xref: /openbmc/linux/drivers/crypto/ccp/ccp-ops.c (revision d634baea)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/interrupt.h>
18 #include <crypto/scatterwalk.h>
19 #include <crypto/des.h>
20 #include <linux/ccp.h>
21 
22 #include "ccp-dev.h"
23 
24 /* SHA initial context values */
25 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
26 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
27 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
28 	cpu_to_be32(SHA1_H4),
29 };
30 
31 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
32 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
33 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
34 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
35 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
36 };
37 
38 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
39 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
40 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
41 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
42 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
43 };
44 
45 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
46 	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
47 	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
48 	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
49 	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
50 };
51 
52 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
53 	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
54 	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
55 	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
56 	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
57 };
58 
59 #define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
60 					ccp_gen_jobid(ccp) : 0)
61 
62 static u32 ccp_gen_jobid(struct ccp_device *ccp)
63 {
64 	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
65 }
66 
67 static void ccp_sg_free(struct ccp_sg_workarea *wa)
68 {
69 	if (wa->dma_count)
70 		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
71 
72 	wa->dma_count = 0;
73 }
74 
75 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
76 				struct scatterlist *sg, u64 len,
77 				enum dma_data_direction dma_dir)
78 {
79 	memset(wa, 0, sizeof(*wa));
80 
81 	wa->sg = sg;
82 	if (!sg)
83 		return 0;
84 
85 	wa->nents = sg_nents_for_len(sg, len);
86 	if (wa->nents < 0)
87 		return wa->nents;
88 
89 	wa->bytes_left = len;
90 	wa->sg_used = 0;
91 
92 	if (len == 0)
93 		return 0;
94 
95 	if (dma_dir == DMA_NONE)
96 		return 0;
97 
98 	wa->dma_sg = sg;
99 	wa->dma_dev = dev;
100 	wa->dma_dir = dma_dir;
101 	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
102 	if (!wa->dma_count)
103 		return -ENOMEM;
104 
105 	return 0;
106 }
107 
108 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
109 {
110 	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
111 
112 	if (!wa->sg)
113 		return;
114 
115 	wa->sg_used += nbytes;
116 	wa->bytes_left -= nbytes;
117 	if (wa->sg_used == wa->sg->length) {
118 		wa->sg = sg_next(wa->sg);
119 		wa->sg_used = 0;
120 	}
121 }
122 
123 static void ccp_dm_free(struct ccp_dm_workarea *wa)
124 {
125 	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
126 		if (wa->address)
127 			dma_pool_free(wa->dma_pool, wa->address,
128 				      wa->dma.address);
129 	} else {
130 		if (wa->dma.address)
131 			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
132 					 wa->dma.dir);
133 		kfree(wa->address);
134 	}
135 
136 	wa->address = NULL;
137 	wa->dma.address = 0;
138 }
139 
140 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
141 				struct ccp_cmd_queue *cmd_q,
142 				unsigned int len,
143 				enum dma_data_direction dir)
144 {
145 	memset(wa, 0, sizeof(*wa));
146 
147 	if (!len)
148 		return 0;
149 
150 	wa->dev = cmd_q->ccp->dev;
151 	wa->length = len;
152 
153 	if (len <= CCP_DMAPOOL_MAX_SIZE) {
154 		wa->dma_pool = cmd_q->dma_pool;
155 
156 		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
157 					     &wa->dma.address);
158 		if (!wa->address)
159 			return -ENOMEM;
160 
161 		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
162 
163 		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
164 	} else {
165 		wa->address = kzalloc(len, GFP_KERNEL);
166 		if (!wa->address)
167 			return -ENOMEM;
168 
169 		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
170 						 dir);
171 		if (!wa->dma.address)
172 			return -ENOMEM;
173 
174 		wa->dma.length = len;
175 	}
176 	wa->dma.dir = dir;
177 
178 	return 0;
179 }
180 
181 static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
182 			    struct scatterlist *sg, unsigned int sg_offset,
183 			    unsigned int len)
184 {
185 	WARN_ON(!wa->address);
186 
187 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
188 				 0);
189 }
190 
191 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
192 			    struct scatterlist *sg, unsigned int sg_offset,
193 			    unsigned int len)
194 {
195 	WARN_ON(!wa->address);
196 
197 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
198 				 1);
199 }
200 
201 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
202 				   unsigned int wa_offset,
203 				   struct scatterlist *sg,
204 				   unsigned int sg_offset,
205 				   unsigned int len)
206 {
207 	u8 *p, *q;
208 
209 	ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
210 
211 	p = wa->address + wa_offset;
212 	q = p + len - 1;
213 	while (p < q) {
214 		*p = *p ^ *q;
215 		*q = *p ^ *q;
216 		*p = *p ^ *q;
217 		p++;
218 		q--;
219 	}
220 	return 0;
221 }
222 
223 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
224 				    unsigned int wa_offset,
225 				    struct scatterlist *sg,
226 				    unsigned int sg_offset,
227 				    unsigned int len)
228 {
229 	u8 *p, *q;
230 
231 	p = wa->address + wa_offset;
232 	q = p + len - 1;
233 	while (p < q) {
234 		*p = *p ^ *q;
235 		*q = *p ^ *q;
236 		*p = *p ^ *q;
237 		p++;
238 		q--;
239 	}
240 
241 	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
242 }
243 
244 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
245 {
246 	ccp_dm_free(&data->dm_wa);
247 	ccp_sg_free(&data->sg_wa);
248 }
249 
250 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
251 			 struct scatterlist *sg, u64 sg_len,
252 			 unsigned int dm_len,
253 			 enum dma_data_direction dir)
254 {
255 	int ret;
256 
257 	memset(data, 0, sizeof(*data));
258 
259 	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
260 				   dir);
261 	if (ret)
262 		goto e_err;
263 
264 	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
265 	if (ret)
266 		goto e_err;
267 
268 	return 0;
269 
270 e_err:
271 	ccp_free_data(data, cmd_q);
272 
273 	return ret;
274 }
275 
276 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
277 {
278 	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
279 	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
280 	unsigned int buf_count, nbytes;
281 
282 	/* Clear the buffer if setting it */
283 	if (!from)
284 		memset(dm_wa->address, 0, dm_wa->length);
285 
286 	if (!sg_wa->sg)
287 		return 0;
288 
289 	/* Perform the copy operation
290 	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
291 	 *   an unsigned int
292 	 */
293 	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
294 	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
295 				 nbytes, from);
296 
297 	/* Update the structures and generate the count */
298 	buf_count = 0;
299 	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
300 		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
301 			     dm_wa->length - buf_count);
302 		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
303 
304 		buf_count += nbytes;
305 		ccp_update_sg_workarea(sg_wa, nbytes);
306 	}
307 
308 	return buf_count;
309 }
310 
311 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
312 {
313 	return ccp_queue_buf(data, 0);
314 }
315 
316 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
317 {
318 	return ccp_queue_buf(data, 1);
319 }
320 
321 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
322 			     struct ccp_op *op, unsigned int block_size,
323 			     bool blocksize_op)
324 {
325 	unsigned int sg_src_len, sg_dst_len, op_len;
326 
327 	/* The CCP can only DMA from/to one address each per operation. This
328 	 * requires that we find the smallest DMA area between the source
329 	 * and destination. The resulting len values will always be <= UINT_MAX
330 	 * because the dma length is an unsigned int.
331 	 */
332 	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
333 	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
334 
335 	if (dst) {
336 		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
337 		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
338 		op_len = min(sg_src_len, sg_dst_len);
339 	} else {
340 		op_len = sg_src_len;
341 	}
342 
343 	/* The data operation length will be at least block_size in length
344 	 * or the smaller of available sg room remaining for the source or
345 	 * the destination
346 	 */
347 	op_len = max(op_len, block_size);
348 
349 	/* Unless we have to buffer data, there's no reason to wait */
350 	op->soc = 0;
351 
352 	if (sg_src_len < block_size) {
353 		/* Not enough data in the sg element, so it
354 		 * needs to be buffered into a blocksize chunk
355 		 */
356 		int cp_len = ccp_fill_queue_buf(src);
357 
358 		op->soc = 1;
359 		op->src.u.dma.address = src->dm_wa.dma.address;
360 		op->src.u.dma.offset = 0;
361 		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
362 	} else {
363 		/* Enough data in the sg element, but we need to
364 		 * adjust for any previously copied data
365 		 */
366 		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
367 		op->src.u.dma.offset = src->sg_wa.sg_used;
368 		op->src.u.dma.length = op_len & ~(block_size - 1);
369 
370 		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
371 	}
372 
373 	if (dst) {
374 		if (sg_dst_len < block_size) {
375 			/* Not enough room in the sg element or we're on the
376 			 * last piece of data (when using padding), so the
377 			 * output needs to be buffered into a blocksize chunk
378 			 */
379 			op->soc = 1;
380 			op->dst.u.dma.address = dst->dm_wa.dma.address;
381 			op->dst.u.dma.offset = 0;
382 			op->dst.u.dma.length = op->src.u.dma.length;
383 		} else {
384 			/* Enough room in the sg element, but we need to
385 			 * adjust for any previously used area
386 			 */
387 			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
388 			op->dst.u.dma.offset = dst->sg_wa.sg_used;
389 			op->dst.u.dma.length = op->src.u.dma.length;
390 		}
391 	}
392 }
393 
394 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
395 			     struct ccp_op *op)
396 {
397 	op->init = 0;
398 
399 	if (dst) {
400 		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
401 			ccp_empty_queue_buf(dst);
402 		else
403 			ccp_update_sg_workarea(&dst->sg_wa,
404 					       op->dst.u.dma.length);
405 	}
406 }
407 
408 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
409 			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
410 			       u32 byte_swap, bool from)
411 {
412 	struct ccp_op op;
413 
414 	memset(&op, 0, sizeof(op));
415 
416 	op.cmd_q = cmd_q;
417 	op.jobid = jobid;
418 	op.eom = 1;
419 
420 	if (from) {
421 		op.soc = 1;
422 		op.src.type = CCP_MEMTYPE_SB;
423 		op.src.u.sb = sb;
424 		op.dst.type = CCP_MEMTYPE_SYSTEM;
425 		op.dst.u.dma.address = wa->dma.address;
426 		op.dst.u.dma.length = wa->length;
427 	} else {
428 		op.src.type = CCP_MEMTYPE_SYSTEM;
429 		op.src.u.dma.address = wa->dma.address;
430 		op.src.u.dma.length = wa->length;
431 		op.dst.type = CCP_MEMTYPE_SB;
432 		op.dst.u.sb = sb;
433 	}
434 
435 	op.u.passthru.byte_swap = byte_swap;
436 
437 	return cmd_q->ccp->vdata->perform->passthru(&op);
438 }
439 
440 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
441 			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
442 			  u32 byte_swap)
443 {
444 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
445 }
446 
447 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
448 			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
449 			    u32 byte_swap)
450 {
451 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
452 }
453 
454 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
455 				struct ccp_cmd *cmd)
456 {
457 	struct ccp_aes_engine *aes = &cmd->u.aes;
458 	struct ccp_dm_workarea key, ctx;
459 	struct ccp_data src;
460 	struct ccp_op op;
461 	unsigned int dm_offset;
462 	int ret;
463 
464 	if (!((aes->key_len == AES_KEYSIZE_128) ||
465 	      (aes->key_len == AES_KEYSIZE_192) ||
466 	      (aes->key_len == AES_KEYSIZE_256)))
467 		return -EINVAL;
468 
469 	if (aes->src_len & (AES_BLOCK_SIZE - 1))
470 		return -EINVAL;
471 
472 	if (aes->iv_len != AES_BLOCK_SIZE)
473 		return -EINVAL;
474 
475 	if (!aes->key || !aes->iv || !aes->src)
476 		return -EINVAL;
477 
478 	if (aes->cmac_final) {
479 		if (aes->cmac_key_len != AES_BLOCK_SIZE)
480 			return -EINVAL;
481 
482 		if (!aes->cmac_key)
483 			return -EINVAL;
484 	}
485 
486 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
487 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
488 
489 	ret = -EIO;
490 	memset(&op, 0, sizeof(op));
491 	op.cmd_q = cmd_q;
492 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
493 	op.sb_key = cmd_q->sb_key;
494 	op.sb_ctx = cmd_q->sb_ctx;
495 	op.init = 1;
496 	op.u.aes.type = aes->type;
497 	op.u.aes.mode = aes->mode;
498 	op.u.aes.action = aes->action;
499 
500 	/* All supported key sizes fit in a single (32-byte) SB entry
501 	 * and must be in little endian format. Use the 256-bit byte
502 	 * swap passthru option to convert from big endian to little
503 	 * endian.
504 	 */
505 	ret = ccp_init_dm_workarea(&key, cmd_q,
506 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
507 				   DMA_TO_DEVICE);
508 	if (ret)
509 		return ret;
510 
511 	dm_offset = CCP_SB_BYTES - aes->key_len;
512 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
513 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
514 			     CCP_PASSTHRU_BYTESWAP_256BIT);
515 	if (ret) {
516 		cmd->engine_error = cmd_q->cmd_error;
517 		goto e_key;
518 	}
519 
520 	/* The AES context fits in a single (32-byte) SB entry and
521 	 * must be in little endian format. Use the 256-bit byte swap
522 	 * passthru option to convert from big endian to little endian.
523 	 */
524 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
525 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
526 				   DMA_BIDIRECTIONAL);
527 	if (ret)
528 		goto e_key;
529 
530 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
531 	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
532 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
533 			     CCP_PASSTHRU_BYTESWAP_256BIT);
534 	if (ret) {
535 		cmd->engine_error = cmd_q->cmd_error;
536 		goto e_ctx;
537 	}
538 
539 	/* Send data to the CCP AES engine */
540 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
541 			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
542 	if (ret)
543 		goto e_ctx;
544 
545 	while (src.sg_wa.bytes_left) {
546 		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
547 		if (aes->cmac_final && !src.sg_wa.bytes_left) {
548 			op.eom = 1;
549 
550 			/* Push the K1/K2 key to the CCP now */
551 			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
552 					       op.sb_ctx,
553 					       CCP_PASSTHRU_BYTESWAP_256BIT);
554 			if (ret) {
555 				cmd->engine_error = cmd_q->cmd_error;
556 				goto e_src;
557 			}
558 
559 			ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
560 					aes->cmac_key_len);
561 			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
562 					     CCP_PASSTHRU_BYTESWAP_256BIT);
563 			if (ret) {
564 				cmd->engine_error = cmd_q->cmd_error;
565 				goto e_src;
566 			}
567 		}
568 
569 		ret = cmd_q->ccp->vdata->perform->aes(&op);
570 		if (ret) {
571 			cmd->engine_error = cmd_q->cmd_error;
572 			goto e_src;
573 		}
574 
575 		ccp_process_data(&src, NULL, &op);
576 	}
577 
578 	/* Retrieve the AES context - convert from LE to BE using
579 	 * 32-byte (256-bit) byteswapping
580 	 */
581 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
582 			       CCP_PASSTHRU_BYTESWAP_256BIT);
583 	if (ret) {
584 		cmd->engine_error = cmd_q->cmd_error;
585 		goto e_src;
586 	}
587 
588 	/* ...but we only need AES_BLOCK_SIZE bytes */
589 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
590 	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
591 
592 e_src:
593 	ccp_free_data(&src, cmd_q);
594 
595 e_ctx:
596 	ccp_dm_free(&ctx);
597 
598 e_key:
599 	ccp_dm_free(&key);
600 
601 	return ret;
602 }
603 
604 static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
605 			       struct ccp_cmd *cmd)
606 {
607 	struct ccp_aes_engine *aes = &cmd->u.aes;
608 	struct ccp_dm_workarea key, ctx, final_wa, tag;
609 	struct ccp_data src, dst;
610 	struct ccp_data aad;
611 	struct ccp_op op;
612 
613 	unsigned long long *final;
614 	unsigned int dm_offset;
615 	unsigned int ilen;
616 	bool in_place = true; /* Default value */
617 	int ret;
618 
619 	struct scatterlist *p_inp, sg_inp[2];
620 	struct scatterlist *p_tag, sg_tag[2];
621 	struct scatterlist *p_outp, sg_outp[2];
622 	struct scatterlist *p_aad;
623 
624 	if (!aes->iv)
625 		return -EINVAL;
626 
627 	if (!((aes->key_len == AES_KEYSIZE_128) ||
628 		(aes->key_len == AES_KEYSIZE_192) ||
629 		(aes->key_len == AES_KEYSIZE_256)))
630 		return -EINVAL;
631 
632 	if (!aes->key) /* Gotta have a key SGL */
633 		return -EINVAL;
634 
635 	/* First, decompose the source buffer into AAD & PT,
636 	 * and the destination buffer into AAD, CT & tag, or
637 	 * the input into CT & tag.
638 	 * It is expected that the input and output SGs will
639 	 * be valid, even if the AAD and input lengths are 0.
640 	 */
641 	p_aad = aes->src;
642 	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
643 	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
644 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
645 		ilen = aes->src_len;
646 		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
647 	} else {
648 		/* Input length for decryption includes tag */
649 		ilen = aes->src_len - AES_BLOCK_SIZE;
650 		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
651 	}
652 
653 	memset(&op, 0, sizeof(op));
654 	op.cmd_q = cmd_q;
655 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
656 	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
657 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
658 	op.init = 1;
659 	op.u.aes.type = aes->type;
660 
661 	/* Copy the key to the LSB */
662 	ret = ccp_init_dm_workarea(&key, cmd_q,
663 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
664 				   DMA_TO_DEVICE);
665 	if (ret)
666 		return ret;
667 
668 	dm_offset = CCP_SB_BYTES - aes->key_len;
669 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
670 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
671 			     CCP_PASSTHRU_BYTESWAP_256BIT);
672 	if (ret) {
673 		cmd->engine_error = cmd_q->cmd_error;
674 		goto e_key;
675 	}
676 
677 	/* Copy the context (IV) to the LSB.
678 	 * There is an assumption here that the IV is 96 bits in length, plus
679 	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
680 	 */
681 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
682 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
683 				   DMA_BIDIRECTIONAL);
684 	if (ret)
685 		goto e_key;
686 
687 	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
688 	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
689 
690 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
691 			     CCP_PASSTHRU_BYTESWAP_256BIT);
692 	if (ret) {
693 		cmd->engine_error = cmd_q->cmd_error;
694 		goto e_ctx;
695 	}
696 
697 	op.init = 1;
698 	if (aes->aad_len > 0) {
699 		/* Step 1: Run a GHASH over the Additional Authenticated Data */
700 		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
701 				    AES_BLOCK_SIZE,
702 				    DMA_TO_DEVICE);
703 		if (ret)
704 			goto e_ctx;
705 
706 		op.u.aes.mode = CCP_AES_MODE_GHASH;
707 		op.u.aes.action = CCP_AES_GHASHAAD;
708 
709 		while (aad.sg_wa.bytes_left) {
710 			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
711 
712 			ret = cmd_q->ccp->vdata->perform->aes(&op);
713 			if (ret) {
714 				cmd->engine_error = cmd_q->cmd_error;
715 				goto e_aad;
716 			}
717 
718 			ccp_process_data(&aad, NULL, &op);
719 			op.init = 0;
720 		}
721 	}
722 
723 	op.u.aes.mode = CCP_AES_MODE_GCTR;
724 	op.u.aes.action = aes->action;
725 
726 	if (ilen > 0) {
727 		/* Step 2: Run a GCTR over the plaintext */
728 		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
729 
730 		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
731 				    AES_BLOCK_SIZE,
732 				    in_place ? DMA_BIDIRECTIONAL
733 					     : DMA_TO_DEVICE);
734 		if (ret)
735 			goto e_ctx;
736 
737 		if (in_place) {
738 			dst = src;
739 		} else {
740 			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
741 					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
742 			if (ret)
743 				goto e_src;
744 		}
745 
746 		op.soc = 0;
747 		op.eom = 0;
748 		op.init = 1;
749 		while (src.sg_wa.bytes_left) {
750 			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
751 			if (!src.sg_wa.bytes_left) {
752 				unsigned int nbytes = aes->src_len
753 						      % AES_BLOCK_SIZE;
754 
755 				if (nbytes) {
756 					op.eom = 1;
757 					op.u.aes.size = (nbytes * 8) - 1;
758 				}
759 			}
760 
761 			ret = cmd_q->ccp->vdata->perform->aes(&op);
762 			if (ret) {
763 				cmd->engine_error = cmd_q->cmd_error;
764 				goto e_dst;
765 			}
766 
767 			ccp_process_data(&src, &dst, &op);
768 			op.init = 0;
769 		}
770 	}
771 
772 	/* Step 3: Update the IV portion of the context with the original IV */
773 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
774 			       CCP_PASSTHRU_BYTESWAP_256BIT);
775 	if (ret) {
776 		cmd->engine_error = cmd_q->cmd_error;
777 		goto e_dst;
778 	}
779 
780 	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
781 
782 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
783 			     CCP_PASSTHRU_BYTESWAP_256BIT);
784 	if (ret) {
785 		cmd->engine_error = cmd_q->cmd_error;
786 		goto e_dst;
787 	}
788 
789 	/* Step 4: Concatenate the lengths of the AAD and source, and
790 	 * hash that 16 byte buffer.
791 	 */
792 	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
793 				   DMA_BIDIRECTIONAL);
794 	if (ret)
795 		goto e_dst;
796 	final = (unsigned long long *) final_wa.address;
797 	final[0] = cpu_to_be64(aes->aad_len * 8);
798 	final[1] = cpu_to_be64(ilen * 8);
799 
800 	op.u.aes.mode = CCP_AES_MODE_GHASH;
801 	op.u.aes.action = CCP_AES_GHASHFINAL;
802 	op.src.type = CCP_MEMTYPE_SYSTEM;
803 	op.src.u.dma.address = final_wa.dma.address;
804 	op.src.u.dma.length = AES_BLOCK_SIZE;
805 	op.dst.type = CCP_MEMTYPE_SYSTEM;
806 	op.dst.u.dma.address = final_wa.dma.address;
807 	op.dst.u.dma.length = AES_BLOCK_SIZE;
808 	op.eom = 1;
809 	op.u.aes.size = 0;
810 	ret = cmd_q->ccp->vdata->perform->aes(&op);
811 	if (ret)
812 		goto e_dst;
813 
814 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
815 		/* Put the ciphered tag after the ciphertext. */
816 		ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
817 	} else {
818 		/* Does this ciphered tag match the input? */
819 		ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
820 					   DMA_BIDIRECTIONAL);
821 		if (ret)
822 			goto e_tag;
823 		ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
824 
825 		ret = memcmp(tag.address, final_wa.address, AES_BLOCK_SIZE);
826 		ccp_dm_free(&tag);
827 	}
828 
829 e_tag:
830 	ccp_dm_free(&final_wa);
831 
832 e_dst:
833 	if (aes->src_len && !in_place)
834 		ccp_free_data(&dst, cmd_q);
835 
836 e_src:
837 	if (aes->src_len)
838 		ccp_free_data(&src, cmd_q);
839 
840 e_aad:
841 	if (aes->aad_len)
842 		ccp_free_data(&aad, cmd_q);
843 
844 e_ctx:
845 	ccp_dm_free(&ctx);
846 
847 e_key:
848 	ccp_dm_free(&key);
849 
850 	return ret;
851 }
852 
853 static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
854 {
855 	struct ccp_aes_engine *aes = &cmd->u.aes;
856 	struct ccp_dm_workarea key, ctx;
857 	struct ccp_data src, dst;
858 	struct ccp_op op;
859 	unsigned int dm_offset;
860 	bool in_place = false;
861 	int ret;
862 
863 	if (aes->mode == CCP_AES_MODE_CMAC)
864 		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
865 
866 	if (aes->mode == CCP_AES_MODE_GCM)
867 		return ccp_run_aes_gcm_cmd(cmd_q, cmd);
868 
869 	if (!((aes->key_len == AES_KEYSIZE_128) ||
870 	      (aes->key_len == AES_KEYSIZE_192) ||
871 	      (aes->key_len == AES_KEYSIZE_256)))
872 		return -EINVAL;
873 
874 	if (((aes->mode == CCP_AES_MODE_ECB) ||
875 	     (aes->mode == CCP_AES_MODE_CBC) ||
876 	     (aes->mode == CCP_AES_MODE_CFB)) &&
877 	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
878 		return -EINVAL;
879 
880 	if (!aes->key || !aes->src || !aes->dst)
881 		return -EINVAL;
882 
883 	if (aes->mode != CCP_AES_MODE_ECB) {
884 		if (aes->iv_len != AES_BLOCK_SIZE)
885 			return -EINVAL;
886 
887 		if (!aes->iv)
888 			return -EINVAL;
889 	}
890 
891 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
892 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
893 
894 	ret = -EIO;
895 	memset(&op, 0, sizeof(op));
896 	op.cmd_q = cmd_q;
897 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
898 	op.sb_key = cmd_q->sb_key;
899 	op.sb_ctx = cmd_q->sb_ctx;
900 	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
901 	op.u.aes.type = aes->type;
902 	op.u.aes.mode = aes->mode;
903 	op.u.aes.action = aes->action;
904 
905 	/* All supported key sizes fit in a single (32-byte) SB entry
906 	 * and must be in little endian format. Use the 256-bit byte
907 	 * swap passthru option to convert from big endian to little
908 	 * endian.
909 	 */
910 	ret = ccp_init_dm_workarea(&key, cmd_q,
911 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
912 				   DMA_TO_DEVICE);
913 	if (ret)
914 		return ret;
915 
916 	dm_offset = CCP_SB_BYTES - aes->key_len;
917 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
918 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
919 			     CCP_PASSTHRU_BYTESWAP_256BIT);
920 	if (ret) {
921 		cmd->engine_error = cmd_q->cmd_error;
922 		goto e_key;
923 	}
924 
925 	/* The AES context fits in a single (32-byte) SB entry and
926 	 * must be in little endian format. Use the 256-bit byte swap
927 	 * passthru option to convert from big endian to little endian.
928 	 */
929 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
930 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
931 				   DMA_BIDIRECTIONAL);
932 	if (ret)
933 		goto e_key;
934 
935 	if (aes->mode != CCP_AES_MODE_ECB) {
936 		/* Load the AES context - convert to LE */
937 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
938 		ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
939 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
940 				     CCP_PASSTHRU_BYTESWAP_256BIT);
941 		if (ret) {
942 			cmd->engine_error = cmd_q->cmd_error;
943 			goto e_ctx;
944 		}
945 	}
946 	switch (aes->mode) {
947 	case CCP_AES_MODE_CFB: /* CFB128 only */
948 	case CCP_AES_MODE_CTR:
949 		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
950 		break;
951 	default:
952 		op.u.aes.size = 0;
953 	}
954 
955 	/* Prepare the input and output data workareas. For in-place
956 	 * operations we need to set the dma direction to BIDIRECTIONAL
957 	 * and copy the src workarea to the dst workarea.
958 	 */
959 	if (sg_virt(aes->src) == sg_virt(aes->dst))
960 		in_place = true;
961 
962 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
963 			    AES_BLOCK_SIZE,
964 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
965 	if (ret)
966 		goto e_ctx;
967 
968 	if (in_place) {
969 		dst = src;
970 	} else {
971 		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
972 				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
973 		if (ret)
974 			goto e_src;
975 	}
976 
977 	/* Send data to the CCP AES engine */
978 	while (src.sg_wa.bytes_left) {
979 		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
980 		if (!src.sg_wa.bytes_left) {
981 			op.eom = 1;
982 
983 			/* Since we don't retrieve the AES context in ECB
984 			 * mode we have to wait for the operation to complete
985 			 * on the last piece of data
986 			 */
987 			if (aes->mode == CCP_AES_MODE_ECB)
988 				op.soc = 1;
989 		}
990 
991 		ret = cmd_q->ccp->vdata->perform->aes(&op);
992 		if (ret) {
993 			cmd->engine_error = cmd_q->cmd_error;
994 			goto e_dst;
995 		}
996 
997 		ccp_process_data(&src, &dst, &op);
998 	}
999 
1000 	if (aes->mode != CCP_AES_MODE_ECB) {
1001 		/* Retrieve the AES context - convert from LE to BE using
1002 		 * 32-byte (256-bit) byteswapping
1003 		 */
1004 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1005 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1006 		if (ret) {
1007 			cmd->engine_error = cmd_q->cmd_error;
1008 			goto e_dst;
1009 		}
1010 
1011 		/* ...but we only need AES_BLOCK_SIZE bytes */
1012 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1013 		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1014 	}
1015 
1016 e_dst:
1017 	if (!in_place)
1018 		ccp_free_data(&dst, cmd_q);
1019 
1020 e_src:
1021 	ccp_free_data(&src, cmd_q);
1022 
1023 e_ctx:
1024 	ccp_dm_free(&ctx);
1025 
1026 e_key:
1027 	ccp_dm_free(&key);
1028 
1029 	return ret;
1030 }
1031 
1032 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
1033 			       struct ccp_cmd *cmd)
1034 {
1035 	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1036 	struct ccp_dm_workarea key, ctx;
1037 	struct ccp_data src, dst;
1038 	struct ccp_op op;
1039 	unsigned int unit_size, dm_offset;
1040 	bool in_place = false;
1041 	unsigned int sb_count;
1042 	enum ccp_aes_type aestype;
1043 	int ret;
1044 
1045 	switch (xts->unit_size) {
1046 	case CCP_XTS_AES_UNIT_SIZE_16:
1047 		unit_size = 16;
1048 		break;
1049 	case CCP_XTS_AES_UNIT_SIZE_512:
1050 		unit_size = 512;
1051 		break;
1052 	case CCP_XTS_AES_UNIT_SIZE_1024:
1053 		unit_size = 1024;
1054 		break;
1055 	case CCP_XTS_AES_UNIT_SIZE_2048:
1056 		unit_size = 2048;
1057 		break;
1058 	case CCP_XTS_AES_UNIT_SIZE_4096:
1059 		unit_size = 4096;
1060 		break;
1061 
1062 	default:
1063 		return -EINVAL;
1064 	}
1065 
1066 	if (xts->key_len == AES_KEYSIZE_128)
1067 		aestype = CCP_AES_TYPE_128;
1068 	else if (xts->key_len == AES_KEYSIZE_256)
1069 		aestype = CCP_AES_TYPE_256;
1070 	else
1071 		return -EINVAL;
1072 
1073 	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1074 		return -EINVAL;
1075 
1076 	if (xts->iv_len != AES_BLOCK_SIZE)
1077 		return -EINVAL;
1078 
1079 	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1080 		return -EINVAL;
1081 
1082 	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1083 	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1084 
1085 	ret = -EIO;
1086 	memset(&op, 0, sizeof(op));
1087 	op.cmd_q = cmd_q;
1088 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1089 	op.sb_key = cmd_q->sb_key;
1090 	op.sb_ctx = cmd_q->sb_ctx;
1091 	op.init = 1;
1092 	op.u.xts.type = aestype;
1093 	op.u.xts.action = xts->action;
1094 	op.u.xts.unit_size = xts->unit_size;
1095 
1096 	/* A version 3 device only supports 128-bit keys, which fits into a
1097 	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1098 	 * SB entries.
1099 	 */
1100 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1101 		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1102 	else
1103 		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1104 	ret = ccp_init_dm_workarea(&key, cmd_q,
1105 				   sb_count * CCP_SB_BYTES,
1106 				   DMA_TO_DEVICE);
1107 	if (ret)
1108 		return ret;
1109 
1110 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1111 		/* All supported key sizes must be in little endian format.
1112 		 * Use the 256-bit byte swap passthru option to convert from
1113 		 * big endian to little endian.
1114 		 */
1115 		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1116 		ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1117 		ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1118 	} else {
1119 		/* Version 5 CCPs use a 512-bit space for the key: each portion
1120 		 * occupies 256 bits, or one entire slot, and is zero-padded.
1121 		 */
1122 		unsigned int pad;
1123 
1124 		dm_offset = CCP_SB_BYTES;
1125 		pad = dm_offset - xts->key_len;
1126 		ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1127 		ccp_set_dm_area(&key, dm_offset + pad, xts->key, xts->key_len,
1128 				xts->key_len);
1129 	}
1130 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1131 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1132 	if (ret) {
1133 		cmd->engine_error = cmd_q->cmd_error;
1134 		goto e_key;
1135 	}
1136 
1137 	/* The AES context fits in a single (32-byte) SB entry and
1138 	 * for XTS is already in little endian format so no byte swapping
1139 	 * is needed.
1140 	 */
1141 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1142 				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1143 				   DMA_BIDIRECTIONAL);
1144 	if (ret)
1145 		goto e_key;
1146 
1147 	ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1148 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1149 			     CCP_PASSTHRU_BYTESWAP_NOOP);
1150 	if (ret) {
1151 		cmd->engine_error = cmd_q->cmd_error;
1152 		goto e_ctx;
1153 	}
1154 
1155 	/* Prepare the input and output data workareas. For in-place
1156 	 * operations we need to set the dma direction to BIDIRECTIONAL
1157 	 * and copy the src workarea to the dst workarea.
1158 	 */
1159 	if (sg_virt(xts->src) == sg_virt(xts->dst))
1160 		in_place = true;
1161 
1162 	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1163 			    unit_size,
1164 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1165 	if (ret)
1166 		goto e_ctx;
1167 
1168 	if (in_place) {
1169 		dst = src;
1170 	} else {
1171 		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1172 				    unit_size, DMA_FROM_DEVICE);
1173 		if (ret)
1174 			goto e_src;
1175 	}
1176 
1177 	/* Send data to the CCP AES engine */
1178 	while (src.sg_wa.bytes_left) {
1179 		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1180 		if (!src.sg_wa.bytes_left)
1181 			op.eom = 1;
1182 
1183 		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1184 		if (ret) {
1185 			cmd->engine_error = cmd_q->cmd_error;
1186 			goto e_dst;
1187 		}
1188 
1189 		ccp_process_data(&src, &dst, &op);
1190 	}
1191 
1192 	/* Retrieve the AES context - convert from LE to BE using
1193 	 * 32-byte (256-bit) byteswapping
1194 	 */
1195 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1196 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1197 	if (ret) {
1198 		cmd->engine_error = cmd_q->cmd_error;
1199 		goto e_dst;
1200 	}
1201 
1202 	/* ...but we only need AES_BLOCK_SIZE bytes */
1203 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1204 	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1205 
1206 e_dst:
1207 	if (!in_place)
1208 		ccp_free_data(&dst, cmd_q);
1209 
1210 e_src:
1211 	ccp_free_data(&src, cmd_q);
1212 
1213 e_ctx:
1214 	ccp_dm_free(&ctx);
1215 
1216 e_key:
1217 	ccp_dm_free(&key);
1218 
1219 	return ret;
1220 }
1221 
1222 static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1223 {
1224 	struct ccp_des3_engine *des3 = &cmd->u.des3;
1225 
1226 	struct ccp_dm_workarea key, ctx;
1227 	struct ccp_data src, dst;
1228 	struct ccp_op op;
1229 	unsigned int dm_offset;
1230 	unsigned int len_singlekey;
1231 	bool in_place = false;
1232 	int ret;
1233 
1234 	/* Error checks */
1235 	if (!cmd_q->ccp->vdata->perform->des3)
1236 		return -EINVAL;
1237 
1238 	if (des3->key_len != DES3_EDE_KEY_SIZE)
1239 		return -EINVAL;
1240 
1241 	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1242 		(des3->mode == CCP_DES3_MODE_CBC)) &&
1243 		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1244 		return -EINVAL;
1245 
1246 	if (!des3->key || !des3->src || !des3->dst)
1247 		return -EINVAL;
1248 
1249 	if (des3->mode != CCP_DES3_MODE_ECB) {
1250 		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1251 			return -EINVAL;
1252 
1253 		if (!des3->iv)
1254 			return -EINVAL;
1255 	}
1256 
1257 	ret = -EIO;
1258 	/* Zero out all the fields of the command desc */
1259 	memset(&op, 0, sizeof(op));
1260 
1261 	/* Set up the Function field */
1262 	op.cmd_q = cmd_q;
1263 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1264 	op.sb_key = cmd_q->sb_key;
1265 
1266 	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1267 	op.u.des3.type = des3->type;
1268 	op.u.des3.mode = des3->mode;
1269 	op.u.des3.action = des3->action;
1270 
1271 	/*
1272 	 * All supported key sizes fit in a single (32-byte) KSB entry and
1273 	 * (like AES) must be in little endian format. Use the 256-bit byte
1274 	 * swap passthru option to convert from big endian to little endian.
1275 	 */
1276 	ret = ccp_init_dm_workarea(&key, cmd_q,
1277 				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1278 				   DMA_TO_DEVICE);
1279 	if (ret)
1280 		return ret;
1281 
1282 	/*
1283 	 * The contents of the key triplet are in the reverse order of what
1284 	 * is required by the engine. Copy the 3 pieces individually to put
1285 	 * them where they belong.
1286 	 */
1287 	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1288 
1289 	len_singlekey = des3->key_len / 3;
1290 	ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1291 			des3->key, 0, len_singlekey);
1292 	ccp_set_dm_area(&key, dm_offset + len_singlekey,
1293 			des3->key, len_singlekey, len_singlekey);
1294 	ccp_set_dm_area(&key, dm_offset,
1295 			des3->key, 2 * len_singlekey, len_singlekey);
1296 
1297 	/* Copy the key to the SB */
1298 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1299 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1300 	if (ret) {
1301 		cmd->engine_error = cmd_q->cmd_error;
1302 		goto e_key;
1303 	}
1304 
1305 	/*
1306 	 * The DES3 context fits in a single (32-byte) KSB entry and
1307 	 * must be in little endian format. Use the 256-bit byte swap
1308 	 * passthru option to convert from big endian to little endian.
1309 	 */
1310 	if (des3->mode != CCP_DES3_MODE_ECB) {
1311 		u32 load_mode;
1312 
1313 		op.sb_ctx = cmd_q->sb_ctx;
1314 
1315 		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1316 					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1317 					   DMA_BIDIRECTIONAL);
1318 		if (ret)
1319 			goto e_key;
1320 
1321 		/* Load the context into the LSB */
1322 		dm_offset = CCP_SB_BYTES - des3->iv_len;
1323 		ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, des3->iv_len);
1324 
1325 		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1326 			load_mode = CCP_PASSTHRU_BYTESWAP_NOOP;
1327 		else
1328 			load_mode = CCP_PASSTHRU_BYTESWAP_256BIT;
1329 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1330 				     load_mode);
1331 		if (ret) {
1332 			cmd->engine_error = cmd_q->cmd_error;
1333 			goto e_ctx;
1334 		}
1335 	}
1336 
1337 	/*
1338 	 * Prepare the input and output data workareas. For in-place
1339 	 * operations we need to set the dma direction to BIDIRECTIONAL
1340 	 * and copy the src workarea to the dst workarea.
1341 	 */
1342 	if (sg_virt(des3->src) == sg_virt(des3->dst))
1343 		in_place = true;
1344 
1345 	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1346 			DES3_EDE_BLOCK_SIZE,
1347 			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1348 	if (ret)
1349 		goto e_ctx;
1350 
1351 	if (in_place)
1352 		dst = src;
1353 	else {
1354 		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1355 				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1356 		if (ret)
1357 			goto e_src;
1358 	}
1359 
1360 	/* Send data to the CCP DES3 engine */
1361 	while (src.sg_wa.bytes_left) {
1362 		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1363 		if (!src.sg_wa.bytes_left) {
1364 			op.eom = 1;
1365 
1366 			/* Since we don't retrieve the context in ECB mode
1367 			 * we have to wait for the operation to complete
1368 			 * on the last piece of data
1369 			 */
1370 			op.soc = 0;
1371 		}
1372 
1373 		ret = cmd_q->ccp->vdata->perform->des3(&op);
1374 		if (ret) {
1375 			cmd->engine_error = cmd_q->cmd_error;
1376 			goto e_dst;
1377 		}
1378 
1379 		ccp_process_data(&src, &dst, &op);
1380 	}
1381 
1382 	if (des3->mode != CCP_DES3_MODE_ECB) {
1383 		/* Retrieve the context and make BE */
1384 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1385 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1386 		if (ret) {
1387 			cmd->engine_error = cmd_q->cmd_error;
1388 			goto e_dst;
1389 		}
1390 
1391 		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1392 		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1393 			dm_offset = CCP_SB_BYTES - des3->iv_len;
1394 		else
1395 			dm_offset = 0;
1396 		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1397 				DES3_EDE_BLOCK_SIZE);
1398 	}
1399 e_dst:
1400 	if (!in_place)
1401 		ccp_free_data(&dst, cmd_q);
1402 
1403 e_src:
1404 	ccp_free_data(&src, cmd_q);
1405 
1406 e_ctx:
1407 	if (des3->mode != CCP_DES3_MODE_ECB)
1408 		ccp_dm_free(&ctx);
1409 
1410 e_key:
1411 	ccp_dm_free(&key);
1412 
1413 	return ret;
1414 }
1415 
1416 static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1417 {
1418 	struct ccp_sha_engine *sha = &cmd->u.sha;
1419 	struct ccp_dm_workarea ctx;
1420 	struct ccp_data src;
1421 	struct ccp_op op;
1422 	unsigned int ioffset, ooffset;
1423 	unsigned int digest_size;
1424 	int sb_count;
1425 	const void *init;
1426 	u64 block_size;
1427 	int ctx_size;
1428 	int ret;
1429 
1430 	switch (sha->type) {
1431 	case CCP_SHA_TYPE_1:
1432 		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1433 			return -EINVAL;
1434 		block_size = SHA1_BLOCK_SIZE;
1435 		break;
1436 	case CCP_SHA_TYPE_224:
1437 		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1438 			return -EINVAL;
1439 		block_size = SHA224_BLOCK_SIZE;
1440 		break;
1441 	case CCP_SHA_TYPE_256:
1442 		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1443 			return -EINVAL;
1444 		block_size = SHA256_BLOCK_SIZE;
1445 		break;
1446 	case CCP_SHA_TYPE_384:
1447 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1448 		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1449 			return -EINVAL;
1450 		block_size = SHA384_BLOCK_SIZE;
1451 		break;
1452 	case CCP_SHA_TYPE_512:
1453 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1454 		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1455 			return -EINVAL;
1456 		block_size = SHA512_BLOCK_SIZE;
1457 		break;
1458 	default:
1459 		return -EINVAL;
1460 	}
1461 
1462 	if (!sha->ctx)
1463 		return -EINVAL;
1464 
1465 	if (!sha->final && (sha->src_len & (block_size - 1)))
1466 		return -EINVAL;
1467 
1468 	/* The version 3 device can't handle zero-length input */
1469 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1470 
1471 		if (!sha->src_len) {
1472 			unsigned int digest_len;
1473 			const u8 *sha_zero;
1474 
1475 			/* Not final, just return */
1476 			if (!sha->final)
1477 				return 0;
1478 
1479 			/* CCP can't do a zero length sha operation so the
1480 			 * caller must buffer the data.
1481 			 */
1482 			if (sha->msg_bits)
1483 				return -EINVAL;
1484 
1485 			/* The CCP cannot perform zero-length sha operations
1486 			 * so the caller is required to buffer data for the
1487 			 * final operation. However, a sha operation for a
1488 			 * message with a total length of zero is valid so
1489 			 * known values are required to supply the result.
1490 			 */
1491 			switch (sha->type) {
1492 			case CCP_SHA_TYPE_1:
1493 				sha_zero = sha1_zero_message_hash;
1494 				digest_len = SHA1_DIGEST_SIZE;
1495 				break;
1496 			case CCP_SHA_TYPE_224:
1497 				sha_zero = sha224_zero_message_hash;
1498 				digest_len = SHA224_DIGEST_SIZE;
1499 				break;
1500 			case CCP_SHA_TYPE_256:
1501 				sha_zero = sha256_zero_message_hash;
1502 				digest_len = SHA256_DIGEST_SIZE;
1503 				break;
1504 			default:
1505 				return -EINVAL;
1506 			}
1507 
1508 			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1509 						 digest_len, 1);
1510 
1511 			return 0;
1512 		}
1513 	}
1514 
1515 	/* Set variables used throughout */
1516 	switch (sha->type) {
1517 	case CCP_SHA_TYPE_1:
1518 		digest_size = SHA1_DIGEST_SIZE;
1519 		init = (void *) ccp_sha1_init;
1520 		ctx_size = SHA1_DIGEST_SIZE;
1521 		sb_count = 1;
1522 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1523 			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1524 		else
1525 			ooffset = ioffset = 0;
1526 		break;
1527 	case CCP_SHA_TYPE_224:
1528 		digest_size = SHA224_DIGEST_SIZE;
1529 		init = (void *) ccp_sha224_init;
1530 		ctx_size = SHA256_DIGEST_SIZE;
1531 		sb_count = 1;
1532 		ioffset = 0;
1533 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1534 			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1535 		else
1536 			ooffset = 0;
1537 		break;
1538 	case CCP_SHA_TYPE_256:
1539 		digest_size = SHA256_DIGEST_SIZE;
1540 		init = (void *) ccp_sha256_init;
1541 		ctx_size = SHA256_DIGEST_SIZE;
1542 		sb_count = 1;
1543 		ooffset = ioffset = 0;
1544 		break;
1545 	case CCP_SHA_TYPE_384:
1546 		digest_size = SHA384_DIGEST_SIZE;
1547 		init = (void *) ccp_sha384_init;
1548 		ctx_size = SHA512_DIGEST_SIZE;
1549 		sb_count = 2;
1550 		ioffset = 0;
1551 		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1552 		break;
1553 	case CCP_SHA_TYPE_512:
1554 		digest_size = SHA512_DIGEST_SIZE;
1555 		init = (void *) ccp_sha512_init;
1556 		ctx_size = SHA512_DIGEST_SIZE;
1557 		sb_count = 2;
1558 		ooffset = ioffset = 0;
1559 		break;
1560 	default:
1561 		ret = -EINVAL;
1562 		goto e_data;
1563 	}
1564 
1565 	/* For zero-length plaintext the src pointer is ignored;
1566 	 * otherwise both parts must be valid
1567 	 */
1568 	if (sha->src_len && !sha->src)
1569 		return -EINVAL;
1570 
1571 	memset(&op, 0, sizeof(op));
1572 	op.cmd_q = cmd_q;
1573 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1574 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1575 	op.u.sha.type = sha->type;
1576 	op.u.sha.msg_bits = sha->msg_bits;
1577 
1578 	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1579 	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1580 	 * first slot, and the left half in the second. Each portion must then
1581 	 * be in little endian format: use the 256-bit byte swap option.
1582 	 */
1583 	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1584 				   DMA_BIDIRECTIONAL);
1585 	if (ret)
1586 		return ret;
1587 	if (sha->first) {
1588 		switch (sha->type) {
1589 		case CCP_SHA_TYPE_1:
1590 		case CCP_SHA_TYPE_224:
1591 		case CCP_SHA_TYPE_256:
1592 			memcpy(ctx.address + ioffset, init, ctx_size);
1593 			break;
1594 		case CCP_SHA_TYPE_384:
1595 		case CCP_SHA_TYPE_512:
1596 			memcpy(ctx.address + ctx_size / 2, init,
1597 			       ctx_size / 2);
1598 			memcpy(ctx.address, init + ctx_size / 2,
1599 			       ctx_size / 2);
1600 			break;
1601 		default:
1602 			ret = -EINVAL;
1603 			goto e_ctx;
1604 		}
1605 	} else {
1606 		/* Restore the context */
1607 		ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1608 				sb_count * CCP_SB_BYTES);
1609 	}
1610 
1611 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1612 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1613 	if (ret) {
1614 		cmd->engine_error = cmd_q->cmd_error;
1615 		goto e_ctx;
1616 	}
1617 
1618 	if (sha->src) {
1619 		/* Send data to the CCP SHA engine; block_size is set above */
1620 		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1621 				    block_size, DMA_TO_DEVICE);
1622 		if (ret)
1623 			goto e_ctx;
1624 
1625 		while (src.sg_wa.bytes_left) {
1626 			ccp_prepare_data(&src, NULL, &op, block_size, false);
1627 			if (sha->final && !src.sg_wa.bytes_left)
1628 				op.eom = 1;
1629 
1630 			ret = cmd_q->ccp->vdata->perform->sha(&op);
1631 			if (ret) {
1632 				cmd->engine_error = cmd_q->cmd_error;
1633 				goto e_data;
1634 			}
1635 
1636 			ccp_process_data(&src, NULL, &op);
1637 		}
1638 	} else {
1639 		op.eom = 1;
1640 		ret = cmd_q->ccp->vdata->perform->sha(&op);
1641 		if (ret) {
1642 			cmd->engine_error = cmd_q->cmd_error;
1643 			goto e_data;
1644 		}
1645 	}
1646 
1647 	/* Retrieve the SHA context - convert from LE to BE using
1648 	 * 32-byte (256-bit) byteswapping to BE
1649 	 */
1650 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1651 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1652 	if (ret) {
1653 		cmd->engine_error = cmd_q->cmd_error;
1654 		goto e_data;
1655 	}
1656 
1657 	if (sha->final) {
1658 		/* Finishing up, so get the digest */
1659 		switch (sha->type) {
1660 		case CCP_SHA_TYPE_1:
1661 		case CCP_SHA_TYPE_224:
1662 		case CCP_SHA_TYPE_256:
1663 			ccp_get_dm_area(&ctx, ooffset,
1664 					sha->ctx, 0,
1665 					digest_size);
1666 			break;
1667 		case CCP_SHA_TYPE_384:
1668 		case CCP_SHA_TYPE_512:
1669 			ccp_get_dm_area(&ctx, 0,
1670 					sha->ctx, LSB_ITEM_SIZE - ooffset,
1671 					LSB_ITEM_SIZE);
1672 			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1673 					sha->ctx, 0,
1674 					LSB_ITEM_SIZE - ooffset);
1675 			break;
1676 		default:
1677 			ret = -EINVAL;
1678 			goto e_ctx;
1679 		}
1680 	} else {
1681 		/* Stash the context */
1682 		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1683 				sb_count * CCP_SB_BYTES);
1684 	}
1685 
1686 	if (sha->final && sha->opad) {
1687 		/* HMAC operation, recursively perform final SHA */
1688 		struct ccp_cmd hmac_cmd;
1689 		struct scatterlist sg;
1690 		u8 *hmac_buf;
1691 
1692 		if (sha->opad_len != block_size) {
1693 			ret = -EINVAL;
1694 			goto e_data;
1695 		}
1696 
1697 		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1698 		if (!hmac_buf) {
1699 			ret = -ENOMEM;
1700 			goto e_data;
1701 		}
1702 		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1703 
1704 		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1705 		switch (sha->type) {
1706 		case CCP_SHA_TYPE_1:
1707 		case CCP_SHA_TYPE_224:
1708 		case CCP_SHA_TYPE_256:
1709 			memcpy(hmac_buf + block_size,
1710 			       ctx.address + ooffset,
1711 			       digest_size);
1712 			break;
1713 		case CCP_SHA_TYPE_384:
1714 		case CCP_SHA_TYPE_512:
1715 			memcpy(hmac_buf + block_size,
1716 			       ctx.address + LSB_ITEM_SIZE + ooffset,
1717 			       LSB_ITEM_SIZE);
1718 			memcpy(hmac_buf + block_size +
1719 			       (LSB_ITEM_SIZE - ooffset),
1720 			       ctx.address,
1721 			       LSB_ITEM_SIZE);
1722 			break;
1723 		default:
1724 			ret = -EINVAL;
1725 			goto e_ctx;
1726 		}
1727 
1728 		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1729 		hmac_cmd.engine = CCP_ENGINE_SHA;
1730 		hmac_cmd.u.sha.type = sha->type;
1731 		hmac_cmd.u.sha.ctx = sha->ctx;
1732 		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1733 		hmac_cmd.u.sha.src = &sg;
1734 		hmac_cmd.u.sha.src_len = block_size + digest_size;
1735 		hmac_cmd.u.sha.opad = NULL;
1736 		hmac_cmd.u.sha.opad_len = 0;
1737 		hmac_cmd.u.sha.first = 1;
1738 		hmac_cmd.u.sha.final = 1;
1739 		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1740 
1741 		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1742 		if (ret)
1743 			cmd->engine_error = hmac_cmd.engine_error;
1744 
1745 		kfree(hmac_buf);
1746 	}
1747 
1748 e_data:
1749 	if (sha->src)
1750 		ccp_free_data(&src, cmd_q);
1751 
1752 e_ctx:
1753 	ccp_dm_free(&ctx);
1754 
1755 	return ret;
1756 }
1757 
1758 static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1759 {
1760 	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1761 	struct ccp_dm_workarea exp, src, dst;
1762 	struct ccp_op op;
1763 	unsigned int sb_count, i_len, o_len;
1764 	int ret;
1765 
1766 	/* Check against the maximum allowable size, in bits */
1767 	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1768 		return -EINVAL;
1769 
1770 	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1771 		return -EINVAL;
1772 
1773 	memset(&op, 0, sizeof(op));
1774 	op.cmd_q = cmd_q;
1775 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1776 
1777 	/* The RSA modulus must precede the message being acted upon, so
1778 	 * it must be copied to a DMA area where the message and the
1779 	 * modulus can be concatenated.  Therefore the input buffer
1780 	 * length required is twice the output buffer length (which
1781 	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1782 	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1783 	 * required.
1784 	 */
1785 	o_len = 32 * ((rsa->key_size + 255) / 256);
1786 	i_len = o_len * 2;
1787 
1788 	sb_count = 0;
1789 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1790 		/* sb_count is the number of storage block slots required
1791 		 * for the modulus.
1792 		 */
1793 		sb_count = o_len / CCP_SB_BYTES;
1794 		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1795 								sb_count);
1796 		if (!op.sb_key)
1797 			return -EIO;
1798 	} else {
1799 		/* A version 5 device allows a modulus size that will not fit
1800 		 * in the LSB, so the command will transfer it from memory.
1801 		 * Set the sb key to the default, even though it's not used.
1802 		 */
1803 		op.sb_key = cmd_q->sb_key;
1804 	}
1805 
1806 	/* The RSA exponent must be in little endian format. Reverse its
1807 	 * byte order.
1808 	 */
1809 	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1810 	if (ret)
1811 		goto e_sb;
1812 
1813 	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1814 	if (ret)
1815 		goto e_exp;
1816 
1817 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1818 		/* Copy the exponent to the local storage block, using
1819 		 * as many 32-byte blocks as were allocated above. It's
1820 		 * already little endian, so no further change is required.
1821 		 */
1822 		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1823 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1824 		if (ret) {
1825 			cmd->engine_error = cmd_q->cmd_error;
1826 			goto e_exp;
1827 		}
1828 	} else {
1829 		/* The exponent can be retrieved from memory via DMA. */
1830 		op.exp.u.dma.address = exp.dma.address;
1831 		op.exp.u.dma.offset = 0;
1832 	}
1833 
1834 	/* Concatenate the modulus and the message. Both the modulus and
1835 	 * the operands must be in little endian format.  Since the input
1836 	 * is in big endian format it must be converted.
1837 	 */
1838 	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1839 	if (ret)
1840 		goto e_exp;
1841 
1842 	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1843 	if (ret)
1844 		goto e_src;
1845 	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1846 	if (ret)
1847 		goto e_src;
1848 
1849 	/* Prepare the output area for the operation */
1850 	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1851 	if (ret)
1852 		goto e_src;
1853 
1854 	op.soc = 1;
1855 	op.src.u.dma.address = src.dma.address;
1856 	op.src.u.dma.offset = 0;
1857 	op.src.u.dma.length = i_len;
1858 	op.dst.u.dma.address = dst.dma.address;
1859 	op.dst.u.dma.offset = 0;
1860 	op.dst.u.dma.length = o_len;
1861 
1862 	op.u.rsa.mod_size = rsa->key_size;
1863 	op.u.rsa.input_len = i_len;
1864 
1865 	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1866 	if (ret) {
1867 		cmd->engine_error = cmd_q->cmd_error;
1868 		goto e_dst;
1869 	}
1870 
1871 	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1872 
1873 e_dst:
1874 	ccp_dm_free(&dst);
1875 
1876 e_src:
1877 	ccp_dm_free(&src);
1878 
1879 e_exp:
1880 	ccp_dm_free(&exp);
1881 
1882 e_sb:
1883 	if (sb_count)
1884 		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1885 
1886 	return ret;
1887 }
1888 
1889 static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1890 				struct ccp_cmd *cmd)
1891 {
1892 	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1893 	struct ccp_dm_workarea mask;
1894 	struct ccp_data src, dst;
1895 	struct ccp_op op;
1896 	bool in_place = false;
1897 	unsigned int i;
1898 	int ret = 0;
1899 
1900 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1901 		return -EINVAL;
1902 
1903 	if (!pt->src || !pt->dst)
1904 		return -EINVAL;
1905 
1906 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1907 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1908 			return -EINVAL;
1909 		if (!pt->mask)
1910 			return -EINVAL;
1911 	}
1912 
1913 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1914 
1915 	memset(&op, 0, sizeof(op));
1916 	op.cmd_q = cmd_q;
1917 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1918 
1919 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1920 		/* Load the mask */
1921 		op.sb_key = cmd_q->sb_key;
1922 
1923 		ret = ccp_init_dm_workarea(&mask, cmd_q,
1924 					   CCP_PASSTHRU_SB_COUNT *
1925 					   CCP_SB_BYTES,
1926 					   DMA_TO_DEVICE);
1927 		if (ret)
1928 			return ret;
1929 
1930 		ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1931 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1932 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1933 		if (ret) {
1934 			cmd->engine_error = cmd_q->cmd_error;
1935 			goto e_mask;
1936 		}
1937 	}
1938 
1939 	/* Prepare the input and output data workareas. For in-place
1940 	 * operations we need to set the dma direction to BIDIRECTIONAL
1941 	 * and copy the src workarea to the dst workarea.
1942 	 */
1943 	if (sg_virt(pt->src) == sg_virt(pt->dst))
1944 		in_place = true;
1945 
1946 	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1947 			    CCP_PASSTHRU_MASKSIZE,
1948 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1949 	if (ret)
1950 		goto e_mask;
1951 
1952 	if (in_place) {
1953 		dst = src;
1954 	} else {
1955 		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
1956 				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
1957 		if (ret)
1958 			goto e_src;
1959 	}
1960 
1961 	/* Send data to the CCP Passthru engine
1962 	 *   Because the CCP engine works on a single source and destination
1963 	 *   dma address at a time, each entry in the source scatterlist
1964 	 *   (after the dma_map_sg call) must be less than or equal to the
1965 	 *   (remaining) length in the destination scatterlist entry and the
1966 	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
1967 	 */
1968 	dst.sg_wa.sg_used = 0;
1969 	for (i = 1; i <= src.sg_wa.dma_count; i++) {
1970 		if (!dst.sg_wa.sg ||
1971 		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
1972 			ret = -EINVAL;
1973 			goto e_dst;
1974 		}
1975 
1976 		if (i == src.sg_wa.dma_count) {
1977 			op.eom = 1;
1978 			op.soc = 1;
1979 		}
1980 
1981 		op.src.type = CCP_MEMTYPE_SYSTEM;
1982 		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
1983 		op.src.u.dma.offset = 0;
1984 		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
1985 
1986 		op.dst.type = CCP_MEMTYPE_SYSTEM;
1987 		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
1988 		op.dst.u.dma.offset = dst.sg_wa.sg_used;
1989 		op.dst.u.dma.length = op.src.u.dma.length;
1990 
1991 		ret = cmd_q->ccp->vdata->perform->passthru(&op);
1992 		if (ret) {
1993 			cmd->engine_error = cmd_q->cmd_error;
1994 			goto e_dst;
1995 		}
1996 
1997 		dst.sg_wa.sg_used += src.sg_wa.sg->length;
1998 		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
1999 			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2000 			dst.sg_wa.sg_used = 0;
2001 		}
2002 		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2003 	}
2004 
2005 e_dst:
2006 	if (!in_place)
2007 		ccp_free_data(&dst, cmd_q);
2008 
2009 e_src:
2010 	ccp_free_data(&src, cmd_q);
2011 
2012 e_mask:
2013 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2014 		ccp_dm_free(&mask);
2015 
2016 	return ret;
2017 }
2018 
2019 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2020 				      struct ccp_cmd *cmd)
2021 {
2022 	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2023 	struct ccp_dm_workarea mask;
2024 	struct ccp_op op;
2025 	int ret;
2026 
2027 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2028 		return -EINVAL;
2029 
2030 	if (!pt->src_dma || !pt->dst_dma)
2031 		return -EINVAL;
2032 
2033 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2034 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2035 			return -EINVAL;
2036 		if (!pt->mask)
2037 			return -EINVAL;
2038 	}
2039 
2040 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2041 
2042 	memset(&op, 0, sizeof(op));
2043 	op.cmd_q = cmd_q;
2044 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2045 
2046 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2047 		/* Load the mask */
2048 		op.sb_key = cmd_q->sb_key;
2049 
2050 		mask.length = pt->mask_len;
2051 		mask.dma.address = pt->mask;
2052 		mask.dma.length = pt->mask_len;
2053 
2054 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2055 				     CCP_PASSTHRU_BYTESWAP_NOOP);
2056 		if (ret) {
2057 			cmd->engine_error = cmd_q->cmd_error;
2058 			return ret;
2059 		}
2060 	}
2061 
2062 	/* Send data to the CCP Passthru engine */
2063 	op.eom = 1;
2064 	op.soc = 1;
2065 
2066 	op.src.type = CCP_MEMTYPE_SYSTEM;
2067 	op.src.u.dma.address = pt->src_dma;
2068 	op.src.u.dma.offset = 0;
2069 	op.src.u.dma.length = pt->src_len;
2070 
2071 	op.dst.type = CCP_MEMTYPE_SYSTEM;
2072 	op.dst.u.dma.address = pt->dst_dma;
2073 	op.dst.u.dma.offset = 0;
2074 	op.dst.u.dma.length = pt->src_len;
2075 
2076 	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2077 	if (ret)
2078 		cmd->engine_error = cmd_q->cmd_error;
2079 
2080 	return ret;
2081 }
2082 
2083 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2084 {
2085 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2086 	struct ccp_dm_workarea src, dst;
2087 	struct ccp_op op;
2088 	int ret;
2089 	u8 *save;
2090 
2091 	if (!ecc->u.mm.operand_1 ||
2092 	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2093 		return -EINVAL;
2094 
2095 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2096 		if (!ecc->u.mm.operand_2 ||
2097 		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2098 			return -EINVAL;
2099 
2100 	if (!ecc->u.mm.result ||
2101 	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2102 		return -EINVAL;
2103 
2104 	memset(&op, 0, sizeof(op));
2105 	op.cmd_q = cmd_q;
2106 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2107 
2108 	/* Concatenate the modulus and the operands. Both the modulus and
2109 	 * the operands must be in little endian format.  Since the input
2110 	 * is in big endian format it must be converted and placed in a
2111 	 * fixed length buffer.
2112 	 */
2113 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2114 				   DMA_TO_DEVICE);
2115 	if (ret)
2116 		return ret;
2117 
2118 	/* Save the workarea address since it is updated in order to perform
2119 	 * the concatenation
2120 	 */
2121 	save = src.address;
2122 
2123 	/* Copy the ECC modulus */
2124 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2125 	if (ret)
2126 		goto e_src;
2127 	src.address += CCP_ECC_OPERAND_SIZE;
2128 
2129 	/* Copy the first operand */
2130 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2131 				      ecc->u.mm.operand_1_len);
2132 	if (ret)
2133 		goto e_src;
2134 	src.address += CCP_ECC_OPERAND_SIZE;
2135 
2136 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2137 		/* Copy the second operand */
2138 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2139 					      ecc->u.mm.operand_2_len);
2140 		if (ret)
2141 			goto e_src;
2142 		src.address += CCP_ECC_OPERAND_SIZE;
2143 	}
2144 
2145 	/* Restore the workarea address */
2146 	src.address = save;
2147 
2148 	/* Prepare the output area for the operation */
2149 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2150 				   DMA_FROM_DEVICE);
2151 	if (ret)
2152 		goto e_src;
2153 
2154 	op.soc = 1;
2155 	op.src.u.dma.address = src.dma.address;
2156 	op.src.u.dma.offset = 0;
2157 	op.src.u.dma.length = src.length;
2158 	op.dst.u.dma.address = dst.dma.address;
2159 	op.dst.u.dma.offset = 0;
2160 	op.dst.u.dma.length = dst.length;
2161 
2162 	op.u.ecc.function = cmd->u.ecc.function;
2163 
2164 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2165 	if (ret) {
2166 		cmd->engine_error = cmd_q->cmd_error;
2167 		goto e_dst;
2168 	}
2169 
2170 	ecc->ecc_result = le16_to_cpup(
2171 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2172 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2173 		ret = -EIO;
2174 		goto e_dst;
2175 	}
2176 
2177 	/* Save the ECC result */
2178 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2179 				CCP_ECC_MODULUS_BYTES);
2180 
2181 e_dst:
2182 	ccp_dm_free(&dst);
2183 
2184 e_src:
2185 	ccp_dm_free(&src);
2186 
2187 	return ret;
2188 }
2189 
2190 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2191 {
2192 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2193 	struct ccp_dm_workarea src, dst;
2194 	struct ccp_op op;
2195 	int ret;
2196 	u8 *save;
2197 
2198 	if (!ecc->u.pm.point_1.x ||
2199 	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2200 	    !ecc->u.pm.point_1.y ||
2201 	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2202 		return -EINVAL;
2203 
2204 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2205 		if (!ecc->u.pm.point_2.x ||
2206 		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2207 		    !ecc->u.pm.point_2.y ||
2208 		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2209 			return -EINVAL;
2210 	} else {
2211 		if (!ecc->u.pm.domain_a ||
2212 		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2213 			return -EINVAL;
2214 
2215 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2216 			if (!ecc->u.pm.scalar ||
2217 			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2218 				return -EINVAL;
2219 	}
2220 
2221 	if (!ecc->u.pm.result.x ||
2222 	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2223 	    !ecc->u.pm.result.y ||
2224 	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2225 		return -EINVAL;
2226 
2227 	memset(&op, 0, sizeof(op));
2228 	op.cmd_q = cmd_q;
2229 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2230 
2231 	/* Concatenate the modulus and the operands. Both the modulus and
2232 	 * the operands must be in little endian format.  Since the input
2233 	 * is in big endian format it must be converted and placed in a
2234 	 * fixed length buffer.
2235 	 */
2236 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2237 				   DMA_TO_DEVICE);
2238 	if (ret)
2239 		return ret;
2240 
2241 	/* Save the workarea address since it is updated in order to perform
2242 	 * the concatenation
2243 	 */
2244 	save = src.address;
2245 
2246 	/* Copy the ECC modulus */
2247 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2248 	if (ret)
2249 		goto e_src;
2250 	src.address += CCP_ECC_OPERAND_SIZE;
2251 
2252 	/* Copy the first point X and Y coordinate */
2253 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2254 				      ecc->u.pm.point_1.x_len);
2255 	if (ret)
2256 		goto e_src;
2257 	src.address += CCP_ECC_OPERAND_SIZE;
2258 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2259 				      ecc->u.pm.point_1.y_len);
2260 	if (ret)
2261 		goto e_src;
2262 	src.address += CCP_ECC_OPERAND_SIZE;
2263 
2264 	/* Set the first point Z coordinate to 1 */
2265 	*src.address = 0x01;
2266 	src.address += CCP_ECC_OPERAND_SIZE;
2267 
2268 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2269 		/* Copy the second point X and Y coordinate */
2270 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2271 					      ecc->u.pm.point_2.x_len);
2272 		if (ret)
2273 			goto e_src;
2274 		src.address += CCP_ECC_OPERAND_SIZE;
2275 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2276 					      ecc->u.pm.point_2.y_len);
2277 		if (ret)
2278 			goto e_src;
2279 		src.address += CCP_ECC_OPERAND_SIZE;
2280 
2281 		/* Set the second point Z coordinate to 1 */
2282 		*src.address = 0x01;
2283 		src.address += CCP_ECC_OPERAND_SIZE;
2284 	} else {
2285 		/* Copy the Domain "a" parameter */
2286 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2287 					      ecc->u.pm.domain_a_len);
2288 		if (ret)
2289 			goto e_src;
2290 		src.address += CCP_ECC_OPERAND_SIZE;
2291 
2292 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2293 			/* Copy the scalar value */
2294 			ret = ccp_reverse_set_dm_area(&src, 0,
2295 						      ecc->u.pm.scalar, 0,
2296 						      ecc->u.pm.scalar_len);
2297 			if (ret)
2298 				goto e_src;
2299 			src.address += CCP_ECC_OPERAND_SIZE;
2300 		}
2301 	}
2302 
2303 	/* Restore the workarea address */
2304 	src.address = save;
2305 
2306 	/* Prepare the output area for the operation */
2307 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2308 				   DMA_FROM_DEVICE);
2309 	if (ret)
2310 		goto e_src;
2311 
2312 	op.soc = 1;
2313 	op.src.u.dma.address = src.dma.address;
2314 	op.src.u.dma.offset = 0;
2315 	op.src.u.dma.length = src.length;
2316 	op.dst.u.dma.address = dst.dma.address;
2317 	op.dst.u.dma.offset = 0;
2318 	op.dst.u.dma.length = dst.length;
2319 
2320 	op.u.ecc.function = cmd->u.ecc.function;
2321 
2322 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2323 	if (ret) {
2324 		cmd->engine_error = cmd_q->cmd_error;
2325 		goto e_dst;
2326 	}
2327 
2328 	ecc->ecc_result = le16_to_cpup(
2329 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2330 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2331 		ret = -EIO;
2332 		goto e_dst;
2333 	}
2334 
2335 	/* Save the workarea address since it is updated as we walk through
2336 	 * to copy the point math result
2337 	 */
2338 	save = dst.address;
2339 
2340 	/* Save the ECC result X and Y coordinates */
2341 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2342 				CCP_ECC_MODULUS_BYTES);
2343 	dst.address += CCP_ECC_OUTPUT_SIZE;
2344 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2345 				CCP_ECC_MODULUS_BYTES);
2346 	dst.address += CCP_ECC_OUTPUT_SIZE;
2347 
2348 	/* Restore the workarea address */
2349 	dst.address = save;
2350 
2351 e_dst:
2352 	ccp_dm_free(&dst);
2353 
2354 e_src:
2355 	ccp_dm_free(&src);
2356 
2357 	return ret;
2358 }
2359 
2360 static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2361 {
2362 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2363 
2364 	ecc->ecc_result = 0;
2365 
2366 	if (!ecc->mod ||
2367 	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2368 		return -EINVAL;
2369 
2370 	switch (ecc->function) {
2371 	case CCP_ECC_FUNCTION_MMUL_384BIT:
2372 	case CCP_ECC_FUNCTION_MADD_384BIT:
2373 	case CCP_ECC_FUNCTION_MINV_384BIT:
2374 		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2375 
2376 	case CCP_ECC_FUNCTION_PADD_384BIT:
2377 	case CCP_ECC_FUNCTION_PMUL_384BIT:
2378 	case CCP_ECC_FUNCTION_PDBL_384BIT:
2379 		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2380 
2381 	default:
2382 		return -EINVAL;
2383 	}
2384 }
2385 
2386 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2387 {
2388 	int ret;
2389 
2390 	cmd->engine_error = 0;
2391 	cmd_q->cmd_error = 0;
2392 	cmd_q->int_rcvd = 0;
2393 	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2394 
2395 	switch (cmd->engine) {
2396 	case CCP_ENGINE_AES:
2397 		ret = ccp_run_aes_cmd(cmd_q, cmd);
2398 		break;
2399 	case CCP_ENGINE_XTS_AES_128:
2400 		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2401 		break;
2402 	case CCP_ENGINE_DES3:
2403 		ret = ccp_run_des3_cmd(cmd_q, cmd);
2404 		break;
2405 	case CCP_ENGINE_SHA:
2406 		ret = ccp_run_sha_cmd(cmd_q, cmd);
2407 		break;
2408 	case CCP_ENGINE_RSA:
2409 		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2410 		break;
2411 	case CCP_ENGINE_PASSTHRU:
2412 		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2413 			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2414 		else
2415 			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2416 		break;
2417 	case CCP_ENGINE_ECC:
2418 		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2419 		break;
2420 	default:
2421 		ret = -EINVAL;
2422 	}
2423 
2424 	return ret;
2425 }
2426