xref: /openbmc/linux/drivers/crypto/ccp/sev-dev.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <brijesh.singh@amd.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/spinlock_types.h>
17 #include <linux/types.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/hw_random.h>
21 #include <linux/ccp.h>
22 #include <linux/firmware.h>
23 #include <linux/gfp.h>
24 
25 #include <asm/smp.h>
26 
27 #include "psp-dev.h"
28 #include "sev-dev.h"
29 
30 #define DEVICE_NAME		"sev"
31 #define SEV_FW_FILE		"amd/sev.fw"
32 #define SEV_FW_NAME_SIZE	64
33 
34 static DEFINE_MUTEX(sev_cmd_mutex);
35 static struct sev_misc_dev *misc_dev;
36 
37 static int psp_cmd_timeout = 100;
38 module_param(psp_cmd_timeout, int, 0644);
39 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
40 
41 static int psp_probe_timeout = 5;
42 module_param(psp_probe_timeout, int, 0644);
43 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
44 
45 static bool psp_dead;
46 static int psp_timeout;
47 
48 /* Trusted Memory Region (TMR):
49  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
50  *   to allocate the memory, which will return aligned memory for the specified
51  *   allocation order.
52  */
53 #define SEV_ES_TMR_SIZE		(1024 * 1024)
54 static void *sev_es_tmr;
55 
56 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
57 {
58 	struct sev_device *sev = psp_master->sev_data;
59 
60 	if (sev->api_major > maj)
61 		return true;
62 
63 	if (sev->api_major == maj && sev->api_minor >= min)
64 		return true;
65 
66 	return false;
67 }
68 
69 static void sev_irq_handler(int irq, void *data, unsigned int status)
70 {
71 	struct sev_device *sev = data;
72 	int reg;
73 
74 	/* Check if it is command completion: */
75 	if (!(status & SEV_CMD_COMPLETE))
76 		return;
77 
78 	/* Check if it is SEV command completion: */
79 	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
80 	if (reg & PSP_CMDRESP_RESP) {
81 		sev->int_rcvd = 1;
82 		wake_up(&sev->int_queue);
83 	}
84 }
85 
86 static int sev_wait_cmd_ioc(struct sev_device *sev,
87 			    unsigned int *reg, unsigned int timeout)
88 {
89 	int ret;
90 
91 	ret = wait_event_timeout(sev->int_queue,
92 			sev->int_rcvd, timeout * HZ);
93 	if (!ret)
94 		return -ETIMEDOUT;
95 
96 	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
97 
98 	return 0;
99 }
100 
101 static int sev_cmd_buffer_len(int cmd)
102 {
103 	switch (cmd) {
104 	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
105 	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
106 	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
107 	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
108 	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
109 	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
110 	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
111 	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
112 	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
113 	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
114 	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
115 	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
116 	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
117 	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
118 	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
119 	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
120 	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
121 	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
122 	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
123 	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
124 	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
125 	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
126 	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
127 	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
128 	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
129 	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
130 	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
131 	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
132 	default:				return 0;
133 	}
134 
135 	return 0;
136 }
137 
138 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
139 {
140 	struct psp_device *psp = psp_master;
141 	struct sev_device *sev;
142 	unsigned int phys_lsb, phys_msb;
143 	unsigned int reg, ret = 0;
144 
145 	if (!psp || !psp->sev_data)
146 		return -ENODEV;
147 
148 	if (psp_dead)
149 		return -EBUSY;
150 
151 	sev = psp->sev_data;
152 
153 	/* Get the physical address of the command buffer */
154 	phys_lsb = data ? lower_32_bits(__psp_pa(data)) : 0;
155 	phys_msb = data ? upper_32_bits(__psp_pa(data)) : 0;
156 
157 	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
158 		cmd, phys_msb, phys_lsb, psp_timeout);
159 
160 	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
161 			     sev_cmd_buffer_len(cmd), false);
162 
163 	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
164 	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
165 
166 	sev->int_rcvd = 0;
167 
168 	reg = cmd;
169 	reg <<= SEV_CMDRESP_CMD_SHIFT;
170 	reg |= SEV_CMDRESP_IOC;
171 	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
172 
173 	/* wait for command completion */
174 	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
175 	if (ret) {
176 		if (psp_ret)
177 			*psp_ret = 0;
178 
179 		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
180 		psp_dead = true;
181 
182 		return ret;
183 	}
184 
185 	psp_timeout = psp_cmd_timeout;
186 
187 	if (psp_ret)
188 		*psp_ret = reg & PSP_CMDRESP_ERR_MASK;
189 
190 	if (reg & PSP_CMDRESP_ERR_MASK) {
191 		dev_dbg(sev->dev, "sev command %#x failed (%#010x)\n",
192 			cmd, reg & PSP_CMDRESP_ERR_MASK);
193 		ret = -EIO;
194 	}
195 
196 	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
197 			     sev_cmd_buffer_len(cmd), false);
198 
199 	return ret;
200 }
201 
202 static int sev_do_cmd(int cmd, void *data, int *psp_ret)
203 {
204 	int rc;
205 
206 	mutex_lock(&sev_cmd_mutex);
207 	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
208 	mutex_unlock(&sev_cmd_mutex);
209 
210 	return rc;
211 }
212 
213 static int __sev_platform_init_locked(int *error)
214 {
215 	struct psp_device *psp = psp_master;
216 	struct sev_device *sev;
217 	int rc = 0;
218 
219 	if (!psp || !psp->sev_data)
220 		return -ENODEV;
221 
222 	sev = psp->sev_data;
223 
224 	if (sev->state == SEV_STATE_INIT)
225 		return 0;
226 
227 	if (sev_es_tmr) {
228 		u64 tmr_pa;
229 
230 		/*
231 		 * Do not include the encryption mask on the physical
232 		 * address of the TMR (firmware should clear it anyway).
233 		 */
234 		tmr_pa = __pa(sev_es_tmr);
235 
236 		sev->init_cmd_buf.flags |= SEV_INIT_FLAGS_SEV_ES;
237 		sev->init_cmd_buf.tmr_address = tmr_pa;
238 		sev->init_cmd_buf.tmr_len = SEV_ES_TMR_SIZE;
239 	}
240 
241 	rc = __sev_do_cmd_locked(SEV_CMD_INIT, &sev->init_cmd_buf, error);
242 	if (rc)
243 		return rc;
244 
245 	sev->state = SEV_STATE_INIT;
246 
247 	/* Prepare for first SEV guest launch after INIT */
248 	wbinvd_on_all_cpus();
249 	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error);
250 	if (rc)
251 		return rc;
252 
253 	dev_dbg(sev->dev, "SEV firmware initialized\n");
254 
255 	return rc;
256 }
257 
258 int sev_platform_init(int *error)
259 {
260 	int rc;
261 
262 	mutex_lock(&sev_cmd_mutex);
263 	rc = __sev_platform_init_locked(error);
264 	mutex_unlock(&sev_cmd_mutex);
265 
266 	return rc;
267 }
268 EXPORT_SYMBOL_GPL(sev_platform_init);
269 
270 static int __sev_platform_shutdown_locked(int *error)
271 {
272 	struct sev_device *sev = psp_master->sev_data;
273 	int ret;
274 
275 	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
276 	if (ret)
277 		return ret;
278 
279 	sev->state = SEV_STATE_UNINIT;
280 	dev_dbg(sev->dev, "SEV firmware shutdown\n");
281 
282 	return ret;
283 }
284 
285 static int sev_platform_shutdown(int *error)
286 {
287 	int rc;
288 
289 	mutex_lock(&sev_cmd_mutex);
290 	rc = __sev_platform_shutdown_locked(NULL);
291 	mutex_unlock(&sev_cmd_mutex);
292 
293 	return rc;
294 }
295 
296 static int sev_get_platform_state(int *state, int *error)
297 {
298 	struct sev_device *sev = psp_master->sev_data;
299 	int rc;
300 
301 	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS,
302 				 &sev->status_cmd_buf, error);
303 	if (rc)
304 		return rc;
305 
306 	*state = sev->status_cmd_buf.state;
307 	return rc;
308 }
309 
310 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
311 {
312 	int state, rc;
313 
314 	if (!writable)
315 		return -EPERM;
316 
317 	/*
318 	 * The SEV spec requires that FACTORY_RESET must be issued in
319 	 * UNINIT state. Before we go further lets check if any guest is
320 	 * active.
321 	 *
322 	 * If FW is in WORKING state then deny the request otherwise issue
323 	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
324 	 *
325 	 */
326 	rc = sev_get_platform_state(&state, &argp->error);
327 	if (rc)
328 		return rc;
329 
330 	if (state == SEV_STATE_WORKING)
331 		return -EBUSY;
332 
333 	if (state == SEV_STATE_INIT) {
334 		rc = __sev_platform_shutdown_locked(&argp->error);
335 		if (rc)
336 			return rc;
337 	}
338 
339 	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
340 }
341 
342 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
343 {
344 	struct sev_device *sev = psp_master->sev_data;
345 	struct sev_user_data_status *data = &sev->status_cmd_buf;
346 	int ret;
347 
348 	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, data, &argp->error);
349 	if (ret)
350 		return ret;
351 
352 	if (copy_to_user((void __user *)argp->data, data, sizeof(*data)))
353 		ret = -EFAULT;
354 
355 	return ret;
356 }
357 
358 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
359 {
360 	struct sev_device *sev = psp_master->sev_data;
361 	int rc;
362 
363 	if (!writable)
364 		return -EPERM;
365 
366 	if (sev->state == SEV_STATE_UNINIT) {
367 		rc = __sev_platform_init_locked(&argp->error);
368 		if (rc)
369 			return rc;
370 	}
371 
372 	return __sev_do_cmd_locked(cmd, NULL, &argp->error);
373 }
374 
375 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
376 {
377 	struct sev_device *sev = psp_master->sev_data;
378 	struct sev_user_data_pek_csr input;
379 	struct sev_data_pek_csr *data;
380 	void __user *input_address;
381 	void *blob = NULL;
382 	int ret;
383 
384 	if (!writable)
385 		return -EPERM;
386 
387 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
388 		return -EFAULT;
389 
390 	data = kzalloc(sizeof(*data), GFP_KERNEL);
391 	if (!data)
392 		return -ENOMEM;
393 
394 	/* userspace wants to query CSR length */
395 	if (!input.address || !input.length)
396 		goto cmd;
397 
398 	/* allocate a physically contiguous buffer to store the CSR blob */
399 	input_address = (void __user *)input.address;
400 	if (input.length > SEV_FW_BLOB_MAX_SIZE) {
401 		ret = -EFAULT;
402 		goto e_free;
403 	}
404 
405 	blob = kmalloc(input.length, GFP_KERNEL);
406 	if (!blob) {
407 		ret = -ENOMEM;
408 		goto e_free;
409 	}
410 
411 	data->address = __psp_pa(blob);
412 	data->len = input.length;
413 
414 cmd:
415 	if (sev->state == SEV_STATE_UNINIT) {
416 		ret = __sev_platform_init_locked(&argp->error);
417 		if (ret)
418 			goto e_free_blob;
419 	}
420 
421 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, data, &argp->error);
422 
423 	 /* If we query the CSR length, FW responded with expected data. */
424 	input.length = data->len;
425 
426 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
427 		ret = -EFAULT;
428 		goto e_free_blob;
429 	}
430 
431 	if (blob) {
432 		if (copy_to_user(input_address, blob, input.length))
433 			ret = -EFAULT;
434 	}
435 
436 e_free_blob:
437 	kfree(blob);
438 e_free:
439 	kfree(data);
440 	return ret;
441 }
442 
443 void *psp_copy_user_blob(u64 uaddr, u32 len)
444 {
445 	if (!uaddr || !len)
446 		return ERR_PTR(-EINVAL);
447 
448 	/* verify that blob length does not exceed our limit */
449 	if (len > SEV_FW_BLOB_MAX_SIZE)
450 		return ERR_PTR(-EINVAL);
451 
452 	return memdup_user((void __user *)uaddr, len);
453 }
454 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
455 
456 static int sev_get_api_version(void)
457 {
458 	struct sev_device *sev = psp_master->sev_data;
459 	struct sev_user_data_status *status;
460 	int error = 0, ret;
461 
462 	status = &sev->status_cmd_buf;
463 	ret = sev_platform_status(status, &error);
464 	if (ret) {
465 		dev_err(sev->dev,
466 			"SEV: failed to get status. Error: %#x\n", error);
467 		return 1;
468 	}
469 
470 	sev->api_major = status->api_major;
471 	sev->api_minor = status->api_minor;
472 	sev->build = status->build;
473 	sev->state = status->state;
474 
475 	return 0;
476 }
477 
478 static int sev_get_firmware(struct device *dev,
479 			    const struct firmware **firmware)
480 {
481 	char fw_name_specific[SEV_FW_NAME_SIZE];
482 	char fw_name_subset[SEV_FW_NAME_SIZE];
483 
484 	snprintf(fw_name_specific, sizeof(fw_name_specific),
485 		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
486 		 boot_cpu_data.x86, boot_cpu_data.x86_model);
487 
488 	snprintf(fw_name_subset, sizeof(fw_name_subset),
489 		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
490 		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
491 
492 	/* Check for SEV FW for a particular model.
493 	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
494 	 *
495 	 * or
496 	 *
497 	 * Check for SEV FW common to a subset of models.
498 	 * Ex. amd_sev_fam17h_model0xh.sbin for
499 	 *     Family 17h Model 00h -- Family 17h Model 0Fh
500 	 *
501 	 * or
502 	 *
503 	 * Fall-back to using generic name: sev.fw
504 	 */
505 	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
506 	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
507 	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
508 		return 0;
509 
510 	return -ENOENT;
511 }
512 
513 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
514 static int sev_update_firmware(struct device *dev)
515 {
516 	struct sev_data_download_firmware *data;
517 	const struct firmware *firmware;
518 	int ret, error, order;
519 	struct page *p;
520 	u64 data_size;
521 
522 	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
523 		dev_dbg(dev, "No SEV firmware file present\n");
524 		return -1;
525 	}
526 
527 	/*
528 	 * SEV FW expects the physical address given to it to be 32
529 	 * byte aligned. Memory allocated has structure placed at the
530 	 * beginning followed by the firmware being passed to the SEV
531 	 * FW. Allocate enough memory for data structure + alignment
532 	 * padding + SEV FW.
533 	 */
534 	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
535 
536 	order = get_order(firmware->size + data_size);
537 	p = alloc_pages(GFP_KERNEL, order);
538 	if (!p) {
539 		ret = -1;
540 		goto fw_err;
541 	}
542 
543 	/*
544 	 * Copy firmware data to a kernel allocated contiguous
545 	 * memory region.
546 	 */
547 	data = page_address(p);
548 	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
549 
550 	data->address = __psp_pa(page_address(p) + data_size);
551 	data->len = firmware->size;
552 
553 	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
554 	if (ret)
555 		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
556 	else
557 		dev_info(dev, "SEV firmware update successful\n");
558 
559 	__free_pages(p, order);
560 
561 fw_err:
562 	release_firmware(firmware);
563 
564 	return ret;
565 }
566 
567 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
568 {
569 	struct sev_device *sev = psp_master->sev_data;
570 	struct sev_user_data_pek_cert_import input;
571 	struct sev_data_pek_cert_import *data;
572 	void *pek_blob, *oca_blob;
573 	int ret;
574 
575 	if (!writable)
576 		return -EPERM;
577 
578 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
579 		return -EFAULT;
580 
581 	data = kzalloc(sizeof(*data), GFP_KERNEL);
582 	if (!data)
583 		return -ENOMEM;
584 
585 	/* copy PEK certificate blobs from userspace */
586 	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
587 	if (IS_ERR(pek_blob)) {
588 		ret = PTR_ERR(pek_blob);
589 		goto e_free;
590 	}
591 
592 	data->pek_cert_address = __psp_pa(pek_blob);
593 	data->pek_cert_len = input.pek_cert_len;
594 
595 	/* copy PEK certificate blobs from userspace */
596 	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
597 	if (IS_ERR(oca_blob)) {
598 		ret = PTR_ERR(oca_blob);
599 		goto e_free_pek;
600 	}
601 
602 	data->oca_cert_address = __psp_pa(oca_blob);
603 	data->oca_cert_len = input.oca_cert_len;
604 
605 	/* If platform is not in INIT state then transition it to INIT */
606 	if (sev->state != SEV_STATE_INIT) {
607 		ret = __sev_platform_init_locked(&argp->error);
608 		if (ret)
609 			goto e_free_oca;
610 	}
611 
612 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, data, &argp->error);
613 
614 e_free_oca:
615 	kfree(oca_blob);
616 e_free_pek:
617 	kfree(pek_blob);
618 e_free:
619 	kfree(data);
620 	return ret;
621 }
622 
623 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
624 {
625 	struct sev_user_data_get_id2 input;
626 	struct sev_data_get_id *data;
627 	void __user *input_address;
628 	void *id_blob = NULL;
629 	int ret;
630 
631 	/* SEV GET_ID is available from SEV API v0.16 and up */
632 	if (!sev_version_greater_or_equal(0, 16))
633 		return -ENOTSUPP;
634 
635 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
636 		return -EFAULT;
637 
638 	input_address = (void __user *)input.address;
639 
640 	data = kzalloc(sizeof(*data), GFP_KERNEL);
641 	if (!data)
642 		return -ENOMEM;
643 
644 	if (input.address && input.length) {
645 		id_blob = kmalloc(input.length, GFP_KERNEL);
646 		if (!id_blob) {
647 			kfree(data);
648 			return -ENOMEM;
649 		}
650 
651 		data->address = __psp_pa(id_blob);
652 		data->len = input.length;
653 	}
654 
655 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
656 
657 	/*
658 	 * Firmware will return the length of the ID value (either the minimum
659 	 * required length or the actual length written), return it to the user.
660 	 */
661 	input.length = data->len;
662 
663 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
664 		ret = -EFAULT;
665 		goto e_free;
666 	}
667 
668 	if (id_blob) {
669 		if (copy_to_user(input_address, id_blob, data->len)) {
670 			ret = -EFAULT;
671 			goto e_free;
672 		}
673 	}
674 
675 e_free:
676 	kfree(id_blob);
677 	kfree(data);
678 
679 	return ret;
680 }
681 
682 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
683 {
684 	struct sev_data_get_id *data;
685 	u64 data_size, user_size;
686 	void *id_blob, *mem;
687 	int ret;
688 
689 	/* SEV GET_ID available from SEV API v0.16 and up */
690 	if (!sev_version_greater_or_equal(0, 16))
691 		return -ENOTSUPP;
692 
693 	/* SEV FW expects the buffer it fills with the ID to be
694 	 * 8-byte aligned. Memory allocated should be enough to
695 	 * hold data structure + alignment padding + memory
696 	 * where SEV FW writes the ID.
697 	 */
698 	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
699 	user_size = sizeof(struct sev_user_data_get_id);
700 
701 	mem = kzalloc(data_size + user_size, GFP_KERNEL);
702 	if (!mem)
703 		return -ENOMEM;
704 
705 	data = mem;
706 	id_blob = mem + data_size;
707 
708 	data->address = __psp_pa(id_blob);
709 	data->len = user_size;
710 
711 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
712 	if (!ret) {
713 		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
714 			ret = -EFAULT;
715 	}
716 
717 	kfree(mem);
718 
719 	return ret;
720 }
721 
722 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
723 {
724 	struct sev_device *sev = psp_master->sev_data;
725 	struct sev_user_data_pdh_cert_export input;
726 	void *pdh_blob = NULL, *cert_blob = NULL;
727 	struct sev_data_pdh_cert_export *data;
728 	void __user *input_cert_chain_address;
729 	void __user *input_pdh_cert_address;
730 	int ret;
731 
732 	/* If platform is not in INIT state then transition it to INIT. */
733 	if (sev->state != SEV_STATE_INIT) {
734 		if (!writable)
735 			return -EPERM;
736 
737 		ret = __sev_platform_init_locked(&argp->error);
738 		if (ret)
739 			return ret;
740 	}
741 
742 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
743 		return -EFAULT;
744 
745 	data = kzalloc(sizeof(*data), GFP_KERNEL);
746 	if (!data)
747 		return -ENOMEM;
748 
749 	/* Userspace wants to query the certificate length. */
750 	if (!input.pdh_cert_address ||
751 	    !input.pdh_cert_len ||
752 	    !input.cert_chain_address)
753 		goto cmd;
754 
755 	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
756 	input_cert_chain_address = (void __user *)input.cert_chain_address;
757 
758 	/* Allocate a physically contiguous buffer to store the PDH blob. */
759 	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) {
760 		ret = -EFAULT;
761 		goto e_free;
762 	}
763 
764 	/* Allocate a physically contiguous buffer to store the cert chain blob. */
765 	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) {
766 		ret = -EFAULT;
767 		goto e_free;
768 	}
769 
770 	pdh_blob = kmalloc(input.pdh_cert_len, GFP_KERNEL);
771 	if (!pdh_blob) {
772 		ret = -ENOMEM;
773 		goto e_free;
774 	}
775 
776 	data->pdh_cert_address = __psp_pa(pdh_blob);
777 	data->pdh_cert_len = input.pdh_cert_len;
778 
779 	cert_blob = kmalloc(input.cert_chain_len, GFP_KERNEL);
780 	if (!cert_blob) {
781 		ret = -ENOMEM;
782 		goto e_free_pdh;
783 	}
784 
785 	data->cert_chain_address = __psp_pa(cert_blob);
786 	data->cert_chain_len = input.cert_chain_len;
787 
788 cmd:
789 	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, data, &argp->error);
790 
791 	/* If we query the length, FW responded with expected data. */
792 	input.cert_chain_len = data->cert_chain_len;
793 	input.pdh_cert_len = data->pdh_cert_len;
794 
795 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
796 		ret = -EFAULT;
797 		goto e_free_cert;
798 	}
799 
800 	if (pdh_blob) {
801 		if (copy_to_user(input_pdh_cert_address,
802 				 pdh_blob, input.pdh_cert_len)) {
803 			ret = -EFAULT;
804 			goto e_free_cert;
805 		}
806 	}
807 
808 	if (cert_blob) {
809 		if (copy_to_user(input_cert_chain_address,
810 				 cert_blob, input.cert_chain_len))
811 			ret = -EFAULT;
812 	}
813 
814 e_free_cert:
815 	kfree(cert_blob);
816 e_free_pdh:
817 	kfree(pdh_blob);
818 e_free:
819 	kfree(data);
820 	return ret;
821 }
822 
823 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
824 {
825 	void __user *argp = (void __user *)arg;
826 	struct sev_issue_cmd input;
827 	int ret = -EFAULT;
828 	bool writable = file->f_mode & FMODE_WRITE;
829 
830 	if (!psp_master || !psp_master->sev_data)
831 		return -ENODEV;
832 
833 	if (ioctl != SEV_ISSUE_CMD)
834 		return -EINVAL;
835 
836 	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
837 		return -EFAULT;
838 
839 	if (input.cmd > SEV_MAX)
840 		return -EINVAL;
841 
842 	mutex_lock(&sev_cmd_mutex);
843 
844 	switch (input.cmd) {
845 
846 	case SEV_FACTORY_RESET:
847 		ret = sev_ioctl_do_reset(&input, writable);
848 		break;
849 	case SEV_PLATFORM_STATUS:
850 		ret = sev_ioctl_do_platform_status(&input);
851 		break;
852 	case SEV_PEK_GEN:
853 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
854 		break;
855 	case SEV_PDH_GEN:
856 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
857 		break;
858 	case SEV_PEK_CSR:
859 		ret = sev_ioctl_do_pek_csr(&input, writable);
860 		break;
861 	case SEV_PEK_CERT_IMPORT:
862 		ret = sev_ioctl_do_pek_import(&input, writable);
863 		break;
864 	case SEV_PDH_CERT_EXPORT:
865 		ret = sev_ioctl_do_pdh_export(&input, writable);
866 		break;
867 	case SEV_GET_ID:
868 		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
869 		ret = sev_ioctl_do_get_id(&input);
870 		break;
871 	case SEV_GET_ID2:
872 		ret = sev_ioctl_do_get_id2(&input);
873 		break;
874 	default:
875 		ret = -EINVAL;
876 		goto out;
877 	}
878 
879 	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
880 		ret = -EFAULT;
881 out:
882 	mutex_unlock(&sev_cmd_mutex);
883 
884 	return ret;
885 }
886 
887 static const struct file_operations sev_fops = {
888 	.owner	= THIS_MODULE,
889 	.unlocked_ioctl = sev_ioctl,
890 };
891 
892 int sev_platform_status(struct sev_user_data_status *data, int *error)
893 {
894 	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
895 }
896 EXPORT_SYMBOL_GPL(sev_platform_status);
897 
898 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
899 {
900 	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
901 }
902 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
903 
904 int sev_guest_activate(struct sev_data_activate *data, int *error)
905 {
906 	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
907 }
908 EXPORT_SYMBOL_GPL(sev_guest_activate);
909 
910 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
911 {
912 	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
913 }
914 EXPORT_SYMBOL_GPL(sev_guest_decommission);
915 
916 int sev_guest_df_flush(int *error)
917 {
918 	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
919 }
920 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
921 
922 static void sev_exit(struct kref *ref)
923 {
924 	misc_deregister(&misc_dev->misc);
925 	kfree(misc_dev);
926 	misc_dev = NULL;
927 }
928 
929 static int sev_misc_init(struct sev_device *sev)
930 {
931 	struct device *dev = sev->dev;
932 	int ret;
933 
934 	/*
935 	 * SEV feature support can be detected on multiple devices but the SEV
936 	 * FW commands must be issued on the master. During probe, we do not
937 	 * know the master hence we create /dev/sev on the first device probe.
938 	 * sev_do_cmd() finds the right master device to which to issue the
939 	 * command to the firmware.
940 	 */
941 	if (!misc_dev) {
942 		struct miscdevice *misc;
943 
944 		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
945 		if (!misc_dev)
946 			return -ENOMEM;
947 
948 		misc = &misc_dev->misc;
949 		misc->minor = MISC_DYNAMIC_MINOR;
950 		misc->name = DEVICE_NAME;
951 		misc->fops = &sev_fops;
952 
953 		ret = misc_register(misc);
954 		if (ret)
955 			return ret;
956 
957 		kref_init(&misc_dev->refcount);
958 	} else {
959 		kref_get(&misc_dev->refcount);
960 	}
961 
962 	init_waitqueue_head(&sev->int_queue);
963 	sev->misc = misc_dev;
964 	dev_dbg(dev, "registered SEV device\n");
965 
966 	return 0;
967 }
968 
969 int sev_dev_init(struct psp_device *psp)
970 {
971 	struct device *dev = psp->dev;
972 	struct sev_device *sev;
973 	int ret = -ENOMEM;
974 
975 	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
976 	if (!sev)
977 		goto e_err;
978 
979 	psp->sev_data = sev;
980 
981 	sev->dev = dev;
982 	sev->psp = psp;
983 
984 	sev->io_regs = psp->io_regs;
985 
986 	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
987 	if (!sev->vdata) {
988 		ret = -ENODEV;
989 		dev_err(dev, "sev: missing driver data\n");
990 		goto e_err;
991 	}
992 
993 	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
994 
995 	ret = sev_misc_init(sev);
996 	if (ret)
997 		goto e_irq;
998 
999 	dev_notice(dev, "sev enabled\n");
1000 
1001 	return 0;
1002 
1003 e_irq:
1004 	psp_clear_sev_irq_handler(psp);
1005 e_err:
1006 	psp->sev_data = NULL;
1007 
1008 	dev_notice(dev, "sev initialization failed\n");
1009 
1010 	return ret;
1011 }
1012 
1013 void sev_dev_destroy(struct psp_device *psp)
1014 {
1015 	struct sev_device *sev = psp->sev_data;
1016 
1017 	if (!sev)
1018 		return;
1019 
1020 	if (sev->misc)
1021 		kref_put(&misc_dev->refcount, sev_exit);
1022 
1023 	psp_clear_sev_irq_handler(psp);
1024 }
1025 
1026 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
1027 				void *data, int *error)
1028 {
1029 	if (!filep || filep->f_op != &sev_fops)
1030 		return -EBADF;
1031 
1032 	return sev_do_cmd(cmd, data, error);
1033 }
1034 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
1035 
1036 void sev_pci_init(void)
1037 {
1038 	struct sev_device *sev = psp_master->sev_data;
1039 	struct page *tmr_page;
1040 	int error, rc;
1041 
1042 	if (!sev)
1043 		return;
1044 
1045 	psp_timeout = psp_probe_timeout;
1046 
1047 	if (sev_get_api_version())
1048 		goto err;
1049 
1050 	/*
1051 	 * If platform is not in UNINIT state then firmware upgrade and/or
1052 	 * platform INIT command will fail. These command require UNINIT state.
1053 	 *
1054 	 * In a normal boot we should never run into case where the firmware
1055 	 * is not in UNINIT state on boot. But in case of kexec boot, a reboot
1056 	 * may not go through a typical shutdown sequence and may leave the
1057 	 * firmware in INIT or WORKING state.
1058 	 */
1059 
1060 	if (sev->state != SEV_STATE_UNINIT) {
1061 		sev_platform_shutdown(NULL);
1062 		sev->state = SEV_STATE_UNINIT;
1063 	}
1064 
1065 	if (sev_version_greater_or_equal(0, 15) &&
1066 	    sev_update_firmware(sev->dev) == 0)
1067 		sev_get_api_version();
1068 
1069 	/* Obtain the TMR memory area for SEV-ES use */
1070 	tmr_page = alloc_pages(GFP_KERNEL, get_order(SEV_ES_TMR_SIZE));
1071 	if (tmr_page) {
1072 		sev_es_tmr = page_address(tmr_page);
1073 	} else {
1074 		sev_es_tmr = NULL;
1075 		dev_warn(sev->dev,
1076 			 "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1077 	}
1078 
1079 	/* Initialize the platform */
1080 	rc = sev_platform_init(&error);
1081 	if (rc && (error == SEV_RET_SECURE_DATA_INVALID)) {
1082 		/*
1083 		 * INIT command returned an integrity check failure
1084 		 * status code, meaning that firmware load and
1085 		 * validation of SEV related persistent data has
1086 		 * failed and persistent state has been erased.
1087 		 * Retrying INIT command here should succeed.
1088 		 */
1089 		dev_dbg(sev->dev, "SEV: retrying INIT command");
1090 		rc = sev_platform_init(&error);
1091 	}
1092 
1093 	if (rc) {
1094 		dev_err(sev->dev, "SEV: failed to INIT error %#x\n", error);
1095 		return;
1096 	}
1097 
1098 	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1099 		 sev->api_minor, sev->build);
1100 
1101 	return;
1102 
1103 err:
1104 	psp_master->sev_data = NULL;
1105 }
1106 
1107 void sev_pci_exit(void)
1108 {
1109 	if (!psp_master->sev_data)
1110 		return;
1111 
1112 	sev_platform_shutdown(NULL);
1113 
1114 	if (sev_es_tmr) {
1115 		/* The TMR area was encrypted, flush it from the cache */
1116 		wbinvd_on_all_cpus();
1117 
1118 		free_pages((unsigned long)sev_es_tmr,
1119 			   get_order(SEV_ES_TMR_SIZE));
1120 		sev_es_tmr = NULL;
1121 	}
1122 }
1123