1 /* 2 * AMD Platform Security Processor (PSP) interface 3 * 4 * Copyright (C) 2016,2018 Advanced Micro Devices, Inc. 5 * 6 * Author: Brijesh Singh <brijesh.singh@amd.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/kthread.h> 16 #include <linux/sched.h> 17 #include <linux/interrupt.h> 18 #include <linux/spinlock.h> 19 #include <linux/spinlock_types.h> 20 #include <linux/types.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/hw_random.h> 24 #include <linux/ccp.h> 25 #include <linux/firmware.h> 26 27 #include "sp-dev.h" 28 #include "psp-dev.h" 29 30 #define SEV_VERSION_GREATER_OR_EQUAL(_maj, _min) \ 31 ((psp_master->api_major) >= _maj && \ 32 (psp_master->api_minor) >= _min) 33 34 #define DEVICE_NAME "sev" 35 #define SEV_FW_FILE "amd/sev.fw" 36 #define SEV_FW_NAME_SIZE 64 37 38 static DEFINE_MUTEX(sev_cmd_mutex); 39 static struct sev_misc_dev *misc_dev; 40 static struct psp_device *psp_master; 41 42 static int psp_cmd_timeout = 100; 43 module_param(psp_cmd_timeout, int, 0644); 44 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 45 46 static int psp_probe_timeout = 5; 47 module_param(psp_probe_timeout, int, 0644); 48 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 49 50 static bool psp_dead; 51 static int psp_timeout; 52 53 static struct psp_device *psp_alloc_struct(struct sp_device *sp) 54 { 55 struct device *dev = sp->dev; 56 struct psp_device *psp; 57 58 psp = devm_kzalloc(dev, sizeof(*psp), GFP_KERNEL); 59 if (!psp) 60 return NULL; 61 62 psp->dev = dev; 63 psp->sp = sp; 64 65 snprintf(psp->name, sizeof(psp->name), "psp-%u", sp->ord); 66 67 return psp; 68 } 69 70 static irqreturn_t psp_irq_handler(int irq, void *data) 71 { 72 struct psp_device *psp = data; 73 unsigned int status; 74 int reg; 75 76 /* Read the interrupt status: */ 77 status = ioread32(psp->io_regs + psp->vdata->intsts_reg); 78 79 /* Check if it is command completion: */ 80 if (!(status & PSP_CMD_COMPLETE)) 81 goto done; 82 83 /* Check if it is SEV command completion: */ 84 reg = ioread32(psp->io_regs + psp->vdata->cmdresp_reg); 85 if (reg & PSP_CMDRESP_RESP) { 86 psp->sev_int_rcvd = 1; 87 wake_up(&psp->sev_int_queue); 88 } 89 90 done: 91 /* Clear the interrupt status by writing the same value we read. */ 92 iowrite32(status, psp->io_regs + psp->vdata->intsts_reg); 93 94 return IRQ_HANDLED; 95 } 96 97 static int sev_wait_cmd_ioc(struct psp_device *psp, 98 unsigned int *reg, unsigned int timeout) 99 { 100 int ret; 101 102 ret = wait_event_timeout(psp->sev_int_queue, 103 psp->sev_int_rcvd, timeout * HZ); 104 if (!ret) 105 return -ETIMEDOUT; 106 107 *reg = ioread32(psp->io_regs + psp->vdata->cmdresp_reg); 108 109 return 0; 110 } 111 112 static int sev_cmd_buffer_len(int cmd) 113 { 114 switch (cmd) { 115 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 116 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 117 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 118 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 119 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 120 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 121 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 122 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 123 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 124 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 125 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 126 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 127 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 128 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 129 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 130 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 131 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 132 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 133 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 134 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 135 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 136 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 137 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 138 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 139 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 140 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 141 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 142 default: return 0; 143 } 144 145 return 0; 146 } 147 148 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 149 { 150 struct psp_device *psp = psp_master; 151 unsigned int phys_lsb, phys_msb; 152 unsigned int reg, ret = 0; 153 154 if (!psp) 155 return -ENODEV; 156 157 if (psp_dead) 158 return -EBUSY; 159 160 /* Get the physical address of the command buffer */ 161 phys_lsb = data ? lower_32_bits(__psp_pa(data)) : 0; 162 phys_msb = data ? upper_32_bits(__psp_pa(data)) : 0; 163 164 dev_dbg(psp->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 165 cmd, phys_msb, phys_lsb, psp_timeout); 166 167 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 168 sev_cmd_buffer_len(cmd), false); 169 170 iowrite32(phys_lsb, psp->io_regs + psp->vdata->cmdbuff_addr_lo_reg); 171 iowrite32(phys_msb, psp->io_regs + psp->vdata->cmdbuff_addr_hi_reg); 172 173 psp->sev_int_rcvd = 0; 174 175 reg = cmd; 176 reg <<= PSP_CMDRESP_CMD_SHIFT; 177 reg |= PSP_CMDRESP_IOC; 178 iowrite32(reg, psp->io_regs + psp->vdata->cmdresp_reg); 179 180 /* wait for command completion */ 181 ret = sev_wait_cmd_ioc(psp, ®, psp_timeout); 182 if (ret) { 183 if (psp_ret) 184 *psp_ret = 0; 185 186 dev_err(psp->dev, "sev command %#x timed out, disabling PSP \n", cmd); 187 psp_dead = true; 188 189 return ret; 190 } 191 192 psp_timeout = psp_cmd_timeout; 193 194 if (psp_ret) 195 *psp_ret = reg & PSP_CMDRESP_ERR_MASK; 196 197 if (reg & PSP_CMDRESP_ERR_MASK) { 198 dev_dbg(psp->dev, "sev command %#x failed (%#010x)\n", 199 cmd, reg & PSP_CMDRESP_ERR_MASK); 200 ret = -EIO; 201 } 202 203 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 204 sev_cmd_buffer_len(cmd), false); 205 206 return ret; 207 } 208 209 static int sev_do_cmd(int cmd, void *data, int *psp_ret) 210 { 211 int rc; 212 213 mutex_lock(&sev_cmd_mutex); 214 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 215 mutex_unlock(&sev_cmd_mutex); 216 217 return rc; 218 } 219 220 static int __sev_platform_init_locked(int *error) 221 { 222 struct psp_device *psp = psp_master; 223 int rc = 0; 224 225 if (!psp) 226 return -ENODEV; 227 228 if (psp->sev_state == SEV_STATE_INIT) 229 return 0; 230 231 rc = __sev_do_cmd_locked(SEV_CMD_INIT, &psp->init_cmd_buf, error); 232 if (rc) 233 return rc; 234 235 psp->sev_state = SEV_STATE_INIT; 236 dev_dbg(psp->dev, "SEV firmware initialized\n"); 237 238 return rc; 239 } 240 241 int sev_platform_init(int *error) 242 { 243 int rc; 244 245 mutex_lock(&sev_cmd_mutex); 246 rc = __sev_platform_init_locked(error); 247 mutex_unlock(&sev_cmd_mutex); 248 249 return rc; 250 } 251 EXPORT_SYMBOL_GPL(sev_platform_init); 252 253 static int __sev_platform_shutdown_locked(int *error) 254 { 255 int ret; 256 257 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 258 if (ret) 259 return ret; 260 261 psp_master->sev_state = SEV_STATE_UNINIT; 262 dev_dbg(psp_master->dev, "SEV firmware shutdown\n"); 263 264 return ret; 265 } 266 267 static int sev_platform_shutdown(int *error) 268 { 269 int rc; 270 271 mutex_lock(&sev_cmd_mutex); 272 rc = __sev_platform_shutdown_locked(NULL); 273 mutex_unlock(&sev_cmd_mutex); 274 275 return rc; 276 } 277 278 static int sev_get_platform_state(int *state, int *error) 279 { 280 int rc; 281 282 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, 283 &psp_master->status_cmd_buf, error); 284 if (rc) 285 return rc; 286 287 *state = psp_master->status_cmd_buf.state; 288 return rc; 289 } 290 291 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp) 292 { 293 int state, rc; 294 295 /* 296 * The SEV spec requires that FACTORY_RESET must be issued in 297 * UNINIT state. Before we go further lets check if any guest is 298 * active. 299 * 300 * If FW is in WORKING state then deny the request otherwise issue 301 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 302 * 303 */ 304 rc = sev_get_platform_state(&state, &argp->error); 305 if (rc) 306 return rc; 307 308 if (state == SEV_STATE_WORKING) 309 return -EBUSY; 310 311 if (state == SEV_STATE_INIT) { 312 rc = __sev_platform_shutdown_locked(&argp->error); 313 if (rc) 314 return rc; 315 } 316 317 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 318 } 319 320 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 321 { 322 struct sev_user_data_status *data = &psp_master->status_cmd_buf; 323 int ret; 324 325 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, data, &argp->error); 326 if (ret) 327 return ret; 328 329 if (copy_to_user((void __user *)argp->data, data, sizeof(*data))) 330 ret = -EFAULT; 331 332 return ret; 333 } 334 335 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp) 336 { 337 int rc; 338 339 if (psp_master->sev_state == SEV_STATE_UNINIT) { 340 rc = __sev_platform_init_locked(&argp->error); 341 if (rc) 342 return rc; 343 } 344 345 return __sev_do_cmd_locked(cmd, NULL, &argp->error); 346 } 347 348 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp) 349 { 350 struct sev_user_data_pek_csr input; 351 struct sev_data_pek_csr *data; 352 void *blob = NULL; 353 int ret; 354 355 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 356 return -EFAULT; 357 358 data = kzalloc(sizeof(*data), GFP_KERNEL); 359 if (!data) 360 return -ENOMEM; 361 362 /* userspace wants to query CSR length */ 363 if (!input.address || !input.length) 364 goto cmd; 365 366 /* allocate a physically contiguous buffer to store the CSR blob */ 367 if (!access_ok(input.address, input.length) || 368 input.length > SEV_FW_BLOB_MAX_SIZE) { 369 ret = -EFAULT; 370 goto e_free; 371 } 372 373 blob = kmalloc(input.length, GFP_KERNEL); 374 if (!blob) { 375 ret = -ENOMEM; 376 goto e_free; 377 } 378 379 data->address = __psp_pa(blob); 380 data->len = input.length; 381 382 cmd: 383 if (psp_master->sev_state == SEV_STATE_UNINIT) { 384 ret = __sev_platform_init_locked(&argp->error); 385 if (ret) 386 goto e_free_blob; 387 } 388 389 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, data, &argp->error); 390 391 /* If we query the CSR length, FW responded with expected data. */ 392 input.length = data->len; 393 394 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 395 ret = -EFAULT; 396 goto e_free_blob; 397 } 398 399 if (blob) { 400 if (copy_to_user((void __user *)input.address, blob, input.length)) 401 ret = -EFAULT; 402 } 403 404 e_free_blob: 405 kfree(blob); 406 e_free: 407 kfree(data); 408 return ret; 409 } 410 411 void *psp_copy_user_blob(u64 __user uaddr, u32 len) 412 { 413 if (!uaddr || !len) 414 return ERR_PTR(-EINVAL); 415 416 /* verify that blob length does not exceed our limit */ 417 if (len > SEV_FW_BLOB_MAX_SIZE) 418 return ERR_PTR(-EINVAL); 419 420 return memdup_user((void __user *)(uintptr_t)uaddr, len); 421 } 422 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 423 424 static int sev_get_api_version(void) 425 { 426 struct sev_user_data_status *status; 427 int error = 0, ret; 428 429 status = &psp_master->status_cmd_buf; 430 ret = sev_platform_status(status, &error); 431 if (ret) { 432 dev_err(psp_master->dev, 433 "SEV: failed to get status. Error: %#x\n", error); 434 return 1; 435 } 436 437 psp_master->api_major = status->api_major; 438 psp_master->api_minor = status->api_minor; 439 psp_master->build = status->build; 440 psp_master->sev_state = status->state; 441 442 return 0; 443 } 444 445 static int sev_get_firmware(struct device *dev, 446 const struct firmware **firmware) 447 { 448 char fw_name_specific[SEV_FW_NAME_SIZE]; 449 char fw_name_subset[SEV_FW_NAME_SIZE]; 450 451 snprintf(fw_name_specific, sizeof(fw_name_specific), 452 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 453 boot_cpu_data.x86, boot_cpu_data.x86_model); 454 455 snprintf(fw_name_subset, sizeof(fw_name_subset), 456 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 457 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 458 459 /* Check for SEV FW for a particular model. 460 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 461 * 462 * or 463 * 464 * Check for SEV FW common to a subset of models. 465 * Ex. amd_sev_fam17h_model0xh.sbin for 466 * Family 17h Model 00h -- Family 17h Model 0Fh 467 * 468 * or 469 * 470 * Fall-back to using generic name: sev.fw 471 */ 472 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 473 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 474 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 475 return 0; 476 477 return -ENOENT; 478 } 479 480 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 481 static int sev_update_firmware(struct device *dev) 482 { 483 struct sev_data_download_firmware *data; 484 const struct firmware *firmware; 485 int ret, error, order; 486 struct page *p; 487 u64 data_size; 488 489 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 490 dev_dbg(dev, "No SEV firmware file present\n"); 491 return -1; 492 } 493 494 /* 495 * SEV FW expects the physical address given to it to be 32 496 * byte aligned. Memory allocated has structure placed at the 497 * beginning followed by the firmware being passed to the SEV 498 * FW. Allocate enough memory for data structure + alignment 499 * padding + SEV FW. 500 */ 501 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 502 503 order = get_order(firmware->size + data_size); 504 p = alloc_pages(GFP_KERNEL, order); 505 if (!p) { 506 ret = -1; 507 goto fw_err; 508 } 509 510 /* 511 * Copy firmware data to a kernel allocated contiguous 512 * memory region. 513 */ 514 data = page_address(p); 515 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 516 517 data->address = __psp_pa(page_address(p) + data_size); 518 data->len = firmware->size; 519 520 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 521 if (ret) 522 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 523 else 524 dev_info(dev, "SEV firmware update successful\n"); 525 526 __free_pages(p, order); 527 528 fw_err: 529 release_firmware(firmware); 530 531 return ret; 532 } 533 534 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp) 535 { 536 struct sev_user_data_pek_cert_import input; 537 struct sev_data_pek_cert_import *data; 538 void *pek_blob, *oca_blob; 539 int ret; 540 541 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 542 return -EFAULT; 543 544 data = kzalloc(sizeof(*data), GFP_KERNEL); 545 if (!data) 546 return -ENOMEM; 547 548 /* copy PEK certificate blobs from userspace */ 549 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 550 if (IS_ERR(pek_blob)) { 551 ret = PTR_ERR(pek_blob); 552 goto e_free; 553 } 554 555 data->pek_cert_address = __psp_pa(pek_blob); 556 data->pek_cert_len = input.pek_cert_len; 557 558 /* copy PEK certificate blobs from userspace */ 559 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 560 if (IS_ERR(oca_blob)) { 561 ret = PTR_ERR(oca_blob); 562 goto e_free_pek; 563 } 564 565 data->oca_cert_address = __psp_pa(oca_blob); 566 data->oca_cert_len = input.oca_cert_len; 567 568 /* If platform is not in INIT state then transition it to INIT */ 569 if (psp_master->sev_state != SEV_STATE_INIT) { 570 ret = __sev_platform_init_locked(&argp->error); 571 if (ret) 572 goto e_free_oca; 573 } 574 575 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, data, &argp->error); 576 577 e_free_oca: 578 kfree(oca_blob); 579 e_free_pek: 580 kfree(pek_blob); 581 e_free: 582 kfree(data); 583 return ret; 584 } 585 586 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 587 { 588 struct sev_data_get_id *data; 589 u64 data_size, user_size; 590 void *id_blob, *mem; 591 int ret; 592 593 /* SEV GET_ID available from SEV API v0.16 and up */ 594 if (!SEV_VERSION_GREATER_OR_EQUAL(0, 16)) 595 return -ENOTSUPP; 596 597 /* SEV FW expects the buffer it fills with the ID to be 598 * 8-byte aligned. Memory allocated should be enough to 599 * hold data structure + alignment padding + memory 600 * where SEV FW writes the ID. 601 */ 602 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 603 user_size = sizeof(struct sev_user_data_get_id); 604 605 mem = kzalloc(data_size + user_size, GFP_KERNEL); 606 if (!mem) 607 return -ENOMEM; 608 609 data = mem; 610 id_blob = mem + data_size; 611 612 data->address = __psp_pa(id_blob); 613 data->len = user_size; 614 615 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 616 if (!ret) { 617 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 618 ret = -EFAULT; 619 } 620 621 kfree(mem); 622 623 return ret; 624 } 625 626 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp) 627 { 628 struct sev_user_data_pdh_cert_export input; 629 void *pdh_blob = NULL, *cert_blob = NULL; 630 struct sev_data_pdh_cert_export *data; 631 int ret; 632 633 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 634 return -EFAULT; 635 636 data = kzalloc(sizeof(*data), GFP_KERNEL); 637 if (!data) 638 return -ENOMEM; 639 640 /* Userspace wants to query the certificate length. */ 641 if (!input.pdh_cert_address || 642 !input.pdh_cert_len || 643 !input.cert_chain_address) 644 goto cmd; 645 646 /* Allocate a physically contiguous buffer to store the PDH blob. */ 647 if ((input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) || 648 !access_ok(input.pdh_cert_address, input.pdh_cert_len)) { 649 ret = -EFAULT; 650 goto e_free; 651 } 652 653 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 654 if ((input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) || 655 !access_ok(input.cert_chain_address, input.cert_chain_len)) { 656 ret = -EFAULT; 657 goto e_free; 658 } 659 660 pdh_blob = kmalloc(input.pdh_cert_len, GFP_KERNEL); 661 if (!pdh_blob) { 662 ret = -ENOMEM; 663 goto e_free; 664 } 665 666 data->pdh_cert_address = __psp_pa(pdh_blob); 667 data->pdh_cert_len = input.pdh_cert_len; 668 669 cert_blob = kmalloc(input.cert_chain_len, GFP_KERNEL); 670 if (!cert_blob) { 671 ret = -ENOMEM; 672 goto e_free_pdh; 673 } 674 675 data->cert_chain_address = __psp_pa(cert_blob); 676 data->cert_chain_len = input.cert_chain_len; 677 678 cmd: 679 /* If platform is not in INIT state then transition it to INIT. */ 680 if (psp_master->sev_state != SEV_STATE_INIT) { 681 ret = __sev_platform_init_locked(&argp->error); 682 if (ret) 683 goto e_free_cert; 684 } 685 686 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, data, &argp->error); 687 688 /* If we query the length, FW responded with expected data. */ 689 input.cert_chain_len = data->cert_chain_len; 690 input.pdh_cert_len = data->pdh_cert_len; 691 692 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 693 ret = -EFAULT; 694 goto e_free_cert; 695 } 696 697 if (pdh_blob) { 698 if (copy_to_user((void __user *)input.pdh_cert_address, 699 pdh_blob, input.pdh_cert_len)) { 700 ret = -EFAULT; 701 goto e_free_cert; 702 } 703 } 704 705 if (cert_blob) { 706 if (copy_to_user((void __user *)input.cert_chain_address, 707 cert_blob, input.cert_chain_len)) 708 ret = -EFAULT; 709 } 710 711 e_free_cert: 712 kfree(cert_blob); 713 e_free_pdh: 714 kfree(pdh_blob); 715 e_free: 716 kfree(data); 717 return ret; 718 } 719 720 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 721 { 722 void __user *argp = (void __user *)arg; 723 struct sev_issue_cmd input; 724 int ret = -EFAULT; 725 726 if (!psp_master) 727 return -ENODEV; 728 729 if (ioctl != SEV_ISSUE_CMD) 730 return -EINVAL; 731 732 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 733 return -EFAULT; 734 735 if (input.cmd > SEV_MAX) 736 return -EINVAL; 737 738 mutex_lock(&sev_cmd_mutex); 739 740 switch (input.cmd) { 741 742 case SEV_FACTORY_RESET: 743 ret = sev_ioctl_do_reset(&input); 744 break; 745 case SEV_PLATFORM_STATUS: 746 ret = sev_ioctl_do_platform_status(&input); 747 break; 748 case SEV_PEK_GEN: 749 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input); 750 break; 751 case SEV_PDH_GEN: 752 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input); 753 break; 754 case SEV_PEK_CSR: 755 ret = sev_ioctl_do_pek_csr(&input); 756 break; 757 case SEV_PEK_CERT_IMPORT: 758 ret = sev_ioctl_do_pek_import(&input); 759 break; 760 case SEV_PDH_CERT_EXPORT: 761 ret = sev_ioctl_do_pdh_export(&input); 762 break; 763 case SEV_GET_ID: 764 ret = sev_ioctl_do_get_id(&input); 765 break; 766 default: 767 ret = -EINVAL; 768 goto out; 769 } 770 771 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 772 ret = -EFAULT; 773 out: 774 mutex_unlock(&sev_cmd_mutex); 775 776 return ret; 777 } 778 779 static const struct file_operations sev_fops = { 780 .owner = THIS_MODULE, 781 .unlocked_ioctl = sev_ioctl, 782 }; 783 784 int sev_platform_status(struct sev_user_data_status *data, int *error) 785 { 786 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 787 } 788 EXPORT_SYMBOL_GPL(sev_platform_status); 789 790 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 791 { 792 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 793 } 794 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 795 796 int sev_guest_activate(struct sev_data_activate *data, int *error) 797 { 798 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 799 } 800 EXPORT_SYMBOL_GPL(sev_guest_activate); 801 802 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 803 { 804 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 805 } 806 EXPORT_SYMBOL_GPL(sev_guest_decommission); 807 808 int sev_guest_df_flush(int *error) 809 { 810 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 811 } 812 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 813 814 static void sev_exit(struct kref *ref) 815 { 816 struct sev_misc_dev *misc_dev = container_of(ref, struct sev_misc_dev, refcount); 817 818 misc_deregister(&misc_dev->misc); 819 } 820 821 static int sev_misc_init(struct psp_device *psp) 822 { 823 struct device *dev = psp->dev; 824 int ret; 825 826 /* 827 * SEV feature support can be detected on multiple devices but the SEV 828 * FW commands must be issued on the master. During probe, we do not 829 * know the master hence we create /dev/sev on the first device probe. 830 * sev_do_cmd() finds the right master device to which to issue the 831 * command to the firmware. 832 */ 833 if (!misc_dev) { 834 struct miscdevice *misc; 835 836 misc_dev = devm_kzalloc(dev, sizeof(*misc_dev), GFP_KERNEL); 837 if (!misc_dev) 838 return -ENOMEM; 839 840 misc = &misc_dev->misc; 841 misc->minor = MISC_DYNAMIC_MINOR; 842 misc->name = DEVICE_NAME; 843 misc->fops = &sev_fops; 844 845 ret = misc_register(misc); 846 if (ret) 847 return ret; 848 849 kref_init(&misc_dev->refcount); 850 } else { 851 kref_get(&misc_dev->refcount); 852 } 853 854 init_waitqueue_head(&psp->sev_int_queue); 855 psp->sev_misc = misc_dev; 856 dev_dbg(dev, "registered SEV device\n"); 857 858 return 0; 859 } 860 861 static int psp_check_sev_support(struct psp_device *psp) 862 { 863 /* Check if device supports SEV feature */ 864 if (!(ioread32(psp->io_regs + psp->vdata->feature_reg) & 1)) { 865 dev_dbg(psp->dev, "psp does not support SEV\n"); 866 return -ENODEV; 867 } 868 869 return 0; 870 } 871 872 int psp_dev_init(struct sp_device *sp) 873 { 874 struct device *dev = sp->dev; 875 struct psp_device *psp; 876 int ret; 877 878 ret = -ENOMEM; 879 psp = psp_alloc_struct(sp); 880 if (!psp) 881 goto e_err; 882 883 sp->psp_data = psp; 884 885 psp->vdata = (struct psp_vdata *)sp->dev_vdata->psp_vdata; 886 if (!psp->vdata) { 887 ret = -ENODEV; 888 dev_err(dev, "missing driver data\n"); 889 goto e_err; 890 } 891 892 psp->io_regs = sp->io_map; 893 894 ret = psp_check_sev_support(psp); 895 if (ret) 896 goto e_disable; 897 898 /* Disable and clear interrupts until ready */ 899 iowrite32(0, psp->io_regs + psp->vdata->inten_reg); 900 iowrite32(-1, psp->io_regs + psp->vdata->intsts_reg); 901 902 /* Request an irq */ 903 ret = sp_request_psp_irq(psp->sp, psp_irq_handler, psp->name, psp); 904 if (ret) { 905 dev_err(dev, "psp: unable to allocate an IRQ\n"); 906 goto e_err; 907 } 908 909 ret = sev_misc_init(psp); 910 if (ret) 911 goto e_irq; 912 913 if (sp->set_psp_master_device) 914 sp->set_psp_master_device(sp); 915 916 /* Enable interrupt */ 917 iowrite32(-1, psp->io_regs + psp->vdata->inten_reg); 918 919 dev_notice(dev, "psp enabled\n"); 920 921 return 0; 922 923 e_irq: 924 sp_free_psp_irq(psp->sp, psp); 925 e_err: 926 sp->psp_data = NULL; 927 928 dev_notice(dev, "psp initialization failed\n"); 929 930 return ret; 931 932 e_disable: 933 sp->psp_data = NULL; 934 935 return ret; 936 } 937 938 void psp_dev_destroy(struct sp_device *sp) 939 { 940 struct psp_device *psp = sp->psp_data; 941 942 if (!psp) 943 return; 944 945 if (psp->sev_misc) 946 kref_put(&misc_dev->refcount, sev_exit); 947 948 sp_free_psp_irq(sp, psp); 949 } 950 951 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 952 void *data, int *error) 953 { 954 if (!filep || filep->f_op != &sev_fops) 955 return -EBADF; 956 957 return sev_do_cmd(cmd, data, error); 958 } 959 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 960 961 void psp_pci_init(void) 962 { 963 struct sp_device *sp; 964 int error, rc; 965 966 sp = sp_get_psp_master_device(); 967 if (!sp) 968 return; 969 970 psp_master = sp->psp_data; 971 972 psp_timeout = psp_probe_timeout; 973 974 if (sev_get_api_version()) 975 goto err; 976 977 /* 978 * If platform is not in UNINIT state then firmware upgrade and/or 979 * platform INIT command will fail. These command require UNINIT state. 980 * 981 * In a normal boot we should never run into case where the firmware 982 * is not in UNINIT state on boot. But in case of kexec boot, a reboot 983 * may not go through a typical shutdown sequence and may leave the 984 * firmware in INIT or WORKING state. 985 */ 986 987 if (psp_master->sev_state != SEV_STATE_UNINIT) { 988 sev_platform_shutdown(NULL); 989 psp_master->sev_state = SEV_STATE_UNINIT; 990 } 991 992 if (SEV_VERSION_GREATER_OR_EQUAL(0, 15) && 993 sev_update_firmware(psp_master->dev) == 0) 994 sev_get_api_version(); 995 996 /* Initialize the platform */ 997 rc = sev_platform_init(&error); 998 if (rc) { 999 dev_err(sp->dev, "SEV: failed to INIT error %#x\n", error); 1000 goto err; 1001 } 1002 1003 dev_info(sp->dev, "SEV API:%d.%d build:%d\n", psp_master->api_major, 1004 psp_master->api_minor, psp_master->build); 1005 1006 return; 1007 1008 err: 1009 psp_master = NULL; 1010 } 1011 1012 void psp_pci_exit(void) 1013 { 1014 if (!psp_master) 1015 return; 1016 1017 sev_platform_shutdown(NULL); 1018 } 1019