xref: /openbmc/linux/drivers/crypto/ccp/sev-dev.c (revision 1504b6f9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <brijesh.singh@amd.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/spinlock_types.h>
17 #include <linux/types.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/hw_random.h>
21 #include <linux/ccp.h>
22 #include <linux/firmware.h>
23 #include <linux/gfp.h>
24 #include <linux/cpufeature.h>
25 #include <linux/fs.h>
26 #include <linux/fs_struct.h>
27 
28 #include <asm/smp.h>
29 
30 #include "psp-dev.h"
31 #include "sev-dev.h"
32 
33 #define DEVICE_NAME		"sev"
34 #define SEV_FW_FILE		"amd/sev.fw"
35 #define SEV_FW_NAME_SIZE	64
36 
37 static DEFINE_MUTEX(sev_cmd_mutex);
38 static struct sev_misc_dev *misc_dev;
39 
40 static int psp_cmd_timeout = 100;
41 module_param(psp_cmd_timeout, int, 0644);
42 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
43 
44 static int psp_probe_timeout = 5;
45 module_param(psp_probe_timeout, int, 0644);
46 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
47 
48 static char *init_ex_path;
49 module_param(init_ex_path, charp, 0444);
50 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
51 
52 static bool psp_init_on_probe = true;
53 module_param(psp_init_on_probe, bool, 0444);
54 MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
55 
56 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
57 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
58 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
59 
60 static bool psp_dead;
61 static int psp_timeout;
62 
63 /* Trusted Memory Region (TMR):
64  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
65  *   to allocate the memory, which will return aligned memory for the specified
66  *   allocation order.
67  */
68 #define SEV_ES_TMR_SIZE		(1024 * 1024)
69 static void *sev_es_tmr;
70 
71 /* INIT_EX NV Storage:
72  *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
73  *   allocator to allocate the memory, which will return aligned memory for the
74  *   specified allocation order.
75  */
76 #define NV_LENGTH (32 * 1024)
77 static void *sev_init_ex_buffer;
78 
79 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
80 {
81 	struct sev_device *sev = psp_master->sev_data;
82 
83 	if (sev->api_major > maj)
84 		return true;
85 
86 	if (sev->api_major == maj && sev->api_minor >= min)
87 		return true;
88 
89 	return false;
90 }
91 
92 static void sev_irq_handler(int irq, void *data, unsigned int status)
93 {
94 	struct sev_device *sev = data;
95 	int reg;
96 
97 	/* Check if it is command completion: */
98 	if (!(status & SEV_CMD_COMPLETE))
99 		return;
100 
101 	/* Check if it is SEV command completion: */
102 	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
103 	if (reg & PSP_CMDRESP_RESP) {
104 		sev->int_rcvd = 1;
105 		wake_up(&sev->int_queue);
106 	}
107 }
108 
109 static int sev_wait_cmd_ioc(struct sev_device *sev,
110 			    unsigned int *reg, unsigned int timeout)
111 {
112 	int ret;
113 
114 	ret = wait_event_timeout(sev->int_queue,
115 			sev->int_rcvd, timeout * HZ);
116 	if (!ret)
117 		return -ETIMEDOUT;
118 
119 	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
120 
121 	return 0;
122 }
123 
124 static int sev_cmd_buffer_len(int cmd)
125 {
126 	switch (cmd) {
127 	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
128 	case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
129 	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
130 	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
131 	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
132 	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
133 	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
134 	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
135 	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
136 	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
137 	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
138 	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
139 	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
140 	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
141 	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
142 	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
143 	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
144 	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
145 	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
146 	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
147 	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
148 	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
149 	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
150 	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
151 	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
152 	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
153 	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
154 	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
155 	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
156 	case SEV_CMD_SEND_CANCEL:		return sizeof(struct sev_data_send_cancel);
157 	default:				return 0;
158 	}
159 
160 	return 0;
161 }
162 
163 static void *sev_fw_alloc(unsigned long len)
164 {
165 	struct page *page;
166 
167 	page = alloc_pages(GFP_KERNEL, get_order(len));
168 	if (!page)
169 		return NULL;
170 
171 	return page_address(page);
172 }
173 
174 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
175 {
176 	struct file *fp;
177 	struct path root;
178 	struct cred *cred;
179 	const struct cred *old_cred;
180 
181 	task_lock(&init_task);
182 	get_fs_root(init_task.fs, &root);
183 	task_unlock(&init_task);
184 
185 	cred = prepare_creds();
186 	if (!cred)
187 		return ERR_PTR(-ENOMEM);
188 	cred->fsuid = GLOBAL_ROOT_UID;
189 	old_cred = override_creds(cred);
190 
191 	fp = file_open_root(&root, filename, flags, mode);
192 	path_put(&root);
193 
194 	revert_creds(old_cred);
195 
196 	return fp;
197 }
198 
199 static int sev_read_init_ex_file(void)
200 {
201 	struct sev_device *sev = psp_master->sev_data;
202 	struct file *fp;
203 	ssize_t nread;
204 
205 	lockdep_assert_held(&sev_cmd_mutex);
206 
207 	if (!sev_init_ex_buffer)
208 		return -EOPNOTSUPP;
209 
210 	fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
211 	if (IS_ERR(fp)) {
212 		int ret = PTR_ERR(fp);
213 
214 		if (ret == -ENOENT) {
215 			dev_info(sev->dev,
216 				"SEV: %s does not exist and will be created later.\n",
217 				init_ex_path);
218 			ret = 0;
219 		} else {
220 			dev_err(sev->dev,
221 				"SEV: could not open %s for read, error %d\n",
222 				init_ex_path, ret);
223 		}
224 		return ret;
225 	}
226 
227 	nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
228 	if (nread != NV_LENGTH) {
229 		dev_info(sev->dev,
230 			"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
231 			NV_LENGTH, nread);
232 	}
233 
234 	dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
235 	filp_close(fp, NULL);
236 
237 	return 0;
238 }
239 
240 static int sev_write_init_ex_file(void)
241 {
242 	struct sev_device *sev = psp_master->sev_data;
243 	struct file *fp;
244 	loff_t offset = 0;
245 	ssize_t nwrite;
246 
247 	lockdep_assert_held(&sev_cmd_mutex);
248 
249 	if (!sev_init_ex_buffer)
250 		return 0;
251 
252 	fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
253 	if (IS_ERR(fp)) {
254 		int ret = PTR_ERR(fp);
255 
256 		dev_err(sev->dev,
257 			"SEV: could not open file for write, error %d\n",
258 			ret);
259 		return ret;
260 	}
261 
262 	nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
263 	vfs_fsync(fp, 0);
264 	filp_close(fp, NULL);
265 
266 	if (nwrite != NV_LENGTH) {
267 		dev_err(sev->dev,
268 			"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
269 			NV_LENGTH, nwrite);
270 		return -EIO;
271 	}
272 
273 	dev_dbg(sev->dev, "SEV: write successful to NV file\n");
274 
275 	return 0;
276 }
277 
278 static int sev_write_init_ex_file_if_required(int cmd_id)
279 {
280 	lockdep_assert_held(&sev_cmd_mutex);
281 
282 	if (!sev_init_ex_buffer)
283 		return 0;
284 
285 	/*
286 	 * Only a few platform commands modify the SPI/NV area, but none of the
287 	 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
288 	 * PEK_CERT_IMPORT, and PDH_GEN do.
289 	 */
290 	switch (cmd_id) {
291 	case SEV_CMD_FACTORY_RESET:
292 	case SEV_CMD_INIT_EX:
293 	case SEV_CMD_PDH_GEN:
294 	case SEV_CMD_PEK_CERT_IMPORT:
295 	case SEV_CMD_PEK_GEN:
296 		break;
297 	default:
298 		return 0;
299 	}
300 
301 	return sev_write_init_ex_file();
302 }
303 
304 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
305 {
306 	struct psp_device *psp = psp_master;
307 	struct sev_device *sev;
308 	unsigned int phys_lsb, phys_msb;
309 	unsigned int reg, ret = 0;
310 	int buf_len;
311 
312 	if (!psp || !psp->sev_data)
313 		return -ENODEV;
314 
315 	if (psp_dead)
316 		return -EBUSY;
317 
318 	sev = psp->sev_data;
319 
320 	buf_len = sev_cmd_buffer_len(cmd);
321 	if (WARN_ON_ONCE(!data != !buf_len))
322 		return -EINVAL;
323 
324 	/*
325 	 * Copy the incoming data to driver's scratch buffer as __pa() will not
326 	 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
327 	 * physically contiguous.
328 	 */
329 	if (data)
330 		memcpy(sev->cmd_buf, data, buf_len);
331 
332 	/* Get the physical address of the command buffer */
333 	phys_lsb = data ? lower_32_bits(__psp_pa(sev->cmd_buf)) : 0;
334 	phys_msb = data ? upper_32_bits(__psp_pa(sev->cmd_buf)) : 0;
335 
336 	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
337 		cmd, phys_msb, phys_lsb, psp_timeout);
338 
339 	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
340 			     buf_len, false);
341 
342 	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
343 	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
344 
345 	sev->int_rcvd = 0;
346 
347 	reg = cmd;
348 	reg <<= SEV_CMDRESP_CMD_SHIFT;
349 	reg |= SEV_CMDRESP_IOC;
350 	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
351 
352 	/* wait for command completion */
353 	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
354 	if (ret) {
355 		if (psp_ret)
356 			*psp_ret = 0;
357 
358 		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
359 		psp_dead = true;
360 
361 		return ret;
362 	}
363 
364 	psp_timeout = psp_cmd_timeout;
365 
366 	if (psp_ret)
367 		*psp_ret = reg & PSP_CMDRESP_ERR_MASK;
368 
369 	if (reg & PSP_CMDRESP_ERR_MASK) {
370 		dev_dbg(sev->dev, "sev command %#x failed (%#010x)\n",
371 			cmd, reg & PSP_CMDRESP_ERR_MASK);
372 		ret = -EIO;
373 	} else {
374 		ret = sev_write_init_ex_file_if_required(cmd);
375 	}
376 
377 	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
378 			     buf_len, false);
379 
380 	/*
381 	 * Copy potential output from the PSP back to data.  Do this even on
382 	 * failure in case the caller wants to glean something from the error.
383 	 */
384 	if (data)
385 		memcpy(data, sev->cmd_buf, buf_len);
386 
387 	return ret;
388 }
389 
390 static int sev_do_cmd(int cmd, void *data, int *psp_ret)
391 {
392 	int rc;
393 
394 	mutex_lock(&sev_cmd_mutex);
395 	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
396 	mutex_unlock(&sev_cmd_mutex);
397 
398 	return rc;
399 }
400 
401 static int __sev_init_locked(int *error)
402 {
403 	struct sev_data_init data;
404 
405 	memset(&data, 0, sizeof(data));
406 	if (sev_es_tmr) {
407 		/*
408 		 * Do not include the encryption mask on the physical
409 		 * address of the TMR (firmware should clear it anyway).
410 		 */
411 		data.tmr_address = __pa(sev_es_tmr);
412 
413 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
414 		data.tmr_len = SEV_ES_TMR_SIZE;
415 	}
416 
417 	return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
418 }
419 
420 static int __sev_init_ex_locked(int *error)
421 {
422 	struct sev_data_init_ex data;
423 
424 	memset(&data, 0, sizeof(data));
425 	data.length = sizeof(data);
426 	data.nv_address = __psp_pa(sev_init_ex_buffer);
427 	data.nv_len = NV_LENGTH;
428 
429 	if (sev_es_tmr) {
430 		/*
431 		 * Do not include the encryption mask on the physical
432 		 * address of the TMR (firmware should clear it anyway).
433 		 */
434 		data.tmr_address = __pa(sev_es_tmr);
435 
436 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
437 		data.tmr_len = SEV_ES_TMR_SIZE;
438 	}
439 
440 	return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
441 }
442 
443 static int __sev_platform_init_locked(int *error)
444 {
445 	struct psp_device *psp = psp_master;
446 	struct sev_device *sev;
447 	int rc = 0, psp_ret = -1;
448 	int (*init_function)(int *error);
449 
450 	if (!psp || !psp->sev_data)
451 		return -ENODEV;
452 
453 	sev = psp->sev_data;
454 
455 	if (sev->state == SEV_STATE_INIT)
456 		return 0;
457 
458 	if (sev_init_ex_buffer) {
459 		init_function = __sev_init_ex_locked;
460 		rc = sev_read_init_ex_file();
461 		if (rc)
462 			return rc;
463 	} else {
464 		init_function = __sev_init_locked;
465 	}
466 
467 	rc = init_function(&psp_ret);
468 	if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
469 		/*
470 		 * Initialization command returned an integrity check failure
471 		 * status code, meaning that firmware load and validation of SEV
472 		 * related persistent data has failed. Retrying the
473 		 * initialization function should succeed by replacing the state
474 		 * with a reset state.
475 		 */
476 		dev_err(sev->dev, "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
477 		rc = init_function(&psp_ret);
478 	}
479 	if (error)
480 		*error = psp_ret;
481 
482 	if (rc)
483 		return rc;
484 
485 	sev->state = SEV_STATE_INIT;
486 
487 	/* Prepare for first SEV guest launch after INIT */
488 	wbinvd_on_all_cpus();
489 	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error);
490 	if (rc)
491 		return rc;
492 
493 	dev_dbg(sev->dev, "SEV firmware initialized\n");
494 
495 	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
496 		 sev->api_minor, sev->build);
497 
498 	return 0;
499 }
500 
501 int sev_platform_init(int *error)
502 {
503 	int rc;
504 
505 	mutex_lock(&sev_cmd_mutex);
506 	rc = __sev_platform_init_locked(error);
507 	mutex_unlock(&sev_cmd_mutex);
508 
509 	return rc;
510 }
511 EXPORT_SYMBOL_GPL(sev_platform_init);
512 
513 static int __sev_platform_shutdown_locked(int *error)
514 {
515 	struct sev_device *sev = psp_master->sev_data;
516 	int ret;
517 
518 	if (!sev || sev->state == SEV_STATE_UNINIT)
519 		return 0;
520 
521 	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
522 	if (ret)
523 		return ret;
524 
525 	sev->state = SEV_STATE_UNINIT;
526 	dev_dbg(sev->dev, "SEV firmware shutdown\n");
527 
528 	return ret;
529 }
530 
531 static int sev_platform_shutdown(int *error)
532 {
533 	int rc;
534 
535 	mutex_lock(&sev_cmd_mutex);
536 	rc = __sev_platform_shutdown_locked(NULL);
537 	mutex_unlock(&sev_cmd_mutex);
538 
539 	return rc;
540 }
541 
542 static int sev_get_platform_state(int *state, int *error)
543 {
544 	struct sev_user_data_status data;
545 	int rc;
546 
547 	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
548 	if (rc)
549 		return rc;
550 
551 	*state = data.state;
552 	return rc;
553 }
554 
555 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
556 {
557 	int state, rc;
558 
559 	if (!writable)
560 		return -EPERM;
561 
562 	/*
563 	 * The SEV spec requires that FACTORY_RESET must be issued in
564 	 * UNINIT state. Before we go further lets check if any guest is
565 	 * active.
566 	 *
567 	 * If FW is in WORKING state then deny the request otherwise issue
568 	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
569 	 *
570 	 */
571 	rc = sev_get_platform_state(&state, &argp->error);
572 	if (rc)
573 		return rc;
574 
575 	if (state == SEV_STATE_WORKING)
576 		return -EBUSY;
577 
578 	if (state == SEV_STATE_INIT) {
579 		rc = __sev_platform_shutdown_locked(&argp->error);
580 		if (rc)
581 			return rc;
582 	}
583 
584 	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
585 }
586 
587 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
588 {
589 	struct sev_user_data_status data;
590 	int ret;
591 
592 	memset(&data, 0, sizeof(data));
593 
594 	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
595 	if (ret)
596 		return ret;
597 
598 	if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
599 		ret = -EFAULT;
600 
601 	return ret;
602 }
603 
604 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
605 {
606 	struct sev_device *sev = psp_master->sev_data;
607 	int rc;
608 
609 	if (!writable)
610 		return -EPERM;
611 
612 	if (sev->state == SEV_STATE_UNINIT) {
613 		rc = __sev_platform_init_locked(&argp->error);
614 		if (rc)
615 			return rc;
616 	}
617 
618 	return __sev_do_cmd_locked(cmd, NULL, &argp->error);
619 }
620 
621 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
622 {
623 	struct sev_device *sev = psp_master->sev_data;
624 	struct sev_user_data_pek_csr input;
625 	struct sev_data_pek_csr data;
626 	void __user *input_address;
627 	void *blob = NULL;
628 	int ret;
629 
630 	if (!writable)
631 		return -EPERM;
632 
633 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
634 		return -EFAULT;
635 
636 	memset(&data, 0, sizeof(data));
637 
638 	/* userspace wants to query CSR length */
639 	if (!input.address || !input.length)
640 		goto cmd;
641 
642 	/* allocate a physically contiguous buffer to store the CSR blob */
643 	input_address = (void __user *)input.address;
644 	if (input.length > SEV_FW_BLOB_MAX_SIZE)
645 		return -EFAULT;
646 
647 	blob = kzalloc(input.length, GFP_KERNEL);
648 	if (!blob)
649 		return -ENOMEM;
650 
651 	data.address = __psp_pa(blob);
652 	data.len = input.length;
653 
654 cmd:
655 	if (sev->state == SEV_STATE_UNINIT) {
656 		ret = __sev_platform_init_locked(&argp->error);
657 		if (ret)
658 			goto e_free_blob;
659 	}
660 
661 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
662 
663 	 /* If we query the CSR length, FW responded with expected data. */
664 	input.length = data.len;
665 
666 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
667 		ret = -EFAULT;
668 		goto e_free_blob;
669 	}
670 
671 	if (blob) {
672 		if (copy_to_user(input_address, blob, input.length))
673 			ret = -EFAULT;
674 	}
675 
676 e_free_blob:
677 	kfree(blob);
678 	return ret;
679 }
680 
681 void *psp_copy_user_blob(u64 uaddr, u32 len)
682 {
683 	if (!uaddr || !len)
684 		return ERR_PTR(-EINVAL);
685 
686 	/* verify that blob length does not exceed our limit */
687 	if (len > SEV_FW_BLOB_MAX_SIZE)
688 		return ERR_PTR(-EINVAL);
689 
690 	return memdup_user((void __user *)uaddr, len);
691 }
692 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
693 
694 static int sev_get_api_version(void)
695 {
696 	struct sev_device *sev = psp_master->sev_data;
697 	struct sev_user_data_status status;
698 	int error = 0, ret;
699 
700 	ret = sev_platform_status(&status, &error);
701 	if (ret) {
702 		dev_err(sev->dev,
703 			"SEV: failed to get status. Error: %#x\n", error);
704 		return 1;
705 	}
706 
707 	sev->api_major = status.api_major;
708 	sev->api_minor = status.api_minor;
709 	sev->build = status.build;
710 	sev->state = status.state;
711 
712 	return 0;
713 }
714 
715 static int sev_get_firmware(struct device *dev,
716 			    const struct firmware **firmware)
717 {
718 	char fw_name_specific[SEV_FW_NAME_SIZE];
719 	char fw_name_subset[SEV_FW_NAME_SIZE];
720 
721 	snprintf(fw_name_specific, sizeof(fw_name_specific),
722 		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
723 		 boot_cpu_data.x86, boot_cpu_data.x86_model);
724 
725 	snprintf(fw_name_subset, sizeof(fw_name_subset),
726 		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
727 		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
728 
729 	/* Check for SEV FW for a particular model.
730 	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
731 	 *
732 	 * or
733 	 *
734 	 * Check for SEV FW common to a subset of models.
735 	 * Ex. amd_sev_fam17h_model0xh.sbin for
736 	 *     Family 17h Model 00h -- Family 17h Model 0Fh
737 	 *
738 	 * or
739 	 *
740 	 * Fall-back to using generic name: sev.fw
741 	 */
742 	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
743 	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
744 	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
745 		return 0;
746 
747 	return -ENOENT;
748 }
749 
750 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
751 static int sev_update_firmware(struct device *dev)
752 {
753 	struct sev_data_download_firmware *data;
754 	const struct firmware *firmware;
755 	int ret, error, order;
756 	struct page *p;
757 	u64 data_size;
758 
759 	if (!sev_version_greater_or_equal(0, 15)) {
760 		dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
761 		return -1;
762 	}
763 
764 	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
765 		dev_dbg(dev, "No SEV firmware file present\n");
766 		return -1;
767 	}
768 
769 	/*
770 	 * SEV FW expects the physical address given to it to be 32
771 	 * byte aligned. Memory allocated has structure placed at the
772 	 * beginning followed by the firmware being passed to the SEV
773 	 * FW. Allocate enough memory for data structure + alignment
774 	 * padding + SEV FW.
775 	 */
776 	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
777 
778 	order = get_order(firmware->size + data_size);
779 	p = alloc_pages(GFP_KERNEL, order);
780 	if (!p) {
781 		ret = -1;
782 		goto fw_err;
783 	}
784 
785 	/*
786 	 * Copy firmware data to a kernel allocated contiguous
787 	 * memory region.
788 	 */
789 	data = page_address(p);
790 	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
791 
792 	data->address = __psp_pa(page_address(p) + data_size);
793 	data->len = firmware->size;
794 
795 	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
796 
797 	/*
798 	 * A quirk for fixing the committed TCB version, when upgrading from
799 	 * earlier firmware version than 1.50.
800 	 */
801 	if (!ret && !sev_version_greater_or_equal(1, 50))
802 		ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
803 
804 	if (ret)
805 		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
806 	else
807 		dev_info(dev, "SEV firmware update successful\n");
808 
809 	__free_pages(p, order);
810 
811 fw_err:
812 	release_firmware(firmware);
813 
814 	return ret;
815 }
816 
817 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
818 {
819 	struct sev_device *sev = psp_master->sev_data;
820 	struct sev_user_data_pek_cert_import input;
821 	struct sev_data_pek_cert_import data;
822 	void *pek_blob, *oca_blob;
823 	int ret;
824 
825 	if (!writable)
826 		return -EPERM;
827 
828 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
829 		return -EFAULT;
830 
831 	/* copy PEK certificate blobs from userspace */
832 	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
833 	if (IS_ERR(pek_blob))
834 		return PTR_ERR(pek_blob);
835 
836 	data.reserved = 0;
837 	data.pek_cert_address = __psp_pa(pek_blob);
838 	data.pek_cert_len = input.pek_cert_len;
839 
840 	/* copy PEK certificate blobs from userspace */
841 	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
842 	if (IS_ERR(oca_blob)) {
843 		ret = PTR_ERR(oca_blob);
844 		goto e_free_pek;
845 	}
846 
847 	data.oca_cert_address = __psp_pa(oca_blob);
848 	data.oca_cert_len = input.oca_cert_len;
849 
850 	/* If platform is not in INIT state then transition it to INIT */
851 	if (sev->state != SEV_STATE_INIT) {
852 		ret = __sev_platform_init_locked(&argp->error);
853 		if (ret)
854 			goto e_free_oca;
855 	}
856 
857 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
858 
859 e_free_oca:
860 	kfree(oca_blob);
861 e_free_pek:
862 	kfree(pek_blob);
863 	return ret;
864 }
865 
866 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
867 {
868 	struct sev_user_data_get_id2 input;
869 	struct sev_data_get_id data;
870 	void __user *input_address;
871 	void *id_blob = NULL;
872 	int ret;
873 
874 	/* SEV GET_ID is available from SEV API v0.16 and up */
875 	if (!sev_version_greater_or_equal(0, 16))
876 		return -ENOTSUPP;
877 
878 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
879 		return -EFAULT;
880 
881 	input_address = (void __user *)input.address;
882 
883 	if (input.address && input.length) {
884 		id_blob = kzalloc(input.length, GFP_KERNEL);
885 		if (!id_blob)
886 			return -ENOMEM;
887 
888 		data.address = __psp_pa(id_blob);
889 		data.len = input.length;
890 	} else {
891 		data.address = 0;
892 		data.len = 0;
893 	}
894 
895 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
896 
897 	/*
898 	 * Firmware will return the length of the ID value (either the minimum
899 	 * required length or the actual length written), return it to the user.
900 	 */
901 	input.length = data.len;
902 
903 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
904 		ret = -EFAULT;
905 		goto e_free;
906 	}
907 
908 	if (id_blob) {
909 		if (copy_to_user(input_address, id_blob, data.len)) {
910 			ret = -EFAULT;
911 			goto e_free;
912 		}
913 	}
914 
915 e_free:
916 	kfree(id_blob);
917 
918 	return ret;
919 }
920 
921 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
922 {
923 	struct sev_data_get_id *data;
924 	u64 data_size, user_size;
925 	void *id_blob, *mem;
926 	int ret;
927 
928 	/* SEV GET_ID available from SEV API v0.16 and up */
929 	if (!sev_version_greater_or_equal(0, 16))
930 		return -ENOTSUPP;
931 
932 	/* SEV FW expects the buffer it fills with the ID to be
933 	 * 8-byte aligned. Memory allocated should be enough to
934 	 * hold data structure + alignment padding + memory
935 	 * where SEV FW writes the ID.
936 	 */
937 	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
938 	user_size = sizeof(struct sev_user_data_get_id);
939 
940 	mem = kzalloc(data_size + user_size, GFP_KERNEL);
941 	if (!mem)
942 		return -ENOMEM;
943 
944 	data = mem;
945 	id_blob = mem + data_size;
946 
947 	data->address = __psp_pa(id_blob);
948 	data->len = user_size;
949 
950 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
951 	if (!ret) {
952 		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
953 			ret = -EFAULT;
954 	}
955 
956 	kfree(mem);
957 
958 	return ret;
959 }
960 
961 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
962 {
963 	struct sev_device *sev = psp_master->sev_data;
964 	struct sev_user_data_pdh_cert_export input;
965 	void *pdh_blob = NULL, *cert_blob = NULL;
966 	struct sev_data_pdh_cert_export data;
967 	void __user *input_cert_chain_address;
968 	void __user *input_pdh_cert_address;
969 	int ret;
970 
971 	/* If platform is not in INIT state then transition it to INIT. */
972 	if (sev->state != SEV_STATE_INIT) {
973 		if (!writable)
974 			return -EPERM;
975 
976 		ret = __sev_platform_init_locked(&argp->error);
977 		if (ret)
978 			return ret;
979 	}
980 
981 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
982 		return -EFAULT;
983 
984 	memset(&data, 0, sizeof(data));
985 
986 	/* Userspace wants to query the certificate length. */
987 	if (!input.pdh_cert_address ||
988 	    !input.pdh_cert_len ||
989 	    !input.cert_chain_address)
990 		goto cmd;
991 
992 	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
993 	input_cert_chain_address = (void __user *)input.cert_chain_address;
994 
995 	/* Allocate a physically contiguous buffer to store the PDH blob. */
996 	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
997 		return -EFAULT;
998 
999 	/* Allocate a physically contiguous buffer to store the cert chain blob. */
1000 	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
1001 		return -EFAULT;
1002 
1003 	pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
1004 	if (!pdh_blob)
1005 		return -ENOMEM;
1006 
1007 	data.pdh_cert_address = __psp_pa(pdh_blob);
1008 	data.pdh_cert_len = input.pdh_cert_len;
1009 
1010 	cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
1011 	if (!cert_blob) {
1012 		ret = -ENOMEM;
1013 		goto e_free_pdh;
1014 	}
1015 
1016 	data.cert_chain_address = __psp_pa(cert_blob);
1017 	data.cert_chain_len = input.cert_chain_len;
1018 
1019 cmd:
1020 	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
1021 
1022 	/* If we query the length, FW responded with expected data. */
1023 	input.cert_chain_len = data.cert_chain_len;
1024 	input.pdh_cert_len = data.pdh_cert_len;
1025 
1026 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1027 		ret = -EFAULT;
1028 		goto e_free_cert;
1029 	}
1030 
1031 	if (pdh_blob) {
1032 		if (copy_to_user(input_pdh_cert_address,
1033 				 pdh_blob, input.pdh_cert_len)) {
1034 			ret = -EFAULT;
1035 			goto e_free_cert;
1036 		}
1037 	}
1038 
1039 	if (cert_blob) {
1040 		if (copy_to_user(input_cert_chain_address,
1041 				 cert_blob, input.cert_chain_len))
1042 			ret = -EFAULT;
1043 	}
1044 
1045 e_free_cert:
1046 	kfree(cert_blob);
1047 e_free_pdh:
1048 	kfree(pdh_blob);
1049 	return ret;
1050 }
1051 
1052 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
1053 {
1054 	void __user *argp = (void __user *)arg;
1055 	struct sev_issue_cmd input;
1056 	int ret = -EFAULT;
1057 	bool writable = file->f_mode & FMODE_WRITE;
1058 
1059 	if (!psp_master || !psp_master->sev_data)
1060 		return -ENODEV;
1061 
1062 	if (ioctl != SEV_ISSUE_CMD)
1063 		return -EINVAL;
1064 
1065 	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
1066 		return -EFAULT;
1067 
1068 	if (input.cmd > SEV_MAX)
1069 		return -EINVAL;
1070 
1071 	mutex_lock(&sev_cmd_mutex);
1072 
1073 	switch (input.cmd) {
1074 
1075 	case SEV_FACTORY_RESET:
1076 		ret = sev_ioctl_do_reset(&input, writable);
1077 		break;
1078 	case SEV_PLATFORM_STATUS:
1079 		ret = sev_ioctl_do_platform_status(&input);
1080 		break;
1081 	case SEV_PEK_GEN:
1082 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
1083 		break;
1084 	case SEV_PDH_GEN:
1085 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
1086 		break;
1087 	case SEV_PEK_CSR:
1088 		ret = sev_ioctl_do_pek_csr(&input, writable);
1089 		break;
1090 	case SEV_PEK_CERT_IMPORT:
1091 		ret = sev_ioctl_do_pek_import(&input, writable);
1092 		break;
1093 	case SEV_PDH_CERT_EXPORT:
1094 		ret = sev_ioctl_do_pdh_export(&input, writable);
1095 		break;
1096 	case SEV_GET_ID:
1097 		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
1098 		ret = sev_ioctl_do_get_id(&input);
1099 		break;
1100 	case SEV_GET_ID2:
1101 		ret = sev_ioctl_do_get_id2(&input);
1102 		break;
1103 	default:
1104 		ret = -EINVAL;
1105 		goto out;
1106 	}
1107 
1108 	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
1109 		ret = -EFAULT;
1110 out:
1111 	mutex_unlock(&sev_cmd_mutex);
1112 
1113 	return ret;
1114 }
1115 
1116 static const struct file_operations sev_fops = {
1117 	.owner	= THIS_MODULE,
1118 	.unlocked_ioctl = sev_ioctl,
1119 };
1120 
1121 int sev_platform_status(struct sev_user_data_status *data, int *error)
1122 {
1123 	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
1124 }
1125 EXPORT_SYMBOL_GPL(sev_platform_status);
1126 
1127 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
1128 {
1129 	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
1130 }
1131 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
1132 
1133 int sev_guest_activate(struct sev_data_activate *data, int *error)
1134 {
1135 	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
1136 }
1137 EXPORT_SYMBOL_GPL(sev_guest_activate);
1138 
1139 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
1140 {
1141 	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
1142 }
1143 EXPORT_SYMBOL_GPL(sev_guest_decommission);
1144 
1145 int sev_guest_df_flush(int *error)
1146 {
1147 	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
1148 }
1149 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
1150 
1151 static void sev_exit(struct kref *ref)
1152 {
1153 	misc_deregister(&misc_dev->misc);
1154 	kfree(misc_dev);
1155 	misc_dev = NULL;
1156 }
1157 
1158 static int sev_misc_init(struct sev_device *sev)
1159 {
1160 	struct device *dev = sev->dev;
1161 	int ret;
1162 
1163 	/*
1164 	 * SEV feature support can be detected on multiple devices but the SEV
1165 	 * FW commands must be issued on the master. During probe, we do not
1166 	 * know the master hence we create /dev/sev on the first device probe.
1167 	 * sev_do_cmd() finds the right master device to which to issue the
1168 	 * command to the firmware.
1169 	 */
1170 	if (!misc_dev) {
1171 		struct miscdevice *misc;
1172 
1173 		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
1174 		if (!misc_dev)
1175 			return -ENOMEM;
1176 
1177 		misc = &misc_dev->misc;
1178 		misc->minor = MISC_DYNAMIC_MINOR;
1179 		misc->name = DEVICE_NAME;
1180 		misc->fops = &sev_fops;
1181 
1182 		ret = misc_register(misc);
1183 		if (ret)
1184 			return ret;
1185 
1186 		kref_init(&misc_dev->refcount);
1187 	} else {
1188 		kref_get(&misc_dev->refcount);
1189 	}
1190 
1191 	init_waitqueue_head(&sev->int_queue);
1192 	sev->misc = misc_dev;
1193 	dev_dbg(dev, "registered SEV device\n");
1194 
1195 	return 0;
1196 }
1197 
1198 int sev_dev_init(struct psp_device *psp)
1199 {
1200 	struct device *dev = psp->dev;
1201 	struct sev_device *sev;
1202 	int ret = -ENOMEM;
1203 
1204 	if (!boot_cpu_has(X86_FEATURE_SEV)) {
1205 		dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
1206 		return 0;
1207 	}
1208 
1209 	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
1210 	if (!sev)
1211 		goto e_err;
1212 
1213 	sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 0);
1214 	if (!sev->cmd_buf)
1215 		goto e_sev;
1216 
1217 	psp->sev_data = sev;
1218 
1219 	sev->dev = dev;
1220 	sev->psp = psp;
1221 
1222 	sev->io_regs = psp->io_regs;
1223 
1224 	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
1225 	if (!sev->vdata) {
1226 		ret = -ENODEV;
1227 		dev_err(dev, "sev: missing driver data\n");
1228 		goto e_buf;
1229 	}
1230 
1231 	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
1232 
1233 	ret = sev_misc_init(sev);
1234 	if (ret)
1235 		goto e_irq;
1236 
1237 	dev_notice(dev, "sev enabled\n");
1238 
1239 	return 0;
1240 
1241 e_irq:
1242 	psp_clear_sev_irq_handler(psp);
1243 e_buf:
1244 	devm_free_pages(dev, (unsigned long)sev->cmd_buf);
1245 e_sev:
1246 	devm_kfree(dev, sev);
1247 e_err:
1248 	psp->sev_data = NULL;
1249 
1250 	dev_notice(dev, "sev initialization failed\n");
1251 
1252 	return ret;
1253 }
1254 
1255 static void sev_firmware_shutdown(struct sev_device *sev)
1256 {
1257 	sev_platform_shutdown(NULL);
1258 
1259 	if (sev_es_tmr) {
1260 		/* The TMR area was encrypted, flush it from the cache */
1261 		wbinvd_on_all_cpus();
1262 
1263 		free_pages((unsigned long)sev_es_tmr,
1264 			   get_order(SEV_ES_TMR_SIZE));
1265 		sev_es_tmr = NULL;
1266 	}
1267 
1268 	if (sev_init_ex_buffer) {
1269 		free_pages((unsigned long)sev_init_ex_buffer,
1270 			   get_order(NV_LENGTH));
1271 		sev_init_ex_buffer = NULL;
1272 	}
1273 }
1274 
1275 void sev_dev_destroy(struct psp_device *psp)
1276 {
1277 	struct sev_device *sev = psp->sev_data;
1278 
1279 	if (!sev)
1280 		return;
1281 
1282 	sev_firmware_shutdown(sev);
1283 
1284 	if (sev->misc)
1285 		kref_put(&misc_dev->refcount, sev_exit);
1286 
1287 	psp_clear_sev_irq_handler(psp);
1288 }
1289 
1290 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
1291 				void *data, int *error)
1292 {
1293 	if (!filep || filep->f_op != &sev_fops)
1294 		return -EBADF;
1295 
1296 	return sev_do_cmd(cmd, data, error);
1297 }
1298 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
1299 
1300 void sev_pci_init(void)
1301 {
1302 	struct sev_device *sev = psp_master->sev_data;
1303 	int error, rc;
1304 
1305 	if (!sev)
1306 		return;
1307 
1308 	psp_timeout = psp_probe_timeout;
1309 
1310 	if (sev_get_api_version())
1311 		goto err;
1312 
1313 	if (sev_update_firmware(sev->dev) == 0)
1314 		sev_get_api_version();
1315 
1316 	/* If an init_ex_path is provided rely on INIT_EX for PSP initialization
1317 	 * instead of INIT.
1318 	 */
1319 	if (init_ex_path) {
1320 		sev_init_ex_buffer = sev_fw_alloc(NV_LENGTH);
1321 		if (!sev_init_ex_buffer) {
1322 			dev_err(sev->dev,
1323 				"SEV: INIT_EX NV memory allocation failed\n");
1324 			goto err;
1325 		}
1326 	}
1327 
1328 	/* Obtain the TMR memory area for SEV-ES use */
1329 	sev_es_tmr = sev_fw_alloc(SEV_ES_TMR_SIZE);
1330 	if (!sev_es_tmr)
1331 		dev_warn(sev->dev,
1332 			 "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1333 
1334 	if (!psp_init_on_probe)
1335 		return;
1336 
1337 	/* Initialize the platform */
1338 	rc = sev_platform_init(&error);
1339 	if (rc)
1340 		dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n",
1341 			error, rc);
1342 
1343 	return;
1344 
1345 err:
1346 	psp_master->sev_data = NULL;
1347 }
1348 
1349 void sev_pci_exit(void)
1350 {
1351 	struct sev_device *sev = psp_master->sev_data;
1352 
1353 	if (!sev)
1354 		return;
1355 
1356 	sev_firmware_shutdown(sev);
1357 }
1358