1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kthread.h> 13 #include <linux/sched.h> 14 #include <linux/interrupt.h> 15 #include <linux/spinlock.h> 16 #include <linux/spinlock_types.h> 17 #include <linux/types.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/hw_random.h> 21 #include <linux/ccp.h> 22 #include <linux/firmware.h> 23 #include <linux/gfp.h> 24 25 #include <asm/smp.h> 26 27 #include "psp-dev.h" 28 #include "sev-dev.h" 29 30 #define DEVICE_NAME "sev" 31 #define SEV_FW_FILE "amd/sev.fw" 32 #define SEV_FW_NAME_SIZE 64 33 34 static DEFINE_MUTEX(sev_cmd_mutex); 35 static struct sev_misc_dev *misc_dev; 36 37 static int psp_cmd_timeout = 100; 38 module_param(psp_cmd_timeout, int, 0644); 39 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 40 41 static int psp_probe_timeout = 5; 42 module_param(psp_probe_timeout, int, 0644); 43 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 44 45 static bool psp_dead; 46 static int psp_timeout; 47 48 /* Trusted Memory Region (TMR): 49 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 50 * to allocate the memory, which will return aligned memory for the specified 51 * allocation order. 52 */ 53 #define SEV_ES_TMR_SIZE (1024 * 1024) 54 static void *sev_es_tmr; 55 56 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 57 { 58 struct sev_device *sev = psp_master->sev_data; 59 60 if (sev->api_major > maj) 61 return true; 62 63 if (sev->api_major == maj && sev->api_minor >= min) 64 return true; 65 66 return false; 67 } 68 69 static void sev_irq_handler(int irq, void *data, unsigned int status) 70 { 71 struct sev_device *sev = data; 72 int reg; 73 74 /* Check if it is command completion: */ 75 if (!(status & SEV_CMD_COMPLETE)) 76 return; 77 78 /* Check if it is SEV command completion: */ 79 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 80 if (reg & PSP_CMDRESP_RESP) { 81 sev->int_rcvd = 1; 82 wake_up(&sev->int_queue); 83 } 84 } 85 86 static int sev_wait_cmd_ioc(struct sev_device *sev, 87 unsigned int *reg, unsigned int timeout) 88 { 89 int ret; 90 91 ret = wait_event_timeout(sev->int_queue, 92 sev->int_rcvd, timeout * HZ); 93 if (!ret) 94 return -ETIMEDOUT; 95 96 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 97 98 return 0; 99 } 100 101 static int sev_cmd_buffer_len(int cmd) 102 { 103 switch (cmd) { 104 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 105 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 106 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 107 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 108 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 109 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 110 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 111 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 112 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 113 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 114 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 115 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 116 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 117 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 118 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 119 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 120 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 121 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 122 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 123 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 124 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 125 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 126 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 127 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 128 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 129 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 130 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 131 default: return 0; 132 } 133 134 return 0; 135 } 136 137 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 138 { 139 struct psp_device *psp = psp_master; 140 struct sev_device *sev; 141 unsigned int phys_lsb, phys_msb; 142 unsigned int reg, ret = 0; 143 144 if (!psp || !psp->sev_data) 145 return -ENODEV; 146 147 if (psp_dead) 148 return -EBUSY; 149 150 sev = psp->sev_data; 151 152 /* Get the physical address of the command buffer */ 153 phys_lsb = data ? lower_32_bits(__psp_pa(data)) : 0; 154 phys_msb = data ? upper_32_bits(__psp_pa(data)) : 0; 155 156 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 157 cmd, phys_msb, phys_lsb, psp_timeout); 158 159 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 160 sev_cmd_buffer_len(cmd), false); 161 162 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 163 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 164 165 sev->int_rcvd = 0; 166 167 reg = cmd; 168 reg <<= SEV_CMDRESP_CMD_SHIFT; 169 reg |= SEV_CMDRESP_IOC; 170 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 171 172 /* wait for command completion */ 173 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 174 if (ret) { 175 if (psp_ret) 176 *psp_ret = 0; 177 178 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 179 psp_dead = true; 180 181 return ret; 182 } 183 184 psp_timeout = psp_cmd_timeout; 185 186 if (psp_ret) 187 *psp_ret = reg & PSP_CMDRESP_ERR_MASK; 188 189 if (reg & PSP_CMDRESP_ERR_MASK) { 190 dev_dbg(sev->dev, "sev command %#x failed (%#010x)\n", 191 cmd, reg & PSP_CMDRESP_ERR_MASK); 192 ret = -EIO; 193 } 194 195 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 196 sev_cmd_buffer_len(cmd), false); 197 198 return ret; 199 } 200 201 static int sev_do_cmd(int cmd, void *data, int *psp_ret) 202 { 203 int rc; 204 205 mutex_lock(&sev_cmd_mutex); 206 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 207 mutex_unlock(&sev_cmd_mutex); 208 209 return rc; 210 } 211 212 static int __sev_platform_init_locked(int *error) 213 { 214 struct psp_device *psp = psp_master; 215 struct sev_device *sev; 216 int rc = 0; 217 218 if (!psp || !psp->sev_data) 219 return -ENODEV; 220 221 sev = psp->sev_data; 222 223 if (sev->state == SEV_STATE_INIT) 224 return 0; 225 226 if (sev_es_tmr) { 227 u64 tmr_pa; 228 229 /* 230 * Do not include the encryption mask on the physical 231 * address of the TMR (firmware should clear it anyway). 232 */ 233 tmr_pa = __pa(sev_es_tmr); 234 235 sev->init_cmd_buf.flags |= SEV_INIT_FLAGS_SEV_ES; 236 sev->init_cmd_buf.tmr_address = tmr_pa; 237 sev->init_cmd_buf.tmr_len = SEV_ES_TMR_SIZE; 238 } 239 240 rc = __sev_do_cmd_locked(SEV_CMD_INIT, &sev->init_cmd_buf, error); 241 if (rc) 242 return rc; 243 244 sev->state = SEV_STATE_INIT; 245 246 /* Prepare for first SEV guest launch after INIT */ 247 wbinvd_on_all_cpus(); 248 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); 249 if (rc) 250 return rc; 251 252 dev_dbg(sev->dev, "SEV firmware initialized\n"); 253 254 return rc; 255 } 256 257 int sev_platform_init(int *error) 258 { 259 int rc; 260 261 mutex_lock(&sev_cmd_mutex); 262 rc = __sev_platform_init_locked(error); 263 mutex_unlock(&sev_cmd_mutex); 264 265 return rc; 266 } 267 EXPORT_SYMBOL_GPL(sev_platform_init); 268 269 static int __sev_platform_shutdown_locked(int *error) 270 { 271 struct sev_device *sev = psp_master->sev_data; 272 int ret; 273 274 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 275 if (ret) 276 return ret; 277 278 sev->state = SEV_STATE_UNINIT; 279 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 280 281 return ret; 282 } 283 284 static int sev_platform_shutdown(int *error) 285 { 286 int rc; 287 288 mutex_lock(&sev_cmd_mutex); 289 rc = __sev_platform_shutdown_locked(NULL); 290 mutex_unlock(&sev_cmd_mutex); 291 292 return rc; 293 } 294 295 static int sev_get_platform_state(int *state, int *error) 296 { 297 struct sev_device *sev = psp_master->sev_data; 298 int rc; 299 300 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, 301 &sev->status_cmd_buf, error); 302 if (rc) 303 return rc; 304 305 *state = sev->status_cmd_buf.state; 306 return rc; 307 } 308 309 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 310 { 311 int state, rc; 312 313 if (!writable) 314 return -EPERM; 315 316 /* 317 * The SEV spec requires that FACTORY_RESET must be issued in 318 * UNINIT state. Before we go further lets check if any guest is 319 * active. 320 * 321 * If FW is in WORKING state then deny the request otherwise issue 322 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 323 * 324 */ 325 rc = sev_get_platform_state(&state, &argp->error); 326 if (rc) 327 return rc; 328 329 if (state == SEV_STATE_WORKING) 330 return -EBUSY; 331 332 if (state == SEV_STATE_INIT) { 333 rc = __sev_platform_shutdown_locked(&argp->error); 334 if (rc) 335 return rc; 336 } 337 338 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 339 } 340 341 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 342 { 343 struct sev_device *sev = psp_master->sev_data; 344 struct sev_user_data_status *data = &sev->status_cmd_buf; 345 int ret; 346 347 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, data, &argp->error); 348 if (ret) 349 return ret; 350 351 if (copy_to_user((void __user *)argp->data, data, sizeof(*data))) 352 ret = -EFAULT; 353 354 return ret; 355 } 356 357 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 358 { 359 struct sev_device *sev = psp_master->sev_data; 360 int rc; 361 362 if (!writable) 363 return -EPERM; 364 365 if (sev->state == SEV_STATE_UNINIT) { 366 rc = __sev_platform_init_locked(&argp->error); 367 if (rc) 368 return rc; 369 } 370 371 return __sev_do_cmd_locked(cmd, NULL, &argp->error); 372 } 373 374 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 375 { 376 struct sev_device *sev = psp_master->sev_data; 377 struct sev_user_data_pek_csr input; 378 struct sev_data_pek_csr *data; 379 void __user *input_address; 380 void *blob = NULL; 381 int ret; 382 383 if (!writable) 384 return -EPERM; 385 386 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 387 return -EFAULT; 388 389 data = kzalloc(sizeof(*data), GFP_KERNEL); 390 if (!data) 391 return -ENOMEM; 392 393 /* userspace wants to query CSR length */ 394 if (!input.address || !input.length) 395 goto cmd; 396 397 /* allocate a physically contiguous buffer to store the CSR blob */ 398 input_address = (void __user *)input.address; 399 if (input.length > SEV_FW_BLOB_MAX_SIZE) { 400 ret = -EFAULT; 401 goto e_free; 402 } 403 404 blob = kmalloc(input.length, GFP_KERNEL); 405 if (!blob) { 406 ret = -ENOMEM; 407 goto e_free; 408 } 409 410 data->address = __psp_pa(blob); 411 data->len = input.length; 412 413 cmd: 414 if (sev->state == SEV_STATE_UNINIT) { 415 ret = __sev_platform_init_locked(&argp->error); 416 if (ret) 417 goto e_free_blob; 418 } 419 420 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, data, &argp->error); 421 422 /* If we query the CSR length, FW responded with expected data. */ 423 input.length = data->len; 424 425 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 426 ret = -EFAULT; 427 goto e_free_blob; 428 } 429 430 if (blob) { 431 if (copy_to_user(input_address, blob, input.length)) 432 ret = -EFAULT; 433 } 434 435 e_free_blob: 436 kfree(blob); 437 e_free: 438 kfree(data); 439 return ret; 440 } 441 442 void *psp_copy_user_blob(u64 uaddr, u32 len) 443 { 444 if (!uaddr || !len) 445 return ERR_PTR(-EINVAL); 446 447 /* verify that blob length does not exceed our limit */ 448 if (len > SEV_FW_BLOB_MAX_SIZE) 449 return ERR_PTR(-EINVAL); 450 451 return memdup_user((void __user *)uaddr, len); 452 } 453 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 454 455 static int sev_get_api_version(void) 456 { 457 struct sev_device *sev = psp_master->sev_data; 458 struct sev_user_data_status *status; 459 int error = 0, ret; 460 461 status = &sev->status_cmd_buf; 462 ret = sev_platform_status(status, &error); 463 if (ret) { 464 dev_err(sev->dev, 465 "SEV: failed to get status. Error: %#x\n", error); 466 return 1; 467 } 468 469 sev->api_major = status->api_major; 470 sev->api_minor = status->api_minor; 471 sev->build = status->build; 472 sev->state = status->state; 473 474 return 0; 475 } 476 477 static int sev_get_firmware(struct device *dev, 478 const struct firmware **firmware) 479 { 480 char fw_name_specific[SEV_FW_NAME_SIZE]; 481 char fw_name_subset[SEV_FW_NAME_SIZE]; 482 483 snprintf(fw_name_specific, sizeof(fw_name_specific), 484 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 485 boot_cpu_data.x86, boot_cpu_data.x86_model); 486 487 snprintf(fw_name_subset, sizeof(fw_name_subset), 488 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 489 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 490 491 /* Check for SEV FW for a particular model. 492 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 493 * 494 * or 495 * 496 * Check for SEV FW common to a subset of models. 497 * Ex. amd_sev_fam17h_model0xh.sbin for 498 * Family 17h Model 00h -- Family 17h Model 0Fh 499 * 500 * or 501 * 502 * Fall-back to using generic name: sev.fw 503 */ 504 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 505 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 506 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 507 return 0; 508 509 return -ENOENT; 510 } 511 512 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 513 static int sev_update_firmware(struct device *dev) 514 { 515 struct sev_data_download_firmware *data; 516 const struct firmware *firmware; 517 int ret, error, order; 518 struct page *p; 519 u64 data_size; 520 521 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 522 dev_dbg(dev, "No SEV firmware file present\n"); 523 return -1; 524 } 525 526 /* 527 * SEV FW expects the physical address given to it to be 32 528 * byte aligned. Memory allocated has structure placed at the 529 * beginning followed by the firmware being passed to the SEV 530 * FW. Allocate enough memory for data structure + alignment 531 * padding + SEV FW. 532 */ 533 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 534 535 order = get_order(firmware->size + data_size); 536 p = alloc_pages(GFP_KERNEL, order); 537 if (!p) { 538 ret = -1; 539 goto fw_err; 540 } 541 542 /* 543 * Copy firmware data to a kernel allocated contiguous 544 * memory region. 545 */ 546 data = page_address(p); 547 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 548 549 data->address = __psp_pa(page_address(p) + data_size); 550 data->len = firmware->size; 551 552 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 553 if (ret) 554 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 555 else 556 dev_info(dev, "SEV firmware update successful\n"); 557 558 __free_pages(p, order); 559 560 fw_err: 561 release_firmware(firmware); 562 563 return ret; 564 } 565 566 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 567 { 568 struct sev_device *sev = psp_master->sev_data; 569 struct sev_user_data_pek_cert_import input; 570 struct sev_data_pek_cert_import *data; 571 void *pek_blob, *oca_blob; 572 int ret; 573 574 if (!writable) 575 return -EPERM; 576 577 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 578 return -EFAULT; 579 580 data = kzalloc(sizeof(*data), GFP_KERNEL); 581 if (!data) 582 return -ENOMEM; 583 584 /* copy PEK certificate blobs from userspace */ 585 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 586 if (IS_ERR(pek_blob)) { 587 ret = PTR_ERR(pek_blob); 588 goto e_free; 589 } 590 591 data->pek_cert_address = __psp_pa(pek_blob); 592 data->pek_cert_len = input.pek_cert_len; 593 594 /* copy PEK certificate blobs from userspace */ 595 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 596 if (IS_ERR(oca_blob)) { 597 ret = PTR_ERR(oca_blob); 598 goto e_free_pek; 599 } 600 601 data->oca_cert_address = __psp_pa(oca_blob); 602 data->oca_cert_len = input.oca_cert_len; 603 604 /* If platform is not in INIT state then transition it to INIT */ 605 if (sev->state != SEV_STATE_INIT) { 606 ret = __sev_platform_init_locked(&argp->error); 607 if (ret) 608 goto e_free_oca; 609 } 610 611 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, data, &argp->error); 612 613 e_free_oca: 614 kfree(oca_blob); 615 e_free_pek: 616 kfree(pek_blob); 617 e_free: 618 kfree(data); 619 return ret; 620 } 621 622 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 623 { 624 struct sev_user_data_get_id2 input; 625 struct sev_data_get_id *data; 626 void __user *input_address; 627 void *id_blob = NULL; 628 int ret; 629 630 /* SEV GET_ID is available from SEV API v0.16 and up */ 631 if (!sev_version_greater_or_equal(0, 16)) 632 return -ENOTSUPP; 633 634 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 635 return -EFAULT; 636 637 input_address = (void __user *)input.address; 638 639 data = kzalloc(sizeof(*data), GFP_KERNEL); 640 if (!data) 641 return -ENOMEM; 642 643 if (input.address && input.length) { 644 id_blob = kmalloc(input.length, GFP_KERNEL); 645 if (!id_blob) { 646 kfree(data); 647 return -ENOMEM; 648 } 649 650 data->address = __psp_pa(id_blob); 651 data->len = input.length; 652 } 653 654 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 655 656 /* 657 * Firmware will return the length of the ID value (either the minimum 658 * required length or the actual length written), return it to the user. 659 */ 660 input.length = data->len; 661 662 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 663 ret = -EFAULT; 664 goto e_free; 665 } 666 667 if (id_blob) { 668 if (copy_to_user(input_address, id_blob, data->len)) { 669 ret = -EFAULT; 670 goto e_free; 671 } 672 } 673 674 e_free: 675 kfree(id_blob); 676 kfree(data); 677 678 return ret; 679 } 680 681 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 682 { 683 struct sev_data_get_id *data; 684 u64 data_size, user_size; 685 void *id_blob, *mem; 686 int ret; 687 688 /* SEV GET_ID available from SEV API v0.16 and up */ 689 if (!sev_version_greater_or_equal(0, 16)) 690 return -ENOTSUPP; 691 692 /* SEV FW expects the buffer it fills with the ID to be 693 * 8-byte aligned. Memory allocated should be enough to 694 * hold data structure + alignment padding + memory 695 * where SEV FW writes the ID. 696 */ 697 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 698 user_size = sizeof(struct sev_user_data_get_id); 699 700 mem = kzalloc(data_size + user_size, GFP_KERNEL); 701 if (!mem) 702 return -ENOMEM; 703 704 data = mem; 705 id_blob = mem + data_size; 706 707 data->address = __psp_pa(id_blob); 708 data->len = user_size; 709 710 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 711 if (!ret) { 712 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 713 ret = -EFAULT; 714 } 715 716 kfree(mem); 717 718 return ret; 719 } 720 721 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 722 { 723 struct sev_device *sev = psp_master->sev_data; 724 struct sev_user_data_pdh_cert_export input; 725 void *pdh_blob = NULL, *cert_blob = NULL; 726 struct sev_data_pdh_cert_export *data; 727 void __user *input_cert_chain_address; 728 void __user *input_pdh_cert_address; 729 int ret; 730 731 /* If platform is not in INIT state then transition it to INIT. */ 732 if (sev->state != SEV_STATE_INIT) { 733 if (!writable) 734 return -EPERM; 735 736 ret = __sev_platform_init_locked(&argp->error); 737 if (ret) 738 return ret; 739 } 740 741 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 742 return -EFAULT; 743 744 data = kzalloc(sizeof(*data), GFP_KERNEL); 745 if (!data) 746 return -ENOMEM; 747 748 /* Userspace wants to query the certificate length. */ 749 if (!input.pdh_cert_address || 750 !input.pdh_cert_len || 751 !input.cert_chain_address) 752 goto cmd; 753 754 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 755 input_cert_chain_address = (void __user *)input.cert_chain_address; 756 757 /* Allocate a physically contiguous buffer to store the PDH blob. */ 758 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) { 759 ret = -EFAULT; 760 goto e_free; 761 } 762 763 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 764 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) { 765 ret = -EFAULT; 766 goto e_free; 767 } 768 769 pdh_blob = kmalloc(input.pdh_cert_len, GFP_KERNEL); 770 if (!pdh_blob) { 771 ret = -ENOMEM; 772 goto e_free; 773 } 774 775 data->pdh_cert_address = __psp_pa(pdh_blob); 776 data->pdh_cert_len = input.pdh_cert_len; 777 778 cert_blob = kmalloc(input.cert_chain_len, GFP_KERNEL); 779 if (!cert_blob) { 780 ret = -ENOMEM; 781 goto e_free_pdh; 782 } 783 784 data->cert_chain_address = __psp_pa(cert_blob); 785 data->cert_chain_len = input.cert_chain_len; 786 787 cmd: 788 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, data, &argp->error); 789 790 /* If we query the length, FW responded with expected data. */ 791 input.cert_chain_len = data->cert_chain_len; 792 input.pdh_cert_len = data->pdh_cert_len; 793 794 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 795 ret = -EFAULT; 796 goto e_free_cert; 797 } 798 799 if (pdh_blob) { 800 if (copy_to_user(input_pdh_cert_address, 801 pdh_blob, input.pdh_cert_len)) { 802 ret = -EFAULT; 803 goto e_free_cert; 804 } 805 } 806 807 if (cert_blob) { 808 if (copy_to_user(input_cert_chain_address, 809 cert_blob, input.cert_chain_len)) 810 ret = -EFAULT; 811 } 812 813 e_free_cert: 814 kfree(cert_blob); 815 e_free_pdh: 816 kfree(pdh_blob); 817 e_free: 818 kfree(data); 819 return ret; 820 } 821 822 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 823 { 824 void __user *argp = (void __user *)arg; 825 struct sev_issue_cmd input; 826 int ret = -EFAULT; 827 bool writable = file->f_mode & FMODE_WRITE; 828 829 if (!psp_master || !psp_master->sev_data) 830 return -ENODEV; 831 832 if (ioctl != SEV_ISSUE_CMD) 833 return -EINVAL; 834 835 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 836 return -EFAULT; 837 838 if (input.cmd > SEV_MAX) 839 return -EINVAL; 840 841 mutex_lock(&sev_cmd_mutex); 842 843 switch (input.cmd) { 844 845 case SEV_FACTORY_RESET: 846 ret = sev_ioctl_do_reset(&input, writable); 847 break; 848 case SEV_PLATFORM_STATUS: 849 ret = sev_ioctl_do_platform_status(&input); 850 break; 851 case SEV_PEK_GEN: 852 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 853 break; 854 case SEV_PDH_GEN: 855 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 856 break; 857 case SEV_PEK_CSR: 858 ret = sev_ioctl_do_pek_csr(&input, writable); 859 break; 860 case SEV_PEK_CERT_IMPORT: 861 ret = sev_ioctl_do_pek_import(&input, writable); 862 break; 863 case SEV_PDH_CERT_EXPORT: 864 ret = sev_ioctl_do_pdh_export(&input, writable); 865 break; 866 case SEV_GET_ID: 867 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 868 ret = sev_ioctl_do_get_id(&input); 869 break; 870 case SEV_GET_ID2: 871 ret = sev_ioctl_do_get_id2(&input); 872 break; 873 default: 874 ret = -EINVAL; 875 goto out; 876 } 877 878 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 879 ret = -EFAULT; 880 out: 881 mutex_unlock(&sev_cmd_mutex); 882 883 return ret; 884 } 885 886 static const struct file_operations sev_fops = { 887 .owner = THIS_MODULE, 888 .unlocked_ioctl = sev_ioctl, 889 }; 890 891 int sev_platform_status(struct sev_user_data_status *data, int *error) 892 { 893 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 894 } 895 EXPORT_SYMBOL_GPL(sev_platform_status); 896 897 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 898 { 899 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 900 } 901 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 902 903 int sev_guest_activate(struct sev_data_activate *data, int *error) 904 { 905 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 906 } 907 EXPORT_SYMBOL_GPL(sev_guest_activate); 908 909 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 910 { 911 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 912 } 913 EXPORT_SYMBOL_GPL(sev_guest_decommission); 914 915 int sev_guest_df_flush(int *error) 916 { 917 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 918 } 919 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 920 921 static void sev_exit(struct kref *ref) 922 { 923 misc_deregister(&misc_dev->misc); 924 kfree(misc_dev); 925 misc_dev = NULL; 926 } 927 928 static int sev_misc_init(struct sev_device *sev) 929 { 930 struct device *dev = sev->dev; 931 int ret; 932 933 /* 934 * SEV feature support can be detected on multiple devices but the SEV 935 * FW commands must be issued on the master. During probe, we do not 936 * know the master hence we create /dev/sev on the first device probe. 937 * sev_do_cmd() finds the right master device to which to issue the 938 * command to the firmware. 939 */ 940 if (!misc_dev) { 941 struct miscdevice *misc; 942 943 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 944 if (!misc_dev) 945 return -ENOMEM; 946 947 misc = &misc_dev->misc; 948 misc->minor = MISC_DYNAMIC_MINOR; 949 misc->name = DEVICE_NAME; 950 misc->fops = &sev_fops; 951 952 ret = misc_register(misc); 953 if (ret) 954 return ret; 955 956 kref_init(&misc_dev->refcount); 957 } else { 958 kref_get(&misc_dev->refcount); 959 } 960 961 init_waitqueue_head(&sev->int_queue); 962 sev->misc = misc_dev; 963 dev_dbg(dev, "registered SEV device\n"); 964 965 return 0; 966 } 967 968 int sev_dev_init(struct psp_device *psp) 969 { 970 struct device *dev = psp->dev; 971 struct sev_device *sev; 972 int ret = -ENOMEM; 973 974 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 975 if (!sev) 976 goto e_err; 977 978 psp->sev_data = sev; 979 980 sev->dev = dev; 981 sev->psp = psp; 982 983 sev->io_regs = psp->io_regs; 984 985 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 986 if (!sev->vdata) { 987 ret = -ENODEV; 988 dev_err(dev, "sev: missing driver data\n"); 989 goto e_err; 990 } 991 992 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 993 994 ret = sev_misc_init(sev); 995 if (ret) 996 goto e_irq; 997 998 dev_notice(dev, "sev enabled\n"); 999 1000 return 0; 1001 1002 e_irq: 1003 psp_clear_sev_irq_handler(psp); 1004 e_err: 1005 psp->sev_data = NULL; 1006 1007 dev_notice(dev, "sev initialization failed\n"); 1008 1009 return ret; 1010 } 1011 1012 void sev_dev_destroy(struct psp_device *psp) 1013 { 1014 struct sev_device *sev = psp->sev_data; 1015 1016 if (!sev) 1017 return; 1018 1019 if (sev->misc) 1020 kref_put(&misc_dev->refcount, sev_exit); 1021 1022 psp_clear_sev_irq_handler(psp); 1023 } 1024 1025 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 1026 void *data, int *error) 1027 { 1028 if (!filep || filep->f_op != &sev_fops) 1029 return -EBADF; 1030 1031 return sev_do_cmd(cmd, data, error); 1032 } 1033 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 1034 1035 void sev_pci_init(void) 1036 { 1037 struct sev_device *sev = psp_master->sev_data; 1038 struct page *tmr_page; 1039 int error, rc; 1040 1041 if (!sev) 1042 return; 1043 1044 psp_timeout = psp_probe_timeout; 1045 1046 if (sev_get_api_version()) 1047 goto err; 1048 1049 /* 1050 * If platform is not in UNINIT state then firmware upgrade and/or 1051 * platform INIT command will fail. These command require UNINIT state. 1052 * 1053 * In a normal boot we should never run into case where the firmware 1054 * is not in UNINIT state on boot. But in case of kexec boot, a reboot 1055 * may not go through a typical shutdown sequence and may leave the 1056 * firmware in INIT or WORKING state. 1057 */ 1058 1059 if (sev->state != SEV_STATE_UNINIT) { 1060 sev_platform_shutdown(NULL); 1061 sev->state = SEV_STATE_UNINIT; 1062 } 1063 1064 if (sev_version_greater_or_equal(0, 15) && 1065 sev_update_firmware(sev->dev) == 0) 1066 sev_get_api_version(); 1067 1068 /* Obtain the TMR memory area for SEV-ES use */ 1069 tmr_page = alloc_pages(GFP_KERNEL, get_order(SEV_ES_TMR_SIZE)); 1070 if (tmr_page) { 1071 sev_es_tmr = page_address(tmr_page); 1072 } else { 1073 sev_es_tmr = NULL; 1074 dev_warn(sev->dev, 1075 "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1076 } 1077 1078 /* Initialize the platform */ 1079 rc = sev_platform_init(&error); 1080 if (rc && (error == SEV_RET_SECURE_DATA_INVALID)) { 1081 /* 1082 * INIT command returned an integrity check failure 1083 * status code, meaning that firmware load and 1084 * validation of SEV related persistent data has 1085 * failed and persistent state has been erased. 1086 * Retrying INIT command here should succeed. 1087 */ 1088 dev_dbg(sev->dev, "SEV: retrying INIT command"); 1089 rc = sev_platform_init(&error); 1090 } 1091 1092 if (rc) { 1093 dev_err(sev->dev, "SEV: failed to INIT error %#x\n", error); 1094 return; 1095 } 1096 1097 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1098 sev->api_minor, sev->build); 1099 1100 return; 1101 1102 err: 1103 psp_master->sev_data = NULL; 1104 } 1105 1106 void sev_pci_exit(void) 1107 { 1108 if (!psp_master->sev_data) 1109 return; 1110 1111 sev_platform_shutdown(NULL); 1112 1113 if (sev_es_tmr) { 1114 /* The TMR area was encrypted, flush it from the cache */ 1115 wbinvd_on_all_cpus(); 1116 1117 free_pages((unsigned long)sev_es_tmr, 1118 get_order(SEV_ES_TMR_SIZE)); 1119 sev_es_tmr = NULL; 1120 } 1121 } 1122