xref: /openbmc/linux/drivers/crypto/ccp/sev-dev.c (revision d9d193de)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <brijesh.singh@amd.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/spinlock_types.h>
17 #include <linux/types.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/hw_random.h>
21 #include <linux/ccp.h>
22 #include <linux/firmware.h>
23 #include <linux/gfp.h>
24 #include <linux/cpufeature.h>
25 #include <linux/fs.h>
26 #include <linux/fs_struct.h>
27 
28 #include <asm/smp.h>
29 
30 #include "psp-dev.h"
31 #include "sev-dev.h"
32 
33 #define DEVICE_NAME		"sev"
34 #define SEV_FW_FILE		"amd/sev.fw"
35 #define SEV_FW_NAME_SIZE	64
36 
37 static DEFINE_MUTEX(sev_cmd_mutex);
38 static struct sev_misc_dev *misc_dev;
39 
40 static int psp_cmd_timeout = 100;
41 module_param(psp_cmd_timeout, int, 0644);
42 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
43 
44 static int psp_probe_timeout = 5;
45 module_param(psp_probe_timeout, int, 0644);
46 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
47 
48 static char *init_ex_path;
49 module_param(init_ex_path, charp, 0444);
50 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
51 
52 static bool psp_init_on_probe = true;
53 module_param(psp_init_on_probe, bool, 0444);
54 MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
55 
56 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
57 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
58 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
59 
60 static bool psp_dead;
61 static int psp_timeout;
62 
63 /* Trusted Memory Region (TMR):
64  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
65  *   to allocate the memory, which will return aligned memory for the specified
66  *   allocation order.
67  */
68 #define SEV_ES_TMR_SIZE		(1024 * 1024)
69 static void *sev_es_tmr;
70 
71 /* INIT_EX NV Storage:
72  *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
73  *   allocator to allocate the memory, which will return aligned memory for the
74  *   specified allocation order.
75  */
76 #define NV_LENGTH (32 * 1024)
77 static void *sev_init_ex_buffer;
78 
79 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
80 {
81 	struct sev_device *sev = psp_master->sev_data;
82 
83 	if (sev->api_major > maj)
84 		return true;
85 
86 	if (sev->api_major == maj && sev->api_minor >= min)
87 		return true;
88 
89 	return false;
90 }
91 
92 static void sev_irq_handler(int irq, void *data, unsigned int status)
93 {
94 	struct sev_device *sev = data;
95 	int reg;
96 
97 	/* Check if it is command completion: */
98 	if (!(status & SEV_CMD_COMPLETE))
99 		return;
100 
101 	/* Check if it is SEV command completion: */
102 	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
103 	if (reg & PSP_CMDRESP_RESP) {
104 		sev->int_rcvd = 1;
105 		wake_up(&sev->int_queue);
106 	}
107 }
108 
109 static int sev_wait_cmd_ioc(struct sev_device *sev,
110 			    unsigned int *reg, unsigned int timeout)
111 {
112 	int ret;
113 
114 	ret = wait_event_timeout(sev->int_queue,
115 			sev->int_rcvd, timeout * HZ);
116 	if (!ret)
117 		return -ETIMEDOUT;
118 
119 	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
120 
121 	return 0;
122 }
123 
124 static int sev_cmd_buffer_len(int cmd)
125 {
126 	switch (cmd) {
127 	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
128 	case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
129 	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
130 	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
131 	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
132 	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
133 	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
134 	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
135 	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
136 	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
137 	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
138 	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
139 	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
140 	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
141 	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
142 	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
143 	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
144 	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
145 	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
146 	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
147 	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
148 	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
149 	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
150 	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
151 	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
152 	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
153 	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
154 	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
155 	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
156 	case SEV_CMD_SEND_CANCEL:		return sizeof(struct sev_data_send_cancel);
157 	default:				return 0;
158 	}
159 
160 	return 0;
161 }
162 
163 static void *sev_fw_alloc(unsigned long len)
164 {
165 	struct page *page;
166 
167 	page = alloc_pages(GFP_KERNEL, get_order(len));
168 	if (!page)
169 		return NULL;
170 
171 	return page_address(page);
172 }
173 
174 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
175 {
176 	struct file *fp;
177 	struct path root;
178 	struct cred *cred;
179 	const struct cred *old_cred;
180 
181 	task_lock(&init_task);
182 	get_fs_root(init_task.fs, &root);
183 	task_unlock(&init_task);
184 
185 	cred = prepare_creds();
186 	if (!cred)
187 		return ERR_PTR(-ENOMEM);
188 	cred->fsuid = GLOBAL_ROOT_UID;
189 	old_cred = override_creds(cred);
190 
191 	fp = file_open_root(&root, filename, flags, mode);
192 	path_put(&root);
193 
194 	revert_creds(old_cred);
195 
196 	return fp;
197 }
198 
199 static int sev_read_init_ex_file(void)
200 {
201 	struct sev_device *sev = psp_master->sev_data;
202 	struct file *fp;
203 	ssize_t nread;
204 
205 	lockdep_assert_held(&sev_cmd_mutex);
206 
207 	if (!sev_init_ex_buffer)
208 		return -EOPNOTSUPP;
209 
210 	fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
211 	if (IS_ERR(fp)) {
212 		int ret = PTR_ERR(fp);
213 
214 		dev_err(sev->dev,
215 			"SEV: could not open %s for read, error %d\n",
216 			init_ex_path, ret);
217 		return ret;
218 	}
219 
220 	nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
221 	if (nread != NV_LENGTH) {
222 		dev_err(sev->dev,
223 			"SEV: failed to read %u bytes to non volatile memory area, ret %ld\n",
224 			NV_LENGTH, nread);
225 		return -EIO;
226 	}
227 
228 	dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
229 	filp_close(fp, NULL);
230 
231 	return 0;
232 }
233 
234 static void sev_write_init_ex_file(void)
235 {
236 	struct sev_device *sev = psp_master->sev_data;
237 	struct file *fp;
238 	loff_t offset = 0;
239 	ssize_t nwrite;
240 
241 	lockdep_assert_held(&sev_cmd_mutex);
242 
243 	if (!sev_init_ex_buffer)
244 		return;
245 
246 	fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
247 	if (IS_ERR(fp)) {
248 		dev_err(sev->dev,
249 			"SEV: could not open file for write, error %ld\n",
250 			PTR_ERR(fp));
251 		return;
252 	}
253 
254 	nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
255 	vfs_fsync(fp, 0);
256 	filp_close(fp, NULL);
257 
258 	if (nwrite != NV_LENGTH) {
259 		dev_err(sev->dev,
260 			"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
261 			NV_LENGTH, nwrite);
262 		return;
263 	}
264 
265 	dev_dbg(sev->dev, "SEV: write successful to NV file\n");
266 }
267 
268 static void sev_write_init_ex_file_if_required(int cmd_id)
269 {
270 	lockdep_assert_held(&sev_cmd_mutex);
271 
272 	if (!sev_init_ex_buffer)
273 		return;
274 
275 	/*
276 	 * Only a few platform commands modify the SPI/NV area, but none of the
277 	 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
278 	 * PEK_CERT_IMPORT, and PDH_GEN do.
279 	 */
280 	switch (cmd_id) {
281 	case SEV_CMD_FACTORY_RESET:
282 	case SEV_CMD_INIT_EX:
283 	case SEV_CMD_PDH_GEN:
284 	case SEV_CMD_PEK_CERT_IMPORT:
285 	case SEV_CMD_PEK_GEN:
286 		break;
287 	default:
288 		return;
289 	}
290 
291 	sev_write_init_ex_file();
292 }
293 
294 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
295 {
296 	struct psp_device *psp = psp_master;
297 	struct sev_device *sev;
298 	unsigned int phys_lsb, phys_msb;
299 	unsigned int reg, ret = 0;
300 	int buf_len;
301 
302 	if (!psp || !psp->sev_data)
303 		return -ENODEV;
304 
305 	if (psp_dead)
306 		return -EBUSY;
307 
308 	sev = psp->sev_data;
309 
310 	buf_len = sev_cmd_buffer_len(cmd);
311 	if (WARN_ON_ONCE(!data != !buf_len))
312 		return -EINVAL;
313 
314 	/*
315 	 * Copy the incoming data to driver's scratch buffer as __pa() will not
316 	 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
317 	 * physically contiguous.
318 	 */
319 	if (data)
320 		memcpy(sev->cmd_buf, data, buf_len);
321 
322 	/* Get the physical address of the command buffer */
323 	phys_lsb = data ? lower_32_bits(__psp_pa(sev->cmd_buf)) : 0;
324 	phys_msb = data ? upper_32_bits(__psp_pa(sev->cmd_buf)) : 0;
325 
326 	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
327 		cmd, phys_msb, phys_lsb, psp_timeout);
328 
329 	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
330 			     buf_len, false);
331 
332 	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
333 	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
334 
335 	sev->int_rcvd = 0;
336 
337 	reg = cmd;
338 	reg <<= SEV_CMDRESP_CMD_SHIFT;
339 	reg |= SEV_CMDRESP_IOC;
340 	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
341 
342 	/* wait for command completion */
343 	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
344 	if (ret) {
345 		if (psp_ret)
346 			*psp_ret = 0;
347 
348 		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
349 		psp_dead = true;
350 
351 		return ret;
352 	}
353 
354 	psp_timeout = psp_cmd_timeout;
355 
356 	if (psp_ret)
357 		*psp_ret = reg & PSP_CMDRESP_ERR_MASK;
358 
359 	if (reg & PSP_CMDRESP_ERR_MASK) {
360 		dev_dbg(sev->dev, "sev command %#x failed (%#010x)\n",
361 			cmd, reg & PSP_CMDRESP_ERR_MASK);
362 		ret = -EIO;
363 	} else {
364 		sev_write_init_ex_file_if_required(cmd);
365 	}
366 
367 	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
368 			     buf_len, false);
369 
370 	/*
371 	 * Copy potential output from the PSP back to data.  Do this even on
372 	 * failure in case the caller wants to glean something from the error.
373 	 */
374 	if (data)
375 		memcpy(data, sev->cmd_buf, buf_len);
376 
377 	return ret;
378 }
379 
380 static int sev_do_cmd(int cmd, void *data, int *psp_ret)
381 {
382 	int rc;
383 
384 	mutex_lock(&sev_cmd_mutex);
385 	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
386 	mutex_unlock(&sev_cmd_mutex);
387 
388 	return rc;
389 }
390 
391 static int __sev_init_locked(int *error)
392 {
393 	struct sev_data_init data;
394 
395 	memset(&data, 0, sizeof(data));
396 	if (sev_es_tmr) {
397 		/*
398 		 * Do not include the encryption mask on the physical
399 		 * address of the TMR (firmware should clear it anyway).
400 		 */
401 		data.tmr_address = __pa(sev_es_tmr);
402 
403 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
404 		data.tmr_len = SEV_ES_TMR_SIZE;
405 	}
406 
407 	return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
408 }
409 
410 static int __sev_init_ex_locked(int *error)
411 {
412 	struct sev_data_init_ex data;
413 	int ret;
414 
415 	memset(&data, 0, sizeof(data));
416 	data.length = sizeof(data);
417 	data.nv_address = __psp_pa(sev_init_ex_buffer);
418 	data.nv_len = NV_LENGTH;
419 
420 	ret = sev_read_init_ex_file();
421 	if (ret)
422 		return ret;
423 
424 	if (sev_es_tmr) {
425 		/*
426 		 * Do not include the encryption mask on the physical
427 		 * address of the TMR (firmware should clear it anyway).
428 		 */
429 		data.tmr_address = __pa(sev_es_tmr);
430 
431 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
432 		data.tmr_len = SEV_ES_TMR_SIZE;
433 	}
434 
435 	return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
436 }
437 
438 static int __sev_platform_init_locked(int *error)
439 {
440 	struct psp_device *psp = psp_master;
441 	struct sev_device *sev;
442 	int rc, psp_ret = -1;
443 	int (*init_function)(int *error);
444 
445 	if (!psp || !psp->sev_data)
446 		return -ENODEV;
447 
448 	sev = psp->sev_data;
449 
450 	if (sev->state == SEV_STATE_INIT)
451 		return 0;
452 
453 	init_function = sev_init_ex_buffer ? __sev_init_ex_locked :
454 			__sev_init_locked;
455 	rc = init_function(&psp_ret);
456 	if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
457 		/*
458 		 * Initialization command returned an integrity check failure
459 		 * status code, meaning that firmware load and validation of SEV
460 		 * related persistent data has failed. Retrying the
461 		 * initialization function should succeed by replacing the state
462 		 * with a reset state.
463 		 */
464 		dev_err(sev->dev, "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
465 		rc = init_function(&psp_ret);
466 	}
467 	if (error)
468 		*error = psp_ret;
469 
470 	if (rc)
471 		return rc;
472 
473 	sev->state = SEV_STATE_INIT;
474 
475 	/* Prepare for first SEV guest launch after INIT */
476 	wbinvd_on_all_cpus();
477 	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error);
478 	if (rc)
479 		return rc;
480 
481 	dev_dbg(sev->dev, "SEV firmware initialized\n");
482 
483 	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
484 		 sev->api_minor, sev->build);
485 
486 	return 0;
487 }
488 
489 int sev_platform_init(int *error)
490 {
491 	int rc;
492 
493 	mutex_lock(&sev_cmd_mutex);
494 	rc = __sev_platform_init_locked(error);
495 	mutex_unlock(&sev_cmd_mutex);
496 
497 	return rc;
498 }
499 EXPORT_SYMBOL_GPL(sev_platform_init);
500 
501 static int __sev_platform_shutdown_locked(int *error)
502 {
503 	struct sev_device *sev = psp_master->sev_data;
504 	int ret;
505 
506 	if (sev->state == SEV_STATE_UNINIT)
507 		return 0;
508 
509 	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
510 	if (ret)
511 		return ret;
512 
513 	sev->state = SEV_STATE_UNINIT;
514 	dev_dbg(sev->dev, "SEV firmware shutdown\n");
515 
516 	return ret;
517 }
518 
519 static int sev_platform_shutdown(int *error)
520 {
521 	int rc;
522 
523 	mutex_lock(&sev_cmd_mutex);
524 	rc = __sev_platform_shutdown_locked(NULL);
525 	mutex_unlock(&sev_cmd_mutex);
526 
527 	return rc;
528 }
529 
530 static int sev_get_platform_state(int *state, int *error)
531 {
532 	struct sev_user_data_status data;
533 	int rc;
534 
535 	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
536 	if (rc)
537 		return rc;
538 
539 	*state = data.state;
540 	return rc;
541 }
542 
543 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
544 {
545 	int state, rc;
546 
547 	if (!writable)
548 		return -EPERM;
549 
550 	/*
551 	 * The SEV spec requires that FACTORY_RESET must be issued in
552 	 * UNINIT state. Before we go further lets check if any guest is
553 	 * active.
554 	 *
555 	 * If FW is in WORKING state then deny the request otherwise issue
556 	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
557 	 *
558 	 */
559 	rc = sev_get_platform_state(&state, &argp->error);
560 	if (rc)
561 		return rc;
562 
563 	if (state == SEV_STATE_WORKING)
564 		return -EBUSY;
565 
566 	if (state == SEV_STATE_INIT) {
567 		rc = __sev_platform_shutdown_locked(&argp->error);
568 		if (rc)
569 			return rc;
570 	}
571 
572 	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
573 }
574 
575 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
576 {
577 	struct sev_user_data_status data;
578 	int ret;
579 
580 	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
581 	if (ret)
582 		return ret;
583 
584 	if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
585 		ret = -EFAULT;
586 
587 	return ret;
588 }
589 
590 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
591 {
592 	struct sev_device *sev = psp_master->sev_data;
593 	int rc;
594 
595 	if (!writable)
596 		return -EPERM;
597 
598 	if (sev->state == SEV_STATE_UNINIT) {
599 		rc = __sev_platform_init_locked(&argp->error);
600 		if (rc)
601 			return rc;
602 	}
603 
604 	return __sev_do_cmd_locked(cmd, NULL, &argp->error);
605 }
606 
607 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
608 {
609 	struct sev_device *sev = psp_master->sev_data;
610 	struct sev_user_data_pek_csr input;
611 	struct sev_data_pek_csr data;
612 	void __user *input_address;
613 	void *blob = NULL;
614 	int ret;
615 
616 	if (!writable)
617 		return -EPERM;
618 
619 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
620 		return -EFAULT;
621 
622 	memset(&data, 0, sizeof(data));
623 
624 	/* userspace wants to query CSR length */
625 	if (!input.address || !input.length)
626 		goto cmd;
627 
628 	/* allocate a physically contiguous buffer to store the CSR blob */
629 	input_address = (void __user *)input.address;
630 	if (input.length > SEV_FW_BLOB_MAX_SIZE)
631 		return -EFAULT;
632 
633 	blob = kmalloc(input.length, GFP_KERNEL);
634 	if (!blob)
635 		return -ENOMEM;
636 
637 	data.address = __psp_pa(blob);
638 	data.len = input.length;
639 
640 cmd:
641 	if (sev->state == SEV_STATE_UNINIT) {
642 		ret = __sev_platform_init_locked(&argp->error);
643 		if (ret)
644 			goto e_free_blob;
645 	}
646 
647 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
648 
649 	 /* If we query the CSR length, FW responded with expected data. */
650 	input.length = data.len;
651 
652 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
653 		ret = -EFAULT;
654 		goto e_free_blob;
655 	}
656 
657 	if (blob) {
658 		if (copy_to_user(input_address, blob, input.length))
659 			ret = -EFAULT;
660 	}
661 
662 e_free_blob:
663 	kfree(blob);
664 	return ret;
665 }
666 
667 void *psp_copy_user_blob(u64 uaddr, u32 len)
668 {
669 	if (!uaddr || !len)
670 		return ERR_PTR(-EINVAL);
671 
672 	/* verify that blob length does not exceed our limit */
673 	if (len > SEV_FW_BLOB_MAX_SIZE)
674 		return ERR_PTR(-EINVAL);
675 
676 	return memdup_user((void __user *)uaddr, len);
677 }
678 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
679 
680 static int sev_get_api_version(void)
681 {
682 	struct sev_device *sev = psp_master->sev_data;
683 	struct sev_user_data_status status;
684 	int error = 0, ret;
685 
686 	ret = sev_platform_status(&status, &error);
687 	if (ret) {
688 		dev_err(sev->dev,
689 			"SEV: failed to get status. Error: %#x\n", error);
690 		return 1;
691 	}
692 
693 	sev->api_major = status.api_major;
694 	sev->api_minor = status.api_minor;
695 	sev->build = status.build;
696 	sev->state = status.state;
697 
698 	return 0;
699 }
700 
701 static int sev_get_firmware(struct device *dev,
702 			    const struct firmware **firmware)
703 {
704 	char fw_name_specific[SEV_FW_NAME_SIZE];
705 	char fw_name_subset[SEV_FW_NAME_SIZE];
706 
707 	snprintf(fw_name_specific, sizeof(fw_name_specific),
708 		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
709 		 boot_cpu_data.x86, boot_cpu_data.x86_model);
710 
711 	snprintf(fw_name_subset, sizeof(fw_name_subset),
712 		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
713 		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
714 
715 	/* Check for SEV FW for a particular model.
716 	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
717 	 *
718 	 * or
719 	 *
720 	 * Check for SEV FW common to a subset of models.
721 	 * Ex. amd_sev_fam17h_model0xh.sbin for
722 	 *     Family 17h Model 00h -- Family 17h Model 0Fh
723 	 *
724 	 * or
725 	 *
726 	 * Fall-back to using generic name: sev.fw
727 	 */
728 	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
729 	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
730 	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
731 		return 0;
732 
733 	return -ENOENT;
734 }
735 
736 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
737 static int sev_update_firmware(struct device *dev)
738 {
739 	struct sev_data_download_firmware *data;
740 	const struct firmware *firmware;
741 	int ret, error, order;
742 	struct page *p;
743 	u64 data_size;
744 
745 	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
746 		dev_dbg(dev, "No SEV firmware file present\n");
747 		return -1;
748 	}
749 
750 	/*
751 	 * SEV FW expects the physical address given to it to be 32
752 	 * byte aligned. Memory allocated has structure placed at the
753 	 * beginning followed by the firmware being passed to the SEV
754 	 * FW. Allocate enough memory for data structure + alignment
755 	 * padding + SEV FW.
756 	 */
757 	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
758 
759 	order = get_order(firmware->size + data_size);
760 	p = alloc_pages(GFP_KERNEL, order);
761 	if (!p) {
762 		ret = -1;
763 		goto fw_err;
764 	}
765 
766 	/*
767 	 * Copy firmware data to a kernel allocated contiguous
768 	 * memory region.
769 	 */
770 	data = page_address(p);
771 	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
772 
773 	data->address = __psp_pa(page_address(p) + data_size);
774 	data->len = firmware->size;
775 
776 	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
777 	if (ret)
778 		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
779 	else
780 		dev_info(dev, "SEV firmware update successful\n");
781 
782 	__free_pages(p, order);
783 
784 fw_err:
785 	release_firmware(firmware);
786 
787 	return ret;
788 }
789 
790 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
791 {
792 	struct sev_device *sev = psp_master->sev_data;
793 	struct sev_user_data_pek_cert_import input;
794 	struct sev_data_pek_cert_import data;
795 	void *pek_blob, *oca_blob;
796 	int ret;
797 
798 	if (!writable)
799 		return -EPERM;
800 
801 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
802 		return -EFAULT;
803 
804 	/* copy PEK certificate blobs from userspace */
805 	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
806 	if (IS_ERR(pek_blob))
807 		return PTR_ERR(pek_blob);
808 
809 	data.reserved = 0;
810 	data.pek_cert_address = __psp_pa(pek_blob);
811 	data.pek_cert_len = input.pek_cert_len;
812 
813 	/* copy PEK certificate blobs from userspace */
814 	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
815 	if (IS_ERR(oca_blob)) {
816 		ret = PTR_ERR(oca_blob);
817 		goto e_free_pek;
818 	}
819 
820 	data.oca_cert_address = __psp_pa(oca_blob);
821 	data.oca_cert_len = input.oca_cert_len;
822 
823 	/* If platform is not in INIT state then transition it to INIT */
824 	if (sev->state != SEV_STATE_INIT) {
825 		ret = __sev_platform_init_locked(&argp->error);
826 		if (ret)
827 			goto e_free_oca;
828 	}
829 
830 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
831 
832 e_free_oca:
833 	kfree(oca_blob);
834 e_free_pek:
835 	kfree(pek_blob);
836 	return ret;
837 }
838 
839 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
840 {
841 	struct sev_user_data_get_id2 input;
842 	struct sev_data_get_id data;
843 	void __user *input_address;
844 	void *id_blob = NULL;
845 	int ret;
846 
847 	/* SEV GET_ID is available from SEV API v0.16 and up */
848 	if (!sev_version_greater_or_equal(0, 16))
849 		return -ENOTSUPP;
850 
851 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
852 		return -EFAULT;
853 
854 	input_address = (void __user *)input.address;
855 
856 	if (input.address && input.length) {
857 		id_blob = kmalloc(input.length, GFP_KERNEL);
858 		if (!id_blob)
859 			return -ENOMEM;
860 
861 		data.address = __psp_pa(id_blob);
862 		data.len = input.length;
863 	} else {
864 		data.address = 0;
865 		data.len = 0;
866 	}
867 
868 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
869 
870 	/*
871 	 * Firmware will return the length of the ID value (either the minimum
872 	 * required length or the actual length written), return it to the user.
873 	 */
874 	input.length = data.len;
875 
876 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
877 		ret = -EFAULT;
878 		goto e_free;
879 	}
880 
881 	if (id_blob) {
882 		if (copy_to_user(input_address, id_blob, data.len)) {
883 			ret = -EFAULT;
884 			goto e_free;
885 		}
886 	}
887 
888 e_free:
889 	kfree(id_blob);
890 
891 	return ret;
892 }
893 
894 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
895 {
896 	struct sev_data_get_id *data;
897 	u64 data_size, user_size;
898 	void *id_blob, *mem;
899 	int ret;
900 
901 	/* SEV GET_ID available from SEV API v0.16 and up */
902 	if (!sev_version_greater_or_equal(0, 16))
903 		return -ENOTSUPP;
904 
905 	/* SEV FW expects the buffer it fills with the ID to be
906 	 * 8-byte aligned. Memory allocated should be enough to
907 	 * hold data structure + alignment padding + memory
908 	 * where SEV FW writes the ID.
909 	 */
910 	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
911 	user_size = sizeof(struct sev_user_data_get_id);
912 
913 	mem = kzalloc(data_size + user_size, GFP_KERNEL);
914 	if (!mem)
915 		return -ENOMEM;
916 
917 	data = mem;
918 	id_blob = mem + data_size;
919 
920 	data->address = __psp_pa(id_blob);
921 	data->len = user_size;
922 
923 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
924 	if (!ret) {
925 		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
926 			ret = -EFAULT;
927 	}
928 
929 	kfree(mem);
930 
931 	return ret;
932 }
933 
934 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
935 {
936 	struct sev_device *sev = psp_master->sev_data;
937 	struct sev_user_data_pdh_cert_export input;
938 	void *pdh_blob = NULL, *cert_blob = NULL;
939 	struct sev_data_pdh_cert_export data;
940 	void __user *input_cert_chain_address;
941 	void __user *input_pdh_cert_address;
942 	int ret;
943 
944 	/* If platform is not in INIT state then transition it to INIT. */
945 	if (sev->state != SEV_STATE_INIT) {
946 		if (!writable)
947 			return -EPERM;
948 
949 		ret = __sev_platform_init_locked(&argp->error);
950 		if (ret)
951 			return ret;
952 	}
953 
954 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
955 		return -EFAULT;
956 
957 	memset(&data, 0, sizeof(data));
958 
959 	/* Userspace wants to query the certificate length. */
960 	if (!input.pdh_cert_address ||
961 	    !input.pdh_cert_len ||
962 	    !input.cert_chain_address)
963 		goto cmd;
964 
965 	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
966 	input_cert_chain_address = (void __user *)input.cert_chain_address;
967 
968 	/* Allocate a physically contiguous buffer to store the PDH blob. */
969 	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
970 		return -EFAULT;
971 
972 	/* Allocate a physically contiguous buffer to store the cert chain blob. */
973 	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
974 		return -EFAULT;
975 
976 	pdh_blob = kmalloc(input.pdh_cert_len, GFP_KERNEL);
977 	if (!pdh_blob)
978 		return -ENOMEM;
979 
980 	data.pdh_cert_address = __psp_pa(pdh_blob);
981 	data.pdh_cert_len = input.pdh_cert_len;
982 
983 	cert_blob = kmalloc(input.cert_chain_len, GFP_KERNEL);
984 	if (!cert_blob) {
985 		ret = -ENOMEM;
986 		goto e_free_pdh;
987 	}
988 
989 	data.cert_chain_address = __psp_pa(cert_blob);
990 	data.cert_chain_len = input.cert_chain_len;
991 
992 cmd:
993 	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
994 
995 	/* If we query the length, FW responded with expected data. */
996 	input.cert_chain_len = data.cert_chain_len;
997 	input.pdh_cert_len = data.pdh_cert_len;
998 
999 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1000 		ret = -EFAULT;
1001 		goto e_free_cert;
1002 	}
1003 
1004 	if (pdh_blob) {
1005 		if (copy_to_user(input_pdh_cert_address,
1006 				 pdh_blob, input.pdh_cert_len)) {
1007 			ret = -EFAULT;
1008 			goto e_free_cert;
1009 		}
1010 	}
1011 
1012 	if (cert_blob) {
1013 		if (copy_to_user(input_cert_chain_address,
1014 				 cert_blob, input.cert_chain_len))
1015 			ret = -EFAULT;
1016 	}
1017 
1018 e_free_cert:
1019 	kfree(cert_blob);
1020 e_free_pdh:
1021 	kfree(pdh_blob);
1022 	return ret;
1023 }
1024 
1025 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
1026 {
1027 	void __user *argp = (void __user *)arg;
1028 	struct sev_issue_cmd input;
1029 	int ret = -EFAULT;
1030 	bool writable = file->f_mode & FMODE_WRITE;
1031 
1032 	if (!psp_master || !psp_master->sev_data)
1033 		return -ENODEV;
1034 
1035 	if (ioctl != SEV_ISSUE_CMD)
1036 		return -EINVAL;
1037 
1038 	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
1039 		return -EFAULT;
1040 
1041 	if (input.cmd > SEV_MAX)
1042 		return -EINVAL;
1043 
1044 	mutex_lock(&sev_cmd_mutex);
1045 
1046 	switch (input.cmd) {
1047 
1048 	case SEV_FACTORY_RESET:
1049 		ret = sev_ioctl_do_reset(&input, writable);
1050 		break;
1051 	case SEV_PLATFORM_STATUS:
1052 		ret = sev_ioctl_do_platform_status(&input);
1053 		break;
1054 	case SEV_PEK_GEN:
1055 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
1056 		break;
1057 	case SEV_PDH_GEN:
1058 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
1059 		break;
1060 	case SEV_PEK_CSR:
1061 		ret = sev_ioctl_do_pek_csr(&input, writable);
1062 		break;
1063 	case SEV_PEK_CERT_IMPORT:
1064 		ret = sev_ioctl_do_pek_import(&input, writable);
1065 		break;
1066 	case SEV_PDH_CERT_EXPORT:
1067 		ret = sev_ioctl_do_pdh_export(&input, writable);
1068 		break;
1069 	case SEV_GET_ID:
1070 		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
1071 		ret = sev_ioctl_do_get_id(&input);
1072 		break;
1073 	case SEV_GET_ID2:
1074 		ret = sev_ioctl_do_get_id2(&input);
1075 		break;
1076 	default:
1077 		ret = -EINVAL;
1078 		goto out;
1079 	}
1080 
1081 	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
1082 		ret = -EFAULT;
1083 out:
1084 	mutex_unlock(&sev_cmd_mutex);
1085 
1086 	return ret;
1087 }
1088 
1089 static const struct file_operations sev_fops = {
1090 	.owner	= THIS_MODULE,
1091 	.unlocked_ioctl = sev_ioctl,
1092 };
1093 
1094 int sev_platform_status(struct sev_user_data_status *data, int *error)
1095 {
1096 	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
1097 }
1098 EXPORT_SYMBOL_GPL(sev_platform_status);
1099 
1100 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
1101 {
1102 	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
1103 }
1104 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
1105 
1106 int sev_guest_activate(struct sev_data_activate *data, int *error)
1107 {
1108 	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
1109 }
1110 EXPORT_SYMBOL_GPL(sev_guest_activate);
1111 
1112 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
1113 {
1114 	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
1115 }
1116 EXPORT_SYMBOL_GPL(sev_guest_decommission);
1117 
1118 int sev_guest_df_flush(int *error)
1119 {
1120 	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
1121 }
1122 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
1123 
1124 static void sev_exit(struct kref *ref)
1125 {
1126 	misc_deregister(&misc_dev->misc);
1127 	kfree(misc_dev);
1128 	misc_dev = NULL;
1129 }
1130 
1131 static int sev_misc_init(struct sev_device *sev)
1132 {
1133 	struct device *dev = sev->dev;
1134 	int ret;
1135 
1136 	/*
1137 	 * SEV feature support can be detected on multiple devices but the SEV
1138 	 * FW commands must be issued on the master. During probe, we do not
1139 	 * know the master hence we create /dev/sev on the first device probe.
1140 	 * sev_do_cmd() finds the right master device to which to issue the
1141 	 * command to the firmware.
1142 	 */
1143 	if (!misc_dev) {
1144 		struct miscdevice *misc;
1145 
1146 		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
1147 		if (!misc_dev)
1148 			return -ENOMEM;
1149 
1150 		misc = &misc_dev->misc;
1151 		misc->minor = MISC_DYNAMIC_MINOR;
1152 		misc->name = DEVICE_NAME;
1153 		misc->fops = &sev_fops;
1154 
1155 		ret = misc_register(misc);
1156 		if (ret)
1157 			return ret;
1158 
1159 		kref_init(&misc_dev->refcount);
1160 	} else {
1161 		kref_get(&misc_dev->refcount);
1162 	}
1163 
1164 	init_waitqueue_head(&sev->int_queue);
1165 	sev->misc = misc_dev;
1166 	dev_dbg(dev, "registered SEV device\n");
1167 
1168 	return 0;
1169 }
1170 
1171 int sev_dev_init(struct psp_device *psp)
1172 {
1173 	struct device *dev = psp->dev;
1174 	struct sev_device *sev;
1175 	int ret = -ENOMEM;
1176 
1177 	if (!boot_cpu_has(X86_FEATURE_SEV)) {
1178 		dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
1179 		return 0;
1180 	}
1181 
1182 	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
1183 	if (!sev)
1184 		goto e_err;
1185 
1186 	sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 0);
1187 	if (!sev->cmd_buf)
1188 		goto e_sev;
1189 
1190 	psp->sev_data = sev;
1191 
1192 	sev->dev = dev;
1193 	sev->psp = psp;
1194 
1195 	sev->io_regs = psp->io_regs;
1196 
1197 	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
1198 	if (!sev->vdata) {
1199 		ret = -ENODEV;
1200 		dev_err(dev, "sev: missing driver data\n");
1201 		goto e_buf;
1202 	}
1203 
1204 	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
1205 
1206 	ret = sev_misc_init(sev);
1207 	if (ret)
1208 		goto e_irq;
1209 
1210 	dev_notice(dev, "sev enabled\n");
1211 
1212 	return 0;
1213 
1214 e_irq:
1215 	psp_clear_sev_irq_handler(psp);
1216 e_buf:
1217 	devm_free_pages(dev, (unsigned long)sev->cmd_buf);
1218 e_sev:
1219 	devm_kfree(dev, sev);
1220 e_err:
1221 	psp->sev_data = NULL;
1222 
1223 	dev_notice(dev, "sev initialization failed\n");
1224 
1225 	return ret;
1226 }
1227 
1228 static void sev_firmware_shutdown(struct sev_device *sev)
1229 {
1230 	sev_platform_shutdown(NULL);
1231 
1232 	if (sev_es_tmr) {
1233 		/* The TMR area was encrypted, flush it from the cache */
1234 		wbinvd_on_all_cpus();
1235 
1236 		free_pages((unsigned long)sev_es_tmr,
1237 			   get_order(SEV_ES_TMR_SIZE));
1238 		sev_es_tmr = NULL;
1239 	}
1240 
1241 	if (sev_init_ex_buffer) {
1242 		free_pages((unsigned long)sev_init_ex_buffer,
1243 			   get_order(NV_LENGTH));
1244 		sev_init_ex_buffer = NULL;
1245 	}
1246 }
1247 
1248 void sev_dev_destroy(struct psp_device *psp)
1249 {
1250 	struct sev_device *sev = psp->sev_data;
1251 
1252 	if (!sev)
1253 		return;
1254 
1255 	sev_firmware_shutdown(sev);
1256 
1257 	if (sev->misc)
1258 		kref_put(&misc_dev->refcount, sev_exit);
1259 
1260 	psp_clear_sev_irq_handler(psp);
1261 }
1262 
1263 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
1264 				void *data, int *error)
1265 {
1266 	if (!filep || filep->f_op != &sev_fops)
1267 		return -EBADF;
1268 
1269 	return sev_do_cmd(cmd, data, error);
1270 }
1271 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
1272 
1273 void sev_pci_init(void)
1274 {
1275 	struct sev_device *sev = psp_master->sev_data;
1276 	int error, rc;
1277 
1278 	if (!sev)
1279 		return;
1280 
1281 	psp_timeout = psp_probe_timeout;
1282 
1283 	if (sev_get_api_version())
1284 		goto err;
1285 
1286 	if (sev_version_greater_or_equal(0, 15) &&
1287 	    sev_update_firmware(sev->dev) == 0)
1288 		sev_get_api_version();
1289 
1290 	/* If an init_ex_path is provided rely on INIT_EX for PSP initialization
1291 	 * instead of INIT.
1292 	 */
1293 	if (init_ex_path) {
1294 		sev_init_ex_buffer = sev_fw_alloc(NV_LENGTH);
1295 		if (!sev_init_ex_buffer) {
1296 			dev_err(sev->dev,
1297 				"SEV: INIT_EX NV memory allocation failed\n");
1298 			goto err;
1299 		}
1300 	}
1301 
1302 	/* Obtain the TMR memory area for SEV-ES use */
1303 	sev_es_tmr = sev_fw_alloc(SEV_ES_TMR_SIZE);
1304 	if (!sev_es_tmr)
1305 		dev_warn(sev->dev,
1306 			 "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1307 
1308 	if (!psp_init_on_probe)
1309 		return;
1310 
1311 	/* Initialize the platform */
1312 	rc = sev_platform_init(&error);
1313 	if (rc)
1314 		dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n",
1315 			error, rc);
1316 
1317 	return;
1318 
1319 err:
1320 	psp_master->sev_data = NULL;
1321 }
1322 
1323 void sev_pci_exit(void)
1324 {
1325 	struct sev_device *sev = psp_master->sev_data;
1326 
1327 	if (!sev)
1328 		return;
1329 
1330 	sev_firmware_shutdown(sev);
1331 }
1332