366 {
1367 	unsigned int len = 0;
1368 
1369 	if (header_size == 0)
1370 		return 0;
1371 
1372 	if (header_size < ((1UL << 16) - (1UL << 8))) {
1373 		len = 2;
1374 
1375 		pa0_buff[0] = (header_size >> 8) & 0xFF;
1376 		pa0_buff[1] = header_size & 0xFF;
1377 	} else {
1378 		len = 6;
1379 
1380 		pa0_buff[0] = 0xFF;
1381 		pa0_buff[1] = 0xFE;
1382 		pa0_buff[2] = (header_size >> 24) & 0xFF;
1383 		pa0_buff[3] = (header_size >> 16) & 0xFF;
1384 		pa0_buff[4] = (header_size >> 8) & 0xFF;
1385 		pa0_buff[5] = header_size & 0xFF;
1386 	}
1387 
1388 	return len;
1389 }
1390 
1391 static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1392 {
1393 	__be32 data;
1394 
1395 	memset(block, 0, csize);
1396 	block += csize;
1397 
1398 	if (csize >= 4)
1399 		csize = 4;
1400 	else if (msglen > (1 << (8 * csize)))
1401 		return -EOVERFLOW;
1402 
1403 	data = cpu_to_be32(msglen);
1404 	memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1405 
1406 	return 0;
1407 }
1408 
1409 static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1410 		  unsigned int *seq_size)
1411 {
1412 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1413 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1414 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1415 	unsigned int idx = *seq_size;
1416 	unsigned int cipher_flow_mode;
1417 	dma_addr_t mac_result;
1418 
1419 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1420 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1421 		mac_result = req_ctx->mac_buf_dma_addr;
1422 	} else { /* Encrypt */
1423 		cipher_flow_mode = AES_and_HASH;
1424 		mac_result = req_ctx->icv_dma_addr;
1425 	}
1426 
1427 	/* load key */
1428 	hw_desc_init(&desc[idx]);
1429 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1430 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1431 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1432 		      ctx->enc_keylen), NS_BIT);
1433 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1434 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1435 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1436 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1437 	idx++;
1438 
1439 	/* load ctr state */
1440 	hw_desc_init(&desc[idx]);
1441 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1442 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1443 	set_din_type(&desc[idx], DMA_DLLI,
1444 		     req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1445 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1446 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1447 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1448 	idx++;
1449 
1450 	/* load MAC key */
1451 	hw_desc_init(&desc[idx]);
1452 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1453 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1454 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1455 		      ctx->enc_keylen), NS_BIT);
1456 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1457 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1458 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1459 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1460 	set_aes_not_hash_mode(&desc[idx]);
1461 	idx++;
1462 
1463 	/* load MAC state */
1464 	hw_desc_init(&desc[idx]);
1465 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1466 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1467 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1468 		     AES_BLOCK_SIZE, NS_BIT);
1469 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1470 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1471 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1472 	set_aes_not_hash_mode(&desc[idx]);
1473 	idx++;
1474 
1475 	/* process assoc data */
1476 	if (req_ctx->assoclen > 0) {
1477 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1478 	} else {
1479 		hw_desc_init(&desc[idx]);
1480 		set_din_type(&desc[idx], DMA_DLLI,
1481 			     sg_dma_address(&req_ctx->ccm_adata_sg),
1482 			     AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1483 		set_flow_mode(&desc[idx], DIN_HASH);
1484 		idx++;
1485 	}
1486 
1487 	/* process the cipher */
1488 	if (req_ctx->cryptlen)
1489 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1490 
1491 	/* Read temporal MAC */
1492 	hw_desc_init(&desc[idx]);
1493 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1494 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1495 		      NS_BIT, 0);
1496 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1497 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1498 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1499 	set_aes_not_hash_mode(&desc[idx]);
1500 	idx++;
1501 
1502 	/* load AES-CTR state (for last MAC calculation)*/
1503 	hw_desc_init(&desc[idx]);
1504 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1505 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1506 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1507 		     AES_BLOCK_SIZE, NS_BIT);
1508 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1509 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1510 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1511 	idx++;
1512 
1513 	hw_desc_init(&desc[idx]);
1514 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1515 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1516 	idx++;
1517 
1518 	/* encrypt the "T" value and store MAC in mac_state */
1519 	hw_desc_init(&desc[idx]);
1520 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1521 		     ctx->authsize, NS_BIT);
1522 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1523 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1524 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1525 	idx++;
1526 
1527 	*seq_size = idx;
1528 	return 0;
1529 }
1530 
1531 static int config_ccm_adata(struct aead_request *req)
1532 {
1533 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1534 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1535 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1536 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1537 	//unsigned int size_of_a = 0, rem_a_size = 0;
1538 	unsigned int lp = req->iv[0];
1539 	/* Note: The code assume that req->iv[0] already contains the value
1540 	 * of L' of RFC3610
1541 	 */
1542 	unsigned int l = lp + 1;  /* This is L' of RFC 3610. */
1543 	unsigned int m = ctx->authsize;  /* This is M' of RFC 3610. */
1544 	u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1545 	u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1546 	u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1547 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1548 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1549 				req->cryptlen :
1550 				(req->cryptlen - ctx->authsize);
1551 	int rc;
1552 
1553 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1554 	memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1555 
1556 	/* taken from crypto/ccm.c */
1557 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1558 	if (l < 2 || l > 8) {
1559 		dev_dbg(dev, "illegal iv value %X\n", req->iv[0]);
1560 		return -EINVAL;
1561 	}
1562 	memcpy(b0, req->iv, AES_BLOCK_SIZE);
1563 
1564 	/* format control info per RFC 3610 and
1565 	 * NIST Special Publication 800-38C
1566 	 */
1567 	*b0 |= (8 * ((m - 2) / 2));
1568 	if (req_ctx->assoclen > 0)
1569 		*b0 |= 64;  /* Enable bit 6 if Adata exists. */
1570 
1571 	rc = set_msg_len(b0 + 16 - l, cryptlen, l);  /* Write L'. */
1572 	if (rc) {
1573 		dev_err(dev, "message len overflow detected");
1574 		return rc;
1575 	}
1576 	 /* END of "taken from crypto/ccm.c" */
1577 
1578 	/* l(a) - size of associated data. */
1579 	req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
1580 
1581 	memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1582 	req->iv[15] = 1;
1583 
1584 	memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1585 	ctr_count_0[15] = 0;
1586 
1587 	return 0;
1588 }
1589 
1590 static void cc_proc_rfc4309_ccm(struct aead_request *req)
1591 {
1592 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1593 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1594 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1595 
1596 	/* L' */
1597 	memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1598 	/* For RFC 4309, always use 4 bytes for message length
1599 	 * (at most 2^32-1 bytes).
1600 	 */
1601 	areq_ctx->ctr_iv[0] = 3;
1602 
1603 	/* In RFC 4309 there is an 11-bytes nonce+IV part,
1604 	 * that we build here.
1605 	 */
1606 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1607 	       CCM_BLOCK_NONCE_SIZE);
1608 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1609 	       CCM_BLOCK_IV_SIZE);
1610 	req->iv = areq_ctx->ctr_iv;
1611 }
1612 
1613 static void cc_set_ghash_desc(struct aead_request *req,
1614 			      struct cc_hw_desc desc[], unsigned int *seq_size)
1615 {
1616 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1617 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1618 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1619 	unsigned int idx = *seq_size;
1620 
1621 	/* load key to AES*/
1622 	hw_desc_init(&desc[idx]);
1623 	set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1624 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1625 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1626 		     ctx->enc_keylen, NS_BIT);
1627 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1628 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1629 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1630 	idx++;
1631 
1632 	/* process one zero block to generate hkey */
1633 	hw_desc_init(&desc[idx]);
1634 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1635 	set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1636 		      NS_BIT, 0);
1637 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1638 	idx++;
1639 
1640 	/* Memory Barrier */
1641 	hw_desc_init(&desc[idx]);
1642 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1643 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1644 	idx++;
1645 
1646 	/* Load GHASH subkey */
1647 	hw_desc_init(&desc[idx]);
1648 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1649 		     AES_BLOCK_SIZE, NS_BIT);
1650 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1651 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1652 	set_aes_not_hash_mode(&desc[idx]);
1653 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1654 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1655 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1656 	idx++;
1657 
1658 	/* Configure Hash Engine to work with GHASH.
1659 	 * Since it was not possible to extend HASH submodes to add GHASH,
1660 	 * The following command is necessary in order to
1661 	 * select GHASH (according to HW designers)
1662 	 */
1663 	hw_desc_init(&desc[idx]);
1664 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1665 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1666 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1667 	set_aes_not_hash_mode(&desc[idx]);
1668 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1669 	set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1670 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1671 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1672 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1673 	idx++;
1674 
1675 	/* Load GHASH initial STATE (which is 0). (for any hash there is an
1676 	 * initial state)
1677 	 */
1678 	hw_desc_init(&desc[idx]);
1679 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1680 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1681 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1682 	set_aes_not_hash_mode(&desc[idx]);
1683 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1684 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1685 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1686 	idx++;
1687 
1688 	*seq_size = idx;
1689 }
1690 
1691 static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1692 			     unsigned int *seq_size)
1693 {
1694 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1695 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1696 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1697 	unsigned int idx = *seq_size;
1698 
1699 	/* load key to AES*/
1700 	hw_desc_init(&desc[idx]);
1701 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1702 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1703 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1704 		     ctx->enc_keylen, NS_BIT);
1705 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1706 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1707 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1708 	idx++;
1709 
1710 	if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1711 		/* load AES/CTR initial CTR value inc by 2*/
1712 		hw_desc_init(&desc[idx]);
1713 		set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1714 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
1715 		set_din_type(&desc[idx], DMA_DLLI,
1716 			     req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1717 			     NS_BIT);
1718 		set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1719 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1720 		set_flow_mode(&desc[idx], S_DIN_to_AES);
1721 		idx++;
1722 	}
1723 
1724 	*seq_size = idx;
1725 }
1726 
1727 static void cc_proc_gcm_result(struct aead_request *req,
1728 			       struct cc_hw_desc desc[],
1729 			       unsigned int *seq_size)
1730 {
1731 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1732 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1733 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1734 	dma_addr_t mac_result;
1735 	unsigned int idx = *seq_size;
1736 
1737 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1738 		mac_result = req_ctx->mac_buf_dma_addr;
1739 	} else { /* Encrypt */
1740 		mac_result = req_ctx->icv_dma_addr;
1741 	}
1742 
1743 	/* process(ghash) gcm_block_len */
1744 	hw_desc_init(&desc[idx]);
1745 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1746 		     AES_BLOCK_SIZE, NS_BIT);
1747 	set_flow_mode(&desc[idx], DIN_HASH);
1748 	idx++;
1749 
1750 	/* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1751 	hw_desc_init(&desc[idx]);
1752 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1753 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1754 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1755 		      NS_BIT, 0);
1756 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1757 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1758 	set_aes_not_hash_mode(&desc[idx]);
1759 
1760 	idx++;
1761 
1762 	/* load AES/CTR initial CTR value inc by 1*/
1763 	hw_desc_init(&desc[idx]);
1764 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1765 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1766 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1767 		     AES_BLOCK_SIZE, NS_BIT);
1768 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1769 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1770 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1771 	idx++;
1772 
1773 	/* Memory Barrier */
1774 	hw_desc_init(&desc[idx]);
1775 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1776 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1777 	idx++;
1778 
1779 	/* process GCTR on stored GHASH and store MAC in mac_state*/
1780 	hw_desc_init(&desc[idx]);
1781 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1782 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1783 		     AES_BLOCK_SIZE, NS_BIT);
1784 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1785 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1786 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1787 	idx++;
1788 
1789 	*seq_size = idx;
1790 }
1791 
1792 static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1793 		  unsigned int *seq_size)
1794 {
1795 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1796 	unsigned int cipher_flow_mode;
1797 
1798 	//in RFC4543 no data to encrypt. just copy data from src to dest.
1799 	if (req_ctx->plaintext_authenticate_only) {
1800 		cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1801 		cc_set_ghash_desc(req, desc, seq_size);
1802 		/* process(ghash) assoc data */
1803 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1804 		cc_set_gctr_desc(req, desc, seq_size);
1805 		cc_proc_gcm_result(req, desc, seq_size);
1806 		return 0;
1807 	}
1808 
1809 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1810 		cipher_flow_mode = AES_and_HASH;
1811 	} else { /* Encrypt */
1812 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1813 	}
1814 
1815 	// for gcm and rfc4106.
1816 	cc_set_ghash_desc(req, desc, seq_size);
1817 	/* process(ghash) assoc data */
1818 	if (req_ctx->assoclen > 0)
1819 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1820 	cc_set_gctr_desc(req, desc, seq_size);
1821 	/* process(gctr+ghash) */
1822 	if (req_ctx->cryptlen)
1823 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1824 	cc_proc_gcm_result(req, desc, seq_size);
1825 
1826 	return 0;
1827 }
1828 
1829 static int config_gcm_context(struct aead_request *req)
1830 {
1831 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1832 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1833 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1834 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1835 
1836 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1837 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1838 				req->cryptlen :
1839 				(req->cryptlen - ctx->authsize);
1840 	__be32 counter = cpu_to_be32(2);
1841 
1842 	dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
1843 		__func__, cryptlen, req_ctx->assoclen, ctx->authsize);
1844 
1845 	memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1846 
1847 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1848 
1849 	memcpy(req->iv + 12, &counter, 4);
1850 	memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1851 
1852 	counter = cpu_to_be32(1);
1853 	memcpy(req->iv + 12, &counter, 4);
1854 	memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1855 
1856 	if (!req_ctx->plaintext_authenticate_only) {
1857 		__be64 temp64;
1858 
1859 		temp64 = cpu_to_be64(req_ctx->assoclen * 8);
1860 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1861 		temp64 = cpu_to_be64(cryptlen * 8);
1862 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1863 	} else {
1864 		/* rfc4543=>  all data(AAD,IV,Plain) are considered additional
1865 		 * data that is nothing is encrypted.
1866 		 */
1867 		__be64 temp64;
1868 
1869 		temp64 = cpu_to_be64((req_ctx->assoclen + cryptlen) * 8);
1870 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1871 		temp64 = 0;
1872 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1873 	}
1874 
1875 	return 0;
1876 }
1877 
1878 static void cc_proc_rfc4_gcm(struct aead_request *req)
1879 {
1880 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1881 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1882 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1883 
1884 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1885 	       ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1886 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1887 	       GCM_BLOCK_RFC4_IV_SIZE);
1888 	req->iv = areq_ctx->ctr_iv;
1889 }
1890 
1891 static int cc_proc_aead(struct aead_request *req,
1892 			enum drv_crypto_direction direct)
1893 {
1894 	int rc = 0;
1895 	int seq_len = 0;
1896 	struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1897 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1898 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1899 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1900 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1901 	struct cc_crypto_req cc_req = {};
1902 
1903 	dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1904 		((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1905 		ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1906 		sg_virt(req->dst), req->dst->offset, req->cryptlen);
1907 
1908 	/* STAT_PHASE_0: Init and sanity checks */
1909 
1910 	/* Check data length according to mode */
1911 	if (validate_data_size(ctx, direct, req)) {
1912 		dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1913 			req->cryptlen, areq_ctx->assoclen);
1914 		return -EINVAL;
1915 	}
1916 
1917 	/* Setup request structure */
1918 	cc_req.user_cb = cc_aead_complete;
1919 	cc_req.user_arg = req;
1920 
1921 	/* Setup request context */
1922 	areq_ctx->gen_ctx.op_type = direct;
1923 	areq_ctx->req_authsize = ctx->authsize;
1924 	areq_ctx->cipher_mode = ctx->cipher_mode;
1925 
1926 	/* STAT_PHASE_1: Map buffers */
1927 
1928 	if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1929 		/* Build CTR IV - Copy nonce from last 4 bytes in
1930 		 * CTR key to first 4 bytes in CTR IV
1931 		 */
1932 		memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1933 		       CTR_RFC3686_NONCE_SIZE);
1934 		memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv,
1935 		       CTR_RFC3686_IV_SIZE);
1936 		/* Initialize counter portion of counter block */
1937 		*(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1938 			    CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1939 
1940 		/* Replace with counter iv */
1941 		req->iv = areq_ctx->ctr_iv;
1942 		areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1943 	} else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1944 		   (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1945 		areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1946 		if (areq_ctx->ctr_iv != req->iv) {
1947 			memcpy(areq_ctx->ctr_iv, req->iv,
1948 			       crypto_aead_ivsize(tfm));
1949 			req->iv = areq_ctx->ctr_iv;
1950 		}
1951 	}  else {
1952 		areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1953 	}
1954 
1955 	if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1956 		rc = config_ccm_adata(req);
1957 		if (rc) {
1958 			dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1959 				rc);
1960 			goto exit;
1961 		}
1962 	} else {
1963 		areq_ctx->ccm_hdr_size = ccm_header_size_null;
1964 	}
1965 
1966 	if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1967 		rc = config_gcm_context(req);
1968 		if (rc) {
1969 			dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1970 				rc);
1971 			goto exit;
1972 		}
1973 	}
1974 
1975 	rc = cc_map_aead_request(ctx->drvdata, req);
1976 	if (rc) {
1977 		dev_err(dev, "map_request() failed\n");
1978 		goto exit;
1979 	}
1980 
1981 	/* STAT_PHASE_2: Create sequence */
1982 
1983 	/* Load MLLI tables to SRAM if necessary */
1984 	cc_mlli_to_sram(req, desc, &seq_len);
1985 
1986 	switch (ctx->auth_mode) {
1987 	case DRV_HASH_SHA1:
1988 	case DRV_HASH_SHA256:
1989 		cc_hmac_authenc(req, desc, &seq_len);
1990 		break;
1991 	case DRV_HASH_XCBC_MAC:
1992 		cc_xcbc_authenc(req, desc, &seq_len);
1993 		break;
1994 	case DRV_HASH_NULL:
1995 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
1996 			cc_ccm(req, desc, &seq_len);
1997 		if (ctx->cipher_mode == DRV_CIPHER_GCTR)
1998 			cc_gcm(req, desc, &seq_len);
1999 		break;
2000 	default:
2001 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2002 		cc_unmap_aead_request(dev, req);
2003 		rc = -ENOTSUPP;
2004 		goto exit;
2005 	}
2006 
2007 	/* STAT_PHASE_3: Lock HW and push sequence */
2008 
2009 	rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2010 
2011 	if (rc != -EINPROGRESS && rc != -EBUSY) {
2012 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2013 		cc_unmap_aead_request(dev, req);
2014 	}
2015 
2016 exit:
2017 	return rc;
2018 }
2019 
2020 static int cc_aead_encrypt(struct aead_request *req)
2021 {
2022 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2023 	int rc;
2024 
2025 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2026 
2027 	/* No generated IV required */
2028 	areq_ctx->backup_iv = req->iv;
2029 	areq_ctx->assoclen = req->assoclen;
2030 
2031 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2032 	if (rc != -EINPROGRESS && rc != -EBUSY)
2033 		req->iv = areq_ctx->backup_iv;
2034 
2035 	return rc;
2036 }
2037 
2038 static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2039 {
2040 	/* Very similar to cc_aead_encrypt() above. */
2041 
2042 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2043 	int rc;
2044 
2045 	rc = crypto_ipsec_check_assoclen(req->assoclen);
2046 	if (rc)
2047 		goto out;
2048 
2049 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2050 
2051 	/* No generated IV required */
2052 	areq_ctx->backup_iv = req->iv;
2053 	areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
2054 
2055 	cc_proc_rfc4309_ccm(req);
2056 
2057 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2058 	if (rc != -EINPROGRESS && rc != -EBUSY)
2059 		req->iv = areq_ctx->backup_iv;
2060 out:
2061 	return rc;
2062 }
2063 
2064 static int cc_aead_decrypt(struct aead_request *req)
2065 {
2066 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2067 	int rc;
2068 
2069 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2070 
2071 	/* No generated IV required */
2072 	areq_ctx->backup_iv = req->iv;
2073 	areq_ctx->assoclen = req->assoclen;
2074 
2075 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2076 	if (rc != -EINPROGRESS && rc != -EBUSY)
2077 		req->iv = areq_ctx->backup_iv;
2078 
2079 	return rc;
2080 }
2081 
2082 static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2083 {
2084 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2085 	int rc;
2086 
2087 	rc = crypto_ipsec_check_assoclen(req->assoclen);
2088 	if (rc)
2089 		goto out;
2090 
2091 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2092 
2093 	/* No generated IV required */
2094 	areq_ctx->backup_iv = req->iv;
2095 	areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
2096 
2097 	cc_proc_rfc4309_ccm(req);
2098 
2099 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2100 	if (rc != -EINPROGRESS && rc != -EBUSY)
2101 		req->iv = areq_ctx->backup_iv;
2102 
2103 out:
2104 	return rc;
2105 }
2106 
2107 static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2108 				 unsigned int keylen)
2109 {
2110 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2111 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2112 
2113 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2114 
2115 	if (keylen < 4)
2116 		return -EINVAL;
2117 
2118 	keylen -= 4;
2119 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2120 
2121 	return cc_aead_setkey(tfm, key, keylen);
2122 }
2123 
2124 static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2125 				 unsigned int keylen)
2126 {
2127 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2128 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2129 
2130 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2131 
2132 	if (keylen < 4)
2133 		return -EINVAL;
2134 
2135 	keylen -= 4;
2136 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2137 
2138 	return cc_aead_setkey(tfm, key, keylen);
2139 }
2140 
2141 static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2142 			      unsigned int authsize)
2143 {
2144 	switch (authsize) {
2145 	case 4:
2146 	case 8:
2147 	case 12:
2148 	case 13:
2149 	case 14:
2150 	case 15:
2151 	case 16:
2152 		break;
2153 	default:
2154 		return -EINVAL;
2155 	}
2156 
2157 	return cc_aead_setauthsize(authenc, authsize);
2158 }
2159 
2160 static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2161 				      unsigned int authsize)
2162 {
2163 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2164 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2165 
2166 	dev_dbg(dev, "authsize %d\n", authsize);
2167 
2168 	switch (authsize) {
2169 	case 8:
2170 	case 12:
2171 	case 16:
2172 		break;
2173 	default:
2174 		return -EINVAL;
2175 	}
2176 
2177 	return cc_aead_setauthsize(authenc, authsize);
2178 }
2179 
2180 static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2181 				      unsigned int authsize)
2182 {
2183 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2184 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2185 
2186 	dev_dbg(dev, "authsize %d\n", authsize);
2187 
2188 	if (authsize != 16)
2189 		return -EINVAL;
2190 
2191 	return cc_aead_setauthsize(authenc, authsize);
2192 }
2193 
2194 static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2195 {
2196 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2197 	int rc;
2198 
2199 	rc = crypto_ipsec_check_assoclen(req->assoclen);
2200 	if (rc)
2201 		goto out;
2202 
2203 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2204 
2205 	/* No generated IV required */
2206 	areq_ctx->backup_iv = req->iv;
2207 	areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
2208 
2209 	cc_proc_rfc4_gcm(req);
2210 
2211 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2212 	if (rc != -EINPROGRESS && rc != -EBUSY)
2213 		req->iv = areq_ctx->backup_iv;
2214 out:
2215 	return rc;
2216 }
2217 
2218 static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2219 {
2220 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2221 	int rc;
2222 
2223 	rc = crypto_ipsec_check_assoclen(req->assoclen);
2224 	if (rc)
2225 		goto out;
2226 
2227 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2228 
2229 	//plaintext is not encryped with rfc4543
2230 	areq_ctx->plaintext_authenticate_only = true;
2231 
2232 	/* No generated IV required */
2233 	areq_ctx->backup_iv = req->iv;
2234 	areq_ctx->assoclen = req->assoclen;
2235 
2236 	cc_proc_rfc4_gcm(req);
2237 
2238 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2239 	if (rc != -EINPROGRESS && rc != -EBUSY)
2240 		req->iv = areq_ctx->backup_iv;
2241 out:
2242 	return rc;
2243 }
2244 
2245 static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2246 {
2247 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2248 	int rc;
2249 
2250 	rc = crypto_ipsec_check_assoclen(req->assoclen);
2251 	if (rc)
2252 		goto out;
2253 
2254 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2255 
2256 	/* No generated IV required */
2257 	areq_ctx->backup_iv = req->iv;
2258 	areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
2259 
2260 	cc_proc_rfc4_gcm(req);
2261 
2262 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2263 	if (rc != -EINPROGRESS && rc != -EBUSY)
2264 		req->iv = areq_ctx->backup_iv;
2265 out:
2266 	return rc;
2267 }
2268 
2269 static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2270 {
2271 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2272 	int rc;
2273 
2274 	rc = crypto_ipsec_check_assoclen(req->assoclen);
2275 	if (rc)
2276 		goto out;
2277 
2278 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2279 
2280 	//plaintext is not decryped with rfc4543
2281 	areq_ctx->plaintext_authenticate_only = true;
2282 
2283 	/* No generated IV required */
2284 	areq_ctx->backup_iv = req->iv;
2285 	areq_ctx->assoclen = req->assoclen;
2286 
2287 	cc_proc_rfc4_gcm(req);
2288 
2289 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2290 	if (rc != -EINPROGRESS && rc != -EBUSY)
2291 		req->iv = areq_ctx->backup_iv;
2292 out:
2293 	return rc;
2294 }
2295 
2296 /* aead alg */
2297 static struct cc_alg_template aead_algs[] = {
2298 	{
2299 		.name = "authenc(hmac(sha1),cbc(aes))",
2300 		.driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2301 		.blocksize = AES_BLOCK_SIZE,
2302 		.template_aead = {
2303 			.setkey = cc_aead_setkey,
2304 			.setauthsize = cc_aead_setauthsize,
2305 			.encrypt = cc_aead_encrypt,
2306 			.decrypt = cc_aead_decrypt,
2307 			.init = cc_aead_init,
2308 			.exit = cc_aead_exit,
2309 			.ivsize = AES_BLOCK_SIZE,
2310 			.maxauthsize = SHA1_DIGEST_SIZE,
2311 		},
2312 		.cipher_mode = DRV_CIPHER_CBC,
2313 		.flow_mode = S_DIN_to_AES,
2314 		.auth_mode = DRV_HASH_SHA1,
2315 		.min_hw_rev = CC_HW_REV_630,
2316 		.std_body = CC_STD_NIST,
2317 	},
2318 	{
2319 		.name = "authenc(hmac(sha1),cbc(des3_ede))",
2320 		.driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2321 		.blocksize = DES3_EDE_BLOCK_SIZE,
2322 		.template_aead = {
2323 			.setkey = cc_des3_aead_setkey,
2324 			.setauthsize = cc_aead_setauthsize,
2325 			.encrypt = cc_aead_encrypt,
2326 			.decrypt = cc_aead_decrypt,
2327 			.init = cc_aead_init,
2328 			.exit = cc_aead_exit,
2329 			.ivsize = DES3_EDE_BLOCK_SIZE,
2330 			.maxauthsize = SHA1_DIGEST_SIZE,
2331 		},
2332 		.cipher_mode = DRV_CIPHER_CBC,
2333 		.flow_mode = S_DIN_to_DES,
2334 		.auth_mode = DRV_HASH_SHA1,
2335 		.min_hw_rev = CC_HW_REV_630,
2336 		.std_body = CC_STD_NIST,
2337 	},
2338 	{
2339 		.name = "authenc(hmac(sha256),cbc(aes))",
2340 		.driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2341 		.blocksize = AES_BLOCK_SIZE,
2342 		.template_aead = {
2343 			.setkey = cc_aead_setkey,
2344 			.setauthsize = cc_aead_setauthsize,
2345 			.encrypt = cc_aead_encrypt,
2346 			.decrypt = cc_aead_decrypt,
2347 			.init = cc_aead_init,
2348 			.exit = cc_aead_exit,
2349 			.ivsize = AES_BLOCK_SIZE,
2350 			.maxauthsize = SHA256_DIGEST_SIZE,
2351 		},
2352 		.cipher_mode = DRV_CIPHER_CBC,
2353 		.flow_mode = S_DIN_to_AES,
2354 		.auth_mode = DRV_HASH_SHA256,
2355 		.min_hw_rev = CC_HW_REV_630,
2356 		.std_body = CC_STD_NIST,
2357 	},
2358 	{
2359 		.name = "authenc(hmac(sha256),cbc(des3_ede))",
2360 		.driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2361 		.blocksize = DES3_EDE_BLOCK_SIZE,
2362 		.template_aead = {
2363 			.setkey = cc_des3_aead_setkey,
2364 			.setauthsize = cc_aead_setauthsize,
2365 			.encrypt = cc_aead_encrypt,
2366 			.decrypt = cc_aead_decrypt,
2367 			.init = cc_aead_init,
2368 			.exit = cc_aead_exit,
2369 			.ivsize = DES3_EDE_BLOCK_SIZE,
2370 			.maxauthsize = SHA256_DIGEST_SIZE,
2371 		},
2372 		.cipher_mode = DRV_CIPHER_CBC,
2373 		.flow_mode = S_DIN_to_DES,
2374 		.auth_mode = DRV_HASH_SHA256,
2375 		.min_hw_rev = CC_HW_REV_630,
2376 		.std_body = CC_STD_NIST,
2377 	},
2378 	{
2379 		.name = "authenc(xcbc(aes),cbc(aes))",
2380 		.driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2381 		.blocksize = AES_BLOCK_SIZE,
2382 		.template_aead = {
2383 			.setkey = cc_aead_setkey,
2384 			.setauthsize = cc_aead_setauthsize,
2385 			.encrypt = cc_aead_encrypt,
2386 			.decrypt = cc_aead_decrypt,
2387 			.init = cc_aead_init,
2388 			.exit = cc_aead_exit,
2389 			.ivsize = AES_BLOCK_SIZE,
2390 			.maxauthsize = AES_BLOCK_SIZE,
2391 		},
2392 		.cipher_mode = DRV_CIPHER_CBC,
2393 		.flow_mode = S_DIN_to_AES,
2394 		.auth_mode = DRV_HASH_XCBC_MAC,
2395 		.min_hw_rev = CC_HW_REV_630,
2396 		.std_body = CC_STD_NIST,
2397 	},
2398 	{
2399 		.name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2400 		.driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2401 		.blocksize = 1,
2402 		.template_aead = {
2403 			.setkey = cc_aead_setkey,
2404 			.setauthsize = cc_aead_setauthsize,
2405 			.encrypt = cc_aead_encrypt,
2406 			.decrypt = cc_aead_decrypt,
2407 			.init = cc_aead_init,
2408 			.exit = cc_aead_exit,
2409 			.ivsize = CTR_RFC3686_IV_SIZE,
2410 			.maxauthsize = SHA1_DIGEST_SIZE,
2411 		},
2412 		.cipher_mode = DRV_CIPHER_CTR,
2413 		.flow_mode = S_DIN_to_AES,
2414 		.auth_mode = DRV_HASH_SHA1,
2415 		.min_hw_rev = CC_HW_REV_630,
2416 		.std_body = CC_STD_NIST,
2417 	},
2418 	{
2419 		.name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2420 		.driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2421 		.blocksize = 1,
2422 		.template_aead = {
2423 			.setkey = cc_aead_setkey,
2424 			.setauthsize = cc_aead_setauthsize,
2425 			.encrypt = cc_aead_encrypt,
2426 			.decrypt = cc_aead_decrypt,
2427 			.init = cc_aead_init,
2428 			.exit = cc_aead_exit,
2429 			.ivsize = CTR_RFC3686_IV_SIZE,
2430 			.maxauthsize = SHA256_DIGEST_SIZE,
2431 		},
2432 		.cipher_mode = DRV_CIPHER_CTR,
2433 		.flow_mode = S_DIN_to_AES,
2434 		.auth_mode = DRV_HASH_SHA256,
2435 		.min_hw_rev = CC_HW_REV_630,
2436 		.std_body = CC_STD_NIST,
2437 	},
2438 	{
2439 		.name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2440 		.driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2441 		.blocksize = 1,
2442 		.template_aead = {
2443 			.setkey = cc_aead_setkey,
2444 			.setauthsize = cc_aead_setauthsize,
2445 			.encrypt = cc_aead_encrypt,
2446 			.decrypt = cc_aead_decrypt,
2447 			.init = cc_aead_init,
2448 			.exit = cc_aead_exit,
2449 			.ivsize = CTR_RFC3686_IV_SIZE,
2450 			.maxauthsize = AES_BLOCK_SIZE,
2451 		},
2452 		.cipher_mode = DRV_CIPHER_CTR,
2453 		.flow_mode = S_DIN_to_AES,
2454 		.auth_mode = DRV_HASH_XCBC_MAC,
2455 		.min_hw_rev = CC_HW_REV_630,
2456 		.std_body = CC_STD_NIST,
2457 	},
2458 	{
2459 		.name = "ccm(aes)",
2460 		.driver_name = "ccm-aes-ccree",
2461 		.blocksize = 1,
2462 		.template_aead = {
2463 			.setkey = cc_aead_setkey,
2464 			.setauthsize = cc_ccm_setauthsize,
2465 			.encrypt = cc_aead_encrypt,
2466 			.decrypt = cc_aead_decrypt,
2467 			.init = cc_aead_init,
2468 			.exit = cc_aead_exit,
2469 			.ivsize = AES_BLOCK_SIZE,
2470 			.maxauthsize = AES_BLOCK_SIZE,
2471 		},
2472 		.cipher_mode = DRV_CIPHER_CCM,
2473 		.flow_mode = S_DIN_to_AES,
2474 		.auth_mode = DRV_HASH_NULL,
2475 		.min_hw_rev = CC_HW_REV_630,
2476 		.std_body = CC_STD_NIST,
2477 	},
2478 	{
2479 		.name = "rfc4309(ccm(aes))",
2480 		.driver_name = "rfc4309-ccm-aes-ccree",
2481 		.blocksize = 1,
2482 		.template_aead = {
2483 			.setkey = cc_rfc4309_ccm_setkey,
2484 			.setauthsize = cc_rfc4309_ccm_setauthsize,
2485 			.encrypt = cc_rfc4309_ccm_encrypt,
2486 			.decrypt = cc_rfc4309_ccm_decrypt,
2487 			.init = cc_aead_init,
2488 			.exit = cc_aead_exit,
2489 			.ivsize = CCM_BLOCK_IV_SIZE,
2490 			.maxauthsize = AES_BLOCK_SIZE,
2491 		},
2492 		.cipher_mode = DRV_CIPHER_CCM,
2493 		.flow_mode = S_DIN_to_AES,
2494 		.auth_mode = DRV_HASH_NULL,
2495 		.min_hw_rev = CC_HW_REV_630,
2496 		.std_body = CC_STD_NIST,
2497 	},
2498 	{
2499 		.name = "gcm(aes)",
2500 		.driver_name = "gcm-aes-ccree",
2501 		.blocksize = 1,
2502 		.template_aead = {
2503 			.setkey = cc_aead_setkey,
2504 			.setauthsize = cc_gcm_setauthsize,
2505 			.encrypt = cc_aead_encrypt,
2506 			.decrypt = cc_aead_decrypt,
2507 			.init = cc_aead_init,
2508 			.exit = cc_aead_exit,
2509 			.ivsize = 12,
2510 			.maxauthsize = AES_BLOCK_SIZE,
2511 		},
2512 		.cipher_mode = DRV_CIPHER_GCTR,
2513 		.flow_mode = S_DIN_to_AES,
2514 		.auth_mode = DRV_HASH_NULL,
2515 		.min_hw_rev = CC_HW_REV_630,
2516 		.std_body = CC_STD_NIST,
2517 	},
2518 	{
2519 		.name = "rfc4106(gcm(aes))",
2520 		.driver_name = "rfc4106-gcm-aes-ccree",
2521 		.blocksize = 1,
2522 		.template_aead = {
2523 			.setkey = cc_rfc4106_gcm_setkey,
2524 			.setauthsize = cc_rfc4106_gcm_setauthsize,
2525 			.encrypt = cc_rfc4106_gcm_encrypt,
2526 			.decrypt = cc_rfc4106_gcm_decrypt,
2527 			.init = cc_aead_init,
2528 			.exit = cc_aead_exit,
2529 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2530 			.maxauthsize = AES_BLOCK_SIZE,
2531 		},
2532 		.cipher_mode = DRV_CIPHER_GCTR,
2533 		.flow_mode = S_DIN_to_AES,
2534 		.auth_mode = DRV_HASH_NULL,
2535 		.min_hw_rev = CC_HW_REV_630,
2536 		.std_body = CC_STD_NIST,
2537 	},
2538 	{
2539 		.name = "rfc4543(gcm(aes))",
2540 		.driver_name = "rfc4543-gcm-aes-ccree",
2541 		.blocksize = 1,
2542 		.template_aead = {
2543 			.setkey = cc_rfc4543_gcm_setkey,
2544 			.setauthsize = cc_rfc4543_gcm_setauthsize,
2545 			.encrypt = cc_rfc4543_gcm_encrypt,
2546 			.decrypt = cc_rfc4543_gcm_decrypt,
2547 			.init = cc_aead_init,
2548 			.exit = cc_aead_exit,
2549 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2550 			.maxauthsize = AES_BLOCK_SIZE,
2551 		},
2552 		.cipher_mode = DRV_CIPHER_GCTR,
2553 		.flow_mode = S_DIN_to_AES,
2554 		.auth_mode = DRV_HASH_NULL,
2555 		.min_hw_rev = CC_HW_REV_630,
2556 		.std_body = CC_STD_NIST,
2557 	},
2558 };
2559 
2560 static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2561 						struct device *dev)
2562 {
2563 	struct cc_crypto_alg *t_alg;
2564 	struct aead_alg *alg;
2565 
2566 	t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
2567 	if (!t_alg)
2568 		return ERR_PTR(-ENOMEM);
2569 
2570 	alg = &tmpl->template_aead;
2571 
2572 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
2573 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2574 		 tmpl->driver_name);
2575 	alg->base.cra_module = THIS_MODULE;
2576 	alg->base.cra_priority = CC_CRA_PRIO;
2577 
2578 	alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2579 	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2580 	alg->base.cra_blocksize = tmpl->blocksize;
2581 	alg->init = cc_aead_init;
2582 	alg->exit = cc_aead_exit;
2583 
2584 	t_alg->aead_alg = *alg;
2585 
2586 	t_alg->cipher_mode = tmpl->cipher_mode;
2587 	t_alg->flow_mode = tmpl->flow_mode;
2588 	t_alg->auth_mode = tmpl->auth_mode;
2589 
2590 	return t_alg;
2591 }
2592 
2593 int cc_aead_free(struct cc_drvdata *drvdata)
2594 {
2595 	struct cc_crypto_alg *t_alg, *n;
2596 	struct cc_aead_handle *aead_handle = drvdata->aead_handle;
2597 
2598 	/* Remove registered algs */
2599 	list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list, entry) {
2600 		crypto_unregister_aead(&t_alg->aead_alg);
2601 		list_del(&t_alg->entry);
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 int cc_aead_alloc(struct cc_drvdata *drvdata)
2608 {
2609 	struct cc_aead_handle *aead_handle;
2610 	struct cc_crypto_alg *t_alg;
2611 	int rc = -ENOMEM;
2612 	int alg;
2613 	struct device *dev = drvdata_to_dev(drvdata);
2614 
2615 	aead_handle = devm_kmalloc(dev, sizeof(*aead_handle), GFP_KERNEL);
2616 	if (!aead_handle) {
2617 		rc = -ENOMEM;
2618 		goto fail0;
2619 	}
2620 
2621 	INIT_LIST_HEAD(&aead_handle->aead_list);
2622 	drvdata->aead_handle = aead_handle;
2623 
2624 	aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2625 							 MAX_HMAC_DIGEST_SIZE);
2626 
2627 	if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2628 		rc = -ENOMEM;
2629 		goto fail1;
2630 	}
2631 
2632 	/* Linux crypto */
2633 	for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2634 		if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
2635 		    !(drvdata->std_bodies & aead_algs[alg].std_body))
2636 			continue;
2637 
2638 		t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2639 		if (IS_ERR(t_alg)) {
2640 			rc = PTR_ERR(t_alg);
2641 			dev_err(dev, "%s alg allocation failed\n",
2642 				aead_algs[alg].driver_name);
2643 			goto fail1;
2644 		}
2645 		t_alg->drvdata = drvdata;
2646 		rc = crypto_register_aead(&t_alg->aead_alg);
2647 		if (rc) {
2648 			dev_err(dev, "%s alg registration failed\n",
2649 				t_alg->aead_alg.base.cra_driver_name);
2650 			goto fail1;
2651 		}
2652 
2653 		list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2654 		dev_dbg(dev, "Registered %s\n",
2655 			t_alg->aead_alg.base.cra_driver_name);
2656 	}
2657 
2658 	return 0;
2659 
2660 fail1:
2661 	cc_aead_free(drvdata);
2662 fail0:
2663 	return rc;
2664 }
2665