xref: /openbmc/linux/drivers/crypto/ccp/ccp-ops.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/interrupt.h>
18 #include <crypto/scatterwalk.h>
19 #include <linux/ccp.h>
20 
21 #include "ccp-dev.h"
22 
23 /* SHA initial context values */
24 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
25 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
26 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
27 	cpu_to_be32(SHA1_H4),
28 };
29 
30 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
31 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
32 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
33 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
34 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
35 };
36 
37 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
38 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
39 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
40 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
41 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
42 };
43 
44 #define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
45 					ccp_gen_jobid(ccp) : 0)
46 
47 static u32 ccp_gen_jobid(struct ccp_device *ccp)
48 {
49 	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
50 }
51 
52 static void ccp_sg_free(struct ccp_sg_workarea *wa)
53 {
54 	if (wa->dma_count)
55 		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
56 
57 	wa->dma_count = 0;
58 }
59 
60 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
61 				struct scatterlist *sg, u64 len,
62 				enum dma_data_direction dma_dir)
63 {
64 	memset(wa, 0, sizeof(*wa));
65 
66 	wa->sg = sg;
67 	if (!sg)
68 		return 0;
69 
70 	wa->nents = sg_nents_for_len(sg, len);
71 	if (wa->nents < 0)
72 		return wa->nents;
73 
74 	wa->bytes_left = len;
75 	wa->sg_used = 0;
76 
77 	if (len == 0)
78 		return 0;
79 
80 	if (dma_dir == DMA_NONE)
81 		return 0;
82 
83 	wa->dma_sg = sg;
84 	wa->dma_dev = dev;
85 	wa->dma_dir = dma_dir;
86 	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
87 	if (!wa->dma_count)
88 		return -ENOMEM;
89 
90 	return 0;
91 }
92 
93 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
94 {
95 	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
96 
97 	if (!wa->sg)
98 		return;
99 
100 	wa->sg_used += nbytes;
101 	wa->bytes_left -= nbytes;
102 	if (wa->sg_used == wa->sg->length) {
103 		wa->sg = sg_next(wa->sg);
104 		wa->sg_used = 0;
105 	}
106 }
107 
108 static void ccp_dm_free(struct ccp_dm_workarea *wa)
109 {
110 	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
111 		if (wa->address)
112 			dma_pool_free(wa->dma_pool, wa->address,
113 				      wa->dma.address);
114 	} else {
115 		if (wa->dma.address)
116 			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
117 					 wa->dma.dir);
118 		kfree(wa->address);
119 	}
120 
121 	wa->address = NULL;
122 	wa->dma.address = 0;
123 }
124 
125 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
126 				struct ccp_cmd_queue *cmd_q,
127 				unsigned int len,
128 				enum dma_data_direction dir)
129 {
130 	memset(wa, 0, sizeof(*wa));
131 
132 	if (!len)
133 		return 0;
134 
135 	wa->dev = cmd_q->ccp->dev;
136 	wa->length = len;
137 
138 	if (len <= CCP_DMAPOOL_MAX_SIZE) {
139 		wa->dma_pool = cmd_q->dma_pool;
140 
141 		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
142 					     &wa->dma.address);
143 		if (!wa->address)
144 			return -ENOMEM;
145 
146 		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
147 
148 		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
149 	} else {
150 		wa->address = kzalloc(len, GFP_KERNEL);
151 		if (!wa->address)
152 			return -ENOMEM;
153 
154 		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
155 						 dir);
156 		if (!wa->dma.address)
157 			return -ENOMEM;
158 
159 		wa->dma.length = len;
160 	}
161 	wa->dma.dir = dir;
162 
163 	return 0;
164 }
165 
166 static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
167 			    struct scatterlist *sg, unsigned int sg_offset,
168 			    unsigned int len)
169 {
170 	WARN_ON(!wa->address);
171 
172 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
173 				 0);
174 }
175 
176 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
177 			    struct scatterlist *sg, unsigned int sg_offset,
178 			    unsigned int len)
179 {
180 	WARN_ON(!wa->address);
181 
182 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
183 				 1);
184 }
185 
186 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
187 				   struct scatterlist *sg,
188 				   unsigned int len, unsigned int se_len,
189 				   bool sign_extend)
190 {
191 	unsigned int nbytes, sg_offset, dm_offset, sb_len, i;
192 	u8 buffer[CCP_REVERSE_BUF_SIZE];
193 
194 	if (WARN_ON(se_len > sizeof(buffer)))
195 		return -EINVAL;
196 
197 	sg_offset = len;
198 	dm_offset = 0;
199 	nbytes = len;
200 	while (nbytes) {
201 		sb_len = min_t(unsigned int, nbytes, se_len);
202 		sg_offset -= sb_len;
203 
204 		scatterwalk_map_and_copy(buffer, sg, sg_offset, sb_len, 0);
205 		for (i = 0; i < sb_len; i++)
206 			wa->address[dm_offset + i] = buffer[sb_len - i - 1];
207 
208 		dm_offset += sb_len;
209 		nbytes -= sb_len;
210 
211 		if ((sb_len != se_len) && sign_extend) {
212 			/* Must sign-extend to nearest sign-extend length */
213 			if (wa->address[dm_offset - 1] & 0x80)
214 				memset(wa->address + dm_offset, 0xff,
215 				       se_len - sb_len);
216 		}
217 	}
218 
219 	return 0;
220 }
221 
222 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
223 				    struct scatterlist *sg,
224 				    unsigned int len)
225 {
226 	unsigned int nbytes, sg_offset, dm_offset, sb_len, i;
227 	u8 buffer[CCP_REVERSE_BUF_SIZE];
228 
229 	sg_offset = 0;
230 	dm_offset = len;
231 	nbytes = len;
232 	while (nbytes) {
233 		sb_len = min_t(unsigned int, nbytes, sizeof(buffer));
234 		dm_offset -= sb_len;
235 
236 		for (i = 0; i < sb_len; i++)
237 			buffer[sb_len - i - 1] = wa->address[dm_offset + i];
238 		scatterwalk_map_and_copy(buffer, sg, sg_offset, sb_len, 1);
239 
240 		sg_offset += sb_len;
241 		nbytes -= sb_len;
242 	}
243 }
244 
245 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
246 {
247 	ccp_dm_free(&data->dm_wa);
248 	ccp_sg_free(&data->sg_wa);
249 }
250 
251 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
252 			 struct scatterlist *sg, u64 sg_len,
253 			 unsigned int dm_len,
254 			 enum dma_data_direction dir)
255 {
256 	int ret;
257 
258 	memset(data, 0, sizeof(*data));
259 
260 	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
261 				   dir);
262 	if (ret)
263 		goto e_err;
264 
265 	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
266 	if (ret)
267 		goto e_err;
268 
269 	return 0;
270 
271 e_err:
272 	ccp_free_data(data, cmd_q);
273 
274 	return ret;
275 }
276 
277 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
278 {
279 	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
280 	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
281 	unsigned int buf_count, nbytes;
282 
283 	/* Clear the buffer if setting it */
284 	if (!from)
285 		memset(dm_wa->address, 0, dm_wa->length);
286 
287 	if (!sg_wa->sg)
288 		return 0;
289 
290 	/* Perform the copy operation
291 	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
292 	 *   an unsigned int
293 	 */
294 	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
295 	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
296 				 nbytes, from);
297 
298 	/* Update the structures and generate the count */
299 	buf_count = 0;
300 	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
301 		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
302 			     dm_wa->length - buf_count);
303 		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
304 
305 		buf_count += nbytes;
306 		ccp_update_sg_workarea(sg_wa, nbytes);
307 	}
308 
309 	return buf_count;
310 }
311 
312 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
313 {
314 	return ccp_queue_buf(data, 0);
315 }
316 
317 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
318 {
319 	return ccp_queue_buf(data, 1);
320 }
321 
322 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
323 			     struct ccp_op *op, unsigned int block_size,
324 			     bool blocksize_op)
325 {
326 	unsigned int sg_src_len, sg_dst_len, op_len;
327 
328 	/* The CCP can only DMA from/to one address each per operation. This
329 	 * requires that we find the smallest DMA area between the source
330 	 * and destination. The resulting len values will always be <= UINT_MAX
331 	 * because the dma length is an unsigned int.
332 	 */
333 	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
334 	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
335 
336 	if (dst) {
337 		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
338 		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
339 		op_len = min(sg_src_len, sg_dst_len);
340 	} else {
341 		op_len = sg_src_len;
342 	}
343 
344 	/* The data operation length will be at least block_size in length
345 	 * or the smaller of available sg room remaining for the source or
346 	 * the destination
347 	 */
348 	op_len = max(op_len, block_size);
349 
350 	/* Unless we have to buffer data, there's no reason to wait */
351 	op->soc = 0;
352 
353 	if (sg_src_len < block_size) {
354 		/* Not enough data in the sg element, so it
355 		 * needs to be buffered into a blocksize chunk
356 		 */
357 		int cp_len = ccp_fill_queue_buf(src);
358 
359 		op->soc = 1;
360 		op->src.u.dma.address = src->dm_wa.dma.address;
361 		op->src.u.dma.offset = 0;
362 		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
363 	} else {
364 		/* Enough data in the sg element, but we need to
365 		 * adjust for any previously copied data
366 		 */
367 		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
368 		op->src.u.dma.offset = src->sg_wa.sg_used;
369 		op->src.u.dma.length = op_len & ~(block_size - 1);
370 
371 		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
372 	}
373 
374 	if (dst) {
375 		if (sg_dst_len < block_size) {
376 			/* Not enough room in the sg element or we're on the
377 			 * last piece of data (when using padding), so the
378 			 * output needs to be buffered into a blocksize chunk
379 			 */
380 			op->soc = 1;
381 			op->dst.u.dma.address = dst->dm_wa.dma.address;
382 			op->dst.u.dma.offset = 0;
383 			op->dst.u.dma.length = op->src.u.dma.length;
384 		} else {
385 			/* Enough room in the sg element, but we need to
386 			 * adjust for any previously used area
387 			 */
388 			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
389 			op->dst.u.dma.offset = dst->sg_wa.sg_used;
390 			op->dst.u.dma.length = op->src.u.dma.length;
391 		}
392 	}
393 }
394 
395 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
396 			     struct ccp_op *op)
397 {
398 	op->init = 0;
399 
400 	if (dst) {
401 		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
402 			ccp_empty_queue_buf(dst);
403 		else
404 			ccp_update_sg_workarea(&dst->sg_wa,
405 					       op->dst.u.dma.length);
406 	}
407 }
408 
409 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
410 			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
411 			       u32 byte_swap, bool from)
412 {
413 	struct ccp_op op;
414 
415 	memset(&op, 0, sizeof(op));
416 
417 	op.cmd_q = cmd_q;
418 	op.jobid = jobid;
419 	op.eom = 1;
420 
421 	if (from) {
422 		op.soc = 1;
423 		op.src.type = CCP_MEMTYPE_SB;
424 		op.src.u.sb = sb;
425 		op.dst.type = CCP_MEMTYPE_SYSTEM;
426 		op.dst.u.dma.address = wa->dma.address;
427 		op.dst.u.dma.length = wa->length;
428 	} else {
429 		op.src.type = CCP_MEMTYPE_SYSTEM;
430 		op.src.u.dma.address = wa->dma.address;
431 		op.src.u.dma.length = wa->length;
432 		op.dst.type = CCP_MEMTYPE_SB;
433 		op.dst.u.sb = sb;
434 	}
435 
436 	op.u.passthru.byte_swap = byte_swap;
437 
438 	return cmd_q->ccp->vdata->perform->passthru(&op);
439 }
440 
441 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
442 			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
443 			  u32 byte_swap)
444 {
445 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
446 }
447 
448 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
449 			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
450 			    u32 byte_swap)
451 {
452 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
453 }
454 
455 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
456 				struct ccp_cmd *cmd)
457 {
458 	struct ccp_aes_engine *aes = &cmd->u.aes;
459 	struct ccp_dm_workarea key, ctx;
460 	struct ccp_data src;
461 	struct ccp_op op;
462 	unsigned int dm_offset;
463 	int ret;
464 
465 	if (!((aes->key_len == AES_KEYSIZE_128) ||
466 	      (aes->key_len == AES_KEYSIZE_192) ||
467 	      (aes->key_len == AES_KEYSIZE_256)))
468 		return -EINVAL;
469 
470 	if (aes->src_len & (AES_BLOCK_SIZE - 1))
471 		return -EINVAL;
472 
473 	if (aes->iv_len != AES_BLOCK_SIZE)
474 		return -EINVAL;
475 
476 	if (!aes->key || !aes->iv || !aes->src)
477 		return -EINVAL;
478 
479 	if (aes->cmac_final) {
480 		if (aes->cmac_key_len != AES_BLOCK_SIZE)
481 			return -EINVAL;
482 
483 		if (!aes->cmac_key)
484 			return -EINVAL;
485 	}
486 
487 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
488 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
489 
490 	ret = -EIO;
491 	memset(&op, 0, sizeof(op));
492 	op.cmd_q = cmd_q;
493 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
494 	op.sb_key = cmd_q->sb_key;
495 	op.sb_ctx = cmd_q->sb_ctx;
496 	op.init = 1;
497 	op.u.aes.type = aes->type;
498 	op.u.aes.mode = aes->mode;
499 	op.u.aes.action = aes->action;
500 
501 	/* All supported key sizes fit in a single (32-byte) SB entry
502 	 * and must be in little endian format. Use the 256-bit byte
503 	 * swap passthru option to convert from big endian to little
504 	 * endian.
505 	 */
506 	ret = ccp_init_dm_workarea(&key, cmd_q,
507 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
508 				   DMA_TO_DEVICE);
509 	if (ret)
510 		return ret;
511 
512 	dm_offset = CCP_SB_BYTES - aes->key_len;
513 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
514 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
515 			     CCP_PASSTHRU_BYTESWAP_256BIT);
516 	if (ret) {
517 		cmd->engine_error = cmd_q->cmd_error;
518 		goto e_key;
519 	}
520 
521 	/* The AES context fits in a single (32-byte) SB entry and
522 	 * must be in little endian format. Use the 256-bit byte swap
523 	 * passthru option to convert from big endian to little endian.
524 	 */
525 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
526 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
527 				   DMA_BIDIRECTIONAL);
528 	if (ret)
529 		goto e_key;
530 
531 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
532 	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
533 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
534 			     CCP_PASSTHRU_BYTESWAP_256BIT);
535 	if (ret) {
536 		cmd->engine_error = cmd_q->cmd_error;
537 		goto e_ctx;
538 	}
539 
540 	/* Send data to the CCP AES engine */
541 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
542 			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
543 	if (ret)
544 		goto e_ctx;
545 
546 	while (src.sg_wa.bytes_left) {
547 		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
548 		if (aes->cmac_final && !src.sg_wa.bytes_left) {
549 			op.eom = 1;
550 
551 			/* Push the K1/K2 key to the CCP now */
552 			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
553 					       op.sb_ctx,
554 					       CCP_PASSTHRU_BYTESWAP_256BIT);
555 			if (ret) {
556 				cmd->engine_error = cmd_q->cmd_error;
557 				goto e_src;
558 			}
559 
560 			ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
561 					aes->cmac_key_len);
562 			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
563 					     CCP_PASSTHRU_BYTESWAP_256BIT);
564 			if (ret) {
565 				cmd->engine_error = cmd_q->cmd_error;
566 				goto e_src;
567 			}
568 		}
569 
570 		ret = cmd_q->ccp->vdata->perform->aes(&op);
571 		if (ret) {
572 			cmd->engine_error = cmd_q->cmd_error;
573 			goto e_src;
574 		}
575 
576 		ccp_process_data(&src, NULL, &op);
577 	}
578 
579 	/* Retrieve the AES context - convert from LE to BE using
580 	 * 32-byte (256-bit) byteswapping
581 	 */
582 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
583 			       CCP_PASSTHRU_BYTESWAP_256BIT);
584 	if (ret) {
585 		cmd->engine_error = cmd_q->cmd_error;
586 		goto e_src;
587 	}
588 
589 	/* ...but we only need AES_BLOCK_SIZE bytes */
590 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
591 	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
592 
593 e_src:
594 	ccp_free_data(&src, cmd_q);
595 
596 e_ctx:
597 	ccp_dm_free(&ctx);
598 
599 e_key:
600 	ccp_dm_free(&key);
601 
602 	return ret;
603 }
604 
605 static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
606 {
607 	struct ccp_aes_engine *aes = &cmd->u.aes;
608 	struct ccp_dm_workarea key, ctx;
609 	struct ccp_data src, dst;
610 	struct ccp_op op;
611 	unsigned int dm_offset;
612 	bool in_place = false;
613 	int ret;
614 
615 	if (aes->mode == CCP_AES_MODE_CMAC)
616 		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
617 
618 	if (!((aes->key_len == AES_KEYSIZE_128) ||
619 	      (aes->key_len == AES_KEYSIZE_192) ||
620 	      (aes->key_len == AES_KEYSIZE_256)))
621 		return -EINVAL;
622 
623 	if (((aes->mode == CCP_AES_MODE_ECB) ||
624 	     (aes->mode == CCP_AES_MODE_CBC) ||
625 	     (aes->mode == CCP_AES_MODE_CFB)) &&
626 	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
627 		return -EINVAL;
628 
629 	if (!aes->key || !aes->src || !aes->dst)
630 		return -EINVAL;
631 
632 	if (aes->mode != CCP_AES_MODE_ECB) {
633 		if (aes->iv_len != AES_BLOCK_SIZE)
634 			return -EINVAL;
635 
636 		if (!aes->iv)
637 			return -EINVAL;
638 	}
639 
640 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
641 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
642 
643 	ret = -EIO;
644 	memset(&op, 0, sizeof(op));
645 	op.cmd_q = cmd_q;
646 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
647 	op.sb_key = cmd_q->sb_key;
648 	op.sb_ctx = cmd_q->sb_ctx;
649 	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
650 	op.u.aes.type = aes->type;
651 	op.u.aes.mode = aes->mode;
652 	op.u.aes.action = aes->action;
653 
654 	/* All supported key sizes fit in a single (32-byte) SB entry
655 	 * and must be in little endian format. Use the 256-bit byte
656 	 * swap passthru option to convert from big endian to little
657 	 * endian.
658 	 */
659 	ret = ccp_init_dm_workarea(&key, cmd_q,
660 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
661 				   DMA_TO_DEVICE);
662 	if (ret)
663 		return ret;
664 
665 	dm_offset = CCP_SB_BYTES - aes->key_len;
666 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
667 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
668 			     CCP_PASSTHRU_BYTESWAP_256BIT);
669 	if (ret) {
670 		cmd->engine_error = cmd_q->cmd_error;
671 		goto e_key;
672 	}
673 
674 	/* The AES context fits in a single (32-byte) SB entry and
675 	 * must be in little endian format. Use the 256-bit byte swap
676 	 * passthru option to convert from big endian to little endian.
677 	 */
678 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
679 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
680 				   DMA_BIDIRECTIONAL);
681 	if (ret)
682 		goto e_key;
683 
684 	if (aes->mode != CCP_AES_MODE_ECB) {
685 		/* Load the AES context - convert to LE */
686 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
687 		ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
688 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
689 				     CCP_PASSTHRU_BYTESWAP_256BIT);
690 		if (ret) {
691 			cmd->engine_error = cmd_q->cmd_error;
692 			goto e_ctx;
693 		}
694 	}
695 
696 	/* Prepare the input and output data workareas. For in-place
697 	 * operations we need to set the dma direction to BIDIRECTIONAL
698 	 * and copy the src workarea to the dst workarea.
699 	 */
700 	if (sg_virt(aes->src) == sg_virt(aes->dst))
701 		in_place = true;
702 
703 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
704 			    AES_BLOCK_SIZE,
705 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
706 	if (ret)
707 		goto e_ctx;
708 
709 	if (in_place) {
710 		dst = src;
711 	} else {
712 		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
713 				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
714 		if (ret)
715 			goto e_src;
716 	}
717 
718 	/* Send data to the CCP AES engine */
719 	while (src.sg_wa.bytes_left) {
720 		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
721 		if (!src.sg_wa.bytes_left) {
722 			op.eom = 1;
723 
724 			/* Since we don't retrieve the AES context in ECB
725 			 * mode we have to wait for the operation to complete
726 			 * on the last piece of data
727 			 */
728 			if (aes->mode == CCP_AES_MODE_ECB)
729 				op.soc = 1;
730 		}
731 
732 		ret = cmd_q->ccp->vdata->perform->aes(&op);
733 		if (ret) {
734 			cmd->engine_error = cmd_q->cmd_error;
735 			goto e_dst;
736 		}
737 
738 		ccp_process_data(&src, &dst, &op);
739 	}
740 
741 	if (aes->mode != CCP_AES_MODE_ECB) {
742 		/* Retrieve the AES context - convert from LE to BE using
743 		 * 32-byte (256-bit) byteswapping
744 		 */
745 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
746 				       CCP_PASSTHRU_BYTESWAP_256BIT);
747 		if (ret) {
748 			cmd->engine_error = cmd_q->cmd_error;
749 			goto e_dst;
750 		}
751 
752 		/* ...but we only need AES_BLOCK_SIZE bytes */
753 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
754 		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
755 	}
756 
757 e_dst:
758 	if (!in_place)
759 		ccp_free_data(&dst, cmd_q);
760 
761 e_src:
762 	ccp_free_data(&src, cmd_q);
763 
764 e_ctx:
765 	ccp_dm_free(&ctx);
766 
767 e_key:
768 	ccp_dm_free(&key);
769 
770 	return ret;
771 }
772 
773 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
774 			       struct ccp_cmd *cmd)
775 {
776 	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
777 	struct ccp_dm_workarea key, ctx;
778 	struct ccp_data src, dst;
779 	struct ccp_op op;
780 	unsigned int unit_size, dm_offset;
781 	bool in_place = false;
782 	int ret;
783 
784 	switch (xts->unit_size) {
785 	case CCP_XTS_AES_UNIT_SIZE_16:
786 		unit_size = 16;
787 		break;
788 	case CCP_XTS_AES_UNIT_SIZE_512:
789 		unit_size = 512;
790 		break;
791 	case CCP_XTS_AES_UNIT_SIZE_1024:
792 		unit_size = 1024;
793 		break;
794 	case CCP_XTS_AES_UNIT_SIZE_2048:
795 		unit_size = 2048;
796 		break;
797 	case CCP_XTS_AES_UNIT_SIZE_4096:
798 		unit_size = 4096;
799 		break;
800 
801 	default:
802 		return -EINVAL;
803 	}
804 
805 	if (xts->key_len != AES_KEYSIZE_128)
806 		return -EINVAL;
807 
808 	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
809 		return -EINVAL;
810 
811 	if (xts->iv_len != AES_BLOCK_SIZE)
812 		return -EINVAL;
813 
814 	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
815 		return -EINVAL;
816 
817 	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
818 	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
819 
820 	ret = -EIO;
821 	memset(&op, 0, sizeof(op));
822 	op.cmd_q = cmd_q;
823 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
824 	op.sb_key = cmd_q->sb_key;
825 	op.sb_ctx = cmd_q->sb_ctx;
826 	op.init = 1;
827 	op.u.xts.action = xts->action;
828 	op.u.xts.unit_size = xts->unit_size;
829 
830 	/* All supported key sizes fit in a single (32-byte) SB entry
831 	 * and must be in little endian format. Use the 256-bit byte
832 	 * swap passthru option to convert from big endian to little
833 	 * endian.
834 	 */
835 	ret = ccp_init_dm_workarea(&key, cmd_q,
836 				   CCP_XTS_AES_KEY_SB_COUNT * CCP_SB_BYTES,
837 				   DMA_TO_DEVICE);
838 	if (ret)
839 		return ret;
840 
841 	dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
842 	ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
843 	ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
844 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
845 			     CCP_PASSTHRU_BYTESWAP_256BIT);
846 	if (ret) {
847 		cmd->engine_error = cmd_q->cmd_error;
848 		goto e_key;
849 	}
850 
851 	/* The AES context fits in a single (32-byte) SB entry and
852 	 * for XTS is already in little endian format so no byte swapping
853 	 * is needed.
854 	 */
855 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
856 				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
857 				   DMA_BIDIRECTIONAL);
858 	if (ret)
859 		goto e_key;
860 
861 	ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
862 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
863 			     CCP_PASSTHRU_BYTESWAP_NOOP);
864 	if (ret) {
865 		cmd->engine_error = cmd_q->cmd_error;
866 		goto e_ctx;
867 	}
868 
869 	/* Prepare the input and output data workareas. For in-place
870 	 * operations we need to set the dma direction to BIDIRECTIONAL
871 	 * and copy the src workarea to the dst workarea.
872 	 */
873 	if (sg_virt(xts->src) == sg_virt(xts->dst))
874 		in_place = true;
875 
876 	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
877 			    unit_size,
878 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
879 	if (ret)
880 		goto e_ctx;
881 
882 	if (in_place) {
883 		dst = src;
884 	} else {
885 		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
886 				    unit_size, DMA_FROM_DEVICE);
887 		if (ret)
888 			goto e_src;
889 	}
890 
891 	/* Send data to the CCP AES engine */
892 	while (src.sg_wa.bytes_left) {
893 		ccp_prepare_data(&src, &dst, &op, unit_size, true);
894 		if (!src.sg_wa.bytes_left)
895 			op.eom = 1;
896 
897 		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
898 		if (ret) {
899 			cmd->engine_error = cmd_q->cmd_error;
900 			goto e_dst;
901 		}
902 
903 		ccp_process_data(&src, &dst, &op);
904 	}
905 
906 	/* Retrieve the AES context - convert from LE to BE using
907 	 * 32-byte (256-bit) byteswapping
908 	 */
909 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
910 			       CCP_PASSTHRU_BYTESWAP_256BIT);
911 	if (ret) {
912 		cmd->engine_error = cmd_q->cmd_error;
913 		goto e_dst;
914 	}
915 
916 	/* ...but we only need AES_BLOCK_SIZE bytes */
917 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
918 	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
919 
920 e_dst:
921 	if (!in_place)
922 		ccp_free_data(&dst, cmd_q);
923 
924 e_src:
925 	ccp_free_data(&src, cmd_q);
926 
927 e_ctx:
928 	ccp_dm_free(&ctx);
929 
930 e_key:
931 	ccp_dm_free(&key);
932 
933 	return ret;
934 }
935 
936 static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
937 {
938 	struct ccp_sha_engine *sha = &cmd->u.sha;
939 	struct ccp_dm_workarea ctx;
940 	struct ccp_data src;
941 	struct ccp_op op;
942 	unsigned int ioffset, ooffset;
943 	unsigned int digest_size;
944 	int sb_count;
945 	const void *init;
946 	u64 block_size;
947 	int ctx_size;
948 	int ret;
949 
950 	switch (sha->type) {
951 	case CCP_SHA_TYPE_1:
952 		if (sha->ctx_len < SHA1_DIGEST_SIZE)
953 			return -EINVAL;
954 		block_size = SHA1_BLOCK_SIZE;
955 		break;
956 	case CCP_SHA_TYPE_224:
957 		if (sha->ctx_len < SHA224_DIGEST_SIZE)
958 			return -EINVAL;
959 		block_size = SHA224_BLOCK_SIZE;
960 		break;
961 	case CCP_SHA_TYPE_256:
962 		if (sha->ctx_len < SHA256_DIGEST_SIZE)
963 			return -EINVAL;
964 		block_size = SHA256_BLOCK_SIZE;
965 		break;
966 	default:
967 		return -EINVAL;
968 	}
969 
970 	if (!sha->ctx)
971 		return -EINVAL;
972 
973 	if (!sha->final && (sha->src_len & (block_size - 1)))
974 		return -EINVAL;
975 
976 	/* The version 3 device can't handle zero-length input */
977 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
978 
979 		if (!sha->src_len) {
980 			unsigned int digest_len;
981 			const u8 *sha_zero;
982 
983 			/* Not final, just return */
984 			if (!sha->final)
985 				return 0;
986 
987 			/* CCP can't do a zero length sha operation so the
988 			 * caller must buffer the data.
989 			 */
990 			if (sha->msg_bits)
991 				return -EINVAL;
992 
993 			/* The CCP cannot perform zero-length sha operations
994 			 * so the caller is required to buffer data for the
995 			 * final operation. However, a sha operation for a
996 			 * message with a total length of zero is valid so
997 			 * known values are required to supply the result.
998 			 */
999 			switch (sha->type) {
1000 			case CCP_SHA_TYPE_1:
1001 				sha_zero = sha1_zero_message_hash;
1002 				digest_len = SHA1_DIGEST_SIZE;
1003 				break;
1004 			case CCP_SHA_TYPE_224:
1005 				sha_zero = sha224_zero_message_hash;
1006 				digest_len = SHA224_DIGEST_SIZE;
1007 				break;
1008 			case CCP_SHA_TYPE_256:
1009 				sha_zero = sha256_zero_message_hash;
1010 				digest_len = SHA256_DIGEST_SIZE;
1011 				break;
1012 			default:
1013 				return -EINVAL;
1014 			}
1015 
1016 			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1017 						 digest_len, 1);
1018 
1019 			return 0;
1020 		}
1021 	}
1022 
1023 	/* Set variables used throughout */
1024 	switch (sha->type) {
1025 	case CCP_SHA_TYPE_1:
1026 		digest_size = SHA1_DIGEST_SIZE;
1027 		init = (void *) ccp_sha1_init;
1028 		ctx_size = SHA1_DIGEST_SIZE;
1029 		sb_count = 1;
1030 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1031 			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1032 		else
1033 			ooffset = ioffset = 0;
1034 		break;
1035 	case CCP_SHA_TYPE_224:
1036 		digest_size = SHA224_DIGEST_SIZE;
1037 		init = (void *) ccp_sha224_init;
1038 		ctx_size = SHA256_DIGEST_SIZE;
1039 		sb_count = 1;
1040 		ioffset = 0;
1041 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1042 			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1043 		else
1044 			ooffset = 0;
1045 		break;
1046 	case CCP_SHA_TYPE_256:
1047 		digest_size = SHA256_DIGEST_SIZE;
1048 		init = (void *) ccp_sha256_init;
1049 		ctx_size = SHA256_DIGEST_SIZE;
1050 		sb_count = 1;
1051 		ooffset = ioffset = 0;
1052 		break;
1053 	default:
1054 		ret = -EINVAL;
1055 		goto e_data;
1056 	}
1057 
1058 	/* For zero-length plaintext the src pointer is ignored;
1059 	 * otherwise both parts must be valid
1060 	 */
1061 	if (sha->src_len && !sha->src)
1062 		return -EINVAL;
1063 
1064 	memset(&op, 0, sizeof(op));
1065 	op.cmd_q = cmd_q;
1066 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1067 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1068 	op.u.sha.type = sha->type;
1069 	op.u.sha.msg_bits = sha->msg_bits;
1070 
1071 	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1072 				   DMA_BIDIRECTIONAL);
1073 	if (ret)
1074 		return ret;
1075 	if (sha->first) {
1076 		switch (sha->type) {
1077 		case CCP_SHA_TYPE_1:
1078 		case CCP_SHA_TYPE_224:
1079 		case CCP_SHA_TYPE_256:
1080 			memcpy(ctx.address + ioffset, init, ctx_size);
1081 			break;
1082 		default:
1083 			ret = -EINVAL;
1084 			goto e_ctx;
1085 		}
1086 	} else {
1087 		/* Restore the context */
1088 		ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1089 				sb_count * CCP_SB_BYTES);
1090 	}
1091 
1092 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1093 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1094 	if (ret) {
1095 		cmd->engine_error = cmd_q->cmd_error;
1096 		goto e_ctx;
1097 	}
1098 
1099 	if (sha->src) {
1100 		/* Send data to the CCP SHA engine; block_size is set above */
1101 		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1102 				    block_size, DMA_TO_DEVICE);
1103 		if (ret)
1104 			goto e_ctx;
1105 
1106 		while (src.sg_wa.bytes_left) {
1107 			ccp_prepare_data(&src, NULL, &op, block_size, false);
1108 			if (sha->final && !src.sg_wa.bytes_left)
1109 				op.eom = 1;
1110 
1111 			ret = cmd_q->ccp->vdata->perform->sha(&op);
1112 			if (ret) {
1113 				cmd->engine_error = cmd_q->cmd_error;
1114 				goto e_data;
1115 			}
1116 
1117 			ccp_process_data(&src, NULL, &op);
1118 		}
1119 	} else {
1120 		op.eom = 1;
1121 		ret = cmd_q->ccp->vdata->perform->sha(&op);
1122 		if (ret) {
1123 			cmd->engine_error = cmd_q->cmd_error;
1124 			goto e_data;
1125 		}
1126 	}
1127 
1128 	/* Retrieve the SHA context - convert from LE to BE using
1129 	 * 32-byte (256-bit) byteswapping to BE
1130 	 */
1131 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1132 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1133 	if (ret) {
1134 		cmd->engine_error = cmd_q->cmd_error;
1135 		goto e_data;
1136 	}
1137 
1138 	if (sha->final) {
1139 		/* Finishing up, so get the digest */
1140 		switch (sha->type) {
1141 		case CCP_SHA_TYPE_1:
1142 		case CCP_SHA_TYPE_224:
1143 		case CCP_SHA_TYPE_256:
1144 			ccp_get_dm_area(&ctx, ooffset,
1145 					sha->ctx, 0,
1146 					digest_size);
1147 			break;
1148 		default:
1149 			ret = -EINVAL;
1150 			goto e_ctx;
1151 		}
1152 	} else {
1153 		/* Stash the context */
1154 		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1155 				sb_count * CCP_SB_BYTES);
1156 	}
1157 
1158 	if (sha->final && sha->opad) {
1159 		/* HMAC operation, recursively perform final SHA */
1160 		struct ccp_cmd hmac_cmd;
1161 		struct scatterlist sg;
1162 		u8 *hmac_buf;
1163 
1164 		if (sha->opad_len != block_size) {
1165 			ret = -EINVAL;
1166 			goto e_data;
1167 		}
1168 
1169 		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1170 		if (!hmac_buf) {
1171 			ret = -ENOMEM;
1172 			goto e_data;
1173 		}
1174 		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1175 
1176 		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1177 		switch (sha->type) {
1178 		case CCP_SHA_TYPE_1:
1179 		case CCP_SHA_TYPE_224:
1180 		case CCP_SHA_TYPE_256:
1181 			memcpy(hmac_buf + block_size,
1182 			       ctx.address + ooffset,
1183 			       digest_size);
1184 			break;
1185 		default:
1186 			ret = -EINVAL;
1187 			goto e_ctx;
1188 		}
1189 
1190 		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1191 		hmac_cmd.engine = CCP_ENGINE_SHA;
1192 		hmac_cmd.u.sha.type = sha->type;
1193 		hmac_cmd.u.sha.ctx = sha->ctx;
1194 		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1195 		hmac_cmd.u.sha.src = &sg;
1196 		hmac_cmd.u.sha.src_len = block_size + digest_size;
1197 		hmac_cmd.u.sha.opad = NULL;
1198 		hmac_cmd.u.sha.opad_len = 0;
1199 		hmac_cmd.u.sha.first = 1;
1200 		hmac_cmd.u.sha.final = 1;
1201 		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1202 
1203 		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1204 		if (ret)
1205 			cmd->engine_error = hmac_cmd.engine_error;
1206 
1207 		kfree(hmac_buf);
1208 	}
1209 
1210 e_data:
1211 	if (sha->src)
1212 		ccp_free_data(&src, cmd_q);
1213 
1214 e_ctx:
1215 	ccp_dm_free(&ctx);
1216 
1217 	return ret;
1218 }
1219 
1220 static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1221 {
1222 	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1223 	struct ccp_dm_workarea exp, src;
1224 	struct ccp_data dst;
1225 	struct ccp_op op;
1226 	unsigned int sb_count, i_len, o_len;
1227 	int ret;
1228 
1229 	if (rsa->key_size > CCP_RSA_MAX_WIDTH)
1230 		return -EINVAL;
1231 
1232 	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1233 		return -EINVAL;
1234 
1235 	/* The RSA modulus must precede the message being acted upon, so
1236 	 * it must be copied to a DMA area where the message and the
1237 	 * modulus can be concatenated.  Therefore the input buffer
1238 	 * length required is twice the output buffer length (which
1239 	 * must be a multiple of 256-bits).
1240 	 */
1241 	o_len = ((rsa->key_size + 255) / 256) * 32;
1242 	i_len = o_len * 2;
1243 
1244 	sb_count = o_len / CCP_SB_BYTES;
1245 
1246 	memset(&op, 0, sizeof(op));
1247 	op.cmd_q = cmd_q;
1248 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1249 	op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, sb_count);
1250 
1251 	if (!op.sb_key)
1252 		return -EIO;
1253 
1254 	/* The RSA exponent may span multiple (32-byte) SB entries and must
1255 	 * be in little endian format. Reverse copy each 32-byte chunk
1256 	 * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
1257 	 * and each byte within that chunk and do not perform any byte swap
1258 	 * operations on the passthru operation.
1259 	 */
1260 	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1261 	if (ret)
1262 		goto e_sb;
1263 
1264 	ret = ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len,
1265 				      CCP_SB_BYTES, false);
1266 	if (ret)
1267 		goto e_exp;
1268 	ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1269 			     CCP_PASSTHRU_BYTESWAP_NOOP);
1270 	if (ret) {
1271 		cmd->engine_error = cmd_q->cmd_error;
1272 		goto e_exp;
1273 	}
1274 
1275 	/* Concatenate the modulus and the message. Both the modulus and
1276 	 * the operands must be in little endian format.  Since the input
1277 	 * is in big endian format it must be converted.
1278 	 */
1279 	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1280 	if (ret)
1281 		goto e_exp;
1282 
1283 	ret = ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len,
1284 				      CCP_SB_BYTES, false);
1285 	if (ret)
1286 		goto e_src;
1287 	src.address += o_len;	/* Adjust the address for the copy operation */
1288 	ret = ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len,
1289 				      CCP_SB_BYTES, false);
1290 	if (ret)
1291 		goto e_src;
1292 	src.address -= o_len;	/* Reset the address to original value */
1293 
1294 	/* Prepare the output area for the operation */
1295 	ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
1296 			    o_len, DMA_FROM_DEVICE);
1297 	if (ret)
1298 		goto e_src;
1299 
1300 	op.soc = 1;
1301 	op.src.u.dma.address = src.dma.address;
1302 	op.src.u.dma.offset = 0;
1303 	op.src.u.dma.length = i_len;
1304 	op.dst.u.dma.address = dst.dm_wa.dma.address;
1305 	op.dst.u.dma.offset = 0;
1306 	op.dst.u.dma.length = o_len;
1307 
1308 	op.u.rsa.mod_size = rsa->key_size;
1309 	op.u.rsa.input_len = i_len;
1310 
1311 	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1312 	if (ret) {
1313 		cmd->engine_error = cmd_q->cmd_error;
1314 		goto e_dst;
1315 	}
1316 
1317 	ccp_reverse_get_dm_area(&dst.dm_wa, rsa->dst, rsa->mod_len);
1318 
1319 e_dst:
1320 	ccp_free_data(&dst, cmd_q);
1321 
1322 e_src:
1323 	ccp_dm_free(&src);
1324 
1325 e_exp:
1326 	ccp_dm_free(&exp);
1327 
1328 e_sb:
1329 	cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1330 
1331 	return ret;
1332 }
1333 
1334 static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1335 				struct ccp_cmd *cmd)
1336 {
1337 	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1338 	struct ccp_dm_workarea mask;
1339 	struct ccp_data src, dst;
1340 	struct ccp_op op;
1341 	bool in_place = false;
1342 	unsigned int i;
1343 	int ret = 0;
1344 
1345 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1346 		return -EINVAL;
1347 
1348 	if (!pt->src || !pt->dst)
1349 		return -EINVAL;
1350 
1351 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1352 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1353 			return -EINVAL;
1354 		if (!pt->mask)
1355 			return -EINVAL;
1356 	}
1357 
1358 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1359 
1360 	memset(&op, 0, sizeof(op));
1361 	op.cmd_q = cmd_q;
1362 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1363 
1364 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1365 		/* Load the mask */
1366 		op.sb_key = cmd_q->sb_key;
1367 
1368 		ret = ccp_init_dm_workarea(&mask, cmd_q,
1369 					   CCP_PASSTHRU_SB_COUNT *
1370 					   CCP_SB_BYTES,
1371 					   DMA_TO_DEVICE);
1372 		if (ret)
1373 			return ret;
1374 
1375 		ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1376 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1377 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1378 		if (ret) {
1379 			cmd->engine_error = cmd_q->cmd_error;
1380 			goto e_mask;
1381 		}
1382 	}
1383 
1384 	/* Prepare the input and output data workareas. For in-place
1385 	 * operations we need to set the dma direction to BIDIRECTIONAL
1386 	 * and copy the src workarea to the dst workarea.
1387 	 */
1388 	if (sg_virt(pt->src) == sg_virt(pt->dst))
1389 		in_place = true;
1390 
1391 	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1392 			    CCP_PASSTHRU_MASKSIZE,
1393 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1394 	if (ret)
1395 		goto e_mask;
1396 
1397 	if (in_place) {
1398 		dst = src;
1399 	} else {
1400 		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
1401 				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
1402 		if (ret)
1403 			goto e_src;
1404 	}
1405 
1406 	/* Send data to the CCP Passthru engine
1407 	 *   Because the CCP engine works on a single source and destination
1408 	 *   dma address at a time, each entry in the source scatterlist
1409 	 *   (after the dma_map_sg call) must be less than or equal to the
1410 	 *   (remaining) length in the destination scatterlist entry and the
1411 	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
1412 	 */
1413 	dst.sg_wa.sg_used = 0;
1414 	for (i = 1; i <= src.sg_wa.dma_count; i++) {
1415 		if (!dst.sg_wa.sg ||
1416 		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
1417 			ret = -EINVAL;
1418 			goto e_dst;
1419 		}
1420 
1421 		if (i == src.sg_wa.dma_count) {
1422 			op.eom = 1;
1423 			op.soc = 1;
1424 		}
1425 
1426 		op.src.type = CCP_MEMTYPE_SYSTEM;
1427 		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
1428 		op.src.u.dma.offset = 0;
1429 		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
1430 
1431 		op.dst.type = CCP_MEMTYPE_SYSTEM;
1432 		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
1433 		op.dst.u.dma.offset = dst.sg_wa.sg_used;
1434 		op.dst.u.dma.length = op.src.u.dma.length;
1435 
1436 		ret = cmd_q->ccp->vdata->perform->passthru(&op);
1437 		if (ret) {
1438 			cmd->engine_error = cmd_q->cmd_error;
1439 			goto e_dst;
1440 		}
1441 
1442 		dst.sg_wa.sg_used += src.sg_wa.sg->length;
1443 		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
1444 			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
1445 			dst.sg_wa.sg_used = 0;
1446 		}
1447 		src.sg_wa.sg = sg_next(src.sg_wa.sg);
1448 	}
1449 
1450 e_dst:
1451 	if (!in_place)
1452 		ccp_free_data(&dst, cmd_q);
1453 
1454 e_src:
1455 	ccp_free_data(&src, cmd_q);
1456 
1457 e_mask:
1458 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
1459 		ccp_dm_free(&mask);
1460 
1461 	return ret;
1462 }
1463 
1464 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
1465 				      struct ccp_cmd *cmd)
1466 {
1467 	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
1468 	struct ccp_dm_workarea mask;
1469 	struct ccp_op op;
1470 	int ret;
1471 
1472 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1473 		return -EINVAL;
1474 
1475 	if (!pt->src_dma || !pt->dst_dma)
1476 		return -EINVAL;
1477 
1478 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1479 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1480 			return -EINVAL;
1481 		if (!pt->mask)
1482 			return -EINVAL;
1483 	}
1484 
1485 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1486 
1487 	memset(&op, 0, sizeof(op));
1488 	op.cmd_q = cmd_q;
1489 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1490 
1491 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1492 		/* Load the mask */
1493 		op.sb_key = cmd_q->sb_key;
1494 
1495 		mask.length = pt->mask_len;
1496 		mask.dma.address = pt->mask;
1497 		mask.dma.length = pt->mask_len;
1498 
1499 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1500 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1501 		if (ret) {
1502 			cmd->engine_error = cmd_q->cmd_error;
1503 			return ret;
1504 		}
1505 	}
1506 
1507 	/* Send data to the CCP Passthru engine */
1508 	op.eom = 1;
1509 	op.soc = 1;
1510 
1511 	op.src.type = CCP_MEMTYPE_SYSTEM;
1512 	op.src.u.dma.address = pt->src_dma;
1513 	op.src.u.dma.offset = 0;
1514 	op.src.u.dma.length = pt->src_len;
1515 
1516 	op.dst.type = CCP_MEMTYPE_SYSTEM;
1517 	op.dst.u.dma.address = pt->dst_dma;
1518 	op.dst.u.dma.offset = 0;
1519 	op.dst.u.dma.length = pt->src_len;
1520 
1521 	ret = cmd_q->ccp->vdata->perform->passthru(&op);
1522 	if (ret)
1523 		cmd->engine_error = cmd_q->cmd_error;
1524 
1525 	return ret;
1526 }
1527 
1528 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1529 {
1530 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1531 	struct ccp_dm_workarea src, dst;
1532 	struct ccp_op op;
1533 	int ret;
1534 	u8 *save;
1535 
1536 	if (!ecc->u.mm.operand_1 ||
1537 	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
1538 		return -EINVAL;
1539 
1540 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
1541 		if (!ecc->u.mm.operand_2 ||
1542 		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
1543 			return -EINVAL;
1544 
1545 	if (!ecc->u.mm.result ||
1546 	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
1547 		return -EINVAL;
1548 
1549 	memset(&op, 0, sizeof(op));
1550 	op.cmd_q = cmd_q;
1551 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1552 
1553 	/* Concatenate the modulus and the operands. Both the modulus and
1554 	 * the operands must be in little endian format.  Since the input
1555 	 * is in big endian format it must be converted and placed in a
1556 	 * fixed length buffer.
1557 	 */
1558 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1559 				   DMA_TO_DEVICE);
1560 	if (ret)
1561 		return ret;
1562 
1563 	/* Save the workarea address since it is updated in order to perform
1564 	 * the concatenation
1565 	 */
1566 	save = src.address;
1567 
1568 	/* Copy the ECC modulus */
1569 	ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
1570 				      CCP_ECC_OPERAND_SIZE, false);
1571 	if (ret)
1572 		goto e_src;
1573 	src.address += CCP_ECC_OPERAND_SIZE;
1574 
1575 	/* Copy the first operand */
1576 	ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_1,
1577 				      ecc->u.mm.operand_1_len,
1578 				      CCP_ECC_OPERAND_SIZE, false);
1579 	if (ret)
1580 		goto e_src;
1581 	src.address += CCP_ECC_OPERAND_SIZE;
1582 
1583 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
1584 		/* Copy the second operand */
1585 		ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_2,
1586 					      ecc->u.mm.operand_2_len,
1587 					      CCP_ECC_OPERAND_SIZE, false);
1588 		if (ret)
1589 			goto e_src;
1590 		src.address += CCP_ECC_OPERAND_SIZE;
1591 	}
1592 
1593 	/* Restore the workarea address */
1594 	src.address = save;
1595 
1596 	/* Prepare the output area for the operation */
1597 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1598 				   DMA_FROM_DEVICE);
1599 	if (ret)
1600 		goto e_src;
1601 
1602 	op.soc = 1;
1603 	op.src.u.dma.address = src.dma.address;
1604 	op.src.u.dma.offset = 0;
1605 	op.src.u.dma.length = src.length;
1606 	op.dst.u.dma.address = dst.dma.address;
1607 	op.dst.u.dma.offset = 0;
1608 	op.dst.u.dma.length = dst.length;
1609 
1610 	op.u.ecc.function = cmd->u.ecc.function;
1611 
1612 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
1613 	if (ret) {
1614 		cmd->engine_error = cmd_q->cmd_error;
1615 		goto e_dst;
1616 	}
1617 
1618 	ecc->ecc_result = le16_to_cpup(
1619 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1620 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1621 		ret = -EIO;
1622 		goto e_dst;
1623 	}
1624 
1625 	/* Save the ECC result */
1626 	ccp_reverse_get_dm_area(&dst, ecc->u.mm.result, CCP_ECC_MODULUS_BYTES);
1627 
1628 e_dst:
1629 	ccp_dm_free(&dst);
1630 
1631 e_src:
1632 	ccp_dm_free(&src);
1633 
1634 	return ret;
1635 }
1636 
1637 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1638 {
1639 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1640 	struct ccp_dm_workarea src, dst;
1641 	struct ccp_op op;
1642 	int ret;
1643 	u8 *save;
1644 
1645 	if (!ecc->u.pm.point_1.x ||
1646 	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
1647 	    !ecc->u.pm.point_1.y ||
1648 	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
1649 		return -EINVAL;
1650 
1651 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1652 		if (!ecc->u.pm.point_2.x ||
1653 		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
1654 		    !ecc->u.pm.point_2.y ||
1655 		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
1656 			return -EINVAL;
1657 	} else {
1658 		if (!ecc->u.pm.domain_a ||
1659 		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
1660 			return -EINVAL;
1661 
1662 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
1663 			if (!ecc->u.pm.scalar ||
1664 			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
1665 				return -EINVAL;
1666 	}
1667 
1668 	if (!ecc->u.pm.result.x ||
1669 	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
1670 	    !ecc->u.pm.result.y ||
1671 	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
1672 		return -EINVAL;
1673 
1674 	memset(&op, 0, sizeof(op));
1675 	op.cmd_q = cmd_q;
1676 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1677 
1678 	/* Concatenate the modulus and the operands. Both the modulus and
1679 	 * the operands must be in little endian format.  Since the input
1680 	 * is in big endian format it must be converted and placed in a
1681 	 * fixed length buffer.
1682 	 */
1683 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1684 				   DMA_TO_DEVICE);
1685 	if (ret)
1686 		return ret;
1687 
1688 	/* Save the workarea address since it is updated in order to perform
1689 	 * the concatenation
1690 	 */
1691 	save = src.address;
1692 
1693 	/* Copy the ECC modulus */
1694 	ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
1695 				      CCP_ECC_OPERAND_SIZE, false);
1696 	if (ret)
1697 		goto e_src;
1698 	src.address += CCP_ECC_OPERAND_SIZE;
1699 
1700 	/* Copy the first point X and Y coordinate */
1701 	ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.x,
1702 				      ecc->u.pm.point_1.x_len,
1703 				      CCP_ECC_OPERAND_SIZE, false);
1704 	if (ret)
1705 		goto e_src;
1706 	src.address += CCP_ECC_OPERAND_SIZE;
1707 	ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.y,
1708 				      ecc->u.pm.point_1.y_len,
1709 				      CCP_ECC_OPERAND_SIZE, false);
1710 	if (ret)
1711 		goto e_src;
1712 	src.address += CCP_ECC_OPERAND_SIZE;
1713 
1714 	/* Set the first point Z coordinate to 1 */
1715 	*src.address = 0x01;
1716 	src.address += CCP_ECC_OPERAND_SIZE;
1717 
1718 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1719 		/* Copy the second point X and Y coordinate */
1720 		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.x,
1721 					      ecc->u.pm.point_2.x_len,
1722 					      CCP_ECC_OPERAND_SIZE, false);
1723 		if (ret)
1724 			goto e_src;
1725 		src.address += CCP_ECC_OPERAND_SIZE;
1726 		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.y,
1727 					      ecc->u.pm.point_2.y_len,
1728 					      CCP_ECC_OPERAND_SIZE, false);
1729 		if (ret)
1730 			goto e_src;
1731 		src.address += CCP_ECC_OPERAND_SIZE;
1732 
1733 		/* Set the second point Z coordinate to 1 */
1734 		*src.address = 0x01;
1735 		src.address += CCP_ECC_OPERAND_SIZE;
1736 	} else {
1737 		/* Copy the Domain "a" parameter */
1738 		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.domain_a,
1739 					      ecc->u.pm.domain_a_len,
1740 					      CCP_ECC_OPERAND_SIZE, false);
1741 		if (ret)
1742 			goto e_src;
1743 		src.address += CCP_ECC_OPERAND_SIZE;
1744 
1745 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
1746 			/* Copy the scalar value */
1747 			ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.scalar,
1748 						      ecc->u.pm.scalar_len,
1749 						      CCP_ECC_OPERAND_SIZE,
1750 						      false);
1751 			if (ret)
1752 				goto e_src;
1753 			src.address += CCP_ECC_OPERAND_SIZE;
1754 		}
1755 	}
1756 
1757 	/* Restore the workarea address */
1758 	src.address = save;
1759 
1760 	/* Prepare the output area for the operation */
1761 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1762 				   DMA_FROM_DEVICE);
1763 	if (ret)
1764 		goto e_src;
1765 
1766 	op.soc = 1;
1767 	op.src.u.dma.address = src.dma.address;
1768 	op.src.u.dma.offset = 0;
1769 	op.src.u.dma.length = src.length;
1770 	op.dst.u.dma.address = dst.dma.address;
1771 	op.dst.u.dma.offset = 0;
1772 	op.dst.u.dma.length = dst.length;
1773 
1774 	op.u.ecc.function = cmd->u.ecc.function;
1775 
1776 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
1777 	if (ret) {
1778 		cmd->engine_error = cmd_q->cmd_error;
1779 		goto e_dst;
1780 	}
1781 
1782 	ecc->ecc_result = le16_to_cpup(
1783 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1784 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1785 		ret = -EIO;
1786 		goto e_dst;
1787 	}
1788 
1789 	/* Save the workarea address since it is updated as we walk through
1790 	 * to copy the point math result
1791 	 */
1792 	save = dst.address;
1793 
1794 	/* Save the ECC result X and Y coordinates */
1795 	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.x,
1796 				CCP_ECC_MODULUS_BYTES);
1797 	dst.address += CCP_ECC_OUTPUT_SIZE;
1798 	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.y,
1799 				CCP_ECC_MODULUS_BYTES);
1800 	dst.address += CCP_ECC_OUTPUT_SIZE;
1801 
1802 	/* Restore the workarea address */
1803 	dst.address = save;
1804 
1805 e_dst:
1806 	ccp_dm_free(&dst);
1807 
1808 e_src:
1809 	ccp_dm_free(&src);
1810 
1811 	return ret;
1812 }
1813 
1814 static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1815 {
1816 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1817 
1818 	ecc->ecc_result = 0;
1819 
1820 	if (!ecc->mod ||
1821 	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
1822 		return -EINVAL;
1823 
1824 	switch (ecc->function) {
1825 	case CCP_ECC_FUNCTION_MMUL_384BIT:
1826 	case CCP_ECC_FUNCTION_MADD_384BIT:
1827 	case CCP_ECC_FUNCTION_MINV_384BIT:
1828 		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
1829 
1830 	case CCP_ECC_FUNCTION_PADD_384BIT:
1831 	case CCP_ECC_FUNCTION_PMUL_384BIT:
1832 	case CCP_ECC_FUNCTION_PDBL_384BIT:
1833 		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
1834 
1835 	default:
1836 		return -EINVAL;
1837 	}
1838 }
1839 
1840 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1841 {
1842 	int ret;
1843 
1844 	cmd->engine_error = 0;
1845 	cmd_q->cmd_error = 0;
1846 	cmd_q->int_rcvd = 0;
1847 	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
1848 
1849 	switch (cmd->engine) {
1850 	case CCP_ENGINE_AES:
1851 		ret = ccp_run_aes_cmd(cmd_q, cmd);
1852 		break;
1853 	case CCP_ENGINE_XTS_AES_128:
1854 		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
1855 		break;
1856 	case CCP_ENGINE_SHA:
1857 		ret = ccp_run_sha_cmd(cmd_q, cmd);
1858 		break;
1859 	case CCP_ENGINE_RSA:
1860 		ret = ccp_run_rsa_cmd(cmd_q, cmd);
1861 		break;
1862 	case CCP_ENGINE_PASSTHRU:
1863 		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
1864 			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
1865 		else
1866 			ret = ccp_run_passthru_cmd(cmd_q, cmd);
1867 		break;
1868 	case CCP_ENGINE_ECC:
1869 		ret = ccp_run_ecc_cmd(cmd_q, cmd);
1870 		break;
1871 	default:
1872 		ret = -EINVAL;
1873 	}
1874 
1875 	return ret;
1876 }
1877