xref: /openbmc/linux/drivers/crypto/ccp/ccp-ops.c (revision 72c8117a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Cryptographic Coprocessor (CCP) driver
4  *
5  * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  * Author: Gary R Hook <gary.hook@amd.com>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/pci.h>
14 #include <linux/interrupt.h>
15 #include <crypto/scatterwalk.h>
16 #include <crypto/des.h>
17 #include <linux/ccp.h>
18 
19 #include "ccp-dev.h"
20 
21 /* SHA initial context values */
22 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
23 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
24 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
25 	cpu_to_be32(SHA1_H4),
26 };
27 
28 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
29 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
30 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
31 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
32 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
33 };
34 
35 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
36 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
37 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
38 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
39 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
40 };
41 
42 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
43 	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
44 	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
45 	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
46 	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
47 };
48 
49 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
50 	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
51 	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
52 	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
53 	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
54 };
55 
56 #define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
57 					ccp_gen_jobid(ccp) : 0)
58 
59 static u32 ccp_gen_jobid(struct ccp_device *ccp)
60 {
61 	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
62 }
63 
64 static void ccp_sg_free(struct ccp_sg_workarea *wa)
65 {
66 	if (wa->dma_count)
67 		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
68 
69 	wa->dma_count = 0;
70 }
71 
72 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
73 				struct scatterlist *sg, u64 len,
74 				enum dma_data_direction dma_dir)
75 {
76 	memset(wa, 0, sizeof(*wa));
77 
78 	wa->sg = sg;
79 	if (!sg)
80 		return 0;
81 
82 	wa->nents = sg_nents_for_len(sg, len);
83 	if (wa->nents < 0)
84 		return wa->nents;
85 
86 	wa->bytes_left = len;
87 	wa->sg_used = 0;
88 
89 	if (len == 0)
90 		return 0;
91 
92 	if (dma_dir == DMA_NONE)
93 		return 0;
94 
95 	wa->dma_sg = sg;
96 	wa->dma_dev = dev;
97 	wa->dma_dir = dma_dir;
98 	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
99 	if (!wa->dma_count)
100 		return -ENOMEM;
101 
102 	return 0;
103 }
104 
105 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
106 {
107 	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
108 
109 	if (!wa->sg)
110 		return;
111 
112 	wa->sg_used += nbytes;
113 	wa->bytes_left -= nbytes;
114 	if (wa->sg_used == wa->sg->length) {
115 		wa->sg = sg_next(wa->sg);
116 		wa->sg_used = 0;
117 	}
118 }
119 
120 static void ccp_dm_free(struct ccp_dm_workarea *wa)
121 {
122 	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
123 		if (wa->address)
124 			dma_pool_free(wa->dma_pool, wa->address,
125 				      wa->dma.address);
126 	} else {
127 		if (wa->dma.address)
128 			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
129 					 wa->dma.dir);
130 		kfree(wa->address);
131 	}
132 
133 	wa->address = NULL;
134 	wa->dma.address = 0;
135 }
136 
137 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
138 				struct ccp_cmd_queue *cmd_q,
139 				unsigned int len,
140 				enum dma_data_direction dir)
141 {
142 	memset(wa, 0, sizeof(*wa));
143 
144 	if (!len)
145 		return 0;
146 
147 	wa->dev = cmd_q->ccp->dev;
148 	wa->length = len;
149 
150 	if (len <= CCP_DMAPOOL_MAX_SIZE) {
151 		wa->dma_pool = cmd_q->dma_pool;
152 
153 		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
154 					     &wa->dma.address);
155 		if (!wa->address)
156 			return -ENOMEM;
157 
158 		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
159 
160 		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
161 	} else {
162 		wa->address = kzalloc(len, GFP_KERNEL);
163 		if (!wa->address)
164 			return -ENOMEM;
165 
166 		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
167 						 dir);
168 		if (dma_mapping_error(wa->dev, wa->dma.address))
169 			return -ENOMEM;
170 
171 		wa->dma.length = len;
172 	}
173 	wa->dma.dir = dir;
174 
175 	return 0;
176 }
177 
178 static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
179 			   struct scatterlist *sg, unsigned int sg_offset,
180 			   unsigned int len)
181 {
182 	WARN_ON(!wa->address);
183 
184 	if (len > (wa->length - wa_offset))
185 		return -EINVAL;
186 
187 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
188 				 0);
189 	return 0;
190 }
191 
192 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
193 			    struct scatterlist *sg, unsigned int sg_offset,
194 			    unsigned int len)
195 {
196 	WARN_ON(!wa->address);
197 
198 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
199 				 1);
200 }
201 
202 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
203 				   unsigned int wa_offset,
204 				   struct scatterlist *sg,
205 				   unsigned int sg_offset,
206 				   unsigned int len)
207 {
208 	u8 *p, *q;
209 	int	rc;
210 
211 	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
212 	if (rc)
213 		return rc;
214 
215 	p = wa->address + wa_offset;
216 	q = p + len - 1;
217 	while (p < q) {
218 		*p = *p ^ *q;
219 		*q = *p ^ *q;
220 		*p = *p ^ *q;
221 		p++;
222 		q--;
223 	}
224 	return 0;
225 }
226 
227 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
228 				    unsigned int wa_offset,
229 				    struct scatterlist *sg,
230 				    unsigned int sg_offset,
231 				    unsigned int len)
232 {
233 	u8 *p, *q;
234 
235 	p = wa->address + wa_offset;
236 	q = p + len - 1;
237 	while (p < q) {
238 		*p = *p ^ *q;
239 		*q = *p ^ *q;
240 		*p = *p ^ *q;
241 		p++;
242 		q--;
243 	}
244 
245 	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
246 }
247 
248 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
249 {
250 	ccp_dm_free(&data->dm_wa);
251 	ccp_sg_free(&data->sg_wa);
252 }
253 
254 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
255 			 struct scatterlist *sg, u64 sg_len,
256 			 unsigned int dm_len,
257 			 enum dma_data_direction dir)
258 {
259 	int ret;
260 
261 	memset(data, 0, sizeof(*data));
262 
263 	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
264 				   dir);
265 	if (ret)
266 		goto e_err;
267 
268 	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
269 	if (ret)
270 		goto e_err;
271 
272 	return 0;
273 
274 e_err:
275 	ccp_free_data(data, cmd_q);
276 
277 	return ret;
278 }
279 
280 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
281 {
282 	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
283 	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
284 	unsigned int buf_count, nbytes;
285 
286 	/* Clear the buffer if setting it */
287 	if (!from)
288 		memset(dm_wa->address, 0, dm_wa->length);
289 
290 	if (!sg_wa->sg)
291 		return 0;
292 
293 	/* Perform the copy operation
294 	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
295 	 *   an unsigned int
296 	 */
297 	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
298 	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
299 				 nbytes, from);
300 
301 	/* Update the structures and generate the count */
302 	buf_count = 0;
303 	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
304 		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
305 			     dm_wa->length - buf_count);
306 		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
307 
308 		buf_count += nbytes;
309 		ccp_update_sg_workarea(sg_wa, nbytes);
310 	}
311 
312 	return buf_count;
313 }
314 
315 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
316 {
317 	return ccp_queue_buf(data, 0);
318 }
319 
320 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
321 {
322 	return ccp_queue_buf(data, 1);
323 }
324 
325 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
326 			     struct ccp_op *op, unsigned int block_size,
327 			     bool blocksize_op)
328 {
329 	unsigned int sg_src_len, sg_dst_len, op_len;
330 
331 	/* The CCP can only DMA from/to one address each per operation. This
332 	 * requires that we find the smallest DMA area between the source
333 	 * and destination. The resulting len values will always be <= UINT_MAX
334 	 * because the dma length is an unsigned int.
335 	 */
336 	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
337 	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
338 
339 	if (dst) {
340 		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
341 		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
342 		op_len = min(sg_src_len, sg_dst_len);
343 	} else {
344 		op_len = sg_src_len;
345 	}
346 
347 	/* The data operation length will be at least block_size in length
348 	 * or the smaller of available sg room remaining for the source or
349 	 * the destination
350 	 */
351 	op_len = max(op_len, block_size);
352 
353 	/* Unless we have to buffer data, there's no reason to wait */
354 	op->soc = 0;
355 
356 	if (sg_src_len < block_size) {
357 		/* Not enough data in the sg element, so it
358 		 * needs to be buffered into a blocksize chunk
359 		 */
360 		int cp_len = ccp_fill_queue_buf(src);
361 
362 		op->soc = 1;
363 		op->src.u.dma.address = src->dm_wa.dma.address;
364 		op->src.u.dma.offset = 0;
365 		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
366 	} else {
367 		/* Enough data in the sg element, but we need to
368 		 * adjust for any previously copied data
369 		 */
370 		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
371 		op->src.u.dma.offset = src->sg_wa.sg_used;
372 		op->src.u.dma.length = op_len & ~(block_size - 1);
373 
374 		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
375 	}
376 
377 	if (dst) {
378 		if (sg_dst_len < block_size) {
379 			/* Not enough room in the sg element or we're on the
380 			 * last piece of data (when using padding), so the
381 			 * output needs to be buffered into a blocksize chunk
382 			 */
383 			op->soc = 1;
384 			op->dst.u.dma.address = dst->dm_wa.dma.address;
385 			op->dst.u.dma.offset = 0;
386 			op->dst.u.dma.length = op->src.u.dma.length;
387 		} else {
388 			/* Enough room in the sg element, but we need to
389 			 * adjust for any previously used area
390 			 */
391 			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
392 			op->dst.u.dma.offset = dst->sg_wa.sg_used;
393 			op->dst.u.dma.length = op->src.u.dma.length;
394 		}
395 	}
396 }
397 
398 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
399 			     struct ccp_op *op)
400 {
401 	op->init = 0;
402 
403 	if (dst) {
404 		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
405 			ccp_empty_queue_buf(dst);
406 		else
407 			ccp_update_sg_workarea(&dst->sg_wa,
408 					       op->dst.u.dma.length);
409 	}
410 }
411 
412 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
413 			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
414 			       u32 byte_swap, bool from)
415 {
416 	struct ccp_op op;
417 
418 	memset(&op, 0, sizeof(op));
419 
420 	op.cmd_q = cmd_q;
421 	op.jobid = jobid;
422 	op.eom = 1;
423 
424 	if (from) {
425 		op.soc = 1;
426 		op.src.type = CCP_MEMTYPE_SB;
427 		op.src.u.sb = sb;
428 		op.dst.type = CCP_MEMTYPE_SYSTEM;
429 		op.dst.u.dma.address = wa->dma.address;
430 		op.dst.u.dma.length = wa->length;
431 	} else {
432 		op.src.type = CCP_MEMTYPE_SYSTEM;
433 		op.src.u.dma.address = wa->dma.address;
434 		op.src.u.dma.length = wa->length;
435 		op.dst.type = CCP_MEMTYPE_SB;
436 		op.dst.u.sb = sb;
437 	}
438 
439 	op.u.passthru.byte_swap = byte_swap;
440 
441 	return cmd_q->ccp->vdata->perform->passthru(&op);
442 }
443 
444 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
445 			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
446 			  u32 byte_swap)
447 {
448 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
449 }
450 
451 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
452 			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
453 			    u32 byte_swap)
454 {
455 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
456 }
457 
458 static noinline_for_stack int
459 ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
460 {
461 	struct ccp_aes_engine *aes = &cmd->u.aes;
462 	struct ccp_dm_workarea key, ctx;
463 	struct ccp_data src;
464 	struct ccp_op op;
465 	unsigned int dm_offset;
466 	int ret;
467 
468 	if (!((aes->key_len == AES_KEYSIZE_128) ||
469 	      (aes->key_len == AES_KEYSIZE_192) ||
470 	      (aes->key_len == AES_KEYSIZE_256)))
471 		return -EINVAL;
472 
473 	if (aes->src_len & (AES_BLOCK_SIZE - 1))
474 		return -EINVAL;
475 
476 	if (aes->iv_len != AES_BLOCK_SIZE)
477 		return -EINVAL;
478 
479 	if (!aes->key || !aes->iv || !aes->src)
480 		return -EINVAL;
481 
482 	if (aes->cmac_final) {
483 		if (aes->cmac_key_len != AES_BLOCK_SIZE)
484 			return -EINVAL;
485 
486 		if (!aes->cmac_key)
487 			return -EINVAL;
488 	}
489 
490 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
491 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
492 
493 	ret = -EIO;
494 	memset(&op, 0, sizeof(op));
495 	op.cmd_q = cmd_q;
496 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
497 	op.sb_key = cmd_q->sb_key;
498 	op.sb_ctx = cmd_q->sb_ctx;
499 	op.init = 1;
500 	op.u.aes.type = aes->type;
501 	op.u.aes.mode = aes->mode;
502 	op.u.aes.action = aes->action;
503 
504 	/* All supported key sizes fit in a single (32-byte) SB entry
505 	 * and must be in little endian format. Use the 256-bit byte
506 	 * swap passthru option to convert from big endian to little
507 	 * endian.
508 	 */
509 	ret = ccp_init_dm_workarea(&key, cmd_q,
510 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
511 				   DMA_TO_DEVICE);
512 	if (ret)
513 		return ret;
514 
515 	dm_offset = CCP_SB_BYTES - aes->key_len;
516 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
517 	if (ret)
518 		goto e_key;
519 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
520 			     CCP_PASSTHRU_BYTESWAP_256BIT);
521 	if (ret) {
522 		cmd->engine_error = cmd_q->cmd_error;
523 		goto e_key;
524 	}
525 
526 	/* The AES context fits in a single (32-byte) SB entry and
527 	 * must be in little endian format. Use the 256-bit byte swap
528 	 * passthru option to convert from big endian to little endian.
529 	 */
530 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
531 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
532 				   DMA_BIDIRECTIONAL);
533 	if (ret)
534 		goto e_key;
535 
536 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
537 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
538 	if (ret)
539 		goto e_ctx;
540 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
541 			     CCP_PASSTHRU_BYTESWAP_256BIT);
542 	if (ret) {
543 		cmd->engine_error = cmd_q->cmd_error;
544 		goto e_ctx;
545 	}
546 
547 	/* Send data to the CCP AES engine */
548 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
549 			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
550 	if (ret)
551 		goto e_ctx;
552 
553 	while (src.sg_wa.bytes_left) {
554 		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
555 		if (aes->cmac_final && !src.sg_wa.bytes_left) {
556 			op.eom = 1;
557 
558 			/* Push the K1/K2 key to the CCP now */
559 			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
560 					       op.sb_ctx,
561 					       CCP_PASSTHRU_BYTESWAP_256BIT);
562 			if (ret) {
563 				cmd->engine_error = cmd_q->cmd_error;
564 				goto e_src;
565 			}
566 
567 			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
568 					      aes->cmac_key_len);
569 			if (ret)
570 				goto e_src;
571 			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
572 					     CCP_PASSTHRU_BYTESWAP_256BIT);
573 			if (ret) {
574 				cmd->engine_error = cmd_q->cmd_error;
575 				goto e_src;
576 			}
577 		}
578 
579 		ret = cmd_q->ccp->vdata->perform->aes(&op);
580 		if (ret) {
581 			cmd->engine_error = cmd_q->cmd_error;
582 			goto e_src;
583 		}
584 
585 		ccp_process_data(&src, NULL, &op);
586 	}
587 
588 	/* Retrieve the AES context - convert from LE to BE using
589 	 * 32-byte (256-bit) byteswapping
590 	 */
591 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
592 			       CCP_PASSTHRU_BYTESWAP_256BIT);
593 	if (ret) {
594 		cmd->engine_error = cmd_q->cmd_error;
595 		goto e_src;
596 	}
597 
598 	/* ...but we only need AES_BLOCK_SIZE bytes */
599 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
600 	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
601 
602 e_src:
603 	ccp_free_data(&src, cmd_q);
604 
605 e_ctx:
606 	ccp_dm_free(&ctx);
607 
608 e_key:
609 	ccp_dm_free(&key);
610 
611 	return ret;
612 }
613 
614 static noinline_for_stack int
615 ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
616 {
617 	struct ccp_aes_engine *aes = &cmd->u.aes;
618 	struct ccp_dm_workarea key, ctx, final_wa, tag;
619 	struct ccp_data src, dst;
620 	struct ccp_data aad;
621 	struct ccp_op op;
622 
623 	unsigned long long *final;
624 	unsigned int dm_offset;
625 	unsigned int jobid;
626 	unsigned int ilen;
627 	bool in_place = true; /* Default value */
628 	int ret;
629 
630 	struct scatterlist *p_inp, sg_inp[2];
631 	struct scatterlist *p_tag, sg_tag[2];
632 	struct scatterlist *p_outp, sg_outp[2];
633 	struct scatterlist *p_aad;
634 
635 	if (!aes->iv)
636 		return -EINVAL;
637 
638 	if (!((aes->key_len == AES_KEYSIZE_128) ||
639 		(aes->key_len == AES_KEYSIZE_192) ||
640 		(aes->key_len == AES_KEYSIZE_256)))
641 		return -EINVAL;
642 
643 	if (!aes->key) /* Gotta have a key SGL */
644 		return -EINVAL;
645 
646 	/* First, decompose the source buffer into AAD & PT,
647 	 * and the destination buffer into AAD, CT & tag, or
648 	 * the input into CT & tag.
649 	 * It is expected that the input and output SGs will
650 	 * be valid, even if the AAD and input lengths are 0.
651 	 */
652 	p_aad = aes->src;
653 	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
654 	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
655 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
656 		ilen = aes->src_len;
657 		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
658 	} else {
659 		/* Input length for decryption includes tag */
660 		ilen = aes->src_len - AES_BLOCK_SIZE;
661 		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
662 	}
663 
664 	jobid = CCP_NEW_JOBID(cmd_q->ccp);
665 
666 	memset(&op, 0, sizeof(op));
667 	op.cmd_q = cmd_q;
668 	op.jobid = jobid;
669 	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
670 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
671 	op.init = 1;
672 	op.u.aes.type = aes->type;
673 
674 	/* Copy the key to the LSB */
675 	ret = ccp_init_dm_workarea(&key, cmd_q,
676 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
677 				   DMA_TO_DEVICE);
678 	if (ret)
679 		return ret;
680 
681 	dm_offset = CCP_SB_BYTES - aes->key_len;
682 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
683 	if (ret)
684 		goto e_key;
685 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
686 			     CCP_PASSTHRU_BYTESWAP_256BIT);
687 	if (ret) {
688 		cmd->engine_error = cmd_q->cmd_error;
689 		goto e_key;
690 	}
691 
692 	/* Copy the context (IV) to the LSB.
693 	 * There is an assumption here that the IV is 96 bits in length, plus
694 	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
695 	 */
696 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
697 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
698 				   DMA_BIDIRECTIONAL);
699 	if (ret)
700 		goto e_key;
701 
702 	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
703 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
704 	if (ret)
705 		goto e_ctx;
706 
707 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
708 			     CCP_PASSTHRU_BYTESWAP_256BIT);
709 	if (ret) {
710 		cmd->engine_error = cmd_q->cmd_error;
711 		goto e_ctx;
712 	}
713 
714 	op.init = 1;
715 	if (aes->aad_len > 0) {
716 		/* Step 1: Run a GHASH over the Additional Authenticated Data */
717 		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
718 				    AES_BLOCK_SIZE,
719 				    DMA_TO_DEVICE);
720 		if (ret)
721 			goto e_ctx;
722 
723 		op.u.aes.mode = CCP_AES_MODE_GHASH;
724 		op.u.aes.action = CCP_AES_GHASHAAD;
725 
726 		while (aad.sg_wa.bytes_left) {
727 			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
728 
729 			ret = cmd_q->ccp->vdata->perform->aes(&op);
730 			if (ret) {
731 				cmd->engine_error = cmd_q->cmd_error;
732 				goto e_aad;
733 			}
734 
735 			ccp_process_data(&aad, NULL, &op);
736 			op.init = 0;
737 		}
738 	}
739 
740 	op.u.aes.mode = CCP_AES_MODE_GCTR;
741 	op.u.aes.action = aes->action;
742 
743 	if (ilen > 0) {
744 		/* Step 2: Run a GCTR over the plaintext */
745 		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
746 
747 		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
748 				    AES_BLOCK_SIZE,
749 				    in_place ? DMA_BIDIRECTIONAL
750 					     : DMA_TO_DEVICE);
751 		if (ret)
752 			goto e_ctx;
753 
754 		if (in_place) {
755 			dst = src;
756 		} else {
757 			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
758 					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
759 			if (ret)
760 				goto e_src;
761 		}
762 
763 		op.soc = 0;
764 		op.eom = 0;
765 		op.init = 1;
766 		while (src.sg_wa.bytes_left) {
767 			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
768 			if (!src.sg_wa.bytes_left) {
769 				unsigned int nbytes = aes->src_len
770 						      % AES_BLOCK_SIZE;
771 
772 				if (nbytes) {
773 					op.eom = 1;
774 					op.u.aes.size = (nbytes * 8) - 1;
775 				}
776 			}
777 
778 			ret = cmd_q->ccp->vdata->perform->aes(&op);
779 			if (ret) {
780 				cmd->engine_error = cmd_q->cmd_error;
781 				goto e_dst;
782 			}
783 
784 			ccp_process_data(&src, &dst, &op);
785 			op.init = 0;
786 		}
787 	}
788 
789 	/* Step 3: Update the IV portion of the context with the original IV */
790 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
791 			       CCP_PASSTHRU_BYTESWAP_256BIT);
792 	if (ret) {
793 		cmd->engine_error = cmd_q->cmd_error;
794 		goto e_dst;
795 	}
796 
797 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
798 	if (ret)
799 		goto e_dst;
800 
801 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
802 			     CCP_PASSTHRU_BYTESWAP_256BIT);
803 	if (ret) {
804 		cmd->engine_error = cmd_q->cmd_error;
805 		goto e_dst;
806 	}
807 
808 	/* Step 4: Concatenate the lengths of the AAD and source, and
809 	 * hash that 16 byte buffer.
810 	 */
811 	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
812 				   DMA_BIDIRECTIONAL);
813 	if (ret)
814 		goto e_dst;
815 	final = (unsigned long long *) final_wa.address;
816 	final[0] = cpu_to_be64(aes->aad_len * 8);
817 	final[1] = cpu_to_be64(ilen * 8);
818 
819 	memset(&op, 0, sizeof(op));
820 	op.cmd_q = cmd_q;
821 	op.jobid = jobid;
822 	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
823 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
824 	op.init = 1;
825 	op.u.aes.type = aes->type;
826 	op.u.aes.mode = CCP_AES_MODE_GHASH;
827 	op.u.aes.action = CCP_AES_GHASHFINAL;
828 	op.src.type = CCP_MEMTYPE_SYSTEM;
829 	op.src.u.dma.address = final_wa.dma.address;
830 	op.src.u.dma.length = AES_BLOCK_SIZE;
831 	op.dst.type = CCP_MEMTYPE_SYSTEM;
832 	op.dst.u.dma.address = final_wa.dma.address;
833 	op.dst.u.dma.length = AES_BLOCK_SIZE;
834 	op.eom = 1;
835 	op.u.aes.size = 0;
836 	ret = cmd_q->ccp->vdata->perform->aes(&op);
837 	if (ret)
838 		goto e_dst;
839 
840 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
841 		/* Put the ciphered tag after the ciphertext. */
842 		ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
843 	} else {
844 		/* Does this ciphered tag match the input? */
845 		ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
846 					   DMA_BIDIRECTIONAL);
847 		if (ret)
848 			goto e_tag;
849 		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
850 		if (ret)
851 			goto e_tag;
852 
853 		ret = crypto_memneq(tag.address, final_wa.address,
854 				    AES_BLOCK_SIZE) ? -EBADMSG : 0;
855 		ccp_dm_free(&tag);
856 	}
857 
858 e_tag:
859 	ccp_dm_free(&final_wa);
860 
861 e_dst:
862 	if (aes->src_len && !in_place)
863 		ccp_free_data(&dst, cmd_q);
864 
865 e_src:
866 	if (aes->src_len)
867 		ccp_free_data(&src, cmd_q);
868 
869 e_aad:
870 	if (aes->aad_len)
871 		ccp_free_data(&aad, cmd_q);
872 
873 e_ctx:
874 	ccp_dm_free(&ctx);
875 
876 e_key:
877 	ccp_dm_free(&key);
878 
879 	return ret;
880 }
881 
882 static noinline_for_stack int
883 ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
884 {
885 	struct ccp_aes_engine *aes = &cmd->u.aes;
886 	struct ccp_dm_workarea key, ctx;
887 	struct ccp_data src, dst;
888 	struct ccp_op op;
889 	unsigned int dm_offset;
890 	bool in_place = false;
891 	int ret;
892 
893 	if (!((aes->key_len == AES_KEYSIZE_128) ||
894 	      (aes->key_len == AES_KEYSIZE_192) ||
895 	      (aes->key_len == AES_KEYSIZE_256)))
896 		return -EINVAL;
897 
898 	if (((aes->mode == CCP_AES_MODE_ECB) ||
899 	     (aes->mode == CCP_AES_MODE_CBC)) &&
900 	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
901 		return -EINVAL;
902 
903 	if (!aes->key || !aes->src || !aes->dst)
904 		return -EINVAL;
905 
906 	if (aes->mode != CCP_AES_MODE_ECB) {
907 		if (aes->iv_len != AES_BLOCK_SIZE)
908 			return -EINVAL;
909 
910 		if (!aes->iv)
911 			return -EINVAL;
912 	}
913 
914 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
915 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
916 
917 	ret = -EIO;
918 	memset(&op, 0, sizeof(op));
919 	op.cmd_q = cmd_q;
920 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
921 	op.sb_key = cmd_q->sb_key;
922 	op.sb_ctx = cmd_q->sb_ctx;
923 	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
924 	op.u.aes.type = aes->type;
925 	op.u.aes.mode = aes->mode;
926 	op.u.aes.action = aes->action;
927 
928 	/* All supported key sizes fit in a single (32-byte) SB entry
929 	 * and must be in little endian format. Use the 256-bit byte
930 	 * swap passthru option to convert from big endian to little
931 	 * endian.
932 	 */
933 	ret = ccp_init_dm_workarea(&key, cmd_q,
934 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
935 				   DMA_TO_DEVICE);
936 	if (ret)
937 		return ret;
938 
939 	dm_offset = CCP_SB_BYTES - aes->key_len;
940 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
941 	if (ret)
942 		goto e_key;
943 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
944 			     CCP_PASSTHRU_BYTESWAP_256BIT);
945 	if (ret) {
946 		cmd->engine_error = cmd_q->cmd_error;
947 		goto e_key;
948 	}
949 
950 	/* The AES context fits in a single (32-byte) SB entry and
951 	 * must be in little endian format. Use the 256-bit byte swap
952 	 * passthru option to convert from big endian to little endian.
953 	 */
954 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
955 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
956 				   DMA_BIDIRECTIONAL);
957 	if (ret)
958 		goto e_key;
959 
960 	if (aes->mode != CCP_AES_MODE_ECB) {
961 		/* Load the AES context - convert to LE */
962 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
963 		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
964 		if (ret)
965 			goto e_ctx;
966 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
967 				     CCP_PASSTHRU_BYTESWAP_256BIT);
968 		if (ret) {
969 			cmd->engine_error = cmd_q->cmd_error;
970 			goto e_ctx;
971 		}
972 	}
973 	switch (aes->mode) {
974 	case CCP_AES_MODE_CFB: /* CFB128 only */
975 	case CCP_AES_MODE_CTR:
976 		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
977 		break;
978 	default:
979 		op.u.aes.size = 0;
980 	}
981 
982 	/* Prepare the input and output data workareas. For in-place
983 	 * operations we need to set the dma direction to BIDIRECTIONAL
984 	 * and copy the src workarea to the dst workarea.
985 	 */
986 	if (sg_virt(aes->src) == sg_virt(aes->dst))
987 		in_place = true;
988 
989 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
990 			    AES_BLOCK_SIZE,
991 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
992 	if (ret)
993 		goto e_ctx;
994 
995 	if (in_place) {
996 		dst = src;
997 	} else {
998 		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
999 				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1000 		if (ret)
1001 			goto e_src;
1002 	}
1003 
1004 	/* Send data to the CCP AES engine */
1005 	while (src.sg_wa.bytes_left) {
1006 		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1007 		if (!src.sg_wa.bytes_left) {
1008 			op.eom = 1;
1009 
1010 			/* Since we don't retrieve the AES context in ECB
1011 			 * mode we have to wait for the operation to complete
1012 			 * on the last piece of data
1013 			 */
1014 			if (aes->mode == CCP_AES_MODE_ECB)
1015 				op.soc = 1;
1016 		}
1017 
1018 		ret = cmd_q->ccp->vdata->perform->aes(&op);
1019 		if (ret) {
1020 			cmd->engine_error = cmd_q->cmd_error;
1021 			goto e_dst;
1022 		}
1023 
1024 		ccp_process_data(&src, &dst, &op);
1025 	}
1026 
1027 	if (aes->mode != CCP_AES_MODE_ECB) {
1028 		/* Retrieve the AES context - convert from LE to BE using
1029 		 * 32-byte (256-bit) byteswapping
1030 		 */
1031 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1032 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1033 		if (ret) {
1034 			cmd->engine_error = cmd_q->cmd_error;
1035 			goto e_dst;
1036 		}
1037 
1038 		/* ...but we only need AES_BLOCK_SIZE bytes */
1039 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1040 		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1041 	}
1042 
1043 e_dst:
1044 	if (!in_place)
1045 		ccp_free_data(&dst, cmd_q);
1046 
1047 e_src:
1048 	ccp_free_data(&src, cmd_q);
1049 
1050 e_ctx:
1051 	ccp_dm_free(&ctx);
1052 
1053 e_key:
1054 	ccp_dm_free(&key);
1055 
1056 	return ret;
1057 }
1058 
1059 static noinline_for_stack int
1060 ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1061 {
1062 	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1063 	struct ccp_dm_workarea key, ctx;
1064 	struct ccp_data src, dst;
1065 	struct ccp_op op;
1066 	unsigned int unit_size, dm_offset;
1067 	bool in_place = false;
1068 	unsigned int sb_count;
1069 	enum ccp_aes_type aestype;
1070 	int ret;
1071 
1072 	switch (xts->unit_size) {
1073 	case CCP_XTS_AES_UNIT_SIZE_16:
1074 		unit_size = 16;
1075 		break;
1076 	case CCP_XTS_AES_UNIT_SIZE_512:
1077 		unit_size = 512;
1078 		break;
1079 	case CCP_XTS_AES_UNIT_SIZE_1024:
1080 		unit_size = 1024;
1081 		break;
1082 	case CCP_XTS_AES_UNIT_SIZE_2048:
1083 		unit_size = 2048;
1084 		break;
1085 	case CCP_XTS_AES_UNIT_SIZE_4096:
1086 		unit_size = 4096;
1087 		break;
1088 
1089 	default:
1090 		return -EINVAL;
1091 	}
1092 
1093 	if (xts->key_len == AES_KEYSIZE_128)
1094 		aestype = CCP_AES_TYPE_128;
1095 	else if (xts->key_len == AES_KEYSIZE_256)
1096 		aestype = CCP_AES_TYPE_256;
1097 	else
1098 		return -EINVAL;
1099 
1100 	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1101 		return -EINVAL;
1102 
1103 	if (xts->iv_len != AES_BLOCK_SIZE)
1104 		return -EINVAL;
1105 
1106 	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1107 		return -EINVAL;
1108 
1109 	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1110 	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1111 
1112 	ret = -EIO;
1113 	memset(&op, 0, sizeof(op));
1114 	op.cmd_q = cmd_q;
1115 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1116 	op.sb_key = cmd_q->sb_key;
1117 	op.sb_ctx = cmd_q->sb_ctx;
1118 	op.init = 1;
1119 	op.u.xts.type = aestype;
1120 	op.u.xts.action = xts->action;
1121 	op.u.xts.unit_size = xts->unit_size;
1122 
1123 	/* A version 3 device only supports 128-bit keys, which fits into a
1124 	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1125 	 * SB entries.
1126 	 */
1127 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1128 		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1129 	else
1130 		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1131 	ret = ccp_init_dm_workarea(&key, cmd_q,
1132 				   sb_count * CCP_SB_BYTES,
1133 				   DMA_TO_DEVICE);
1134 	if (ret)
1135 		return ret;
1136 
1137 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1138 		/* All supported key sizes must be in little endian format.
1139 		 * Use the 256-bit byte swap passthru option to convert from
1140 		 * big endian to little endian.
1141 		 */
1142 		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1143 		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1144 		if (ret)
1145 			goto e_key;
1146 		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1147 		if (ret)
1148 			goto e_key;
1149 	} else {
1150 		/* Version 5 CCPs use a 512-bit space for the key: each portion
1151 		 * occupies 256 bits, or one entire slot, and is zero-padded.
1152 		 */
1153 		unsigned int pad;
1154 
1155 		dm_offset = CCP_SB_BYTES;
1156 		pad = dm_offset - xts->key_len;
1157 		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1158 		if (ret)
1159 			goto e_key;
1160 		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1161 				      xts->key_len, xts->key_len);
1162 		if (ret)
1163 			goto e_key;
1164 	}
1165 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1166 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1167 	if (ret) {
1168 		cmd->engine_error = cmd_q->cmd_error;
1169 		goto e_key;
1170 	}
1171 
1172 	/* The AES context fits in a single (32-byte) SB entry and
1173 	 * for XTS is already in little endian format so no byte swapping
1174 	 * is needed.
1175 	 */
1176 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1177 				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1178 				   DMA_BIDIRECTIONAL);
1179 	if (ret)
1180 		goto e_key;
1181 
1182 	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1183 	if (ret)
1184 		goto e_ctx;
1185 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1186 			     CCP_PASSTHRU_BYTESWAP_NOOP);
1187 	if (ret) {
1188 		cmd->engine_error = cmd_q->cmd_error;
1189 		goto e_ctx;
1190 	}
1191 
1192 	/* Prepare the input and output data workareas. For in-place
1193 	 * operations we need to set the dma direction to BIDIRECTIONAL
1194 	 * and copy the src workarea to the dst workarea.
1195 	 */
1196 	if (sg_virt(xts->src) == sg_virt(xts->dst))
1197 		in_place = true;
1198 
1199 	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1200 			    unit_size,
1201 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1202 	if (ret)
1203 		goto e_ctx;
1204 
1205 	if (in_place) {
1206 		dst = src;
1207 	} else {
1208 		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1209 				    unit_size, DMA_FROM_DEVICE);
1210 		if (ret)
1211 			goto e_src;
1212 	}
1213 
1214 	/* Send data to the CCP AES engine */
1215 	while (src.sg_wa.bytes_left) {
1216 		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1217 		if (!src.sg_wa.bytes_left)
1218 			op.eom = 1;
1219 
1220 		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1221 		if (ret) {
1222 			cmd->engine_error = cmd_q->cmd_error;
1223 			goto e_dst;
1224 		}
1225 
1226 		ccp_process_data(&src, &dst, &op);
1227 	}
1228 
1229 	/* Retrieve the AES context - convert from LE to BE using
1230 	 * 32-byte (256-bit) byteswapping
1231 	 */
1232 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1233 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1234 	if (ret) {
1235 		cmd->engine_error = cmd_q->cmd_error;
1236 		goto e_dst;
1237 	}
1238 
1239 	/* ...but we only need AES_BLOCK_SIZE bytes */
1240 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1241 	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1242 
1243 e_dst:
1244 	if (!in_place)
1245 		ccp_free_data(&dst, cmd_q);
1246 
1247 e_src:
1248 	ccp_free_data(&src, cmd_q);
1249 
1250 e_ctx:
1251 	ccp_dm_free(&ctx);
1252 
1253 e_key:
1254 	ccp_dm_free(&key);
1255 
1256 	return ret;
1257 }
1258 
1259 static noinline_for_stack int
1260 ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1261 {
1262 	struct ccp_des3_engine *des3 = &cmd->u.des3;
1263 
1264 	struct ccp_dm_workarea key, ctx;
1265 	struct ccp_data src, dst;
1266 	struct ccp_op op;
1267 	unsigned int dm_offset;
1268 	unsigned int len_singlekey;
1269 	bool in_place = false;
1270 	int ret;
1271 
1272 	/* Error checks */
1273 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1274 		return -EINVAL;
1275 
1276 	if (!cmd_q->ccp->vdata->perform->des3)
1277 		return -EINVAL;
1278 
1279 	if (des3->key_len != DES3_EDE_KEY_SIZE)
1280 		return -EINVAL;
1281 
1282 	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1283 		(des3->mode == CCP_DES3_MODE_CBC)) &&
1284 		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1285 		return -EINVAL;
1286 
1287 	if (!des3->key || !des3->src || !des3->dst)
1288 		return -EINVAL;
1289 
1290 	if (des3->mode != CCP_DES3_MODE_ECB) {
1291 		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1292 			return -EINVAL;
1293 
1294 		if (!des3->iv)
1295 			return -EINVAL;
1296 	}
1297 
1298 	ret = -EIO;
1299 	/* Zero out all the fields of the command desc */
1300 	memset(&op, 0, sizeof(op));
1301 
1302 	/* Set up the Function field */
1303 	op.cmd_q = cmd_q;
1304 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1305 	op.sb_key = cmd_q->sb_key;
1306 
1307 	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1308 	op.u.des3.type = des3->type;
1309 	op.u.des3.mode = des3->mode;
1310 	op.u.des3.action = des3->action;
1311 
1312 	/*
1313 	 * All supported key sizes fit in a single (32-byte) KSB entry and
1314 	 * (like AES) must be in little endian format. Use the 256-bit byte
1315 	 * swap passthru option to convert from big endian to little endian.
1316 	 */
1317 	ret = ccp_init_dm_workarea(&key, cmd_q,
1318 				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1319 				   DMA_TO_DEVICE);
1320 	if (ret)
1321 		return ret;
1322 
1323 	/*
1324 	 * The contents of the key triplet are in the reverse order of what
1325 	 * is required by the engine. Copy the 3 pieces individually to put
1326 	 * them where they belong.
1327 	 */
1328 	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1329 
1330 	len_singlekey = des3->key_len / 3;
1331 	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1332 			      des3->key, 0, len_singlekey);
1333 	if (ret)
1334 		goto e_key;
1335 	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1336 			      des3->key, len_singlekey, len_singlekey);
1337 	if (ret)
1338 		goto e_key;
1339 	ret = ccp_set_dm_area(&key, dm_offset,
1340 			      des3->key, 2 * len_singlekey, len_singlekey);
1341 	if (ret)
1342 		goto e_key;
1343 
1344 	/* Copy the key to the SB */
1345 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1346 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1347 	if (ret) {
1348 		cmd->engine_error = cmd_q->cmd_error;
1349 		goto e_key;
1350 	}
1351 
1352 	/*
1353 	 * The DES3 context fits in a single (32-byte) KSB entry and
1354 	 * must be in little endian format. Use the 256-bit byte swap
1355 	 * passthru option to convert from big endian to little endian.
1356 	 */
1357 	if (des3->mode != CCP_DES3_MODE_ECB) {
1358 		op.sb_ctx = cmd_q->sb_ctx;
1359 
1360 		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1361 					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1362 					   DMA_BIDIRECTIONAL);
1363 		if (ret)
1364 			goto e_key;
1365 
1366 		/* Load the context into the LSB */
1367 		dm_offset = CCP_SB_BYTES - des3->iv_len;
1368 		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1369 				      des3->iv_len);
1370 		if (ret)
1371 			goto e_ctx;
1372 
1373 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1374 				     CCP_PASSTHRU_BYTESWAP_256BIT);
1375 		if (ret) {
1376 			cmd->engine_error = cmd_q->cmd_error;
1377 			goto e_ctx;
1378 		}
1379 	}
1380 
1381 	/*
1382 	 * Prepare the input and output data workareas. For in-place
1383 	 * operations we need to set the dma direction to BIDIRECTIONAL
1384 	 * and copy the src workarea to the dst workarea.
1385 	 */
1386 	if (sg_virt(des3->src) == sg_virt(des3->dst))
1387 		in_place = true;
1388 
1389 	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1390 			DES3_EDE_BLOCK_SIZE,
1391 			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1392 	if (ret)
1393 		goto e_ctx;
1394 
1395 	if (in_place)
1396 		dst = src;
1397 	else {
1398 		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1399 				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1400 		if (ret)
1401 			goto e_src;
1402 	}
1403 
1404 	/* Send data to the CCP DES3 engine */
1405 	while (src.sg_wa.bytes_left) {
1406 		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1407 		if (!src.sg_wa.bytes_left) {
1408 			op.eom = 1;
1409 
1410 			/* Since we don't retrieve the context in ECB mode
1411 			 * we have to wait for the operation to complete
1412 			 * on the last piece of data
1413 			 */
1414 			op.soc = 0;
1415 		}
1416 
1417 		ret = cmd_q->ccp->vdata->perform->des3(&op);
1418 		if (ret) {
1419 			cmd->engine_error = cmd_q->cmd_error;
1420 			goto e_dst;
1421 		}
1422 
1423 		ccp_process_data(&src, &dst, &op);
1424 	}
1425 
1426 	if (des3->mode != CCP_DES3_MODE_ECB) {
1427 		/* Retrieve the context and make BE */
1428 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1429 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1430 		if (ret) {
1431 			cmd->engine_error = cmd_q->cmd_error;
1432 			goto e_dst;
1433 		}
1434 
1435 		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1436 		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1437 				DES3_EDE_BLOCK_SIZE);
1438 	}
1439 e_dst:
1440 	if (!in_place)
1441 		ccp_free_data(&dst, cmd_q);
1442 
1443 e_src:
1444 	ccp_free_data(&src, cmd_q);
1445 
1446 e_ctx:
1447 	if (des3->mode != CCP_DES3_MODE_ECB)
1448 		ccp_dm_free(&ctx);
1449 
1450 e_key:
1451 	ccp_dm_free(&key);
1452 
1453 	return ret;
1454 }
1455 
1456 static noinline_for_stack int
1457 ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1458 {
1459 	struct ccp_sha_engine *sha = &cmd->u.sha;
1460 	struct ccp_dm_workarea ctx;
1461 	struct ccp_data src;
1462 	struct ccp_op op;
1463 	unsigned int ioffset, ooffset;
1464 	unsigned int digest_size;
1465 	int sb_count;
1466 	const void *init;
1467 	u64 block_size;
1468 	int ctx_size;
1469 	int ret;
1470 
1471 	switch (sha->type) {
1472 	case CCP_SHA_TYPE_1:
1473 		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1474 			return -EINVAL;
1475 		block_size = SHA1_BLOCK_SIZE;
1476 		break;
1477 	case CCP_SHA_TYPE_224:
1478 		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1479 			return -EINVAL;
1480 		block_size = SHA224_BLOCK_SIZE;
1481 		break;
1482 	case CCP_SHA_TYPE_256:
1483 		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1484 			return -EINVAL;
1485 		block_size = SHA256_BLOCK_SIZE;
1486 		break;
1487 	case CCP_SHA_TYPE_384:
1488 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1489 		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1490 			return -EINVAL;
1491 		block_size = SHA384_BLOCK_SIZE;
1492 		break;
1493 	case CCP_SHA_TYPE_512:
1494 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1495 		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1496 			return -EINVAL;
1497 		block_size = SHA512_BLOCK_SIZE;
1498 		break;
1499 	default:
1500 		return -EINVAL;
1501 	}
1502 
1503 	if (!sha->ctx)
1504 		return -EINVAL;
1505 
1506 	if (!sha->final && (sha->src_len & (block_size - 1)))
1507 		return -EINVAL;
1508 
1509 	/* The version 3 device can't handle zero-length input */
1510 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1511 
1512 		if (!sha->src_len) {
1513 			unsigned int digest_len;
1514 			const u8 *sha_zero;
1515 
1516 			/* Not final, just return */
1517 			if (!sha->final)
1518 				return 0;
1519 
1520 			/* CCP can't do a zero length sha operation so the
1521 			 * caller must buffer the data.
1522 			 */
1523 			if (sha->msg_bits)
1524 				return -EINVAL;
1525 
1526 			/* The CCP cannot perform zero-length sha operations
1527 			 * so the caller is required to buffer data for the
1528 			 * final operation. However, a sha operation for a
1529 			 * message with a total length of zero is valid so
1530 			 * known values are required to supply the result.
1531 			 */
1532 			switch (sha->type) {
1533 			case CCP_SHA_TYPE_1:
1534 				sha_zero = sha1_zero_message_hash;
1535 				digest_len = SHA1_DIGEST_SIZE;
1536 				break;
1537 			case CCP_SHA_TYPE_224:
1538 				sha_zero = sha224_zero_message_hash;
1539 				digest_len = SHA224_DIGEST_SIZE;
1540 				break;
1541 			case CCP_SHA_TYPE_256:
1542 				sha_zero = sha256_zero_message_hash;
1543 				digest_len = SHA256_DIGEST_SIZE;
1544 				break;
1545 			default:
1546 				return -EINVAL;
1547 			}
1548 
1549 			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1550 						 digest_len, 1);
1551 
1552 			return 0;
1553 		}
1554 	}
1555 
1556 	/* Set variables used throughout */
1557 	switch (sha->type) {
1558 	case CCP_SHA_TYPE_1:
1559 		digest_size = SHA1_DIGEST_SIZE;
1560 		init = (void *) ccp_sha1_init;
1561 		ctx_size = SHA1_DIGEST_SIZE;
1562 		sb_count = 1;
1563 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1564 			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1565 		else
1566 			ooffset = ioffset = 0;
1567 		break;
1568 	case CCP_SHA_TYPE_224:
1569 		digest_size = SHA224_DIGEST_SIZE;
1570 		init = (void *) ccp_sha224_init;
1571 		ctx_size = SHA256_DIGEST_SIZE;
1572 		sb_count = 1;
1573 		ioffset = 0;
1574 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1575 			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1576 		else
1577 			ooffset = 0;
1578 		break;
1579 	case CCP_SHA_TYPE_256:
1580 		digest_size = SHA256_DIGEST_SIZE;
1581 		init = (void *) ccp_sha256_init;
1582 		ctx_size = SHA256_DIGEST_SIZE;
1583 		sb_count = 1;
1584 		ooffset = ioffset = 0;
1585 		break;
1586 	case CCP_SHA_TYPE_384:
1587 		digest_size = SHA384_DIGEST_SIZE;
1588 		init = (void *) ccp_sha384_init;
1589 		ctx_size = SHA512_DIGEST_SIZE;
1590 		sb_count = 2;
1591 		ioffset = 0;
1592 		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1593 		break;
1594 	case CCP_SHA_TYPE_512:
1595 		digest_size = SHA512_DIGEST_SIZE;
1596 		init = (void *) ccp_sha512_init;
1597 		ctx_size = SHA512_DIGEST_SIZE;
1598 		sb_count = 2;
1599 		ooffset = ioffset = 0;
1600 		break;
1601 	default:
1602 		ret = -EINVAL;
1603 		goto e_data;
1604 	}
1605 
1606 	/* For zero-length plaintext the src pointer is ignored;
1607 	 * otherwise both parts must be valid
1608 	 */
1609 	if (sha->src_len && !sha->src)
1610 		return -EINVAL;
1611 
1612 	memset(&op, 0, sizeof(op));
1613 	op.cmd_q = cmd_q;
1614 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1615 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1616 	op.u.sha.type = sha->type;
1617 	op.u.sha.msg_bits = sha->msg_bits;
1618 
1619 	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1620 	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1621 	 * first slot, and the left half in the second. Each portion must then
1622 	 * be in little endian format: use the 256-bit byte swap option.
1623 	 */
1624 	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1625 				   DMA_BIDIRECTIONAL);
1626 	if (ret)
1627 		return ret;
1628 	if (sha->first) {
1629 		switch (sha->type) {
1630 		case CCP_SHA_TYPE_1:
1631 		case CCP_SHA_TYPE_224:
1632 		case CCP_SHA_TYPE_256:
1633 			memcpy(ctx.address + ioffset, init, ctx_size);
1634 			break;
1635 		case CCP_SHA_TYPE_384:
1636 		case CCP_SHA_TYPE_512:
1637 			memcpy(ctx.address + ctx_size / 2, init,
1638 			       ctx_size / 2);
1639 			memcpy(ctx.address, init + ctx_size / 2,
1640 			       ctx_size / 2);
1641 			break;
1642 		default:
1643 			ret = -EINVAL;
1644 			goto e_ctx;
1645 		}
1646 	} else {
1647 		/* Restore the context */
1648 		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1649 				      sb_count * CCP_SB_BYTES);
1650 		if (ret)
1651 			goto e_ctx;
1652 	}
1653 
1654 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1655 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1656 	if (ret) {
1657 		cmd->engine_error = cmd_q->cmd_error;
1658 		goto e_ctx;
1659 	}
1660 
1661 	if (sha->src) {
1662 		/* Send data to the CCP SHA engine; block_size is set above */
1663 		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1664 				    block_size, DMA_TO_DEVICE);
1665 		if (ret)
1666 			goto e_ctx;
1667 
1668 		while (src.sg_wa.bytes_left) {
1669 			ccp_prepare_data(&src, NULL, &op, block_size, false);
1670 			if (sha->final && !src.sg_wa.bytes_left)
1671 				op.eom = 1;
1672 
1673 			ret = cmd_q->ccp->vdata->perform->sha(&op);
1674 			if (ret) {
1675 				cmd->engine_error = cmd_q->cmd_error;
1676 				goto e_data;
1677 			}
1678 
1679 			ccp_process_data(&src, NULL, &op);
1680 		}
1681 	} else {
1682 		op.eom = 1;
1683 		ret = cmd_q->ccp->vdata->perform->sha(&op);
1684 		if (ret) {
1685 			cmd->engine_error = cmd_q->cmd_error;
1686 			goto e_data;
1687 		}
1688 	}
1689 
1690 	/* Retrieve the SHA context - convert from LE to BE using
1691 	 * 32-byte (256-bit) byteswapping to BE
1692 	 */
1693 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1694 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1695 	if (ret) {
1696 		cmd->engine_error = cmd_q->cmd_error;
1697 		goto e_data;
1698 	}
1699 
1700 	if (sha->final) {
1701 		/* Finishing up, so get the digest */
1702 		switch (sha->type) {
1703 		case CCP_SHA_TYPE_1:
1704 		case CCP_SHA_TYPE_224:
1705 		case CCP_SHA_TYPE_256:
1706 			ccp_get_dm_area(&ctx, ooffset,
1707 					sha->ctx, 0,
1708 					digest_size);
1709 			break;
1710 		case CCP_SHA_TYPE_384:
1711 		case CCP_SHA_TYPE_512:
1712 			ccp_get_dm_area(&ctx, 0,
1713 					sha->ctx, LSB_ITEM_SIZE - ooffset,
1714 					LSB_ITEM_SIZE);
1715 			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1716 					sha->ctx, 0,
1717 					LSB_ITEM_SIZE - ooffset);
1718 			break;
1719 		default:
1720 			ret = -EINVAL;
1721 			goto e_ctx;
1722 		}
1723 	} else {
1724 		/* Stash the context */
1725 		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1726 				sb_count * CCP_SB_BYTES);
1727 	}
1728 
1729 	if (sha->final && sha->opad) {
1730 		/* HMAC operation, recursively perform final SHA */
1731 		struct ccp_cmd hmac_cmd;
1732 		struct scatterlist sg;
1733 		u8 *hmac_buf;
1734 
1735 		if (sha->opad_len != block_size) {
1736 			ret = -EINVAL;
1737 			goto e_data;
1738 		}
1739 
1740 		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1741 		if (!hmac_buf) {
1742 			ret = -ENOMEM;
1743 			goto e_data;
1744 		}
1745 		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1746 
1747 		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1748 		switch (sha->type) {
1749 		case CCP_SHA_TYPE_1:
1750 		case CCP_SHA_TYPE_224:
1751 		case CCP_SHA_TYPE_256:
1752 			memcpy(hmac_buf + block_size,
1753 			       ctx.address + ooffset,
1754 			       digest_size);
1755 			break;
1756 		case CCP_SHA_TYPE_384:
1757 		case CCP_SHA_TYPE_512:
1758 			memcpy(hmac_buf + block_size,
1759 			       ctx.address + LSB_ITEM_SIZE + ooffset,
1760 			       LSB_ITEM_SIZE);
1761 			memcpy(hmac_buf + block_size +
1762 			       (LSB_ITEM_SIZE - ooffset),
1763 			       ctx.address,
1764 			       LSB_ITEM_SIZE);
1765 			break;
1766 		default:
1767 			ret = -EINVAL;
1768 			goto e_ctx;
1769 		}
1770 
1771 		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1772 		hmac_cmd.engine = CCP_ENGINE_SHA;
1773 		hmac_cmd.u.sha.type = sha->type;
1774 		hmac_cmd.u.sha.ctx = sha->ctx;
1775 		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1776 		hmac_cmd.u.sha.src = &sg;
1777 		hmac_cmd.u.sha.src_len = block_size + digest_size;
1778 		hmac_cmd.u.sha.opad = NULL;
1779 		hmac_cmd.u.sha.opad_len = 0;
1780 		hmac_cmd.u.sha.first = 1;
1781 		hmac_cmd.u.sha.final = 1;
1782 		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1783 
1784 		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1785 		if (ret)
1786 			cmd->engine_error = hmac_cmd.engine_error;
1787 
1788 		kfree(hmac_buf);
1789 	}
1790 
1791 e_data:
1792 	if (sha->src)
1793 		ccp_free_data(&src, cmd_q);
1794 
1795 e_ctx:
1796 	ccp_dm_free(&ctx);
1797 
1798 	return ret;
1799 }
1800 
1801 static noinline_for_stack int
1802 ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1803 {
1804 	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1805 	struct ccp_dm_workarea exp, src, dst;
1806 	struct ccp_op op;
1807 	unsigned int sb_count, i_len, o_len;
1808 	int ret;
1809 
1810 	/* Check against the maximum allowable size, in bits */
1811 	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1812 		return -EINVAL;
1813 
1814 	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1815 		return -EINVAL;
1816 
1817 	memset(&op, 0, sizeof(op));
1818 	op.cmd_q = cmd_q;
1819 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1820 
1821 	/* The RSA modulus must precede the message being acted upon, so
1822 	 * it must be copied to a DMA area where the message and the
1823 	 * modulus can be concatenated.  Therefore the input buffer
1824 	 * length required is twice the output buffer length (which
1825 	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1826 	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1827 	 * required.
1828 	 */
1829 	o_len = 32 * ((rsa->key_size + 255) / 256);
1830 	i_len = o_len * 2;
1831 
1832 	sb_count = 0;
1833 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1834 		/* sb_count is the number of storage block slots required
1835 		 * for the modulus.
1836 		 */
1837 		sb_count = o_len / CCP_SB_BYTES;
1838 		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1839 								sb_count);
1840 		if (!op.sb_key)
1841 			return -EIO;
1842 	} else {
1843 		/* A version 5 device allows a modulus size that will not fit
1844 		 * in the LSB, so the command will transfer it from memory.
1845 		 * Set the sb key to the default, even though it's not used.
1846 		 */
1847 		op.sb_key = cmd_q->sb_key;
1848 	}
1849 
1850 	/* The RSA exponent must be in little endian format. Reverse its
1851 	 * byte order.
1852 	 */
1853 	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1854 	if (ret)
1855 		goto e_sb;
1856 
1857 	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1858 	if (ret)
1859 		goto e_exp;
1860 
1861 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1862 		/* Copy the exponent to the local storage block, using
1863 		 * as many 32-byte blocks as were allocated above. It's
1864 		 * already little endian, so no further change is required.
1865 		 */
1866 		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1867 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1868 		if (ret) {
1869 			cmd->engine_error = cmd_q->cmd_error;
1870 			goto e_exp;
1871 		}
1872 	} else {
1873 		/* The exponent can be retrieved from memory via DMA. */
1874 		op.exp.u.dma.address = exp.dma.address;
1875 		op.exp.u.dma.offset = 0;
1876 	}
1877 
1878 	/* Concatenate the modulus and the message. Both the modulus and
1879 	 * the operands must be in little endian format.  Since the input
1880 	 * is in big endian format it must be converted.
1881 	 */
1882 	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1883 	if (ret)
1884 		goto e_exp;
1885 
1886 	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1887 	if (ret)
1888 		goto e_src;
1889 	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1890 	if (ret)
1891 		goto e_src;
1892 
1893 	/* Prepare the output area for the operation */
1894 	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1895 	if (ret)
1896 		goto e_src;
1897 
1898 	op.soc = 1;
1899 	op.src.u.dma.address = src.dma.address;
1900 	op.src.u.dma.offset = 0;
1901 	op.src.u.dma.length = i_len;
1902 	op.dst.u.dma.address = dst.dma.address;
1903 	op.dst.u.dma.offset = 0;
1904 	op.dst.u.dma.length = o_len;
1905 
1906 	op.u.rsa.mod_size = rsa->key_size;
1907 	op.u.rsa.input_len = i_len;
1908 
1909 	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1910 	if (ret) {
1911 		cmd->engine_error = cmd_q->cmd_error;
1912 		goto e_dst;
1913 	}
1914 
1915 	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1916 
1917 e_dst:
1918 	ccp_dm_free(&dst);
1919 
1920 e_src:
1921 	ccp_dm_free(&src);
1922 
1923 e_exp:
1924 	ccp_dm_free(&exp);
1925 
1926 e_sb:
1927 	if (sb_count)
1928 		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1929 
1930 	return ret;
1931 }
1932 
1933 static noinline_for_stack int
1934 ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1935 {
1936 	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1937 	struct ccp_dm_workarea mask;
1938 	struct ccp_data src, dst;
1939 	struct ccp_op op;
1940 	bool in_place = false;
1941 	unsigned int i;
1942 	int ret = 0;
1943 
1944 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1945 		return -EINVAL;
1946 
1947 	if (!pt->src || !pt->dst)
1948 		return -EINVAL;
1949 
1950 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1951 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1952 			return -EINVAL;
1953 		if (!pt->mask)
1954 			return -EINVAL;
1955 	}
1956 
1957 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1958 
1959 	memset(&op, 0, sizeof(op));
1960 	op.cmd_q = cmd_q;
1961 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1962 
1963 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1964 		/* Load the mask */
1965 		op.sb_key = cmd_q->sb_key;
1966 
1967 		ret = ccp_init_dm_workarea(&mask, cmd_q,
1968 					   CCP_PASSTHRU_SB_COUNT *
1969 					   CCP_SB_BYTES,
1970 					   DMA_TO_DEVICE);
1971 		if (ret)
1972 			return ret;
1973 
1974 		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1975 		if (ret)
1976 			goto e_mask;
1977 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1978 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1979 		if (ret) {
1980 			cmd->engine_error = cmd_q->cmd_error;
1981 			goto e_mask;
1982 		}
1983 	}
1984 
1985 	/* Prepare the input and output data workareas. For in-place
1986 	 * operations we need to set the dma direction to BIDIRECTIONAL
1987 	 * and copy the src workarea to the dst workarea.
1988 	 */
1989 	if (sg_virt(pt->src) == sg_virt(pt->dst))
1990 		in_place = true;
1991 
1992 	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1993 			    CCP_PASSTHRU_MASKSIZE,
1994 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1995 	if (ret)
1996 		goto e_mask;
1997 
1998 	if (in_place) {
1999 		dst = src;
2000 	} else {
2001 		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2002 				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2003 		if (ret)
2004 			goto e_src;
2005 	}
2006 
2007 	/* Send data to the CCP Passthru engine
2008 	 *   Because the CCP engine works on a single source and destination
2009 	 *   dma address at a time, each entry in the source scatterlist
2010 	 *   (after the dma_map_sg call) must be less than or equal to the
2011 	 *   (remaining) length in the destination scatterlist entry and the
2012 	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2013 	 */
2014 	dst.sg_wa.sg_used = 0;
2015 	for (i = 1; i <= src.sg_wa.dma_count; i++) {
2016 		if (!dst.sg_wa.sg ||
2017 		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2018 			ret = -EINVAL;
2019 			goto e_dst;
2020 		}
2021 
2022 		if (i == src.sg_wa.dma_count) {
2023 			op.eom = 1;
2024 			op.soc = 1;
2025 		}
2026 
2027 		op.src.type = CCP_MEMTYPE_SYSTEM;
2028 		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2029 		op.src.u.dma.offset = 0;
2030 		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2031 
2032 		op.dst.type = CCP_MEMTYPE_SYSTEM;
2033 		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2034 		op.dst.u.dma.offset = dst.sg_wa.sg_used;
2035 		op.dst.u.dma.length = op.src.u.dma.length;
2036 
2037 		ret = cmd_q->ccp->vdata->perform->passthru(&op);
2038 		if (ret) {
2039 			cmd->engine_error = cmd_q->cmd_error;
2040 			goto e_dst;
2041 		}
2042 
2043 		dst.sg_wa.sg_used += src.sg_wa.sg->length;
2044 		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2045 			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2046 			dst.sg_wa.sg_used = 0;
2047 		}
2048 		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2049 	}
2050 
2051 e_dst:
2052 	if (!in_place)
2053 		ccp_free_data(&dst, cmd_q);
2054 
2055 e_src:
2056 	ccp_free_data(&src, cmd_q);
2057 
2058 e_mask:
2059 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2060 		ccp_dm_free(&mask);
2061 
2062 	return ret;
2063 }
2064 
2065 static noinline_for_stack int
2066 ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2067 				      struct ccp_cmd *cmd)
2068 {
2069 	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2070 	struct ccp_dm_workarea mask;
2071 	struct ccp_op op;
2072 	int ret;
2073 
2074 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2075 		return -EINVAL;
2076 
2077 	if (!pt->src_dma || !pt->dst_dma)
2078 		return -EINVAL;
2079 
2080 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2081 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2082 			return -EINVAL;
2083 		if (!pt->mask)
2084 			return -EINVAL;
2085 	}
2086 
2087 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2088 
2089 	memset(&op, 0, sizeof(op));
2090 	op.cmd_q = cmd_q;
2091 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2092 
2093 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2094 		/* Load the mask */
2095 		op.sb_key = cmd_q->sb_key;
2096 
2097 		mask.length = pt->mask_len;
2098 		mask.dma.address = pt->mask;
2099 		mask.dma.length = pt->mask_len;
2100 
2101 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2102 				     CCP_PASSTHRU_BYTESWAP_NOOP);
2103 		if (ret) {
2104 			cmd->engine_error = cmd_q->cmd_error;
2105 			return ret;
2106 		}
2107 	}
2108 
2109 	/* Send data to the CCP Passthru engine */
2110 	op.eom = 1;
2111 	op.soc = 1;
2112 
2113 	op.src.type = CCP_MEMTYPE_SYSTEM;
2114 	op.src.u.dma.address = pt->src_dma;
2115 	op.src.u.dma.offset = 0;
2116 	op.src.u.dma.length = pt->src_len;
2117 
2118 	op.dst.type = CCP_MEMTYPE_SYSTEM;
2119 	op.dst.u.dma.address = pt->dst_dma;
2120 	op.dst.u.dma.offset = 0;
2121 	op.dst.u.dma.length = pt->src_len;
2122 
2123 	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2124 	if (ret)
2125 		cmd->engine_error = cmd_q->cmd_error;
2126 
2127 	return ret;
2128 }
2129 
2130 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2131 {
2132 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2133 	struct ccp_dm_workarea src, dst;
2134 	struct ccp_op op;
2135 	int ret;
2136 	u8 *save;
2137 
2138 	if (!ecc->u.mm.operand_1 ||
2139 	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2140 		return -EINVAL;
2141 
2142 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2143 		if (!ecc->u.mm.operand_2 ||
2144 		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2145 			return -EINVAL;
2146 
2147 	if (!ecc->u.mm.result ||
2148 	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2149 		return -EINVAL;
2150 
2151 	memset(&op, 0, sizeof(op));
2152 	op.cmd_q = cmd_q;
2153 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2154 
2155 	/* Concatenate the modulus and the operands. Both the modulus and
2156 	 * the operands must be in little endian format.  Since the input
2157 	 * is in big endian format it must be converted and placed in a
2158 	 * fixed length buffer.
2159 	 */
2160 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2161 				   DMA_TO_DEVICE);
2162 	if (ret)
2163 		return ret;
2164 
2165 	/* Save the workarea address since it is updated in order to perform
2166 	 * the concatenation
2167 	 */
2168 	save = src.address;
2169 
2170 	/* Copy the ECC modulus */
2171 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2172 	if (ret)
2173 		goto e_src;
2174 	src.address += CCP_ECC_OPERAND_SIZE;
2175 
2176 	/* Copy the first operand */
2177 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2178 				      ecc->u.mm.operand_1_len);
2179 	if (ret)
2180 		goto e_src;
2181 	src.address += CCP_ECC_OPERAND_SIZE;
2182 
2183 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2184 		/* Copy the second operand */
2185 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2186 					      ecc->u.mm.operand_2_len);
2187 		if (ret)
2188 			goto e_src;
2189 		src.address += CCP_ECC_OPERAND_SIZE;
2190 	}
2191 
2192 	/* Restore the workarea address */
2193 	src.address = save;
2194 
2195 	/* Prepare the output area for the operation */
2196 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2197 				   DMA_FROM_DEVICE);
2198 	if (ret)
2199 		goto e_src;
2200 
2201 	op.soc = 1;
2202 	op.src.u.dma.address = src.dma.address;
2203 	op.src.u.dma.offset = 0;
2204 	op.src.u.dma.length = src.length;
2205 	op.dst.u.dma.address = dst.dma.address;
2206 	op.dst.u.dma.offset = 0;
2207 	op.dst.u.dma.length = dst.length;
2208 
2209 	op.u.ecc.function = cmd->u.ecc.function;
2210 
2211 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2212 	if (ret) {
2213 		cmd->engine_error = cmd_q->cmd_error;
2214 		goto e_dst;
2215 	}
2216 
2217 	ecc->ecc_result = le16_to_cpup(
2218 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2219 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2220 		ret = -EIO;
2221 		goto e_dst;
2222 	}
2223 
2224 	/* Save the ECC result */
2225 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2226 				CCP_ECC_MODULUS_BYTES);
2227 
2228 e_dst:
2229 	ccp_dm_free(&dst);
2230 
2231 e_src:
2232 	ccp_dm_free(&src);
2233 
2234 	return ret;
2235 }
2236 
2237 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2238 {
2239 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2240 	struct ccp_dm_workarea src, dst;
2241 	struct ccp_op op;
2242 	int ret;
2243 	u8 *save;
2244 
2245 	if (!ecc->u.pm.point_1.x ||
2246 	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2247 	    !ecc->u.pm.point_1.y ||
2248 	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2249 		return -EINVAL;
2250 
2251 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2252 		if (!ecc->u.pm.point_2.x ||
2253 		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2254 		    !ecc->u.pm.point_2.y ||
2255 		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2256 			return -EINVAL;
2257 	} else {
2258 		if (!ecc->u.pm.domain_a ||
2259 		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2260 			return -EINVAL;
2261 
2262 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2263 			if (!ecc->u.pm.scalar ||
2264 			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2265 				return -EINVAL;
2266 	}
2267 
2268 	if (!ecc->u.pm.result.x ||
2269 	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2270 	    !ecc->u.pm.result.y ||
2271 	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2272 		return -EINVAL;
2273 
2274 	memset(&op, 0, sizeof(op));
2275 	op.cmd_q = cmd_q;
2276 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2277 
2278 	/* Concatenate the modulus and the operands. Both the modulus and
2279 	 * the operands must be in little endian format.  Since the input
2280 	 * is in big endian format it must be converted and placed in a
2281 	 * fixed length buffer.
2282 	 */
2283 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2284 				   DMA_TO_DEVICE);
2285 	if (ret)
2286 		return ret;
2287 
2288 	/* Save the workarea address since it is updated in order to perform
2289 	 * the concatenation
2290 	 */
2291 	save = src.address;
2292 
2293 	/* Copy the ECC modulus */
2294 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2295 	if (ret)
2296 		goto e_src;
2297 	src.address += CCP_ECC_OPERAND_SIZE;
2298 
2299 	/* Copy the first point X and Y coordinate */
2300 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2301 				      ecc->u.pm.point_1.x_len);
2302 	if (ret)
2303 		goto e_src;
2304 	src.address += CCP_ECC_OPERAND_SIZE;
2305 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2306 				      ecc->u.pm.point_1.y_len);
2307 	if (ret)
2308 		goto e_src;
2309 	src.address += CCP_ECC_OPERAND_SIZE;
2310 
2311 	/* Set the first point Z coordinate to 1 */
2312 	*src.address = 0x01;
2313 	src.address += CCP_ECC_OPERAND_SIZE;
2314 
2315 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2316 		/* Copy the second point X and Y coordinate */
2317 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2318 					      ecc->u.pm.point_2.x_len);
2319 		if (ret)
2320 			goto e_src;
2321 		src.address += CCP_ECC_OPERAND_SIZE;
2322 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2323 					      ecc->u.pm.point_2.y_len);
2324 		if (ret)
2325 			goto e_src;
2326 		src.address += CCP_ECC_OPERAND_SIZE;
2327 
2328 		/* Set the second point Z coordinate to 1 */
2329 		*src.address = 0x01;
2330 		src.address += CCP_ECC_OPERAND_SIZE;
2331 	} else {
2332 		/* Copy the Domain "a" parameter */
2333 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2334 					      ecc->u.pm.domain_a_len);
2335 		if (ret)
2336 			goto e_src;
2337 		src.address += CCP_ECC_OPERAND_SIZE;
2338 
2339 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2340 			/* Copy the scalar value */
2341 			ret = ccp_reverse_set_dm_area(&src, 0,
2342 						      ecc->u.pm.scalar, 0,
2343 						      ecc->u.pm.scalar_len);
2344 			if (ret)
2345 				goto e_src;
2346 			src.address += CCP_ECC_OPERAND_SIZE;
2347 		}
2348 	}
2349 
2350 	/* Restore the workarea address */
2351 	src.address = save;
2352 
2353 	/* Prepare the output area for the operation */
2354 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2355 				   DMA_FROM_DEVICE);
2356 	if (ret)
2357 		goto e_src;
2358 
2359 	op.soc = 1;
2360 	op.src.u.dma.address = src.dma.address;
2361 	op.src.u.dma.offset = 0;
2362 	op.src.u.dma.length = src.length;
2363 	op.dst.u.dma.address = dst.dma.address;
2364 	op.dst.u.dma.offset = 0;
2365 	op.dst.u.dma.length = dst.length;
2366 
2367 	op.u.ecc.function = cmd->u.ecc.function;
2368 
2369 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2370 	if (ret) {
2371 		cmd->engine_error = cmd_q->cmd_error;
2372 		goto e_dst;
2373 	}
2374 
2375 	ecc->ecc_result = le16_to_cpup(
2376 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2377 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2378 		ret = -EIO;
2379 		goto e_dst;
2380 	}
2381 
2382 	/* Save the workarea address since it is updated as we walk through
2383 	 * to copy the point math result
2384 	 */
2385 	save = dst.address;
2386 
2387 	/* Save the ECC result X and Y coordinates */
2388 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2389 				CCP_ECC_MODULUS_BYTES);
2390 	dst.address += CCP_ECC_OUTPUT_SIZE;
2391 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2392 				CCP_ECC_MODULUS_BYTES);
2393 	dst.address += CCP_ECC_OUTPUT_SIZE;
2394 
2395 	/* Restore the workarea address */
2396 	dst.address = save;
2397 
2398 e_dst:
2399 	ccp_dm_free(&dst);
2400 
2401 e_src:
2402 	ccp_dm_free(&src);
2403 
2404 	return ret;
2405 }
2406 
2407 static noinline_for_stack int
2408 ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2409 {
2410 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2411 
2412 	ecc->ecc_result = 0;
2413 
2414 	if (!ecc->mod ||
2415 	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2416 		return -EINVAL;
2417 
2418 	switch (ecc->function) {
2419 	case CCP_ECC_FUNCTION_MMUL_384BIT:
2420 	case CCP_ECC_FUNCTION_MADD_384BIT:
2421 	case CCP_ECC_FUNCTION_MINV_384BIT:
2422 		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2423 
2424 	case CCP_ECC_FUNCTION_PADD_384BIT:
2425 	case CCP_ECC_FUNCTION_PMUL_384BIT:
2426 	case CCP_ECC_FUNCTION_PDBL_384BIT:
2427 		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2428 
2429 	default:
2430 		return -EINVAL;
2431 	}
2432 }
2433 
2434 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2435 {
2436 	int ret;
2437 
2438 	cmd->engine_error = 0;
2439 	cmd_q->cmd_error = 0;
2440 	cmd_q->int_rcvd = 0;
2441 	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2442 
2443 	switch (cmd->engine) {
2444 	case CCP_ENGINE_AES:
2445 		switch (cmd->u.aes.mode) {
2446 		case CCP_AES_MODE_CMAC:
2447 			ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2448 			break;
2449 		case CCP_AES_MODE_GCM:
2450 			ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2451 			break;
2452 		default:
2453 			ret = ccp_run_aes_cmd(cmd_q, cmd);
2454 			break;
2455 		}
2456 		break;
2457 	case CCP_ENGINE_XTS_AES_128:
2458 		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2459 		break;
2460 	case CCP_ENGINE_DES3:
2461 		ret = ccp_run_des3_cmd(cmd_q, cmd);
2462 		break;
2463 	case CCP_ENGINE_SHA:
2464 		ret = ccp_run_sha_cmd(cmd_q, cmd);
2465 		break;
2466 	case CCP_ENGINE_RSA:
2467 		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2468 		break;
2469 	case CCP_ENGINE_PASSTHRU:
2470 		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2471 			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2472 		else
2473 			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2474 		break;
2475 	case CCP_ENGINE_ECC:
2476 		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2477 		break;
2478 	default:
2479 		ret = -EINVAL;
2480 	}
2481 
2482 	return ret;
2483 }
2484