1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kthread.h> 13 #include <linux/sched.h> 14 #include <linux/interrupt.h> 15 #include <linux/spinlock.h> 16 #include <linux/spinlock_types.h> 17 #include <linux/types.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/hw_random.h> 21 #include <linux/ccp.h> 22 #include <linux/firmware.h> 23 #include <linux/gfp.h> 24 #include <linux/cpufeature.h> 25 #include <linux/fs.h> 26 #include <linux/fs_struct.h> 27 28 #include <asm/smp.h> 29 30 #include "psp-dev.h" 31 #include "sev-dev.h" 32 33 #define DEVICE_NAME "sev" 34 #define SEV_FW_FILE "amd/sev.fw" 35 #define SEV_FW_NAME_SIZE 64 36 37 static DEFINE_MUTEX(sev_cmd_mutex); 38 static struct sev_misc_dev *misc_dev; 39 40 static int psp_cmd_timeout = 100; 41 module_param(psp_cmd_timeout, int, 0644); 42 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 43 44 static int psp_probe_timeout = 5; 45 module_param(psp_probe_timeout, int, 0644); 46 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 47 48 static char *init_ex_path; 49 module_param(init_ex_path, charp, 0444); 50 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 51 52 static bool psp_init_on_probe = true; 53 module_param(psp_init_on_probe, bool, 0444); 54 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 55 56 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 57 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 58 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 59 60 static bool psp_dead; 61 static int psp_timeout; 62 63 /* Trusted Memory Region (TMR): 64 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 65 * to allocate the memory, which will return aligned memory for the specified 66 * allocation order. 67 */ 68 #define SEV_ES_TMR_SIZE (1024 * 1024) 69 static void *sev_es_tmr; 70 71 /* INIT_EX NV Storage: 72 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 73 * allocator to allocate the memory, which will return aligned memory for the 74 * specified allocation order. 75 */ 76 #define NV_LENGTH (32 * 1024) 77 static void *sev_init_ex_buffer; 78 79 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 80 { 81 struct sev_device *sev = psp_master->sev_data; 82 83 if (sev->api_major > maj) 84 return true; 85 86 if (sev->api_major == maj && sev->api_minor >= min) 87 return true; 88 89 return false; 90 } 91 92 static void sev_irq_handler(int irq, void *data, unsigned int status) 93 { 94 struct sev_device *sev = data; 95 int reg; 96 97 /* Check if it is command completion: */ 98 if (!(status & SEV_CMD_COMPLETE)) 99 return; 100 101 /* Check if it is SEV command completion: */ 102 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 103 if (reg & PSP_CMDRESP_RESP) { 104 sev->int_rcvd = 1; 105 wake_up(&sev->int_queue); 106 } 107 } 108 109 static int sev_wait_cmd_ioc(struct sev_device *sev, 110 unsigned int *reg, unsigned int timeout) 111 { 112 int ret; 113 114 ret = wait_event_timeout(sev->int_queue, 115 sev->int_rcvd, timeout * HZ); 116 if (!ret) 117 return -ETIMEDOUT; 118 119 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 120 121 return 0; 122 } 123 124 static int sev_cmd_buffer_len(int cmd) 125 { 126 switch (cmd) { 127 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 128 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 129 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 130 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 131 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 132 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 133 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 134 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 135 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 136 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 137 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 138 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 139 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 140 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 141 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 142 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 143 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 144 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 145 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 146 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 147 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 148 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 149 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 150 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 151 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 152 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 153 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 154 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 155 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 156 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 157 default: return 0; 158 } 159 160 return 0; 161 } 162 163 static void *sev_fw_alloc(unsigned long len) 164 { 165 struct page *page; 166 167 page = alloc_pages(GFP_KERNEL, get_order(len)); 168 if (!page) 169 return NULL; 170 171 return page_address(page); 172 } 173 174 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 175 { 176 struct file *fp; 177 struct path root; 178 struct cred *cred; 179 const struct cred *old_cred; 180 181 task_lock(&init_task); 182 get_fs_root(init_task.fs, &root); 183 task_unlock(&init_task); 184 185 cred = prepare_creds(); 186 if (!cred) 187 return ERR_PTR(-ENOMEM); 188 cred->fsuid = GLOBAL_ROOT_UID; 189 old_cred = override_creds(cred); 190 191 fp = file_open_root(&root, filename, flags, mode); 192 path_put(&root); 193 194 revert_creds(old_cred); 195 196 return fp; 197 } 198 199 static int sev_read_init_ex_file(void) 200 { 201 struct sev_device *sev = psp_master->sev_data; 202 struct file *fp; 203 ssize_t nread; 204 205 lockdep_assert_held(&sev_cmd_mutex); 206 207 if (!sev_init_ex_buffer) 208 return -EOPNOTSUPP; 209 210 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 211 if (IS_ERR(fp)) { 212 int ret = PTR_ERR(fp); 213 214 dev_err(sev->dev, 215 "SEV: could not open %s for read, error %d\n", 216 init_ex_path, ret); 217 return ret; 218 } 219 220 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 221 if (nread != NV_LENGTH) { 222 dev_err(sev->dev, 223 "SEV: failed to read %u bytes to non volatile memory area, ret %ld\n", 224 NV_LENGTH, nread); 225 return -EIO; 226 } 227 228 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 229 filp_close(fp, NULL); 230 231 return 0; 232 } 233 234 static void sev_write_init_ex_file(void) 235 { 236 struct sev_device *sev = psp_master->sev_data; 237 struct file *fp; 238 loff_t offset = 0; 239 ssize_t nwrite; 240 241 lockdep_assert_held(&sev_cmd_mutex); 242 243 if (!sev_init_ex_buffer) 244 return; 245 246 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 247 if (IS_ERR(fp)) { 248 dev_err(sev->dev, 249 "SEV: could not open file for write, error %ld\n", 250 PTR_ERR(fp)); 251 return; 252 } 253 254 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 255 vfs_fsync(fp, 0); 256 filp_close(fp, NULL); 257 258 if (nwrite != NV_LENGTH) { 259 dev_err(sev->dev, 260 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 261 NV_LENGTH, nwrite); 262 return; 263 } 264 265 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 266 } 267 268 static void sev_write_init_ex_file_if_required(int cmd_id) 269 { 270 lockdep_assert_held(&sev_cmd_mutex); 271 272 if (!sev_init_ex_buffer) 273 return; 274 275 /* 276 * Only a few platform commands modify the SPI/NV area, but none of the 277 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 278 * PEK_CERT_IMPORT, and PDH_GEN do. 279 */ 280 switch (cmd_id) { 281 case SEV_CMD_FACTORY_RESET: 282 case SEV_CMD_INIT_EX: 283 case SEV_CMD_PDH_GEN: 284 case SEV_CMD_PEK_CERT_IMPORT: 285 case SEV_CMD_PEK_GEN: 286 break; 287 default: 288 return; 289 } 290 291 sev_write_init_ex_file(); 292 } 293 294 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 295 { 296 struct psp_device *psp = psp_master; 297 struct sev_device *sev; 298 unsigned int phys_lsb, phys_msb; 299 unsigned int reg, ret = 0; 300 int buf_len; 301 302 if (!psp || !psp->sev_data) 303 return -ENODEV; 304 305 if (psp_dead) 306 return -EBUSY; 307 308 sev = psp->sev_data; 309 310 buf_len = sev_cmd_buffer_len(cmd); 311 if (WARN_ON_ONCE(!data != !buf_len)) 312 return -EINVAL; 313 314 /* 315 * Copy the incoming data to driver's scratch buffer as __pa() will not 316 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 317 * physically contiguous. 318 */ 319 if (data) 320 memcpy(sev->cmd_buf, data, buf_len); 321 322 /* Get the physical address of the command buffer */ 323 phys_lsb = data ? lower_32_bits(__psp_pa(sev->cmd_buf)) : 0; 324 phys_msb = data ? upper_32_bits(__psp_pa(sev->cmd_buf)) : 0; 325 326 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 327 cmd, phys_msb, phys_lsb, psp_timeout); 328 329 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 330 buf_len, false); 331 332 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 333 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 334 335 sev->int_rcvd = 0; 336 337 reg = cmd; 338 reg <<= SEV_CMDRESP_CMD_SHIFT; 339 reg |= SEV_CMDRESP_IOC; 340 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 341 342 /* wait for command completion */ 343 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 344 if (ret) { 345 if (psp_ret) 346 *psp_ret = 0; 347 348 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 349 psp_dead = true; 350 351 return ret; 352 } 353 354 psp_timeout = psp_cmd_timeout; 355 356 if (psp_ret) 357 *psp_ret = reg & PSP_CMDRESP_ERR_MASK; 358 359 if (reg & PSP_CMDRESP_ERR_MASK) { 360 dev_dbg(sev->dev, "sev command %#x failed (%#010x)\n", 361 cmd, reg & PSP_CMDRESP_ERR_MASK); 362 ret = -EIO; 363 } else { 364 sev_write_init_ex_file_if_required(cmd); 365 } 366 367 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 368 buf_len, false); 369 370 /* 371 * Copy potential output from the PSP back to data. Do this even on 372 * failure in case the caller wants to glean something from the error. 373 */ 374 if (data) 375 memcpy(data, sev->cmd_buf, buf_len); 376 377 return ret; 378 } 379 380 static int sev_do_cmd(int cmd, void *data, int *psp_ret) 381 { 382 int rc; 383 384 mutex_lock(&sev_cmd_mutex); 385 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 386 mutex_unlock(&sev_cmd_mutex); 387 388 return rc; 389 } 390 391 static int __sev_init_locked(int *error) 392 { 393 struct sev_data_init data; 394 395 memset(&data, 0, sizeof(data)); 396 if (sev_es_tmr) { 397 /* 398 * Do not include the encryption mask on the physical 399 * address of the TMR (firmware should clear it anyway). 400 */ 401 data.tmr_address = __pa(sev_es_tmr); 402 403 data.flags |= SEV_INIT_FLAGS_SEV_ES; 404 data.tmr_len = SEV_ES_TMR_SIZE; 405 } 406 407 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 408 } 409 410 static int __sev_init_ex_locked(int *error) 411 { 412 struct sev_data_init_ex data; 413 int ret; 414 415 memset(&data, 0, sizeof(data)); 416 data.length = sizeof(data); 417 data.nv_address = __psp_pa(sev_init_ex_buffer); 418 data.nv_len = NV_LENGTH; 419 420 ret = sev_read_init_ex_file(); 421 if (ret) 422 return ret; 423 424 if (sev_es_tmr) { 425 /* 426 * Do not include the encryption mask on the physical 427 * address of the TMR (firmware should clear it anyway). 428 */ 429 data.tmr_address = __pa(sev_es_tmr); 430 431 data.flags |= SEV_INIT_FLAGS_SEV_ES; 432 data.tmr_len = SEV_ES_TMR_SIZE; 433 } 434 435 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 436 } 437 438 static int __sev_platform_init_locked(int *error) 439 { 440 struct psp_device *psp = psp_master; 441 struct sev_device *sev; 442 int rc, psp_ret = -1; 443 int (*init_function)(int *error); 444 445 if (!psp || !psp->sev_data) 446 return -ENODEV; 447 448 sev = psp->sev_data; 449 450 if (sev->state == SEV_STATE_INIT) 451 return 0; 452 453 init_function = sev_init_ex_buffer ? __sev_init_ex_locked : 454 __sev_init_locked; 455 rc = init_function(&psp_ret); 456 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 457 /* 458 * Initialization command returned an integrity check failure 459 * status code, meaning that firmware load and validation of SEV 460 * related persistent data has failed. Retrying the 461 * initialization function should succeed by replacing the state 462 * with a reset state. 463 */ 464 dev_err(sev->dev, "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 465 rc = init_function(&psp_ret); 466 } 467 if (error) 468 *error = psp_ret; 469 470 if (rc) 471 return rc; 472 473 sev->state = SEV_STATE_INIT; 474 475 /* Prepare for first SEV guest launch after INIT */ 476 wbinvd_on_all_cpus(); 477 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); 478 if (rc) 479 return rc; 480 481 dev_dbg(sev->dev, "SEV firmware initialized\n"); 482 483 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 484 sev->api_minor, sev->build); 485 486 return 0; 487 } 488 489 int sev_platform_init(int *error) 490 { 491 int rc; 492 493 mutex_lock(&sev_cmd_mutex); 494 rc = __sev_platform_init_locked(error); 495 mutex_unlock(&sev_cmd_mutex); 496 497 return rc; 498 } 499 EXPORT_SYMBOL_GPL(sev_platform_init); 500 501 static int __sev_platform_shutdown_locked(int *error) 502 { 503 struct sev_device *sev = psp_master->sev_data; 504 int ret; 505 506 if (!sev || sev->state == SEV_STATE_UNINIT) 507 return 0; 508 509 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 510 if (ret) 511 return ret; 512 513 sev->state = SEV_STATE_UNINIT; 514 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 515 516 return ret; 517 } 518 519 static int sev_platform_shutdown(int *error) 520 { 521 int rc; 522 523 mutex_lock(&sev_cmd_mutex); 524 rc = __sev_platform_shutdown_locked(NULL); 525 mutex_unlock(&sev_cmd_mutex); 526 527 return rc; 528 } 529 530 static int sev_get_platform_state(int *state, int *error) 531 { 532 struct sev_user_data_status data; 533 int rc; 534 535 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 536 if (rc) 537 return rc; 538 539 *state = data.state; 540 return rc; 541 } 542 543 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 544 { 545 int state, rc; 546 547 if (!writable) 548 return -EPERM; 549 550 /* 551 * The SEV spec requires that FACTORY_RESET must be issued in 552 * UNINIT state. Before we go further lets check if any guest is 553 * active. 554 * 555 * If FW is in WORKING state then deny the request otherwise issue 556 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 557 * 558 */ 559 rc = sev_get_platform_state(&state, &argp->error); 560 if (rc) 561 return rc; 562 563 if (state == SEV_STATE_WORKING) 564 return -EBUSY; 565 566 if (state == SEV_STATE_INIT) { 567 rc = __sev_platform_shutdown_locked(&argp->error); 568 if (rc) 569 return rc; 570 } 571 572 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 573 } 574 575 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 576 { 577 struct sev_user_data_status data; 578 int ret; 579 580 memset(&data, 0, sizeof(data)); 581 582 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 583 if (ret) 584 return ret; 585 586 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 587 ret = -EFAULT; 588 589 return ret; 590 } 591 592 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 593 { 594 struct sev_device *sev = psp_master->sev_data; 595 int rc; 596 597 if (!writable) 598 return -EPERM; 599 600 if (sev->state == SEV_STATE_UNINIT) { 601 rc = __sev_platform_init_locked(&argp->error); 602 if (rc) 603 return rc; 604 } 605 606 return __sev_do_cmd_locked(cmd, NULL, &argp->error); 607 } 608 609 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 610 { 611 struct sev_device *sev = psp_master->sev_data; 612 struct sev_user_data_pek_csr input; 613 struct sev_data_pek_csr data; 614 void __user *input_address; 615 void *blob = NULL; 616 int ret; 617 618 if (!writable) 619 return -EPERM; 620 621 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 622 return -EFAULT; 623 624 memset(&data, 0, sizeof(data)); 625 626 /* userspace wants to query CSR length */ 627 if (!input.address || !input.length) 628 goto cmd; 629 630 /* allocate a physically contiguous buffer to store the CSR blob */ 631 input_address = (void __user *)input.address; 632 if (input.length > SEV_FW_BLOB_MAX_SIZE) 633 return -EFAULT; 634 635 blob = kzalloc(input.length, GFP_KERNEL); 636 if (!blob) 637 return -ENOMEM; 638 639 data.address = __psp_pa(blob); 640 data.len = input.length; 641 642 cmd: 643 if (sev->state == SEV_STATE_UNINIT) { 644 ret = __sev_platform_init_locked(&argp->error); 645 if (ret) 646 goto e_free_blob; 647 } 648 649 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 650 651 /* If we query the CSR length, FW responded with expected data. */ 652 input.length = data.len; 653 654 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 655 ret = -EFAULT; 656 goto e_free_blob; 657 } 658 659 if (blob) { 660 if (copy_to_user(input_address, blob, input.length)) 661 ret = -EFAULT; 662 } 663 664 e_free_blob: 665 kfree(blob); 666 return ret; 667 } 668 669 void *psp_copy_user_blob(u64 uaddr, u32 len) 670 { 671 if (!uaddr || !len) 672 return ERR_PTR(-EINVAL); 673 674 /* verify that blob length does not exceed our limit */ 675 if (len > SEV_FW_BLOB_MAX_SIZE) 676 return ERR_PTR(-EINVAL); 677 678 return memdup_user((void __user *)uaddr, len); 679 } 680 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 681 682 static int sev_get_api_version(void) 683 { 684 struct sev_device *sev = psp_master->sev_data; 685 struct sev_user_data_status status; 686 int error = 0, ret; 687 688 ret = sev_platform_status(&status, &error); 689 if (ret) { 690 dev_err(sev->dev, 691 "SEV: failed to get status. Error: %#x\n", error); 692 return 1; 693 } 694 695 sev->api_major = status.api_major; 696 sev->api_minor = status.api_minor; 697 sev->build = status.build; 698 sev->state = status.state; 699 700 return 0; 701 } 702 703 static int sev_get_firmware(struct device *dev, 704 const struct firmware **firmware) 705 { 706 char fw_name_specific[SEV_FW_NAME_SIZE]; 707 char fw_name_subset[SEV_FW_NAME_SIZE]; 708 709 snprintf(fw_name_specific, sizeof(fw_name_specific), 710 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 711 boot_cpu_data.x86, boot_cpu_data.x86_model); 712 713 snprintf(fw_name_subset, sizeof(fw_name_subset), 714 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 715 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 716 717 /* Check for SEV FW for a particular model. 718 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 719 * 720 * or 721 * 722 * Check for SEV FW common to a subset of models. 723 * Ex. amd_sev_fam17h_model0xh.sbin for 724 * Family 17h Model 00h -- Family 17h Model 0Fh 725 * 726 * or 727 * 728 * Fall-back to using generic name: sev.fw 729 */ 730 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 731 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 732 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 733 return 0; 734 735 return -ENOENT; 736 } 737 738 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 739 static int sev_update_firmware(struct device *dev) 740 { 741 struct sev_data_download_firmware *data; 742 const struct firmware *firmware; 743 int ret, error, order; 744 struct page *p; 745 u64 data_size; 746 747 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 748 dev_dbg(dev, "No SEV firmware file present\n"); 749 return -1; 750 } 751 752 /* 753 * SEV FW expects the physical address given to it to be 32 754 * byte aligned. Memory allocated has structure placed at the 755 * beginning followed by the firmware being passed to the SEV 756 * FW. Allocate enough memory for data structure + alignment 757 * padding + SEV FW. 758 */ 759 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 760 761 order = get_order(firmware->size + data_size); 762 p = alloc_pages(GFP_KERNEL, order); 763 if (!p) { 764 ret = -1; 765 goto fw_err; 766 } 767 768 /* 769 * Copy firmware data to a kernel allocated contiguous 770 * memory region. 771 */ 772 data = page_address(p); 773 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 774 775 data->address = __psp_pa(page_address(p) + data_size); 776 data->len = firmware->size; 777 778 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 779 if (ret) 780 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 781 else 782 dev_info(dev, "SEV firmware update successful\n"); 783 784 __free_pages(p, order); 785 786 fw_err: 787 release_firmware(firmware); 788 789 return ret; 790 } 791 792 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 793 { 794 struct sev_device *sev = psp_master->sev_data; 795 struct sev_user_data_pek_cert_import input; 796 struct sev_data_pek_cert_import data; 797 void *pek_blob, *oca_blob; 798 int ret; 799 800 if (!writable) 801 return -EPERM; 802 803 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 804 return -EFAULT; 805 806 /* copy PEK certificate blobs from userspace */ 807 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 808 if (IS_ERR(pek_blob)) 809 return PTR_ERR(pek_blob); 810 811 data.reserved = 0; 812 data.pek_cert_address = __psp_pa(pek_blob); 813 data.pek_cert_len = input.pek_cert_len; 814 815 /* copy PEK certificate blobs from userspace */ 816 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 817 if (IS_ERR(oca_blob)) { 818 ret = PTR_ERR(oca_blob); 819 goto e_free_pek; 820 } 821 822 data.oca_cert_address = __psp_pa(oca_blob); 823 data.oca_cert_len = input.oca_cert_len; 824 825 /* If platform is not in INIT state then transition it to INIT */ 826 if (sev->state != SEV_STATE_INIT) { 827 ret = __sev_platform_init_locked(&argp->error); 828 if (ret) 829 goto e_free_oca; 830 } 831 832 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 833 834 e_free_oca: 835 kfree(oca_blob); 836 e_free_pek: 837 kfree(pek_blob); 838 return ret; 839 } 840 841 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 842 { 843 struct sev_user_data_get_id2 input; 844 struct sev_data_get_id data; 845 void __user *input_address; 846 void *id_blob = NULL; 847 int ret; 848 849 /* SEV GET_ID is available from SEV API v0.16 and up */ 850 if (!sev_version_greater_or_equal(0, 16)) 851 return -ENOTSUPP; 852 853 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 854 return -EFAULT; 855 856 input_address = (void __user *)input.address; 857 858 if (input.address && input.length) { 859 id_blob = kzalloc(input.length, GFP_KERNEL); 860 if (!id_blob) 861 return -ENOMEM; 862 863 data.address = __psp_pa(id_blob); 864 data.len = input.length; 865 } else { 866 data.address = 0; 867 data.len = 0; 868 } 869 870 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 871 872 /* 873 * Firmware will return the length of the ID value (either the minimum 874 * required length or the actual length written), return it to the user. 875 */ 876 input.length = data.len; 877 878 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 879 ret = -EFAULT; 880 goto e_free; 881 } 882 883 if (id_blob) { 884 if (copy_to_user(input_address, id_blob, data.len)) { 885 ret = -EFAULT; 886 goto e_free; 887 } 888 } 889 890 e_free: 891 kfree(id_blob); 892 893 return ret; 894 } 895 896 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 897 { 898 struct sev_data_get_id *data; 899 u64 data_size, user_size; 900 void *id_blob, *mem; 901 int ret; 902 903 /* SEV GET_ID available from SEV API v0.16 and up */ 904 if (!sev_version_greater_or_equal(0, 16)) 905 return -ENOTSUPP; 906 907 /* SEV FW expects the buffer it fills with the ID to be 908 * 8-byte aligned. Memory allocated should be enough to 909 * hold data structure + alignment padding + memory 910 * where SEV FW writes the ID. 911 */ 912 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 913 user_size = sizeof(struct sev_user_data_get_id); 914 915 mem = kzalloc(data_size + user_size, GFP_KERNEL); 916 if (!mem) 917 return -ENOMEM; 918 919 data = mem; 920 id_blob = mem + data_size; 921 922 data->address = __psp_pa(id_blob); 923 data->len = user_size; 924 925 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 926 if (!ret) { 927 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 928 ret = -EFAULT; 929 } 930 931 kfree(mem); 932 933 return ret; 934 } 935 936 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 937 { 938 struct sev_device *sev = psp_master->sev_data; 939 struct sev_user_data_pdh_cert_export input; 940 void *pdh_blob = NULL, *cert_blob = NULL; 941 struct sev_data_pdh_cert_export data; 942 void __user *input_cert_chain_address; 943 void __user *input_pdh_cert_address; 944 int ret; 945 946 /* If platform is not in INIT state then transition it to INIT. */ 947 if (sev->state != SEV_STATE_INIT) { 948 if (!writable) 949 return -EPERM; 950 951 ret = __sev_platform_init_locked(&argp->error); 952 if (ret) 953 return ret; 954 } 955 956 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 957 return -EFAULT; 958 959 memset(&data, 0, sizeof(data)); 960 961 /* Userspace wants to query the certificate length. */ 962 if (!input.pdh_cert_address || 963 !input.pdh_cert_len || 964 !input.cert_chain_address) 965 goto cmd; 966 967 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 968 input_cert_chain_address = (void __user *)input.cert_chain_address; 969 970 /* Allocate a physically contiguous buffer to store the PDH blob. */ 971 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 972 return -EFAULT; 973 974 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 975 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 976 return -EFAULT; 977 978 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 979 if (!pdh_blob) 980 return -ENOMEM; 981 982 data.pdh_cert_address = __psp_pa(pdh_blob); 983 data.pdh_cert_len = input.pdh_cert_len; 984 985 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 986 if (!cert_blob) { 987 ret = -ENOMEM; 988 goto e_free_pdh; 989 } 990 991 data.cert_chain_address = __psp_pa(cert_blob); 992 data.cert_chain_len = input.cert_chain_len; 993 994 cmd: 995 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 996 997 /* If we query the length, FW responded with expected data. */ 998 input.cert_chain_len = data.cert_chain_len; 999 input.pdh_cert_len = data.pdh_cert_len; 1000 1001 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1002 ret = -EFAULT; 1003 goto e_free_cert; 1004 } 1005 1006 if (pdh_blob) { 1007 if (copy_to_user(input_pdh_cert_address, 1008 pdh_blob, input.pdh_cert_len)) { 1009 ret = -EFAULT; 1010 goto e_free_cert; 1011 } 1012 } 1013 1014 if (cert_blob) { 1015 if (copy_to_user(input_cert_chain_address, 1016 cert_blob, input.cert_chain_len)) 1017 ret = -EFAULT; 1018 } 1019 1020 e_free_cert: 1021 kfree(cert_blob); 1022 e_free_pdh: 1023 kfree(pdh_blob); 1024 return ret; 1025 } 1026 1027 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 1028 { 1029 void __user *argp = (void __user *)arg; 1030 struct sev_issue_cmd input; 1031 int ret = -EFAULT; 1032 bool writable = file->f_mode & FMODE_WRITE; 1033 1034 if (!psp_master || !psp_master->sev_data) 1035 return -ENODEV; 1036 1037 if (ioctl != SEV_ISSUE_CMD) 1038 return -EINVAL; 1039 1040 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 1041 return -EFAULT; 1042 1043 if (input.cmd > SEV_MAX) 1044 return -EINVAL; 1045 1046 mutex_lock(&sev_cmd_mutex); 1047 1048 switch (input.cmd) { 1049 1050 case SEV_FACTORY_RESET: 1051 ret = sev_ioctl_do_reset(&input, writable); 1052 break; 1053 case SEV_PLATFORM_STATUS: 1054 ret = sev_ioctl_do_platform_status(&input); 1055 break; 1056 case SEV_PEK_GEN: 1057 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 1058 break; 1059 case SEV_PDH_GEN: 1060 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 1061 break; 1062 case SEV_PEK_CSR: 1063 ret = sev_ioctl_do_pek_csr(&input, writable); 1064 break; 1065 case SEV_PEK_CERT_IMPORT: 1066 ret = sev_ioctl_do_pek_import(&input, writable); 1067 break; 1068 case SEV_PDH_CERT_EXPORT: 1069 ret = sev_ioctl_do_pdh_export(&input, writable); 1070 break; 1071 case SEV_GET_ID: 1072 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 1073 ret = sev_ioctl_do_get_id(&input); 1074 break; 1075 case SEV_GET_ID2: 1076 ret = sev_ioctl_do_get_id2(&input); 1077 break; 1078 default: 1079 ret = -EINVAL; 1080 goto out; 1081 } 1082 1083 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 1084 ret = -EFAULT; 1085 out: 1086 mutex_unlock(&sev_cmd_mutex); 1087 1088 return ret; 1089 } 1090 1091 static const struct file_operations sev_fops = { 1092 .owner = THIS_MODULE, 1093 .unlocked_ioctl = sev_ioctl, 1094 }; 1095 1096 int sev_platform_status(struct sev_user_data_status *data, int *error) 1097 { 1098 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 1099 } 1100 EXPORT_SYMBOL_GPL(sev_platform_status); 1101 1102 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 1103 { 1104 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 1105 } 1106 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 1107 1108 int sev_guest_activate(struct sev_data_activate *data, int *error) 1109 { 1110 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 1111 } 1112 EXPORT_SYMBOL_GPL(sev_guest_activate); 1113 1114 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 1115 { 1116 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 1117 } 1118 EXPORT_SYMBOL_GPL(sev_guest_decommission); 1119 1120 int sev_guest_df_flush(int *error) 1121 { 1122 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 1123 } 1124 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 1125 1126 static void sev_exit(struct kref *ref) 1127 { 1128 misc_deregister(&misc_dev->misc); 1129 kfree(misc_dev); 1130 misc_dev = NULL; 1131 } 1132 1133 static int sev_misc_init(struct sev_device *sev) 1134 { 1135 struct device *dev = sev->dev; 1136 int ret; 1137 1138 /* 1139 * SEV feature support can be detected on multiple devices but the SEV 1140 * FW commands must be issued on the master. During probe, we do not 1141 * know the master hence we create /dev/sev on the first device probe. 1142 * sev_do_cmd() finds the right master device to which to issue the 1143 * command to the firmware. 1144 */ 1145 if (!misc_dev) { 1146 struct miscdevice *misc; 1147 1148 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 1149 if (!misc_dev) 1150 return -ENOMEM; 1151 1152 misc = &misc_dev->misc; 1153 misc->minor = MISC_DYNAMIC_MINOR; 1154 misc->name = DEVICE_NAME; 1155 misc->fops = &sev_fops; 1156 1157 ret = misc_register(misc); 1158 if (ret) 1159 return ret; 1160 1161 kref_init(&misc_dev->refcount); 1162 } else { 1163 kref_get(&misc_dev->refcount); 1164 } 1165 1166 init_waitqueue_head(&sev->int_queue); 1167 sev->misc = misc_dev; 1168 dev_dbg(dev, "registered SEV device\n"); 1169 1170 return 0; 1171 } 1172 1173 int sev_dev_init(struct psp_device *psp) 1174 { 1175 struct device *dev = psp->dev; 1176 struct sev_device *sev; 1177 int ret = -ENOMEM; 1178 1179 if (!boot_cpu_has(X86_FEATURE_SEV)) { 1180 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 1181 return 0; 1182 } 1183 1184 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 1185 if (!sev) 1186 goto e_err; 1187 1188 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 0); 1189 if (!sev->cmd_buf) 1190 goto e_sev; 1191 1192 psp->sev_data = sev; 1193 1194 sev->dev = dev; 1195 sev->psp = psp; 1196 1197 sev->io_regs = psp->io_regs; 1198 1199 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 1200 if (!sev->vdata) { 1201 ret = -ENODEV; 1202 dev_err(dev, "sev: missing driver data\n"); 1203 goto e_buf; 1204 } 1205 1206 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 1207 1208 ret = sev_misc_init(sev); 1209 if (ret) 1210 goto e_irq; 1211 1212 dev_notice(dev, "sev enabled\n"); 1213 1214 return 0; 1215 1216 e_irq: 1217 psp_clear_sev_irq_handler(psp); 1218 e_buf: 1219 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 1220 e_sev: 1221 devm_kfree(dev, sev); 1222 e_err: 1223 psp->sev_data = NULL; 1224 1225 dev_notice(dev, "sev initialization failed\n"); 1226 1227 return ret; 1228 } 1229 1230 static void sev_firmware_shutdown(struct sev_device *sev) 1231 { 1232 sev_platform_shutdown(NULL); 1233 1234 if (sev_es_tmr) { 1235 /* The TMR area was encrypted, flush it from the cache */ 1236 wbinvd_on_all_cpus(); 1237 1238 free_pages((unsigned long)sev_es_tmr, 1239 get_order(SEV_ES_TMR_SIZE)); 1240 sev_es_tmr = NULL; 1241 } 1242 1243 if (sev_init_ex_buffer) { 1244 free_pages((unsigned long)sev_init_ex_buffer, 1245 get_order(NV_LENGTH)); 1246 sev_init_ex_buffer = NULL; 1247 } 1248 } 1249 1250 void sev_dev_destroy(struct psp_device *psp) 1251 { 1252 struct sev_device *sev = psp->sev_data; 1253 1254 if (!sev) 1255 return; 1256 1257 sev_firmware_shutdown(sev); 1258 1259 if (sev->misc) 1260 kref_put(&misc_dev->refcount, sev_exit); 1261 1262 psp_clear_sev_irq_handler(psp); 1263 } 1264 1265 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 1266 void *data, int *error) 1267 { 1268 if (!filep || filep->f_op != &sev_fops) 1269 return -EBADF; 1270 1271 return sev_do_cmd(cmd, data, error); 1272 } 1273 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 1274 1275 void sev_pci_init(void) 1276 { 1277 struct sev_device *sev = psp_master->sev_data; 1278 int error, rc; 1279 1280 if (!sev) 1281 return; 1282 1283 psp_timeout = psp_probe_timeout; 1284 1285 if (sev_get_api_version()) 1286 goto err; 1287 1288 if (sev_version_greater_or_equal(0, 15) && 1289 sev_update_firmware(sev->dev) == 0) 1290 sev_get_api_version(); 1291 1292 /* If an init_ex_path is provided rely on INIT_EX for PSP initialization 1293 * instead of INIT. 1294 */ 1295 if (init_ex_path) { 1296 sev_init_ex_buffer = sev_fw_alloc(NV_LENGTH); 1297 if (!sev_init_ex_buffer) { 1298 dev_err(sev->dev, 1299 "SEV: INIT_EX NV memory allocation failed\n"); 1300 goto err; 1301 } 1302 } 1303 1304 /* Obtain the TMR memory area for SEV-ES use */ 1305 sev_es_tmr = sev_fw_alloc(SEV_ES_TMR_SIZE); 1306 if (!sev_es_tmr) 1307 dev_warn(sev->dev, 1308 "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1309 1310 if (!psp_init_on_probe) 1311 return; 1312 1313 /* Initialize the platform */ 1314 rc = sev_platform_init(&error); 1315 if (rc) 1316 dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n", 1317 error, rc); 1318 1319 return; 1320 1321 err: 1322 psp_master->sev_data = NULL; 1323 } 1324 1325 void sev_pci_exit(void) 1326 { 1327 struct sev_device *sev = psp_master->sev_data; 1328 1329 if (!sev) 1330 return; 1331 1332 sev_firmware_shutdown(sev); 1333 } 1334