xref: /openbmc/linux/drivers/crypto/ccp/ccp-ops.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Cryptographic Coprocessor (CCP) driver
4  *
5  * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  * Author: Gary R Hook <gary.hook@amd.com>
9  */
10 
11 #include <linux/dma-mapping.h>
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/interrupt.h>
15 #include <crypto/scatterwalk.h>
16 #include <crypto/des.h>
17 #include <linux/ccp.h>
18 
19 #include "ccp-dev.h"
20 
21 /* SHA initial context values */
22 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
23 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
24 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
25 	cpu_to_be32(SHA1_H4),
26 };
27 
28 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
29 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
30 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
31 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
32 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
33 };
34 
35 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
36 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
37 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
38 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
39 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
40 };
41 
42 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
43 	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
44 	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
45 	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
46 	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
47 };
48 
49 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
50 	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
51 	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
52 	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
53 	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
54 };
55 
56 #define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
57 					ccp_gen_jobid(ccp) : 0)
58 
59 static u32 ccp_gen_jobid(struct ccp_device *ccp)
60 {
61 	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
62 }
63 
64 static void ccp_sg_free(struct ccp_sg_workarea *wa)
65 {
66 	if (wa->dma_count)
67 		dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir);
68 
69 	wa->dma_count = 0;
70 }
71 
72 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
73 				struct scatterlist *sg, u64 len,
74 				enum dma_data_direction dma_dir)
75 {
76 	memset(wa, 0, sizeof(*wa));
77 
78 	wa->sg = sg;
79 	if (!sg)
80 		return 0;
81 
82 	wa->nents = sg_nents_for_len(sg, len);
83 	if (wa->nents < 0)
84 		return wa->nents;
85 
86 	wa->bytes_left = len;
87 	wa->sg_used = 0;
88 
89 	if (len == 0)
90 		return 0;
91 
92 	if (dma_dir == DMA_NONE)
93 		return 0;
94 
95 	wa->dma_sg = sg;
96 	wa->dma_sg_head = sg;
97 	wa->dma_dev = dev;
98 	wa->dma_dir = dma_dir;
99 	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
100 	if (!wa->dma_count)
101 		return -ENOMEM;
102 
103 	return 0;
104 }
105 
106 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
107 {
108 	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
109 	unsigned int sg_combined_len = 0;
110 
111 	if (!wa->sg)
112 		return;
113 
114 	wa->sg_used += nbytes;
115 	wa->bytes_left -= nbytes;
116 	if (wa->sg_used == sg_dma_len(wa->dma_sg)) {
117 		/* Advance to the next DMA scatterlist entry */
118 		wa->dma_sg = sg_next(wa->dma_sg);
119 
120 		/* In the case that the DMA mapped scatterlist has entries
121 		 * that have been merged, the non-DMA mapped scatterlist
122 		 * must be advanced multiple times for each merged entry.
123 		 * This ensures that the current non-DMA mapped entry
124 		 * corresponds to the current DMA mapped entry.
125 		 */
126 		do {
127 			sg_combined_len += wa->sg->length;
128 			wa->sg = sg_next(wa->sg);
129 		} while (wa->sg_used > sg_combined_len);
130 
131 		wa->sg_used = 0;
132 	}
133 }
134 
135 static void ccp_dm_free(struct ccp_dm_workarea *wa)
136 {
137 	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
138 		if (wa->address)
139 			dma_pool_free(wa->dma_pool, wa->address,
140 				      wa->dma.address);
141 	} else {
142 		if (wa->dma.address)
143 			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
144 					 wa->dma.dir);
145 		kfree(wa->address);
146 	}
147 
148 	wa->address = NULL;
149 	wa->dma.address = 0;
150 }
151 
152 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
153 				struct ccp_cmd_queue *cmd_q,
154 				unsigned int len,
155 				enum dma_data_direction dir)
156 {
157 	memset(wa, 0, sizeof(*wa));
158 
159 	if (!len)
160 		return 0;
161 
162 	wa->dev = cmd_q->ccp->dev;
163 	wa->length = len;
164 
165 	if (len <= CCP_DMAPOOL_MAX_SIZE) {
166 		wa->dma_pool = cmd_q->dma_pool;
167 
168 		wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
169 					     &wa->dma.address);
170 		if (!wa->address)
171 			return -ENOMEM;
172 
173 		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
174 
175 	} else {
176 		wa->address = kzalloc(len, GFP_KERNEL);
177 		if (!wa->address)
178 			return -ENOMEM;
179 
180 		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
181 						 dir);
182 		if (dma_mapping_error(wa->dev, wa->dma.address))
183 			return -ENOMEM;
184 
185 		wa->dma.length = len;
186 	}
187 	wa->dma.dir = dir;
188 
189 	return 0;
190 }
191 
192 static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
193 			   struct scatterlist *sg, unsigned int sg_offset,
194 			   unsigned int len)
195 {
196 	WARN_ON(!wa->address);
197 
198 	if (len > (wa->length - wa_offset))
199 		return -EINVAL;
200 
201 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
202 				 0);
203 	return 0;
204 }
205 
206 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
207 			    struct scatterlist *sg, unsigned int sg_offset,
208 			    unsigned int len)
209 {
210 	WARN_ON(!wa->address);
211 
212 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
213 				 1);
214 }
215 
216 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
217 				   unsigned int wa_offset,
218 				   struct scatterlist *sg,
219 				   unsigned int sg_offset,
220 				   unsigned int len)
221 {
222 	u8 *p, *q;
223 	int	rc;
224 
225 	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
226 	if (rc)
227 		return rc;
228 
229 	p = wa->address + wa_offset;
230 	q = p + len - 1;
231 	while (p < q) {
232 		*p = *p ^ *q;
233 		*q = *p ^ *q;
234 		*p = *p ^ *q;
235 		p++;
236 		q--;
237 	}
238 	return 0;
239 }
240 
241 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
242 				    unsigned int wa_offset,
243 				    struct scatterlist *sg,
244 				    unsigned int sg_offset,
245 				    unsigned int len)
246 {
247 	u8 *p, *q;
248 
249 	p = wa->address + wa_offset;
250 	q = p + len - 1;
251 	while (p < q) {
252 		*p = *p ^ *q;
253 		*q = *p ^ *q;
254 		*p = *p ^ *q;
255 		p++;
256 		q--;
257 	}
258 
259 	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
260 }
261 
262 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
263 {
264 	ccp_dm_free(&data->dm_wa);
265 	ccp_sg_free(&data->sg_wa);
266 }
267 
268 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
269 			 struct scatterlist *sg, u64 sg_len,
270 			 unsigned int dm_len,
271 			 enum dma_data_direction dir)
272 {
273 	int ret;
274 
275 	memset(data, 0, sizeof(*data));
276 
277 	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
278 				   dir);
279 	if (ret)
280 		goto e_err;
281 
282 	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
283 	if (ret)
284 		goto e_err;
285 
286 	return 0;
287 
288 e_err:
289 	ccp_free_data(data, cmd_q);
290 
291 	return ret;
292 }
293 
294 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
295 {
296 	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
297 	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
298 	unsigned int buf_count, nbytes;
299 
300 	/* Clear the buffer if setting it */
301 	if (!from)
302 		memset(dm_wa->address, 0, dm_wa->length);
303 
304 	if (!sg_wa->sg)
305 		return 0;
306 
307 	/* Perform the copy operation
308 	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
309 	 *   an unsigned int
310 	 */
311 	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
312 	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
313 				 nbytes, from);
314 
315 	/* Update the structures and generate the count */
316 	buf_count = 0;
317 	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
318 		nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used,
319 			     dm_wa->length - buf_count);
320 		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
321 
322 		buf_count += nbytes;
323 		ccp_update_sg_workarea(sg_wa, nbytes);
324 	}
325 
326 	return buf_count;
327 }
328 
329 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
330 {
331 	return ccp_queue_buf(data, 0);
332 }
333 
334 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
335 {
336 	return ccp_queue_buf(data, 1);
337 }
338 
339 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
340 			     struct ccp_op *op, unsigned int block_size,
341 			     bool blocksize_op)
342 {
343 	unsigned int sg_src_len, sg_dst_len, op_len;
344 
345 	/* The CCP can only DMA from/to one address each per operation. This
346 	 * requires that we find the smallest DMA area between the source
347 	 * and destination. The resulting len values will always be <= UINT_MAX
348 	 * because the dma length is an unsigned int.
349 	 */
350 	sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used;
351 	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
352 
353 	if (dst) {
354 		sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used;
355 		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
356 		op_len = min(sg_src_len, sg_dst_len);
357 	} else {
358 		op_len = sg_src_len;
359 	}
360 
361 	/* The data operation length will be at least block_size in length
362 	 * or the smaller of available sg room remaining for the source or
363 	 * the destination
364 	 */
365 	op_len = max(op_len, block_size);
366 
367 	/* Unless we have to buffer data, there's no reason to wait */
368 	op->soc = 0;
369 
370 	if (sg_src_len < block_size) {
371 		/* Not enough data in the sg element, so it
372 		 * needs to be buffered into a blocksize chunk
373 		 */
374 		int cp_len = ccp_fill_queue_buf(src);
375 
376 		op->soc = 1;
377 		op->src.u.dma.address = src->dm_wa.dma.address;
378 		op->src.u.dma.offset = 0;
379 		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
380 	} else {
381 		/* Enough data in the sg element, but we need to
382 		 * adjust for any previously copied data
383 		 */
384 		op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg);
385 		op->src.u.dma.offset = src->sg_wa.sg_used;
386 		op->src.u.dma.length = op_len & ~(block_size - 1);
387 
388 		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
389 	}
390 
391 	if (dst) {
392 		if (sg_dst_len < block_size) {
393 			/* Not enough room in the sg element or we're on the
394 			 * last piece of data (when using padding), so the
395 			 * output needs to be buffered into a blocksize chunk
396 			 */
397 			op->soc = 1;
398 			op->dst.u.dma.address = dst->dm_wa.dma.address;
399 			op->dst.u.dma.offset = 0;
400 			op->dst.u.dma.length = op->src.u.dma.length;
401 		} else {
402 			/* Enough room in the sg element, but we need to
403 			 * adjust for any previously used area
404 			 */
405 			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg);
406 			op->dst.u.dma.offset = dst->sg_wa.sg_used;
407 			op->dst.u.dma.length = op->src.u.dma.length;
408 		}
409 	}
410 }
411 
412 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
413 			     struct ccp_op *op)
414 {
415 	op->init = 0;
416 
417 	if (dst) {
418 		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
419 			ccp_empty_queue_buf(dst);
420 		else
421 			ccp_update_sg_workarea(&dst->sg_wa,
422 					       op->dst.u.dma.length);
423 	}
424 }
425 
426 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
427 			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
428 			       u32 byte_swap, bool from)
429 {
430 	struct ccp_op op;
431 
432 	memset(&op, 0, sizeof(op));
433 
434 	op.cmd_q = cmd_q;
435 	op.jobid = jobid;
436 	op.eom = 1;
437 
438 	if (from) {
439 		op.soc = 1;
440 		op.src.type = CCP_MEMTYPE_SB;
441 		op.src.u.sb = sb;
442 		op.dst.type = CCP_MEMTYPE_SYSTEM;
443 		op.dst.u.dma.address = wa->dma.address;
444 		op.dst.u.dma.length = wa->length;
445 	} else {
446 		op.src.type = CCP_MEMTYPE_SYSTEM;
447 		op.src.u.dma.address = wa->dma.address;
448 		op.src.u.dma.length = wa->length;
449 		op.dst.type = CCP_MEMTYPE_SB;
450 		op.dst.u.sb = sb;
451 	}
452 
453 	op.u.passthru.byte_swap = byte_swap;
454 
455 	return cmd_q->ccp->vdata->perform->passthru(&op);
456 }
457 
458 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
459 			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
460 			  u32 byte_swap)
461 {
462 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
463 }
464 
465 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
466 			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
467 			    u32 byte_swap)
468 {
469 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
470 }
471 
472 static noinline_for_stack int
473 ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
474 {
475 	struct ccp_aes_engine *aes = &cmd->u.aes;
476 	struct ccp_dm_workarea key, ctx;
477 	struct ccp_data src;
478 	struct ccp_op op;
479 	unsigned int dm_offset;
480 	int ret;
481 
482 	if (!((aes->key_len == AES_KEYSIZE_128) ||
483 	      (aes->key_len == AES_KEYSIZE_192) ||
484 	      (aes->key_len == AES_KEYSIZE_256)))
485 		return -EINVAL;
486 
487 	if (aes->src_len & (AES_BLOCK_SIZE - 1))
488 		return -EINVAL;
489 
490 	if (aes->iv_len != AES_BLOCK_SIZE)
491 		return -EINVAL;
492 
493 	if (!aes->key || !aes->iv || !aes->src)
494 		return -EINVAL;
495 
496 	if (aes->cmac_final) {
497 		if (aes->cmac_key_len != AES_BLOCK_SIZE)
498 			return -EINVAL;
499 
500 		if (!aes->cmac_key)
501 			return -EINVAL;
502 	}
503 
504 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
505 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
506 
507 	ret = -EIO;
508 	memset(&op, 0, sizeof(op));
509 	op.cmd_q = cmd_q;
510 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
511 	op.sb_key = cmd_q->sb_key;
512 	op.sb_ctx = cmd_q->sb_ctx;
513 	op.init = 1;
514 	op.u.aes.type = aes->type;
515 	op.u.aes.mode = aes->mode;
516 	op.u.aes.action = aes->action;
517 
518 	/* All supported key sizes fit in a single (32-byte) SB entry
519 	 * and must be in little endian format. Use the 256-bit byte
520 	 * swap passthru option to convert from big endian to little
521 	 * endian.
522 	 */
523 	ret = ccp_init_dm_workarea(&key, cmd_q,
524 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
525 				   DMA_TO_DEVICE);
526 	if (ret)
527 		return ret;
528 
529 	dm_offset = CCP_SB_BYTES - aes->key_len;
530 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
531 	if (ret)
532 		goto e_key;
533 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
534 			     CCP_PASSTHRU_BYTESWAP_256BIT);
535 	if (ret) {
536 		cmd->engine_error = cmd_q->cmd_error;
537 		goto e_key;
538 	}
539 
540 	/* The AES context fits in a single (32-byte) SB entry and
541 	 * must be in little endian format. Use the 256-bit byte swap
542 	 * passthru option to convert from big endian to little endian.
543 	 */
544 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
545 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
546 				   DMA_BIDIRECTIONAL);
547 	if (ret)
548 		goto e_key;
549 
550 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
551 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
552 	if (ret)
553 		goto e_ctx;
554 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
555 			     CCP_PASSTHRU_BYTESWAP_256BIT);
556 	if (ret) {
557 		cmd->engine_error = cmd_q->cmd_error;
558 		goto e_ctx;
559 	}
560 
561 	/* Send data to the CCP AES engine */
562 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
563 			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
564 	if (ret)
565 		goto e_ctx;
566 
567 	while (src.sg_wa.bytes_left) {
568 		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
569 		if (aes->cmac_final && !src.sg_wa.bytes_left) {
570 			op.eom = 1;
571 
572 			/* Push the K1/K2 key to the CCP now */
573 			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
574 					       op.sb_ctx,
575 					       CCP_PASSTHRU_BYTESWAP_256BIT);
576 			if (ret) {
577 				cmd->engine_error = cmd_q->cmd_error;
578 				goto e_src;
579 			}
580 
581 			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
582 					      aes->cmac_key_len);
583 			if (ret)
584 				goto e_src;
585 			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
586 					     CCP_PASSTHRU_BYTESWAP_256BIT);
587 			if (ret) {
588 				cmd->engine_error = cmd_q->cmd_error;
589 				goto e_src;
590 			}
591 		}
592 
593 		ret = cmd_q->ccp->vdata->perform->aes(&op);
594 		if (ret) {
595 			cmd->engine_error = cmd_q->cmd_error;
596 			goto e_src;
597 		}
598 
599 		ccp_process_data(&src, NULL, &op);
600 	}
601 
602 	/* Retrieve the AES context - convert from LE to BE using
603 	 * 32-byte (256-bit) byteswapping
604 	 */
605 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
606 			       CCP_PASSTHRU_BYTESWAP_256BIT);
607 	if (ret) {
608 		cmd->engine_error = cmd_q->cmd_error;
609 		goto e_src;
610 	}
611 
612 	/* ...but we only need AES_BLOCK_SIZE bytes */
613 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
614 	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
615 
616 e_src:
617 	ccp_free_data(&src, cmd_q);
618 
619 e_ctx:
620 	ccp_dm_free(&ctx);
621 
622 e_key:
623 	ccp_dm_free(&key);
624 
625 	return ret;
626 }
627 
628 static noinline_for_stack int
629 ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
630 {
631 	struct ccp_aes_engine *aes = &cmd->u.aes;
632 	struct ccp_dm_workarea key, ctx, final_wa, tag;
633 	struct ccp_data src, dst;
634 	struct ccp_data aad;
635 	struct ccp_op op;
636 	unsigned int dm_offset;
637 	unsigned int authsize;
638 	unsigned int jobid;
639 	unsigned int ilen;
640 	bool in_place = true; /* Default value */
641 	__be64 *final;
642 	int ret;
643 
644 	struct scatterlist *p_inp, sg_inp[2];
645 	struct scatterlist *p_tag, sg_tag[2];
646 	struct scatterlist *p_outp, sg_outp[2];
647 	struct scatterlist *p_aad;
648 
649 	if (!aes->iv)
650 		return -EINVAL;
651 
652 	if (!((aes->key_len == AES_KEYSIZE_128) ||
653 		(aes->key_len == AES_KEYSIZE_192) ||
654 		(aes->key_len == AES_KEYSIZE_256)))
655 		return -EINVAL;
656 
657 	if (!aes->key) /* Gotta have a key SGL */
658 		return -EINVAL;
659 
660 	/* Zero defaults to 16 bytes, the maximum size */
661 	authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
662 	switch (authsize) {
663 	case 16:
664 	case 15:
665 	case 14:
666 	case 13:
667 	case 12:
668 	case 8:
669 	case 4:
670 		break;
671 	default:
672 		return -EINVAL;
673 	}
674 
675 	/* First, decompose the source buffer into AAD & PT,
676 	 * and the destination buffer into AAD, CT & tag, or
677 	 * the input into CT & tag.
678 	 * It is expected that the input and output SGs will
679 	 * be valid, even if the AAD and input lengths are 0.
680 	 */
681 	p_aad = aes->src;
682 	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
683 	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
684 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
685 		ilen = aes->src_len;
686 		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
687 	} else {
688 		/* Input length for decryption includes tag */
689 		ilen = aes->src_len - authsize;
690 		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
691 	}
692 
693 	jobid = CCP_NEW_JOBID(cmd_q->ccp);
694 
695 	memset(&op, 0, sizeof(op));
696 	op.cmd_q = cmd_q;
697 	op.jobid = jobid;
698 	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
699 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
700 	op.init = 1;
701 	op.u.aes.type = aes->type;
702 
703 	/* Copy the key to the LSB */
704 	ret = ccp_init_dm_workarea(&key, cmd_q,
705 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
706 				   DMA_TO_DEVICE);
707 	if (ret)
708 		return ret;
709 
710 	dm_offset = CCP_SB_BYTES - aes->key_len;
711 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
712 	if (ret)
713 		goto e_key;
714 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
715 			     CCP_PASSTHRU_BYTESWAP_256BIT);
716 	if (ret) {
717 		cmd->engine_error = cmd_q->cmd_error;
718 		goto e_key;
719 	}
720 
721 	/* Copy the context (IV) to the LSB.
722 	 * There is an assumption here that the IV is 96 bits in length, plus
723 	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
724 	 */
725 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
726 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
727 				   DMA_BIDIRECTIONAL);
728 	if (ret)
729 		goto e_key;
730 
731 	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
732 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
733 	if (ret)
734 		goto e_ctx;
735 
736 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
737 			     CCP_PASSTHRU_BYTESWAP_256BIT);
738 	if (ret) {
739 		cmd->engine_error = cmd_q->cmd_error;
740 		goto e_ctx;
741 	}
742 
743 	op.init = 1;
744 	if (aes->aad_len > 0) {
745 		/* Step 1: Run a GHASH over the Additional Authenticated Data */
746 		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
747 				    AES_BLOCK_SIZE,
748 				    DMA_TO_DEVICE);
749 		if (ret)
750 			goto e_ctx;
751 
752 		op.u.aes.mode = CCP_AES_MODE_GHASH;
753 		op.u.aes.action = CCP_AES_GHASHAAD;
754 
755 		while (aad.sg_wa.bytes_left) {
756 			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
757 
758 			ret = cmd_q->ccp->vdata->perform->aes(&op);
759 			if (ret) {
760 				cmd->engine_error = cmd_q->cmd_error;
761 				goto e_aad;
762 			}
763 
764 			ccp_process_data(&aad, NULL, &op);
765 			op.init = 0;
766 		}
767 	}
768 
769 	op.u.aes.mode = CCP_AES_MODE_GCTR;
770 	op.u.aes.action = aes->action;
771 
772 	if (ilen > 0) {
773 		/* Step 2: Run a GCTR over the plaintext */
774 		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
775 
776 		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
777 				    AES_BLOCK_SIZE,
778 				    in_place ? DMA_BIDIRECTIONAL
779 					     : DMA_TO_DEVICE);
780 		if (ret)
781 			goto e_aad;
782 
783 		if (in_place) {
784 			dst = src;
785 		} else {
786 			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
787 					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
788 			if (ret)
789 				goto e_src;
790 		}
791 
792 		op.soc = 0;
793 		op.eom = 0;
794 		op.init = 1;
795 		while (src.sg_wa.bytes_left) {
796 			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
797 			if (!src.sg_wa.bytes_left) {
798 				unsigned int nbytes = ilen % AES_BLOCK_SIZE;
799 
800 				if (nbytes) {
801 					op.eom = 1;
802 					op.u.aes.size = (nbytes * 8) - 1;
803 				}
804 			}
805 
806 			ret = cmd_q->ccp->vdata->perform->aes(&op);
807 			if (ret) {
808 				cmd->engine_error = cmd_q->cmd_error;
809 				goto e_dst;
810 			}
811 
812 			ccp_process_data(&src, &dst, &op);
813 			op.init = 0;
814 		}
815 	}
816 
817 	/* Step 3: Update the IV portion of the context with the original IV */
818 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
819 			       CCP_PASSTHRU_BYTESWAP_256BIT);
820 	if (ret) {
821 		cmd->engine_error = cmd_q->cmd_error;
822 		goto e_dst;
823 	}
824 
825 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
826 	if (ret)
827 		goto e_dst;
828 
829 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
830 			     CCP_PASSTHRU_BYTESWAP_256BIT);
831 	if (ret) {
832 		cmd->engine_error = cmd_q->cmd_error;
833 		goto e_dst;
834 	}
835 
836 	/* Step 4: Concatenate the lengths of the AAD and source, and
837 	 * hash that 16 byte buffer.
838 	 */
839 	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
840 				   DMA_BIDIRECTIONAL);
841 	if (ret)
842 		goto e_dst;
843 	final = (__be64 *)final_wa.address;
844 	final[0] = cpu_to_be64(aes->aad_len * 8);
845 	final[1] = cpu_to_be64(ilen * 8);
846 
847 	memset(&op, 0, sizeof(op));
848 	op.cmd_q = cmd_q;
849 	op.jobid = jobid;
850 	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
851 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
852 	op.init = 1;
853 	op.u.aes.type = aes->type;
854 	op.u.aes.mode = CCP_AES_MODE_GHASH;
855 	op.u.aes.action = CCP_AES_GHASHFINAL;
856 	op.src.type = CCP_MEMTYPE_SYSTEM;
857 	op.src.u.dma.address = final_wa.dma.address;
858 	op.src.u.dma.length = AES_BLOCK_SIZE;
859 	op.dst.type = CCP_MEMTYPE_SYSTEM;
860 	op.dst.u.dma.address = final_wa.dma.address;
861 	op.dst.u.dma.length = AES_BLOCK_SIZE;
862 	op.eom = 1;
863 	op.u.aes.size = 0;
864 	ret = cmd_q->ccp->vdata->perform->aes(&op);
865 	if (ret)
866 		goto e_final_wa;
867 
868 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
869 		/* Put the ciphered tag after the ciphertext. */
870 		ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
871 	} else {
872 		/* Does this ciphered tag match the input? */
873 		ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
874 					   DMA_BIDIRECTIONAL);
875 		if (ret)
876 			goto e_final_wa;
877 		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
878 		if (ret) {
879 			ccp_dm_free(&tag);
880 			goto e_final_wa;
881 		}
882 
883 		ret = crypto_memneq(tag.address, final_wa.address,
884 				    authsize) ? -EBADMSG : 0;
885 		ccp_dm_free(&tag);
886 	}
887 
888 e_final_wa:
889 	ccp_dm_free(&final_wa);
890 
891 e_dst:
892 	if (ilen > 0 && !in_place)
893 		ccp_free_data(&dst, cmd_q);
894 
895 e_src:
896 	if (ilen > 0)
897 		ccp_free_data(&src, cmd_q);
898 
899 e_aad:
900 	if (aes->aad_len)
901 		ccp_free_data(&aad, cmd_q);
902 
903 e_ctx:
904 	ccp_dm_free(&ctx);
905 
906 e_key:
907 	ccp_dm_free(&key);
908 
909 	return ret;
910 }
911 
912 static noinline_for_stack int
913 ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
914 {
915 	struct ccp_aes_engine *aes = &cmd->u.aes;
916 	struct ccp_dm_workarea key, ctx;
917 	struct ccp_data src, dst;
918 	struct ccp_op op;
919 	unsigned int dm_offset;
920 	bool in_place = false;
921 	int ret;
922 
923 	if (!((aes->key_len == AES_KEYSIZE_128) ||
924 	      (aes->key_len == AES_KEYSIZE_192) ||
925 	      (aes->key_len == AES_KEYSIZE_256)))
926 		return -EINVAL;
927 
928 	if (((aes->mode == CCP_AES_MODE_ECB) ||
929 	     (aes->mode == CCP_AES_MODE_CBC)) &&
930 	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
931 		return -EINVAL;
932 
933 	if (!aes->key || !aes->src || !aes->dst)
934 		return -EINVAL;
935 
936 	if (aes->mode != CCP_AES_MODE_ECB) {
937 		if (aes->iv_len != AES_BLOCK_SIZE)
938 			return -EINVAL;
939 
940 		if (!aes->iv)
941 			return -EINVAL;
942 	}
943 
944 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
945 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
946 
947 	ret = -EIO;
948 	memset(&op, 0, sizeof(op));
949 	op.cmd_q = cmd_q;
950 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
951 	op.sb_key = cmd_q->sb_key;
952 	op.sb_ctx = cmd_q->sb_ctx;
953 	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
954 	op.u.aes.type = aes->type;
955 	op.u.aes.mode = aes->mode;
956 	op.u.aes.action = aes->action;
957 
958 	/* All supported key sizes fit in a single (32-byte) SB entry
959 	 * and must be in little endian format. Use the 256-bit byte
960 	 * swap passthru option to convert from big endian to little
961 	 * endian.
962 	 */
963 	ret = ccp_init_dm_workarea(&key, cmd_q,
964 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
965 				   DMA_TO_DEVICE);
966 	if (ret)
967 		return ret;
968 
969 	dm_offset = CCP_SB_BYTES - aes->key_len;
970 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
971 	if (ret)
972 		goto e_key;
973 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
974 			     CCP_PASSTHRU_BYTESWAP_256BIT);
975 	if (ret) {
976 		cmd->engine_error = cmd_q->cmd_error;
977 		goto e_key;
978 	}
979 
980 	/* The AES context fits in a single (32-byte) SB entry and
981 	 * must be in little endian format. Use the 256-bit byte swap
982 	 * passthru option to convert from big endian to little endian.
983 	 */
984 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
985 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
986 				   DMA_BIDIRECTIONAL);
987 	if (ret)
988 		goto e_key;
989 
990 	if (aes->mode != CCP_AES_MODE_ECB) {
991 		/* Load the AES context - convert to LE */
992 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
993 		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
994 		if (ret)
995 			goto e_ctx;
996 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
997 				     CCP_PASSTHRU_BYTESWAP_256BIT);
998 		if (ret) {
999 			cmd->engine_error = cmd_q->cmd_error;
1000 			goto e_ctx;
1001 		}
1002 	}
1003 	switch (aes->mode) {
1004 	case CCP_AES_MODE_CFB: /* CFB128 only */
1005 	case CCP_AES_MODE_CTR:
1006 		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
1007 		break;
1008 	default:
1009 		op.u.aes.size = 0;
1010 	}
1011 
1012 	/* Prepare the input and output data workareas. For in-place
1013 	 * operations we need to set the dma direction to BIDIRECTIONAL
1014 	 * and copy the src workarea to the dst workarea.
1015 	 */
1016 	if (sg_virt(aes->src) == sg_virt(aes->dst))
1017 		in_place = true;
1018 
1019 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1020 			    AES_BLOCK_SIZE,
1021 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1022 	if (ret)
1023 		goto e_ctx;
1024 
1025 	if (in_place) {
1026 		dst = src;
1027 	} else {
1028 		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1029 				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1030 		if (ret)
1031 			goto e_src;
1032 	}
1033 
1034 	/* Send data to the CCP AES engine */
1035 	while (src.sg_wa.bytes_left) {
1036 		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1037 		if (!src.sg_wa.bytes_left) {
1038 			op.eom = 1;
1039 
1040 			/* Since we don't retrieve the AES context in ECB
1041 			 * mode we have to wait for the operation to complete
1042 			 * on the last piece of data
1043 			 */
1044 			if (aes->mode == CCP_AES_MODE_ECB)
1045 				op.soc = 1;
1046 		}
1047 
1048 		ret = cmd_q->ccp->vdata->perform->aes(&op);
1049 		if (ret) {
1050 			cmd->engine_error = cmd_q->cmd_error;
1051 			goto e_dst;
1052 		}
1053 
1054 		ccp_process_data(&src, &dst, &op);
1055 	}
1056 
1057 	if (aes->mode != CCP_AES_MODE_ECB) {
1058 		/* Retrieve the AES context - convert from LE to BE using
1059 		 * 32-byte (256-bit) byteswapping
1060 		 */
1061 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1062 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1063 		if (ret) {
1064 			cmd->engine_error = cmd_q->cmd_error;
1065 			goto e_dst;
1066 		}
1067 
1068 		/* ...but we only need AES_BLOCK_SIZE bytes */
1069 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1070 		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1071 	}
1072 
1073 e_dst:
1074 	if (!in_place)
1075 		ccp_free_data(&dst, cmd_q);
1076 
1077 e_src:
1078 	ccp_free_data(&src, cmd_q);
1079 
1080 e_ctx:
1081 	ccp_dm_free(&ctx);
1082 
1083 e_key:
1084 	ccp_dm_free(&key);
1085 
1086 	return ret;
1087 }
1088 
1089 static noinline_for_stack int
1090 ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1091 {
1092 	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1093 	struct ccp_dm_workarea key, ctx;
1094 	struct ccp_data src, dst;
1095 	struct ccp_op op;
1096 	unsigned int unit_size, dm_offset;
1097 	bool in_place = false;
1098 	unsigned int sb_count;
1099 	enum ccp_aes_type aestype;
1100 	int ret;
1101 
1102 	switch (xts->unit_size) {
1103 	case CCP_XTS_AES_UNIT_SIZE_16:
1104 		unit_size = 16;
1105 		break;
1106 	case CCP_XTS_AES_UNIT_SIZE_512:
1107 		unit_size = 512;
1108 		break;
1109 	case CCP_XTS_AES_UNIT_SIZE_1024:
1110 		unit_size = 1024;
1111 		break;
1112 	case CCP_XTS_AES_UNIT_SIZE_2048:
1113 		unit_size = 2048;
1114 		break;
1115 	case CCP_XTS_AES_UNIT_SIZE_4096:
1116 		unit_size = 4096;
1117 		break;
1118 
1119 	default:
1120 		return -EINVAL;
1121 	}
1122 
1123 	if (xts->key_len == AES_KEYSIZE_128)
1124 		aestype = CCP_AES_TYPE_128;
1125 	else if (xts->key_len == AES_KEYSIZE_256)
1126 		aestype = CCP_AES_TYPE_256;
1127 	else
1128 		return -EINVAL;
1129 
1130 	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1131 		return -EINVAL;
1132 
1133 	if (xts->iv_len != AES_BLOCK_SIZE)
1134 		return -EINVAL;
1135 
1136 	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1137 		return -EINVAL;
1138 
1139 	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1140 	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1141 
1142 	ret = -EIO;
1143 	memset(&op, 0, sizeof(op));
1144 	op.cmd_q = cmd_q;
1145 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1146 	op.sb_key = cmd_q->sb_key;
1147 	op.sb_ctx = cmd_q->sb_ctx;
1148 	op.init = 1;
1149 	op.u.xts.type = aestype;
1150 	op.u.xts.action = xts->action;
1151 	op.u.xts.unit_size = xts->unit_size;
1152 
1153 	/* A version 3 device only supports 128-bit keys, which fits into a
1154 	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1155 	 * SB entries.
1156 	 */
1157 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1158 		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1159 	else
1160 		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1161 	ret = ccp_init_dm_workarea(&key, cmd_q,
1162 				   sb_count * CCP_SB_BYTES,
1163 				   DMA_TO_DEVICE);
1164 	if (ret)
1165 		return ret;
1166 
1167 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1168 		/* All supported key sizes must be in little endian format.
1169 		 * Use the 256-bit byte swap passthru option to convert from
1170 		 * big endian to little endian.
1171 		 */
1172 		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1173 		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1174 		if (ret)
1175 			goto e_key;
1176 		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1177 		if (ret)
1178 			goto e_key;
1179 	} else {
1180 		/* Version 5 CCPs use a 512-bit space for the key: each portion
1181 		 * occupies 256 bits, or one entire slot, and is zero-padded.
1182 		 */
1183 		unsigned int pad;
1184 
1185 		dm_offset = CCP_SB_BYTES;
1186 		pad = dm_offset - xts->key_len;
1187 		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1188 		if (ret)
1189 			goto e_key;
1190 		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1191 				      xts->key_len, xts->key_len);
1192 		if (ret)
1193 			goto e_key;
1194 	}
1195 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1196 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1197 	if (ret) {
1198 		cmd->engine_error = cmd_q->cmd_error;
1199 		goto e_key;
1200 	}
1201 
1202 	/* The AES context fits in a single (32-byte) SB entry and
1203 	 * for XTS is already in little endian format so no byte swapping
1204 	 * is needed.
1205 	 */
1206 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1207 				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1208 				   DMA_BIDIRECTIONAL);
1209 	if (ret)
1210 		goto e_key;
1211 
1212 	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1213 	if (ret)
1214 		goto e_ctx;
1215 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1216 			     CCP_PASSTHRU_BYTESWAP_NOOP);
1217 	if (ret) {
1218 		cmd->engine_error = cmd_q->cmd_error;
1219 		goto e_ctx;
1220 	}
1221 
1222 	/* Prepare the input and output data workareas. For in-place
1223 	 * operations we need to set the dma direction to BIDIRECTIONAL
1224 	 * and copy the src workarea to the dst workarea.
1225 	 */
1226 	if (sg_virt(xts->src) == sg_virt(xts->dst))
1227 		in_place = true;
1228 
1229 	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1230 			    unit_size,
1231 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1232 	if (ret)
1233 		goto e_ctx;
1234 
1235 	if (in_place) {
1236 		dst = src;
1237 	} else {
1238 		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1239 				    unit_size, DMA_FROM_DEVICE);
1240 		if (ret)
1241 			goto e_src;
1242 	}
1243 
1244 	/* Send data to the CCP AES engine */
1245 	while (src.sg_wa.bytes_left) {
1246 		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1247 		if (!src.sg_wa.bytes_left)
1248 			op.eom = 1;
1249 
1250 		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1251 		if (ret) {
1252 			cmd->engine_error = cmd_q->cmd_error;
1253 			goto e_dst;
1254 		}
1255 
1256 		ccp_process_data(&src, &dst, &op);
1257 	}
1258 
1259 	/* Retrieve the AES context - convert from LE to BE using
1260 	 * 32-byte (256-bit) byteswapping
1261 	 */
1262 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1263 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1264 	if (ret) {
1265 		cmd->engine_error = cmd_q->cmd_error;
1266 		goto e_dst;
1267 	}
1268 
1269 	/* ...but we only need AES_BLOCK_SIZE bytes */
1270 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1271 	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1272 
1273 e_dst:
1274 	if (!in_place)
1275 		ccp_free_data(&dst, cmd_q);
1276 
1277 e_src:
1278 	ccp_free_data(&src, cmd_q);
1279 
1280 e_ctx:
1281 	ccp_dm_free(&ctx);
1282 
1283 e_key:
1284 	ccp_dm_free(&key);
1285 
1286 	return ret;
1287 }
1288 
1289 static noinline_for_stack int
1290 ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1291 {
1292 	struct ccp_des3_engine *des3 = &cmd->u.des3;
1293 
1294 	struct ccp_dm_workarea key, ctx;
1295 	struct ccp_data src, dst;
1296 	struct ccp_op op;
1297 	unsigned int dm_offset;
1298 	unsigned int len_singlekey;
1299 	bool in_place = false;
1300 	int ret;
1301 
1302 	/* Error checks */
1303 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1304 		return -EINVAL;
1305 
1306 	if (!cmd_q->ccp->vdata->perform->des3)
1307 		return -EINVAL;
1308 
1309 	if (des3->key_len != DES3_EDE_KEY_SIZE)
1310 		return -EINVAL;
1311 
1312 	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1313 		(des3->mode == CCP_DES3_MODE_CBC)) &&
1314 		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1315 		return -EINVAL;
1316 
1317 	if (!des3->key || !des3->src || !des3->dst)
1318 		return -EINVAL;
1319 
1320 	if (des3->mode != CCP_DES3_MODE_ECB) {
1321 		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1322 			return -EINVAL;
1323 
1324 		if (!des3->iv)
1325 			return -EINVAL;
1326 	}
1327 
1328 	/* Zero out all the fields of the command desc */
1329 	memset(&op, 0, sizeof(op));
1330 
1331 	/* Set up the Function field */
1332 	op.cmd_q = cmd_q;
1333 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1334 	op.sb_key = cmd_q->sb_key;
1335 
1336 	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1337 	op.u.des3.type = des3->type;
1338 	op.u.des3.mode = des3->mode;
1339 	op.u.des3.action = des3->action;
1340 
1341 	/*
1342 	 * All supported key sizes fit in a single (32-byte) KSB entry and
1343 	 * (like AES) must be in little endian format. Use the 256-bit byte
1344 	 * swap passthru option to convert from big endian to little endian.
1345 	 */
1346 	ret = ccp_init_dm_workarea(&key, cmd_q,
1347 				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1348 				   DMA_TO_DEVICE);
1349 	if (ret)
1350 		return ret;
1351 
1352 	/*
1353 	 * The contents of the key triplet are in the reverse order of what
1354 	 * is required by the engine. Copy the 3 pieces individually to put
1355 	 * them where they belong.
1356 	 */
1357 	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1358 
1359 	len_singlekey = des3->key_len / 3;
1360 	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1361 			      des3->key, 0, len_singlekey);
1362 	if (ret)
1363 		goto e_key;
1364 	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1365 			      des3->key, len_singlekey, len_singlekey);
1366 	if (ret)
1367 		goto e_key;
1368 	ret = ccp_set_dm_area(&key, dm_offset,
1369 			      des3->key, 2 * len_singlekey, len_singlekey);
1370 	if (ret)
1371 		goto e_key;
1372 
1373 	/* Copy the key to the SB */
1374 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1375 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1376 	if (ret) {
1377 		cmd->engine_error = cmd_q->cmd_error;
1378 		goto e_key;
1379 	}
1380 
1381 	/*
1382 	 * The DES3 context fits in a single (32-byte) KSB entry and
1383 	 * must be in little endian format. Use the 256-bit byte swap
1384 	 * passthru option to convert from big endian to little endian.
1385 	 */
1386 	if (des3->mode != CCP_DES3_MODE_ECB) {
1387 		op.sb_ctx = cmd_q->sb_ctx;
1388 
1389 		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1390 					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1391 					   DMA_BIDIRECTIONAL);
1392 		if (ret)
1393 			goto e_key;
1394 
1395 		/* Load the context into the LSB */
1396 		dm_offset = CCP_SB_BYTES - des3->iv_len;
1397 		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1398 				      des3->iv_len);
1399 		if (ret)
1400 			goto e_ctx;
1401 
1402 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1403 				     CCP_PASSTHRU_BYTESWAP_256BIT);
1404 		if (ret) {
1405 			cmd->engine_error = cmd_q->cmd_error;
1406 			goto e_ctx;
1407 		}
1408 	}
1409 
1410 	/*
1411 	 * Prepare the input and output data workareas. For in-place
1412 	 * operations we need to set the dma direction to BIDIRECTIONAL
1413 	 * and copy the src workarea to the dst workarea.
1414 	 */
1415 	if (sg_virt(des3->src) == sg_virt(des3->dst))
1416 		in_place = true;
1417 
1418 	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1419 			DES3_EDE_BLOCK_SIZE,
1420 			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1421 	if (ret)
1422 		goto e_ctx;
1423 
1424 	if (in_place)
1425 		dst = src;
1426 	else {
1427 		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1428 				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1429 		if (ret)
1430 			goto e_src;
1431 	}
1432 
1433 	/* Send data to the CCP DES3 engine */
1434 	while (src.sg_wa.bytes_left) {
1435 		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1436 		if (!src.sg_wa.bytes_left) {
1437 			op.eom = 1;
1438 
1439 			/* Since we don't retrieve the context in ECB mode
1440 			 * we have to wait for the operation to complete
1441 			 * on the last piece of data
1442 			 */
1443 			op.soc = 0;
1444 		}
1445 
1446 		ret = cmd_q->ccp->vdata->perform->des3(&op);
1447 		if (ret) {
1448 			cmd->engine_error = cmd_q->cmd_error;
1449 			goto e_dst;
1450 		}
1451 
1452 		ccp_process_data(&src, &dst, &op);
1453 	}
1454 
1455 	if (des3->mode != CCP_DES3_MODE_ECB) {
1456 		/* Retrieve the context and make BE */
1457 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1458 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1459 		if (ret) {
1460 			cmd->engine_error = cmd_q->cmd_error;
1461 			goto e_dst;
1462 		}
1463 
1464 		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1465 		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1466 				DES3_EDE_BLOCK_SIZE);
1467 	}
1468 e_dst:
1469 	if (!in_place)
1470 		ccp_free_data(&dst, cmd_q);
1471 
1472 e_src:
1473 	ccp_free_data(&src, cmd_q);
1474 
1475 e_ctx:
1476 	if (des3->mode != CCP_DES3_MODE_ECB)
1477 		ccp_dm_free(&ctx);
1478 
1479 e_key:
1480 	ccp_dm_free(&key);
1481 
1482 	return ret;
1483 }
1484 
1485 static noinline_for_stack int
1486 ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1487 {
1488 	struct ccp_sha_engine *sha = &cmd->u.sha;
1489 	struct ccp_dm_workarea ctx;
1490 	struct ccp_data src;
1491 	struct ccp_op op;
1492 	unsigned int ioffset, ooffset;
1493 	unsigned int digest_size;
1494 	int sb_count;
1495 	const void *init;
1496 	u64 block_size;
1497 	int ctx_size;
1498 	int ret;
1499 
1500 	switch (sha->type) {
1501 	case CCP_SHA_TYPE_1:
1502 		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1503 			return -EINVAL;
1504 		block_size = SHA1_BLOCK_SIZE;
1505 		break;
1506 	case CCP_SHA_TYPE_224:
1507 		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1508 			return -EINVAL;
1509 		block_size = SHA224_BLOCK_SIZE;
1510 		break;
1511 	case CCP_SHA_TYPE_256:
1512 		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1513 			return -EINVAL;
1514 		block_size = SHA256_BLOCK_SIZE;
1515 		break;
1516 	case CCP_SHA_TYPE_384:
1517 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1518 		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1519 			return -EINVAL;
1520 		block_size = SHA384_BLOCK_SIZE;
1521 		break;
1522 	case CCP_SHA_TYPE_512:
1523 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1524 		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1525 			return -EINVAL;
1526 		block_size = SHA512_BLOCK_SIZE;
1527 		break;
1528 	default:
1529 		return -EINVAL;
1530 	}
1531 
1532 	if (!sha->ctx)
1533 		return -EINVAL;
1534 
1535 	if (!sha->final && (sha->src_len & (block_size - 1)))
1536 		return -EINVAL;
1537 
1538 	/* The version 3 device can't handle zero-length input */
1539 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1540 
1541 		if (!sha->src_len) {
1542 			unsigned int digest_len;
1543 			const u8 *sha_zero;
1544 
1545 			/* Not final, just return */
1546 			if (!sha->final)
1547 				return 0;
1548 
1549 			/* CCP can't do a zero length sha operation so the
1550 			 * caller must buffer the data.
1551 			 */
1552 			if (sha->msg_bits)
1553 				return -EINVAL;
1554 
1555 			/* The CCP cannot perform zero-length sha operations
1556 			 * so the caller is required to buffer data for the
1557 			 * final operation. However, a sha operation for a
1558 			 * message with a total length of zero is valid so
1559 			 * known values are required to supply the result.
1560 			 */
1561 			switch (sha->type) {
1562 			case CCP_SHA_TYPE_1:
1563 				sha_zero = sha1_zero_message_hash;
1564 				digest_len = SHA1_DIGEST_SIZE;
1565 				break;
1566 			case CCP_SHA_TYPE_224:
1567 				sha_zero = sha224_zero_message_hash;
1568 				digest_len = SHA224_DIGEST_SIZE;
1569 				break;
1570 			case CCP_SHA_TYPE_256:
1571 				sha_zero = sha256_zero_message_hash;
1572 				digest_len = SHA256_DIGEST_SIZE;
1573 				break;
1574 			default:
1575 				return -EINVAL;
1576 			}
1577 
1578 			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1579 						 digest_len, 1);
1580 
1581 			return 0;
1582 		}
1583 	}
1584 
1585 	/* Set variables used throughout */
1586 	switch (sha->type) {
1587 	case CCP_SHA_TYPE_1:
1588 		digest_size = SHA1_DIGEST_SIZE;
1589 		init = (void *) ccp_sha1_init;
1590 		ctx_size = SHA1_DIGEST_SIZE;
1591 		sb_count = 1;
1592 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1593 			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1594 		else
1595 			ooffset = ioffset = 0;
1596 		break;
1597 	case CCP_SHA_TYPE_224:
1598 		digest_size = SHA224_DIGEST_SIZE;
1599 		init = (void *) ccp_sha224_init;
1600 		ctx_size = SHA256_DIGEST_SIZE;
1601 		sb_count = 1;
1602 		ioffset = 0;
1603 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1604 			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1605 		else
1606 			ooffset = 0;
1607 		break;
1608 	case CCP_SHA_TYPE_256:
1609 		digest_size = SHA256_DIGEST_SIZE;
1610 		init = (void *) ccp_sha256_init;
1611 		ctx_size = SHA256_DIGEST_SIZE;
1612 		sb_count = 1;
1613 		ooffset = ioffset = 0;
1614 		break;
1615 	case CCP_SHA_TYPE_384:
1616 		digest_size = SHA384_DIGEST_SIZE;
1617 		init = (void *) ccp_sha384_init;
1618 		ctx_size = SHA512_DIGEST_SIZE;
1619 		sb_count = 2;
1620 		ioffset = 0;
1621 		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1622 		break;
1623 	case CCP_SHA_TYPE_512:
1624 		digest_size = SHA512_DIGEST_SIZE;
1625 		init = (void *) ccp_sha512_init;
1626 		ctx_size = SHA512_DIGEST_SIZE;
1627 		sb_count = 2;
1628 		ooffset = ioffset = 0;
1629 		break;
1630 	default:
1631 		ret = -EINVAL;
1632 		goto e_data;
1633 	}
1634 
1635 	/* For zero-length plaintext the src pointer is ignored;
1636 	 * otherwise both parts must be valid
1637 	 */
1638 	if (sha->src_len && !sha->src)
1639 		return -EINVAL;
1640 
1641 	memset(&op, 0, sizeof(op));
1642 	op.cmd_q = cmd_q;
1643 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1644 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1645 	op.u.sha.type = sha->type;
1646 	op.u.sha.msg_bits = sha->msg_bits;
1647 
1648 	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1649 	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1650 	 * first slot, and the left half in the second. Each portion must then
1651 	 * be in little endian format: use the 256-bit byte swap option.
1652 	 */
1653 	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1654 				   DMA_BIDIRECTIONAL);
1655 	if (ret)
1656 		return ret;
1657 	if (sha->first) {
1658 		switch (sha->type) {
1659 		case CCP_SHA_TYPE_1:
1660 		case CCP_SHA_TYPE_224:
1661 		case CCP_SHA_TYPE_256:
1662 			memcpy(ctx.address + ioffset, init, ctx_size);
1663 			break;
1664 		case CCP_SHA_TYPE_384:
1665 		case CCP_SHA_TYPE_512:
1666 			memcpy(ctx.address + ctx_size / 2, init,
1667 			       ctx_size / 2);
1668 			memcpy(ctx.address, init + ctx_size / 2,
1669 			       ctx_size / 2);
1670 			break;
1671 		default:
1672 			ret = -EINVAL;
1673 			goto e_ctx;
1674 		}
1675 	} else {
1676 		/* Restore the context */
1677 		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1678 				      sb_count * CCP_SB_BYTES);
1679 		if (ret)
1680 			goto e_ctx;
1681 	}
1682 
1683 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1684 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1685 	if (ret) {
1686 		cmd->engine_error = cmd_q->cmd_error;
1687 		goto e_ctx;
1688 	}
1689 
1690 	if (sha->src) {
1691 		/* Send data to the CCP SHA engine; block_size is set above */
1692 		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1693 				    block_size, DMA_TO_DEVICE);
1694 		if (ret)
1695 			goto e_ctx;
1696 
1697 		while (src.sg_wa.bytes_left) {
1698 			ccp_prepare_data(&src, NULL, &op, block_size, false);
1699 			if (sha->final && !src.sg_wa.bytes_left)
1700 				op.eom = 1;
1701 
1702 			ret = cmd_q->ccp->vdata->perform->sha(&op);
1703 			if (ret) {
1704 				cmd->engine_error = cmd_q->cmd_error;
1705 				goto e_data;
1706 			}
1707 
1708 			ccp_process_data(&src, NULL, &op);
1709 		}
1710 	} else {
1711 		op.eom = 1;
1712 		ret = cmd_q->ccp->vdata->perform->sha(&op);
1713 		if (ret) {
1714 			cmd->engine_error = cmd_q->cmd_error;
1715 			goto e_data;
1716 		}
1717 	}
1718 
1719 	/* Retrieve the SHA context - convert from LE to BE using
1720 	 * 32-byte (256-bit) byteswapping to BE
1721 	 */
1722 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1723 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1724 	if (ret) {
1725 		cmd->engine_error = cmd_q->cmd_error;
1726 		goto e_data;
1727 	}
1728 
1729 	if (sha->final) {
1730 		/* Finishing up, so get the digest */
1731 		switch (sha->type) {
1732 		case CCP_SHA_TYPE_1:
1733 		case CCP_SHA_TYPE_224:
1734 		case CCP_SHA_TYPE_256:
1735 			ccp_get_dm_area(&ctx, ooffset,
1736 					sha->ctx, 0,
1737 					digest_size);
1738 			break;
1739 		case CCP_SHA_TYPE_384:
1740 		case CCP_SHA_TYPE_512:
1741 			ccp_get_dm_area(&ctx, 0,
1742 					sha->ctx, LSB_ITEM_SIZE - ooffset,
1743 					LSB_ITEM_SIZE);
1744 			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1745 					sha->ctx, 0,
1746 					LSB_ITEM_SIZE - ooffset);
1747 			break;
1748 		default:
1749 			ret = -EINVAL;
1750 			goto e_data;
1751 		}
1752 	} else {
1753 		/* Stash the context */
1754 		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1755 				sb_count * CCP_SB_BYTES);
1756 	}
1757 
1758 	if (sha->final && sha->opad) {
1759 		/* HMAC operation, recursively perform final SHA */
1760 		struct ccp_cmd hmac_cmd;
1761 		struct scatterlist sg;
1762 		u8 *hmac_buf;
1763 
1764 		if (sha->opad_len != block_size) {
1765 			ret = -EINVAL;
1766 			goto e_data;
1767 		}
1768 
1769 		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1770 		if (!hmac_buf) {
1771 			ret = -ENOMEM;
1772 			goto e_data;
1773 		}
1774 		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1775 
1776 		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1777 		switch (sha->type) {
1778 		case CCP_SHA_TYPE_1:
1779 		case CCP_SHA_TYPE_224:
1780 		case CCP_SHA_TYPE_256:
1781 			memcpy(hmac_buf + block_size,
1782 			       ctx.address + ooffset,
1783 			       digest_size);
1784 			break;
1785 		case CCP_SHA_TYPE_384:
1786 		case CCP_SHA_TYPE_512:
1787 			memcpy(hmac_buf + block_size,
1788 			       ctx.address + LSB_ITEM_SIZE + ooffset,
1789 			       LSB_ITEM_SIZE);
1790 			memcpy(hmac_buf + block_size +
1791 			       (LSB_ITEM_SIZE - ooffset),
1792 			       ctx.address,
1793 			       LSB_ITEM_SIZE);
1794 			break;
1795 		default:
1796 			kfree(hmac_buf);
1797 			ret = -EINVAL;
1798 			goto e_data;
1799 		}
1800 
1801 		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1802 		hmac_cmd.engine = CCP_ENGINE_SHA;
1803 		hmac_cmd.u.sha.type = sha->type;
1804 		hmac_cmd.u.sha.ctx = sha->ctx;
1805 		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1806 		hmac_cmd.u.sha.src = &sg;
1807 		hmac_cmd.u.sha.src_len = block_size + digest_size;
1808 		hmac_cmd.u.sha.opad = NULL;
1809 		hmac_cmd.u.sha.opad_len = 0;
1810 		hmac_cmd.u.sha.first = 1;
1811 		hmac_cmd.u.sha.final = 1;
1812 		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1813 
1814 		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1815 		if (ret)
1816 			cmd->engine_error = hmac_cmd.engine_error;
1817 
1818 		kfree(hmac_buf);
1819 	}
1820 
1821 e_data:
1822 	if (sha->src)
1823 		ccp_free_data(&src, cmd_q);
1824 
1825 e_ctx:
1826 	ccp_dm_free(&ctx);
1827 
1828 	return ret;
1829 }
1830 
1831 static noinline_for_stack int
1832 ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1833 {
1834 	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1835 	struct ccp_dm_workarea exp, src, dst;
1836 	struct ccp_op op;
1837 	unsigned int sb_count, i_len, o_len;
1838 	int ret;
1839 
1840 	/* Check against the maximum allowable size, in bits */
1841 	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1842 		return -EINVAL;
1843 
1844 	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1845 		return -EINVAL;
1846 
1847 	memset(&op, 0, sizeof(op));
1848 	op.cmd_q = cmd_q;
1849 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1850 
1851 	/* The RSA modulus must precede the message being acted upon, so
1852 	 * it must be copied to a DMA area where the message and the
1853 	 * modulus can be concatenated.  Therefore the input buffer
1854 	 * length required is twice the output buffer length (which
1855 	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1856 	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1857 	 * required.
1858 	 */
1859 	o_len = 32 * ((rsa->key_size + 255) / 256);
1860 	i_len = o_len * 2;
1861 
1862 	sb_count = 0;
1863 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1864 		/* sb_count is the number of storage block slots required
1865 		 * for the modulus.
1866 		 */
1867 		sb_count = o_len / CCP_SB_BYTES;
1868 		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1869 								sb_count);
1870 		if (!op.sb_key)
1871 			return -EIO;
1872 	} else {
1873 		/* A version 5 device allows a modulus size that will not fit
1874 		 * in the LSB, so the command will transfer it from memory.
1875 		 * Set the sb key to the default, even though it's not used.
1876 		 */
1877 		op.sb_key = cmd_q->sb_key;
1878 	}
1879 
1880 	/* The RSA exponent must be in little endian format. Reverse its
1881 	 * byte order.
1882 	 */
1883 	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1884 	if (ret)
1885 		goto e_sb;
1886 
1887 	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1888 	if (ret)
1889 		goto e_exp;
1890 
1891 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1892 		/* Copy the exponent to the local storage block, using
1893 		 * as many 32-byte blocks as were allocated above. It's
1894 		 * already little endian, so no further change is required.
1895 		 */
1896 		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1897 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1898 		if (ret) {
1899 			cmd->engine_error = cmd_q->cmd_error;
1900 			goto e_exp;
1901 		}
1902 	} else {
1903 		/* The exponent can be retrieved from memory via DMA. */
1904 		op.exp.u.dma.address = exp.dma.address;
1905 		op.exp.u.dma.offset = 0;
1906 	}
1907 
1908 	/* Concatenate the modulus and the message. Both the modulus and
1909 	 * the operands must be in little endian format.  Since the input
1910 	 * is in big endian format it must be converted.
1911 	 */
1912 	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1913 	if (ret)
1914 		goto e_exp;
1915 
1916 	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1917 	if (ret)
1918 		goto e_src;
1919 	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1920 	if (ret)
1921 		goto e_src;
1922 
1923 	/* Prepare the output area for the operation */
1924 	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1925 	if (ret)
1926 		goto e_src;
1927 
1928 	op.soc = 1;
1929 	op.src.u.dma.address = src.dma.address;
1930 	op.src.u.dma.offset = 0;
1931 	op.src.u.dma.length = i_len;
1932 	op.dst.u.dma.address = dst.dma.address;
1933 	op.dst.u.dma.offset = 0;
1934 	op.dst.u.dma.length = o_len;
1935 
1936 	op.u.rsa.mod_size = rsa->key_size;
1937 	op.u.rsa.input_len = i_len;
1938 
1939 	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1940 	if (ret) {
1941 		cmd->engine_error = cmd_q->cmd_error;
1942 		goto e_dst;
1943 	}
1944 
1945 	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1946 
1947 e_dst:
1948 	ccp_dm_free(&dst);
1949 
1950 e_src:
1951 	ccp_dm_free(&src);
1952 
1953 e_exp:
1954 	ccp_dm_free(&exp);
1955 
1956 e_sb:
1957 	if (sb_count)
1958 		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1959 
1960 	return ret;
1961 }
1962 
1963 static noinline_for_stack int
1964 ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1965 {
1966 	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1967 	struct ccp_dm_workarea mask;
1968 	struct ccp_data src, dst;
1969 	struct ccp_op op;
1970 	bool in_place = false;
1971 	unsigned int i;
1972 	int ret = 0;
1973 
1974 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1975 		return -EINVAL;
1976 
1977 	if (!pt->src || !pt->dst)
1978 		return -EINVAL;
1979 
1980 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1981 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1982 			return -EINVAL;
1983 		if (!pt->mask)
1984 			return -EINVAL;
1985 	}
1986 
1987 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1988 
1989 	memset(&op, 0, sizeof(op));
1990 	op.cmd_q = cmd_q;
1991 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1992 
1993 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1994 		/* Load the mask */
1995 		op.sb_key = cmd_q->sb_key;
1996 
1997 		ret = ccp_init_dm_workarea(&mask, cmd_q,
1998 					   CCP_PASSTHRU_SB_COUNT *
1999 					   CCP_SB_BYTES,
2000 					   DMA_TO_DEVICE);
2001 		if (ret)
2002 			return ret;
2003 
2004 		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
2005 		if (ret)
2006 			goto e_mask;
2007 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2008 				     CCP_PASSTHRU_BYTESWAP_NOOP);
2009 		if (ret) {
2010 			cmd->engine_error = cmd_q->cmd_error;
2011 			goto e_mask;
2012 		}
2013 	}
2014 
2015 	/* Prepare the input and output data workareas. For in-place
2016 	 * operations we need to set the dma direction to BIDIRECTIONAL
2017 	 * and copy the src workarea to the dst workarea.
2018 	 */
2019 	if (sg_virt(pt->src) == sg_virt(pt->dst))
2020 		in_place = true;
2021 
2022 	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2023 			    CCP_PASSTHRU_MASKSIZE,
2024 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2025 	if (ret)
2026 		goto e_mask;
2027 
2028 	if (in_place) {
2029 		dst = src;
2030 	} else {
2031 		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2032 				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2033 		if (ret)
2034 			goto e_src;
2035 	}
2036 
2037 	/* Send data to the CCP Passthru engine
2038 	 *   Because the CCP engine works on a single source and destination
2039 	 *   dma address at a time, each entry in the source scatterlist
2040 	 *   (after the dma_map_sg call) must be less than or equal to the
2041 	 *   (remaining) length in the destination scatterlist entry and the
2042 	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2043 	 */
2044 	dst.sg_wa.sg_used = 0;
2045 	for (i = 1; i <= src.sg_wa.dma_count; i++) {
2046 		if (!dst.sg_wa.sg ||
2047 		    (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) {
2048 			ret = -EINVAL;
2049 			goto e_dst;
2050 		}
2051 
2052 		if (i == src.sg_wa.dma_count) {
2053 			op.eom = 1;
2054 			op.soc = 1;
2055 		}
2056 
2057 		op.src.type = CCP_MEMTYPE_SYSTEM;
2058 		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2059 		op.src.u.dma.offset = 0;
2060 		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2061 
2062 		op.dst.type = CCP_MEMTYPE_SYSTEM;
2063 		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2064 		op.dst.u.dma.offset = dst.sg_wa.sg_used;
2065 		op.dst.u.dma.length = op.src.u.dma.length;
2066 
2067 		ret = cmd_q->ccp->vdata->perform->passthru(&op);
2068 		if (ret) {
2069 			cmd->engine_error = cmd_q->cmd_error;
2070 			goto e_dst;
2071 		}
2072 
2073 		dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg);
2074 		if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) {
2075 			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2076 			dst.sg_wa.sg_used = 0;
2077 		}
2078 		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2079 	}
2080 
2081 e_dst:
2082 	if (!in_place)
2083 		ccp_free_data(&dst, cmd_q);
2084 
2085 e_src:
2086 	ccp_free_data(&src, cmd_q);
2087 
2088 e_mask:
2089 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2090 		ccp_dm_free(&mask);
2091 
2092 	return ret;
2093 }
2094 
2095 static noinline_for_stack int
2096 ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2097 				      struct ccp_cmd *cmd)
2098 {
2099 	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2100 	struct ccp_dm_workarea mask;
2101 	struct ccp_op op;
2102 	int ret;
2103 
2104 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2105 		return -EINVAL;
2106 
2107 	if (!pt->src_dma || !pt->dst_dma)
2108 		return -EINVAL;
2109 
2110 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2111 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2112 			return -EINVAL;
2113 		if (!pt->mask)
2114 			return -EINVAL;
2115 	}
2116 
2117 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2118 
2119 	memset(&op, 0, sizeof(op));
2120 	op.cmd_q = cmd_q;
2121 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2122 
2123 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2124 		/* Load the mask */
2125 		op.sb_key = cmd_q->sb_key;
2126 
2127 		mask.length = pt->mask_len;
2128 		mask.dma.address = pt->mask;
2129 		mask.dma.length = pt->mask_len;
2130 
2131 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2132 				     CCP_PASSTHRU_BYTESWAP_NOOP);
2133 		if (ret) {
2134 			cmd->engine_error = cmd_q->cmd_error;
2135 			return ret;
2136 		}
2137 	}
2138 
2139 	/* Send data to the CCP Passthru engine */
2140 	op.eom = 1;
2141 	op.soc = 1;
2142 
2143 	op.src.type = CCP_MEMTYPE_SYSTEM;
2144 	op.src.u.dma.address = pt->src_dma;
2145 	op.src.u.dma.offset = 0;
2146 	op.src.u.dma.length = pt->src_len;
2147 
2148 	op.dst.type = CCP_MEMTYPE_SYSTEM;
2149 	op.dst.u.dma.address = pt->dst_dma;
2150 	op.dst.u.dma.offset = 0;
2151 	op.dst.u.dma.length = pt->src_len;
2152 
2153 	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2154 	if (ret)
2155 		cmd->engine_error = cmd_q->cmd_error;
2156 
2157 	return ret;
2158 }
2159 
2160 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2161 {
2162 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2163 	struct ccp_dm_workarea src, dst;
2164 	struct ccp_op op;
2165 	int ret;
2166 	u8 *save;
2167 
2168 	if (!ecc->u.mm.operand_1 ||
2169 	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2170 		return -EINVAL;
2171 
2172 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2173 		if (!ecc->u.mm.operand_2 ||
2174 		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2175 			return -EINVAL;
2176 
2177 	if (!ecc->u.mm.result ||
2178 	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2179 		return -EINVAL;
2180 
2181 	memset(&op, 0, sizeof(op));
2182 	op.cmd_q = cmd_q;
2183 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2184 
2185 	/* Concatenate the modulus and the operands. Both the modulus and
2186 	 * the operands must be in little endian format.  Since the input
2187 	 * is in big endian format it must be converted and placed in a
2188 	 * fixed length buffer.
2189 	 */
2190 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2191 				   DMA_TO_DEVICE);
2192 	if (ret)
2193 		return ret;
2194 
2195 	/* Save the workarea address since it is updated in order to perform
2196 	 * the concatenation
2197 	 */
2198 	save = src.address;
2199 
2200 	/* Copy the ECC modulus */
2201 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2202 	if (ret)
2203 		goto e_src;
2204 	src.address += CCP_ECC_OPERAND_SIZE;
2205 
2206 	/* Copy the first operand */
2207 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2208 				      ecc->u.mm.operand_1_len);
2209 	if (ret)
2210 		goto e_src;
2211 	src.address += CCP_ECC_OPERAND_SIZE;
2212 
2213 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2214 		/* Copy the second operand */
2215 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2216 					      ecc->u.mm.operand_2_len);
2217 		if (ret)
2218 			goto e_src;
2219 		src.address += CCP_ECC_OPERAND_SIZE;
2220 	}
2221 
2222 	/* Restore the workarea address */
2223 	src.address = save;
2224 
2225 	/* Prepare the output area for the operation */
2226 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2227 				   DMA_FROM_DEVICE);
2228 	if (ret)
2229 		goto e_src;
2230 
2231 	op.soc = 1;
2232 	op.src.u.dma.address = src.dma.address;
2233 	op.src.u.dma.offset = 0;
2234 	op.src.u.dma.length = src.length;
2235 	op.dst.u.dma.address = dst.dma.address;
2236 	op.dst.u.dma.offset = 0;
2237 	op.dst.u.dma.length = dst.length;
2238 
2239 	op.u.ecc.function = cmd->u.ecc.function;
2240 
2241 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2242 	if (ret) {
2243 		cmd->engine_error = cmd_q->cmd_error;
2244 		goto e_dst;
2245 	}
2246 
2247 	ecc->ecc_result = le16_to_cpup(
2248 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2249 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2250 		ret = -EIO;
2251 		goto e_dst;
2252 	}
2253 
2254 	/* Save the ECC result */
2255 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2256 				CCP_ECC_MODULUS_BYTES);
2257 
2258 e_dst:
2259 	ccp_dm_free(&dst);
2260 
2261 e_src:
2262 	ccp_dm_free(&src);
2263 
2264 	return ret;
2265 }
2266 
2267 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2268 {
2269 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2270 	struct ccp_dm_workarea src, dst;
2271 	struct ccp_op op;
2272 	int ret;
2273 	u8 *save;
2274 
2275 	if (!ecc->u.pm.point_1.x ||
2276 	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2277 	    !ecc->u.pm.point_1.y ||
2278 	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2279 		return -EINVAL;
2280 
2281 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2282 		if (!ecc->u.pm.point_2.x ||
2283 		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2284 		    !ecc->u.pm.point_2.y ||
2285 		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2286 			return -EINVAL;
2287 	} else {
2288 		if (!ecc->u.pm.domain_a ||
2289 		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2290 			return -EINVAL;
2291 
2292 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2293 			if (!ecc->u.pm.scalar ||
2294 			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2295 				return -EINVAL;
2296 	}
2297 
2298 	if (!ecc->u.pm.result.x ||
2299 	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2300 	    !ecc->u.pm.result.y ||
2301 	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2302 		return -EINVAL;
2303 
2304 	memset(&op, 0, sizeof(op));
2305 	op.cmd_q = cmd_q;
2306 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2307 
2308 	/* Concatenate the modulus and the operands. Both the modulus and
2309 	 * the operands must be in little endian format.  Since the input
2310 	 * is in big endian format it must be converted and placed in a
2311 	 * fixed length buffer.
2312 	 */
2313 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2314 				   DMA_TO_DEVICE);
2315 	if (ret)
2316 		return ret;
2317 
2318 	/* Save the workarea address since it is updated in order to perform
2319 	 * the concatenation
2320 	 */
2321 	save = src.address;
2322 
2323 	/* Copy the ECC modulus */
2324 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2325 	if (ret)
2326 		goto e_src;
2327 	src.address += CCP_ECC_OPERAND_SIZE;
2328 
2329 	/* Copy the first point X and Y coordinate */
2330 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2331 				      ecc->u.pm.point_1.x_len);
2332 	if (ret)
2333 		goto e_src;
2334 	src.address += CCP_ECC_OPERAND_SIZE;
2335 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2336 				      ecc->u.pm.point_1.y_len);
2337 	if (ret)
2338 		goto e_src;
2339 	src.address += CCP_ECC_OPERAND_SIZE;
2340 
2341 	/* Set the first point Z coordinate to 1 */
2342 	*src.address = 0x01;
2343 	src.address += CCP_ECC_OPERAND_SIZE;
2344 
2345 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2346 		/* Copy the second point X and Y coordinate */
2347 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2348 					      ecc->u.pm.point_2.x_len);
2349 		if (ret)
2350 			goto e_src;
2351 		src.address += CCP_ECC_OPERAND_SIZE;
2352 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2353 					      ecc->u.pm.point_2.y_len);
2354 		if (ret)
2355 			goto e_src;
2356 		src.address += CCP_ECC_OPERAND_SIZE;
2357 
2358 		/* Set the second point Z coordinate to 1 */
2359 		*src.address = 0x01;
2360 		src.address += CCP_ECC_OPERAND_SIZE;
2361 	} else {
2362 		/* Copy the Domain "a" parameter */
2363 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2364 					      ecc->u.pm.domain_a_len);
2365 		if (ret)
2366 			goto e_src;
2367 		src.address += CCP_ECC_OPERAND_SIZE;
2368 
2369 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2370 			/* Copy the scalar value */
2371 			ret = ccp_reverse_set_dm_area(&src, 0,
2372 						      ecc->u.pm.scalar, 0,
2373 						      ecc->u.pm.scalar_len);
2374 			if (ret)
2375 				goto e_src;
2376 			src.address += CCP_ECC_OPERAND_SIZE;
2377 		}
2378 	}
2379 
2380 	/* Restore the workarea address */
2381 	src.address = save;
2382 
2383 	/* Prepare the output area for the operation */
2384 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2385 				   DMA_FROM_DEVICE);
2386 	if (ret)
2387 		goto e_src;
2388 
2389 	op.soc = 1;
2390 	op.src.u.dma.address = src.dma.address;
2391 	op.src.u.dma.offset = 0;
2392 	op.src.u.dma.length = src.length;
2393 	op.dst.u.dma.address = dst.dma.address;
2394 	op.dst.u.dma.offset = 0;
2395 	op.dst.u.dma.length = dst.length;
2396 
2397 	op.u.ecc.function = cmd->u.ecc.function;
2398 
2399 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2400 	if (ret) {
2401 		cmd->engine_error = cmd_q->cmd_error;
2402 		goto e_dst;
2403 	}
2404 
2405 	ecc->ecc_result = le16_to_cpup(
2406 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2407 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2408 		ret = -EIO;
2409 		goto e_dst;
2410 	}
2411 
2412 	/* Save the workarea address since it is updated as we walk through
2413 	 * to copy the point math result
2414 	 */
2415 	save = dst.address;
2416 
2417 	/* Save the ECC result X and Y coordinates */
2418 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2419 				CCP_ECC_MODULUS_BYTES);
2420 	dst.address += CCP_ECC_OUTPUT_SIZE;
2421 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2422 				CCP_ECC_MODULUS_BYTES);
2423 
2424 	/* Restore the workarea address */
2425 	dst.address = save;
2426 
2427 e_dst:
2428 	ccp_dm_free(&dst);
2429 
2430 e_src:
2431 	ccp_dm_free(&src);
2432 
2433 	return ret;
2434 }
2435 
2436 static noinline_for_stack int
2437 ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2438 {
2439 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2440 
2441 	ecc->ecc_result = 0;
2442 
2443 	if (!ecc->mod ||
2444 	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2445 		return -EINVAL;
2446 
2447 	switch (ecc->function) {
2448 	case CCP_ECC_FUNCTION_MMUL_384BIT:
2449 	case CCP_ECC_FUNCTION_MADD_384BIT:
2450 	case CCP_ECC_FUNCTION_MINV_384BIT:
2451 		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2452 
2453 	case CCP_ECC_FUNCTION_PADD_384BIT:
2454 	case CCP_ECC_FUNCTION_PMUL_384BIT:
2455 	case CCP_ECC_FUNCTION_PDBL_384BIT:
2456 		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2457 
2458 	default:
2459 		return -EINVAL;
2460 	}
2461 }
2462 
2463 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2464 {
2465 	int ret;
2466 
2467 	cmd->engine_error = 0;
2468 	cmd_q->cmd_error = 0;
2469 	cmd_q->int_rcvd = 0;
2470 	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2471 
2472 	switch (cmd->engine) {
2473 	case CCP_ENGINE_AES:
2474 		switch (cmd->u.aes.mode) {
2475 		case CCP_AES_MODE_CMAC:
2476 			ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2477 			break;
2478 		case CCP_AES_MODE_GCM:
2479 			ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2480 			break;
2481 		default:
2482 			ret = ccp_run_aes_cmd(cmd_q, cmd);
2483 			break;
2484 		}
2485 		break;
2486 	case CCP_ENGINE_XTS_AES_128:
2487 		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2488 		break;
2489 	case CCP_ENGINE_DES3:
2490 		ret = ccp_run_des3_cmd(cmd_q, cmd);
2491 		break;
2492 	case CCP_ENGINE_SHA:
2493 		ret = ccp_run_sha_cmd(cmd_q, cmd);
2494 		break;
2495 	case CCP_ENGINE_RSA:
2496 		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2497 		break;
2498 	case CCP_ENGINE_PASSTHRU:
2499 		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2500 			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2501 		else
2502 			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2503 		break;
2504 	case CCP_ENGINE_ECC:
2505 		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2506 		break;
2507 	default:
2508 		ret = -EINVAL;
2509 	}
2510 
2511 	return ret;
2512 }
2513