1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kthread.h> 13 #include <linux/sched.h> 14 #include <linux/interrupt.h> 15 #include <linux/spinlock.h> 16 #include <linux/spinlock_types.h> 17 #include <linux/types.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/hw_random.h> 21 #include <linux/ccp.h> 22 #include <linux/firmware.h> 23 #include <linux/gfp.h> 24 #include <linux/cpufeature.h> 25 #include <linux/fs.h> 26 27 #include <asm/smp.h> 28 29 #include "psp-dev.h" 30 #include "sev-dev.h" 31 32 #define DEVICE_NAME "sev" 33 #define SEV_FW_FILE "amd/sev.fw" 34 #define SEV_FW_NAME_SIZE 64 35 36 static DEFINE_MUTEX(sev_cmd_mutex); 37 static struct sev_misc_dev *misc_dev; 38 39 static int psp_cmd_timeout = 100; 40 module_param(psp_cmd_timeout, int, 0644); 41 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 42 43 static int psp_probe_timeout = 5; 44 module_param(psp_probe_timeout, int, 0644); 45 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 46 47 static char *init_ex_path; 48 module_param(init_ex_path, charp, 0444); 49 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 50 51 static bool psp_init_on_probe = true; 52 module_param(psp_init_on_probe, bool, 0444); 53 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 54 55 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 56 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 57 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 58 59 static bool psp_dead; 60 static int psp_timeout; 61 62 /* Trusted Memory Region (TMR): 63 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 64 * to allocate the memory, which will return aligned memory for the specified 65 * allocation order. 66 */ 67 #define SEV_ES_TMR_SIZE (1024 * 1024) 68 static void *sev_es_tmr; 69 70 /* INIT_EX NV Storage: 71 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 72 * allocator to allocate the memory, which will return aligned memory for the 73 * specified allocation order. 74 */ 75 #define NV_LENGTH (32 * 1024) 76 static void *sev_init_ex_buffer; 77 78 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 79 { 80 struct sev_device *sev = psp_master->sev_data; 81 82 if (sev->api_major > maj) 83 return true; 84 85 if (sev->api_major == maj && sev->api_minor >= min) 86 return true; 87 88 return false; 89 } 90 91 static void sev_irq_handler(int irq, void *data, unsigned int status) 92 { 93 struct sev_device *sev = data; 94 int reg; 95 96 /* Check if it is command completion: */ 97 if (!(status & SEV_CMD_COMPLETE)) 98 return; 99 100 /* Check if it is SEV command completion: */ 101 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 102 if (reg & PSP_CMDRESP_RESP) { 103 sev->int_rcvd = 1; 104 wake_up(&sev->int_queue); 105 } 106 } 107 108 static int sev_wait_cmd_ioc(struct sev_device *sev, 109 unsigned int *reg, unsigned int timeout) 110 { 111 int ret; 112 113 ret = wait_event_timeout(sev->int_queue, 114 sev->int_rcvd, timeout * HZ); 115 if (!ret) 116 return -ETIMEDOUT; 117 118 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 119 120 return 0; 121 } 122 123 static int sev_cmd_buffer_len(int cmd) 124 { 125 switch (cmd) { 126 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 127 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 128 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 129 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 130 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 131 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 132 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 133 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 134 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 135 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 136 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 137 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 138 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 139 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 140 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 141 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 142 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 143 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 144 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 145 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 146 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 147 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 148 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 149 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 150 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 151 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 152 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 153 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 154 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 155 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 156 default: return 0; 157 } 158 159 return 0; 160 } 161 162 static void *sev_fw_alloc(unsigned long len) 163 { 164 struct page *page; 165 166 page = alloc_pages(GFP_KERNEL, get_order(len)); 167 if (!page) 168 return NULL; 169 170 return page_address(page); 171 } 172 173 static int sev_read_init_ex_file(void) 174 { 175 struct sev_device *sev = psp_master->sev_data; 176 struct file *fp; 177 ssize_t nread; 178 179 lockdep_assert_held(&sev_cmd_mutex); 180 181 if (!sev_init_ex_buffer) 182 return -EOPNOTSUPP; 183 184 fp = filp_open(init_ex_path, O_RDONLY, 0); 185 if (IS_ERR(fp)) { 186 int ret = PTR_ERR(fp); 187 188 dev_err(sev->dev, 189 "SEV: could not open %s for read, error %d\n", 190 init_ex_path, ret); 191 return ret; 192 } 193 194 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 195 if (nread != NV_LENGTH) { 196 dev_err(sev->dev, 197 "SEV: failed to read %u bytes to non volatile memory area, ret %ld\n", 198 NV_LENGTH, nread); 199 return -EIO; 200 } 201 202 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 203 filp_close(fp, NULL); 204 205 return 0; 206 } 207 208 static void sev_write_init_ex_file(void) 209 { 210 struct sev_device *sev = psp_master->sev_data; 211 struct file *fp; 212 loff_t offset = 0; 213 ssize_t nwrite; 214 215 lockdep_assert_held(&sev_cmd_mutex); 216 217 if (!sev_init_ex_buffer) 218 return; 219 220 fp = filp_open(init_ex_path, O_CREAT | O_WRONLY, 0600); 221 if (IS_ERR(fp)) { 222 dev_err(sev->dev, 223 "SEV: could not open file for write, error %ld\n", 224 PTR_ERR(fp)); 225 return; 226 } 227 228 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 229 vfs_fsync(fp, 0); 230 filp_close(fp, NULL); 231 232 if (nwrite != NV_LENGTH) { 233 dev_err(sev->dev, 234 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 235 NV_LENGTH, nwrite); 236 return; 237 } 238 239 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 240 } 241 242 static void sev_write_init_ex_file_if_required(int cmd_id) 243 { 244 lockdep_assert_held(&sev_cmd_mutex); 245 246 if (!sev_init_ex_buffer) 247 return; 248 249 /* 250 * Only a few platform commands modify the SPI/NV area, but none of the 251 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 252 * PEK_CERT_IMPORT, and PDH_GEN do. 253 */ 254 switch (cmd_id) { 255 case SEV_CMD_FACTORY_RESET: 256 case SEV_CMD_INIT_EX: 257 case SEV_CMD_PDH_GEN: 258 case SEV_CMD_PEK_CERT_IMPORT: 259 case SEV_CMD_PEK_GEN: 260 break; 261 default: 262 return; 263 } 264 265 sev_write_init_ex_file(); 266 } 267 268 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 269 { 270 struct psp_device *psp = psp_master; 271 struct sev_device *sev; 272 unsigned int phys_lsb, phys_msb; 273 unsigned int reg, ret = 0; 274 int buf_len; 275 276 if (!psp || !psp->sev_data) 277 return -ENODEV; 278 279 if (psp_dead) 280 return -EBUSY; 281 282 sev = psp->sev_data; 283 284 buf_len = sev_cmd_buffer_len(cmd); 285 if (WARN_ON_ONCE(!data != !buf_len)) 286 return -EINVAL; 287 288 /* 289 * Copy the incoming data to driver's scratch buffer as __pa() will not 290 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 291 * physically contiguous. 292 */ 293 if (data) 294 memcpy(sev->cmd_buf, data, buf_len); 295 296 /* Get the physical address of the command buffer */ 297 phys_lsb = data ? lower_32_bits(__psp_pa(sev->cmd_buf)) : 0; 298 phys_msb = data ? upper_32_bits(__psp_pa(sev->cmd_buf)) : 0; 299 300 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 301 cmd, phys_msb, phys_lsb, psp_timeout); 302 303 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 304 buf_len, false); 305 306 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 307 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 308 309 sev->int_rcvd = 0; 310 311 reg = cmd; 312 reg <<= SEV_CMDRESP_CMD_SHIFT; 313 reg |= SEV_CMDRESP_IOC; 314 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 315 316 /* wait for command completion */ 317 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 318 if (ret) { 319 if (psp_ret) 320 *psp_ret = 0; 321 322 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 323 psp_dead = true; 324 325 return ret; 326 } 327 328 psp_timeout = psp_cmd_timeout; 329 330 if (psp_ret) 331 *psp_ret = reg & PSP_CMDRESP_ERR_MASK; 332 333 if (reg & PSP_CMDRESP_ERR_MASK) { 334 dev_dbg(sev->dev, "sev command %#x failed (%#010x)\n", 335 cmd, reg & PSP_CMDRESP_ERR_MASK); 336 ret = -EIO; 337 } else { 338 sev_write_init_ex_file_if_required(cmd); 339 } 340 341 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 342 buf_len, false); 343 344 /* 345 * Copy potential output from the PSP back to data. Do this even on 346 * failure in case the caller wants to glean something from the error. 347 */ 348 if (data) 349 memcpy(data, sev->cmd_buf, buf_len); 350 351 return ret; 352 } 353 354 static int sev_do_cmd(int cmd, void *data, int *psp_ret) 355 { 356 int rc; 357 358 mutex_lock(&sev_cmd_mutex); 359 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 360 mutex_unlock(&sev_cmd_mutex); 361 362 return rc; 363 } 364 365 static int __sev_init_locked(int *error) 366 { 367 struct sev_data_init data; 368 369 memset(&data, 0, sizeof(data)); 370 if (sev_es_tmr) { 371 /* 372 * Do not include the encryption mask on the physical 373 * address of the TMR (firmware should clear it anyway). 374 */ 375 data.tmr_address = __pa(sev_es_tmr); 376 377 data.flags |= SEV_INIT_FLAGS_SEV_ES; 378 data.tmr_len = SEV_ES_TMR_SIZE; 379 } 380 381 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 382 } 383 384 static int __sev_init_ex_locked(int *error) 385 { 386 struct sev_data_init_ex data; 387 int ret; 388 389 memset(&data, 0, sizeof(data)); 390 data.length = sizeof(data); 391 data.nv_address = __psp_pa(sev_init_ex_buffer); 392 data.nv_len = NV_LENGTH; 393 394 ret = sev_read_init_ex_file(); 395 if (ret) 396 return ret; 397 398 if (sev_es_tmr) { 399 /* 400 * Do not include the encryption mask on the physical 401 * address of the TMR (firmware should clear it anyway). 402 */ 403 data.tmr_address = __pa(sev_es_tmr); 404 405 data.flags |= SEV_INIT_FLAGS_SEV_ES; 406 data.tmr_len = SEV_ES_TMR_SIZE; 407 } 408 409 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 410 } 411 412 static int __sev_platform_init_locked(int *error) 413 { 414 struct psp_device *psp = psp_master; 415 struct sev_device *sev; 416 int rc, psp_ret = -1; 417 int (*init_function)(int *error); 418 419 if (!psp || !psp->sev_data) 420 return -ENODEV; 421 422 sev = psp->sev_data; 423 424 if (sev->state == SEV_STATE_INIT) 425 return 0; 426 427 init_function = sev_init_ex_buffer ? __sev_init_ex_locked : 428 __sev_init_locked; 429 rc = init_function(&psp_ret); 430 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 431 /* 432 * Initialization command returned an integrity check failure 433 * status code, meaning that firmware load and validation of SEV 434 * related persistent data has failed. Retrying the 435 * initialization function should succeed by replacing the state 436 * with a reset state. 437 */ 438 dev_dbg(sev->dev, "SEV: retrying INIT command"); 439 rc = init_function(&psp_ret); 440 } 441 if (error) 442 *error = psp_ret; 443 444 if (rc) 445 return rc; 446 447 sev->state = SEV_STATE_INIT; 448 449 /* Prepare for first SEV guest launch after INIT */ 450 wbinvd_on_all_cpus(); 451 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); 452 if (rc) 453 return rc; 454 455 dev_dbg(sev->dev, "SEV firmware initialized\n"); 456 457 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 458 sev->api_minor, sev->build); 459 460 return 0; 461 } 462 463 int sev_platform_init(int *error) 464 { 465 int rc; 466 467 mutex_lock(&sev_cmd_mutex); 468 rc = __sev_platform_init_locked(error); 469 mutex_unlock(&sev_cmd_mutex); 470 471 return rc; 472 } 473 EXPORT_SYMBOL_GPL(sev_platform_init); 474 475 static int __sev_platform_shutdown_locked(int *error) 476 { 477 struct sev_device *sev = psp_master->sev_data; 478 int ret; 479 480 if (sev->state == SEV_STATE_UNINIT) 481 return 0; 482 483 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 484 if (ret) 485 return ret; 486 487 sev->state = SEV_STATE_UNINIT; 488 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 489 490 return ret; 491 } 492 493 static int sev_platform_shutdown(int *error) 494 { 495 int rc; 496 497 mutex_lock(&sev_cmd_mutex); 498 rc = __sev_platform_shutdown_locked(NULL); 499 mutex_unlock(&sev_cmd_mutex); 500 501 return rc; 502 } 503 504 static int sev_get_platform_state(int *state, int *error) 505 { 506 struct sev_user_data_status data; 507 int rc; 508 509 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 510 if (rc) 511 return rc; 512 513 *state = data.state; 514 return rc; 515 } 516 517 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 518 { 519 int state, rc; 520 521 if (!writable) 522 return -EPERM; 523 524 /* 525 * The SEV spec requires that FACTORY_RESET must be issued in 526 * UNINIT state. Before we go further lets check if any guest is 527 * active. 528 * 529 * If FW is in WORKING state then deny the request otherwise issue 530 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 531 * 532 */ 533 rc = sev_get_platform_state(&state, &argp->error); 534 if (rc) 535 return rc; 536 537 if (state == SEV_STATE_WORKING) 538 return -EBUSY; 539 540 if (state == SEV_STATE_INIT) { 541 rc = __sev_platform_shutdown_locked(&argp->error); 542 if (rc) 543 return rc; 544 } 545 546 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 547 } 548 549 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 550 { 551 struct sev_user_data_status data; 552 int ret; 553 554 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 555 if (ret) 556 return ret; 557 558 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 559 ret = -EFAULT; 560 561 return ret; 562 } 563 564 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 565 { 566 struct sev_device *sev = psp_master->sev_data; 567 int rc; 568 569 if (!writable) 570 return -EPERM; 571 572 if (sev->state == SEV_STATE_UNINIT) { 573 rc = __sev_platform_init_locked(&argp->error); 574 if (rc) 575 return rc; 576 } 577 578 return __sev_do_cmd_locked(cmd, NULL, &argp->error); 579 } 580 581 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 582 { 583 struct sev_device *sev = psp_master->sev_data; 584 struct sev_user_data_pek_csr input; 585 struct sev_data_pek_csr data; 586 void __user *input_address; 587 void *blob = NULL; 588 int ret; 589 590 if (!writable) 591 return -EPERM; 592 593 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 594 return -EFAULT; 595 596 memset(&data, 0, sizeof(data)); 597 598 /* userspace wants to query CSR length */ 599 if (!input.address || !input.length) 600 goto cmd; 601 602 /* allocate a physically contiguous buffer to store the CSR blob */ 603 input_address = (void __user *)input.address; 604 if (input.length > SEV_FW_BLOB_MAX_SIZE) 605 return -EFAULT; 606 607 blob = kmalloc(input.length, GFP_KERNEL); 608 if (!blob) 609 return -ENOMEM; 610 611 data.address = __psp_pa(blob); 612 data.len = input.length; 613 614 cmd: 615 if (sev->state == SEV_STATE_UNINIT) { 616 ret = __sev_platform_init_locked(&argp->error); 617 if (ret) 618 goto e_free_blob; 619 } 620 621 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 622 623 /* If we query the CSR length, FW responded with expected data. */ 624 input.length = data.len; 625 626 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 627 ret = -EFAULT; 628 goto e_free_blob; 629 } 630 631 if (blob) { 632 if (copy_to_user(input_address, blob, input.length)) 633 ret = -EFAULT; 634 } 635 636 e_free_blob: 637 kfree(blob); 638 return ret; 639 } 640 641 void *psp_copy_user_blob(u64 uaddr, u32 len) 642 { 643 if (!uaddr || !len) 644 return ERR_PTR(-EINVAL); 645 646 /* verify that blob length does not exceed our limit */ 647 if (len > SEV_FW_BLOB_MAX_SIZE) 648 return ERR_PTR(-EINVAL); 649 650 return memdup_user((void __user *)uaddr, len); 651 } 652 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 653 654 static int sev_get_api_version(void) 655 { 656 struct sev_device *sev = psp_master->sev_data; 657 struct sev_user_data_status status; 658 int error = 0, ret; 659 660 ret = sev_platform_status(&status, &error); 661 if (ret) { 662 dev_err(sev->dev, 663 "SEV: failed to get status. Error: %#x\n", error); 664 return 1; 665 } 666 667 sev->api_major = status.api_major; 668 sev->api_minor = status.api_minor; 669 sev->build = status.build; 670 sev->state = status.state; 671 672 return 0; 673 } 674 675 static int sev_get_firmware(struct device *dev, 676 const struct firmware **firmware) 677 { 678 char fw_name_specific[SEV_FW_NAME_SIZE]; 679 char fw_name_subset[SEV_FW_NAME_SIZE]; 680 681 snprintf(fw_name_specific, sizeof(fw_name_specific), 682 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 683 boot_cpu_data.x86, boot_cpu_data.x86_model); 684 685 snprintf(fw_name_subset, sizeof(fw_name_subset), 686 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 687 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 688 689 /* Check for SEV FW for a particular model. 690 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 691 * 692 * or 693 * 694 * Check for SEV FW common to a subset of models. 695 * Ex. amd_sev_fam17h_model0xh.sbin for 696 * Family 17h Model 00h -- Family 17h Model 0Fh 697 * 698 * or 699 * 700 * Fall-back to using generic name: sev.fw 701 */ 702 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 703 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 704 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 705 return 0; 706 707 return -ENOENT; 708 } 709 710 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 711 static int sev_update_firmware(struct device *dev) 712 { 713 struct sev_data_download_firmware *data; 714 const struct firmware *firmware; 715 int ret, error, order; 716 struct page *p; 717 u64 data_size; 718 719 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 720 dev_dbg(dev, "No SEV firmware file present\n"); 721 return -1; 722 } 723 724 /* 725 * SEV FW expects the physical address given to it to be 32 726 * byte aligned. Memory allocated has structure placed at the 727 * beginning followed by the firmware being passed to the SEV 728 * FW. Allocate enough memory for data structure + alignment 729 * padding + SEV FW. 730 */ 731 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 732 733 order = get_order(firmware->size + data_size); 734 p = alloc_pages(GFP_KERNEL, order); 735 if (!p) { 736 ret = -1; 737 goto fw_err; 738 } 739 740 /* 741 * Copy firmware data to a kernel allocated contiguous 742 * memory region. 743 */ 744 data = page_address(p); 745 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 746 747 data->address = __psp_pa(page_address(p) + data_size); 748 data->len = firmware->size; 749 750 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 751 if (ret) 752 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 753 else 754 dev_info(dev, "SEV firmware update successful\n"); 755 756 __free_pages(p, order); 757 758 fw_err: 759 release_firmware(firmware); 760 761 return ret; 762 } 763 764 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 765 { 766 struct sev_device *sev = psp_master->sev_data; 767 struct sev_user_data_pek_cert_import input; 768 struct sev_data_pek_cert_import data; 769 void *pek_blob, *oca_blob; 770 int ret; 771 772 if (!writable) 773 return -EPERM; 774 775 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 776 return -EFAULT; 777 778 /* copy PEK certificate blobs from userspace */ 779 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 780 if (IS_ERR(pek_blob)) 781 return PTR_ERR(pek_blob); 782 783 data.reserved = 0; 784 data.pek_cert_address = __psp_pa(pek_blob); 785 data.pek_cert_len = input.pek_cert_len; 786 787 /* copy PEK certificate blobs from userspace */ 788 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 789 if (IS_ERR(oca_blob)) { 790 ret = PTR_ERR(oca_blob); 791 goto e_free_pek; 792 } 793 794 data.oca_cert_address = __psp_pa(oca_blob); 795 data.oca_cert_len = input.oca_cert_len; 796 797 /* If platform is not in INIT state then transition it to INIT */ 798 if (sev->state != SEV_STATE_INIT) { 799 ret = __sev_platform_init_locked(&argp->error); 800 if (ret) 801 goto e_free_oca; 802 } 803 804 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 805 806 e_free_oca: 807 kfree(oca_blob); 808 e_free_pek: 809 kfree(pek_blob); 810 return ret; 811 } 812 813 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 814 { 815 struct sev_user_data_get_id2 input; 816 struct sev_data_get_id data; 817 void __user *input_address; 818 void *id_blob = NULL; 819 int ret; 820 821 /* SEV GET_ID is available from SEV API v0.16 and up */ 822 if (!sev_version_greater_or_equal(0, 16)) 823 return -ENOTSUPP; 824 825 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 826 return -EFAULT; 827 828 input_address = (void __user *)input.address; 829 830 if (input.address && input.length) { 831 id_blob = kmalloc(input.length, GFP_KERNEL); 832 if (!id_blob) 833 return -ENOMEM; 834 835 data.address = __psp_pa(id_blob); 836 data.len = input.length; 837 } else { 838 data.address = 0; 839 data.len = 0; 840 } 841 842 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 843 844 /* 845 * Firmware will return the length of the ID value (either the minimum 846 * required length or the actual length written), return it to the user. 847 */ 848 input.length = data.len; 849 850 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 851 ret = -EFAULT; 852 goto e_free; 853 } 854 855 if (id_blob) { 856 if (copy_to_user(input_address, id_blob, data.len)) { 857 ret = -EFAULT; 858 goto e_free; 859 } 860 } 861 862 e_free: 863 kfree(id_blob); 864 865 return ret; 866 } 867 868 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 869 { 870 struct sev_data_get_id *data; 871 u64 data_size, user_size; 872 void *id_blob, *mem; 873 int ret; 874 875 /* SEV GET_ID available from SEV API v0.16 and up */ 876 if (!sev_version_greater_or_equal(0, 16)) 877 return -ENOTSUPP; 878 879 /* SEV FW expects the buffer it fills with the ID to be 880 * 8-byte aligned. Memory allocated should be enough to 881 * hold data structure + alignment padding + memory 882 * where SEV FW writes the ID. 883 */ 884 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 885 user_size = sizeof(struct sev_user_data_get_id); 886 887 mem = kzalloc(data_size + user_size, GFP_KERNEL); 888 if (!mem) 889 return -ENOMEM; 890 891 data = mem; 892 id_blob = mem + data_size; 893 894 data->address = __psp_pa(id_blob); 895 data->len = user_size; 896 897 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 898 if (!ret) { 899 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 900 ret = -EFAULT; 901 } 902 903 kfree(mem); 904 905 return ret; 906 } 907 908 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 909 { 910 struct sev_device *sev = psp_master->sev_data; 911 struct sev_user_data_pdh_cert_export input; 912 void *pdh_blob = NULL, *cert_blob = NULL; 913 struct sev_data_pdh_cert_export data; 914 void __user *input_cert_chain_address; 915 void __user *input_pdh_cert_address; 916 int ret; 917 918 /* If platform is not in INIT state then transition it to INIT. */ 919 if (sev->state != SEV_STATE_INIT) { 920 if (!writable) 921 return -EPERM; 922 923 ret = __sev_platform_init_locked(&argp->error); 924 if (ret) 925 return ret; 926 } 927 928 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 929 return -EFAULT; 930 931 memset(&data, 0, sizeof(data)); 932 933 /* Userspace wants to query the certificate length. */ 934 if (!input.pdh_cert_address || 935 !input.pdh_cert_len || 936 !input.cert_chain_address) 937 goto cmd; 938 939 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 940 input_cert_chain_address = (void __user *)input.cert_chain_address; 941 942 /* Allocate a physically contiguous buffer to store the PDH blob. */ 943 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 944 return -EFAULT; 945 946 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 947 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 948 return -EFAULT; 949 950 pdh_blob = kmalloc(input.pdh_cert_len, GFP_KERNEL); 951 if (!pdh_blob) 952 return -ENOMEM; 953 954 data.pdh_cert_address = __psp_pa(pdh_blob); 955 data.pdh_cert_len = input.pdh_cert_len; 956 957 cert_blob = kmalloc(input.cert_chain_len, GFP_KERNEL); 958 if (!cert_blob) { 959 ret = -ENOMEM; 960 goto e_free_pdh; 961 } 962 963 data.cert_chain_address = __psp_pa(cert_blob); 964 data.cert_chain_len = input.cert_chain_len; 965 966 cmd: 967 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 968 969 /* If we query the length, FW responded with expected data. */ 970 input.cert_chain_len = data.cert_chain_len; 971 input.pdh_cert_len = data.pdh_cert_len; 972 973 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 974 ret = -EFAULT; 975 goto e_free_cert; 976 } 977 978 if (pdh_blob) { 979 if (copy_to_user(input_pdh_cert_address, 980 pdh_blob, input.pdh_cert_len)) { 981 ret = -EFAULT; 982 goto e_free_cert; 983 } 984 } 985 986 if (cert_blob) { 987 if (copy_to_user(input_cert_chain_address, 988 cert_blob, input.cert_chain_len)) 989 ret = -EFAULT; 990 } 991 992 e_free_cert: 993 kfree(cert_blob); 994 e_free_pdh: 995 kfree(pdh_blob); 996 return ret; 997 } 998 999 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 1000 { 1001 void __user *argp = (void __user *)arg; 1002 struct sev_issue_cmd input; 1003 int ret = -EFAULT; 1004 bool writable = file->f_mode & FMODE_WRITE; 1005 1006 if (!psp_master || !psp_master->sev_data) 1007 return -ENODEV; 1008 1009 if (ioctl != SEV_ISSUE_CMD) 1010 return -EINVAL; 1011 1012 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 1013 return -EFAULT; 1014 1015 if (input.cmd > SEV_MAX) 1016 return -EINVAL; 1017 1018 mutex_lock(&sev_cmd_mutex); 1019 1020 switch (input.cmd) { 1021 1022 case SEV_FACTORY_RESET: 1023 ret = sev_ioctl_do_reset(&input, writable); 1024 break; 1025 case SEV_PLATFORM_STATUS: 1026 ret = sev_ioctl_do_platform_status(&input); 1027 break; 1028 case SEV_PEK_GEN: 1029 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 1030 break; 1031 case SEV_PDH_GEN: 1032 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 1033 break; 1034 case SEV_PEK_CSR: 1035 ret = sev_ioctl_do_pek_csr(&input, writable); 1036 break; 1037 case SEV_PEK_CERT_IMPORT: 1038 ret = sev_ioctl_do_pek_import(&input, writable); 1039 break; 1040 case SEV_PDH_CERT_EXPORT: 1041 ret = sev_ioctl_do_pdh_export(&input, writable); 1042 break; 1043 case SEV_GET_ID: 1044 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 1045 ret = sev_ioctl_do_get_id(&input); 1046 break; 1047 case SEV_GET_ID2: 1048 ret = sev_ioctl_do_get_id2(&input); 1049 break; 1050 default: 1051 ret = -EINVAL; 1052 goto out; 1053 } 1054 1055 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 1056 ret = -EFAULT; 1057 out: 1058 mutex_unlock(&sev_cmd_mutex); 1059 1060 return ret; 1061 } 1062 1063 static const struct file_operations sev_fops = { 1064 .owner = THIS_MODULE, 1065 .unlocked_ioctl = sev_ioctl, 1066 }; 1067 1068 int sev_platform_status(struct sev_user_data_status *data, int *error) 1069 { 1070 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 1071 } 1072 EXPORT_SYMBOL_GPL(sev_platform_status); 1073 1074 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 1075 { 1076 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 1077 } 1078 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 1079 1080 int sev_guest_activate(struct sev_data_activate *data, int *error) 1081 { 1082 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 1083 } 1084 EXPORT_SYMBOL_GPL(sev_guest_activate); 1085 1086 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 1087 { 1088 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 1089 } 1090 EXPORT_SYMBOL_GPL(sev_guest_decommission); 1091 1092 int sev_guest_df_flush(int *error) 1093 { 1094 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 1095 } 1096 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 1097 1098 static void sev_exit(struct kref *ref) 1099 { 1100 misc_deregister(&misc_dev->misc); 1101 kfree(misc_dev); 1102 misc_dev = NULL; 1103 } 1104 1105 static int sev_misc_init(struct sev_device *sev) 1106 { 1107 struct device *dev = sev->dev; 1108 int ret; 1109 1110 /* 1111 * SEV feature support can be detected on multiple devices but the SEV 1112 * FW commands must be issued on the master. During probe, we do not 1113 * know the master hence we create /dev/sev on the first device probe. 1114 * sev_do_cmd() finds the right master device to which to issue the 1115 * command to the firmware. 1116 */ 1117 if (!misc_dev) { 1118 struct miscdevice *misc; 1119 1120 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 1121 if (!misc_dev) 1122 return -ENOMEM; 1123 1124 misc = &misc_dev->misc; 1125 misc->minor = MISC_DYNAMIC_MINOR; 1126 misc->name = DEVICE_NAME; 1127 misc->fops = &sev_fops; 1128 1129 ret = misc_register(misc); 1130 if (ret) 1131 return ret; 1132 1133 kref_init(&misc_dev->refcount); 1134 } else { 1135 kref_get(&misc_dev->refcount); 1136 } 1137 1138 init_waitqueue_head(&sev->int_queue); 1139 sev->misc = misc_dev; 1140 dev_dbg(dev, "registered SEV device\n"); 1141 1142 return 0; 1143 } 1144 1145 int sev_dev_init(struct psp_device *psp) 1146 { 1147 struct device *dev = psp->dev; 1148 struct sev_device *sev; 1149 int ret = -ENOMEM; 1150 1151 if (!boot_cpu_has(X86_FEATURE_SEV)) { 1152 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 1153 return 0; 1154 } 1155 1156 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 1157 if (!sev) 1158 goto e_err; 1159 1160 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 0); 1161 if (!sev->cmd_buf) 1162 goto e_sev; 1163 1164 psp->sev_data = sev; 1165 1166 sev->dev = dev; 1167 sev->psp = psp; 1168 1169 sev->io_regs = psp->io_regs; 1170 1171 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 1172 if (!sev->vdata) { 1173 ret = -ENODEV; 1174 dev_err(dev, "sev: missing driver data\n"); 1175 goto e_buf; 1176 } 1177 1178 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 1179 1180 ret = sev_misc_init(sev); 1181 if (ret) 1182 goto e_irq; 1183 1184 dev_notice(dev, "sev enabled\n"); 1185 1186 return 0; 1187 1188 e_irq: 1189 psp_clear_sev_irq_handler(psp); 1190 e_buf: 1191 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 1192 e_sev: 1193 devm_kfree(dev, sev); 1194 e_err: 1195 psp->sev_data = NULL; 1196 1197 dev_notice(dev, "sev initialization failed\n"); 1198 1199 return ret; 1200 } 1201 1202 static void sev_firmware_shutdown(struct sev_device *sev) 1203 { 1204 sev_platform_shutdown(NULL); 1205 1206 if (sev_es_tmr) { 1207 /* The TMR area was encrypted, flush it from the cache */ 1208 wbinvd_on_all_cpus(); 1209 1210 free_pages((unsigned long)sev_es_tmr, 1211 get_order(SEV_ES_TMR_SIZE)); 1212 sev_es_tmr = NULL; 1213 } 1214 1215 if (sev_init_ex_buffer) { 1216 free_pages((unsigned long)sev_init_ex_buffer, 1217 get_order(NV_LENGTH)); 1218 sev_init_ex_buffer = NULL; 1219 } 1220 } 1221 1222 void sev_dev_destroy(struct psp_device *psp) 1223 { 1224 struct sev_device *sev = psp->sev_data; 1225 1226 if (!sev) 1227 return; 1228 1229 sev_firmware_shutdown(sev); 1230 1231 if (sev->misc) 1232 kref_put(&misc_dev->refcount, sev_exit); 1233 1234 psp_clear_sev_irq_handler(psp); 1235 } 1236 1237 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 1238 void *data, int *error) 1239 { 1240 if (!filep || filep->f_op != &sev_fops) 1241 return -EBADF; 1242 1243 return sev_do_cmd(cmd, data, error); 1244 } 1245 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 1246 1247 void sev_pci_init(void) 1248 { 1249 struct sev_device *sev = psp_master->sev_data; 1250 int error, rc; 1251 1252 if (!sev) 1253 return; 1254 1255 psp_timeout = psp_probe_timeout; 1256 1257 if (sev_get_api_version()) 1258 goto err; 1259 1260 if (sev_version_greater_or_equal(0, 15) && 1261 sev_update_firmware(sev->dev) == 0) 1262 sev_get_api_version(); 1263 1264 /* If an init_ex_path is provided rely on INIT_EX for PSP initialization 1265 * instead of INIT. 1266 */ 1267 if (init_ex_path) { 1268 sev_init_ex_buffer = sev_fw_alloc(NV_LENGTH); 1269 if (!sev_init_ex_buffer) { 1270 dev_err(sev->dev, 1271 "SEV: INIT_EX NV memory allocation failed\n"); 1272 goto err; 1273 } 1274 } 1275 1276 /* Obtain the TMR memory area for SEV-ES use */ 1277 sev_es_tmr = sev_fw_alloc(SEV_ES_TMR_SIZE); 1278 if (!sev_es_tmr) 1279 dev_warn(sev->dev, 1280 "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1281 1282 if (!psp_init_on_probe) 1283 return; 1284 1285 /* Initialize the platform */ 1286 rc = sev_platform_init(&error); 1287 if (rc) 1288 dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n", 1289 error, rc); 1290 1291 return; 1292 1293 err: 1294 psp_master->sev_data = NULL; 1295 } 1296 1297 void sev_pci_exit(void) 1298 { 1299 struct sev_device *sev = psp_master->sev_data; 1300 1301 if (!sev) 1302 return; 1303 1304 sev_firmware_shutdown(sev); 1305 } 1306