1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Cryptographic Coprocessor (CCP) driver 4 * 5 * Copyright (C) 2013-2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 * Author: Gary R Hook <gary.hook@amd.com> 9 */ 10 11 #include <linux/dma-mapping.h> 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/interrupt.h> 15 #include <crypto/scatterwalk.h> 16 #include <crypto/des.h> 17 #include <linux/ccp.h> 18 19 #include "ccp-dev.h" 20 21 /* SHA initial context values */ 22 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = { 23 cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), 24 cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), 25 cpu_to_be32(SHA1_H4), 26 }; 27 28 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { 29 cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), 30 cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), 31 cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), 32 cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), 33 }; 34 35 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { 36 cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), 37 cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), 38 cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), 39 cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), 40 }; 41 42 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { 43 cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1), 44 cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3), 45 cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5), 46 cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7), 47 }; 48 49 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { 50 cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1), 51 cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3), 52 cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5), 53 cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7), 54 }; 55 56 #define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \ 57 ccp_gen_jobid(ccp) : 0) 58 59 static u32 ccp_gen_jobid(struct ccp_device *ccp) 60 { 61 return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK; 62 } 63 64 static void ccp_sg_free(struct ccp_sg_workarea *wa) 65 { 66 if (wa->dma_count) 67 dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir); 68 69 wa->dma_count = 0; 70 } 71 72 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev, 73 struct scatterlist *sg, u64 len, 74 enum dma_data_direction dma_dir) 75 { 76 memset(wa, 0, sizeof(*wa)); 77 78 wa->sg = sg; 79 if (!sg) 80 return 0; 81 82 wa->nents = sg_nents_for_len(sg, len); 83 if (wa->nents < 0) 84 return wa->nents; 85 86 wa->bytes_left = len; 87 wa->sg_used = 0; 88 89 if (len == 0) 90 return 0; 91 92 if (dma_dir == DMA_NONE) 93 return 0; 94 95 wa->dma_sg = sg; 96 wa->dma_sg_head = sg; 97 wa->dma_dev = dev; 98 wa->dma_dir = dma_dir; 99 wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir); 100 if (!wa->dma_count) 101 return -ENOMEM; 102 103 return 0; 104 } 105 106 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len) 107 { 108 unsigned int nbytes = min_t(u64, len, wa->bytes_left); 109 unsigned int sg_combined_len = 0; 110 111 if (!wa->sg) 112 return; 113 114 wa->sg_used += nbytes; 115 wa->bytes_left -= nbytes; 116 if (wa->sg_used == sg_dma_len(wa->dma_sg)) { 117 /* Advance to the next DMA scatterlist entry */ 118 wa->dma_sg = sg_next(wa->dma_sg); 119 120 /* In the case that the DMA mapped scatterlist has entries 121 * that have been merged, the non-DMA mapped scatterlist 122 * must be advanced multiple times for each merged entry. 123 * This ensures that the current non-DMA mapped entry 124 * corresponds to the current DMA mapped entry. 125 */ 126 do { 127 sg_combined_len += wa->sg->length; 128 wa->sg = sg_next(wa->sg); 129 } while (wa->sg_used > sg_combined_len); 130 131 wa->sg_used = 0; 132 } 133 } 134 135 static void ccp_dm_free(struct ccp_dm_workarea *wa) 136 { 137 if (wa->length <= CCP_DMAPOOL_MAX_SIZE) { 138 if (wa->address) 139 dma_pool_free(wa->dma_pool, wa->address, 140 wa->dma.address); 141 } else { 142 if (wa->dma.address) 143 dma_unmap_single(wa->dev, wa->dma.address, wa->length, 144 wa->dma.dir); 145 kfree(wa->address); 146 } 147 148 wa->address = NULL; 149 wa->dma.address = 0; 150 } 151 152 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa, 153 struct ccp_cmd_queue *cmd_q, 154 unsigned int len, 155 enum dma_data_direction dir) 156 { 157 memset(wa, 0, sizeof(*wa)); 158 159 if (!len) 160 return 0; 161 162 wa->dev = cmd_q->ccp->dev; 163 wa->length = len; 164 165 if (len <= CCP_DMAPOOL_MAX_SIZE) { 166 wa->dma_pool = cmd_q->dma_pool; 167 168 wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL, 169 &wa->dma.address); 170 if (!wa->address) 171 return -ENOMEM; 172 173 wa->dma.length = CCP_DMAPOOL_MAX_SIZE; 174 175 } else { 176 wa->address = kzalloc(len, GFP_KERNEL); 177 if (!wa->address) 178 return -ENOMEM; 179 180 wa->dma.address = dma_map_single(wa->dev, wa->address, len, 181 dir); 182 if (dma_mapping_error(wa->dev, wa->dma.address)) 183 return -ENOMEM; 184 185 wa->dma.length = len; 186 } 187 wa->dma.dir = dir; 188 189 return 0; 190 } 191 192 static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, 193 struct scatterlist *sg, unsigned int sg_offset, 194 unsigned int len) 195 { 196 WARN_ON(!wa->address); 197 198 if (len > (wa->length - wa_offset)) 199 return -EINVAL; 200 201 scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, 202 0); 203 return 0; 204 } 205 206 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, 207 struct scatterlist *sg, unsigned int sg_offset, 208 unsigned int len) 209 { 210 WARN_ON(!wa->address); 211 212 scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, 213 1); 214 } 215 216 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa, 217 unsigned int wa_offset, 218 struct scatterlist *sg, 219 unsigned int sg_offset, 220 unsigned int len) 221 { 222 u8 *p, *q; 223 int rc; 224 225 rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len); 226 if (rc) 227 return rc; 228 229 p = wa->address + wa_offset; 230 q = p + len - 1; 231 while (p < q) { 232 *p = *p ^ *q; 233 *q = *p ^ *q; 234 *p = *p ^ *q; 235 p++; 236 q--; 237 } 238 return 0; 239 } 240 241 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa, 242 unsigned int wa_offset, 243 struct scatterlist *sg, 244 unsigned int sg_offset, 245 unsigned int len) 246 { 247 u8 *p, *q; 248 249 p = wa->address + wa_offset; 250 q = p + len - 1; 251 while (p < q) { 252 *p = *p ^ *q; 253 *q = *p ^ *q; 254 *p = *p ^ *q; 255 p++; 256 q--; 257 } 258 259 ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len); 260 } 261 262 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q) 263 { 264 ccp_dm_free(&data->dm_wa); 265 ccp_sg_free(&data->sg_wa); 266 } 267 268 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q, 269 struct scatterlist *sg, u64 sg_len, 270 unsigned int dm_len, 271 enum dma_data_direction dir) 272 { 273 int ret; 274 275 memset(data, 0, sizeof(*data)); 276 277 ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len, 278 dir); 279 if (ret) 280 goto e_err; 281 282 ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir); 283 if (ret) 284 goto e_err; 285 286 return 0; 287 288 e_err: 289 ccp_free_data(data, cmd_q); 290 291 return ret; 292 } 293 294 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from) 295 { 296 struct ccp_sg_workarea *sg_wa = &data->sg_wa; 297 struct ccp_dm_workarea *dm_wa = &data->dm_wa; 298 unsigned int buf_count, nbytes; 299 300 /* Clear the buffer if setting it */ 301 if (!from) 302 memset(dm_wa->address, 0, dm_wa->length); 303 304 if (!sg_wa->sg) 305 return 0; 306 307 /* Perform the copy operation 308 * nbytes will always be <= UINT_MAX because dm_wa->length is 309 * an unsigned int 310 */ 311 nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length); 312 scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used, 313 nbytes, from); 314 315 /* Update the structures and generate the count */ 316 buf_count = 0; 317 while (sg_wa->bytes_left && (buf_count < dm_wa->length)) { 318 nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used, 319 dm_wa->length - buf_count); 320 nbytes = min_t(u64, sg_wa->bytes_left, nbytes); 321 322 buf_count += nbytes; 323 ccp_update_sg_workarea(sg_wa, nbytes); 324 } 325 326 return buf_count; 327 } 328 329 static unsigned int ccp_fill_queue_buf(struct ccp_data *data) 330 { 331 return ccp_queue_buf(data, 0); 332 } 333 334 static unsigned int ccp_empty_queue_buf(struct ccp_data *data) 335 { 336 return ccp_queue_buf(data, 1); 337 } 338 339 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst, 340 struct ccp_op *op, unsigned int block_size, 341 bool blocksize_op) 342 { 343 unsigned int sg_src_len, sg_dst_len, op_len; 344 345 /* The CCP can only DMA from/to one address each per operation. This 346 * requires that we find the smallest DMA area between the source 347 * and destination. The resulting len values will always be <= UINT_MAX 348 * because the dma length is an unsigned int. 349 */ 350 sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used; 351 sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len); 352 353 if (dst) { 354 sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used; 355 sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len); 356 op_len = min(sg_src_len, sg_dst_len); 357 } else { 358 op_len = sg_src_len; 359 } 360 361 /* The data operation length will be at least block_size in length 362 * or the smaller of available sg room remaining for the source or 363 * the destination 364 */ 365 op_len = max(op_len, block_size); 366 367 /* Unless we have to buffer data, there's no reason to wait */ 368 op->soc = 0; 369 370 if (sg_src_len < block_size) { 371 /* Not enough data in the sg element, so it 372 * needs to be buffered into a blocksize chunk 373 */ 374 int cp_len = ccp_fill_queue_buf(src); 375 376 op->soc = 1; 377 op->src.u.dma.address = src->dm_wa.dma.address; 378 op->src.u.dma.offset = 0; 379 op->src.u.dma.length = (blocksize_op) ? block_size : cp_len; 380 } else { 381 /* Enough data in the sg element, but we need to 382 * adjust for any previously copied data 383 */ 384 op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg); 385 op->src.u.dma.offset = src->sg_wa.sg_used; 386 op->src.u.dma.length = op_len & ~(block_size - 1); 387 388 ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length); 389 } 390 391 if (dst) { 392 if (sg_dst_len < block_size) { 393 /* Not enough room in the sg element or we're on the 394 * last piece of data (when using padding), so the 395 * output needs to be buffered into a blocksize chunk 396 */ 397 op->soc = 1; 398 op->dst.u.dma.address = dst->dm_wa.dma.address; 399 op->dst.u.dma.offset = 0; 400 op->dst.u.dma.length = op->src.u.dma.length; 401 } else { 402 /* Enough room in the sg element, but we need to 403 * adjust for any previously used area 404 */ 405 op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg); 406 op->dst.u.dma.offset = dst->sg_wa.sg_used; 407 op->dst.u.dma.length = op->src.u.dma.length; 408 } 409 } 410 } 411 412 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst, 413 struct ccp_op *op) 414 { 415 op->init = 0; 416 417 if (dst) { 418 if (op->dst.u.dma.address == dst->dm_wa.dma.address) 419 ccp_empty_queue_buf(dst); 420 else 421 ccp_update_sg_workarea(&dst->sg_wa, 422 op->dst.u.dma.length); 423 } 424 } 425 426 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q, 427 struct ccp_dm_workarea *wa, u32 jobid, u32 sb, 428 u32 byte_swap, bool from) 429 { 430 struct ccp_op op; 431 432 memset(&op, 0, sizeof(op)); 433 434 op.cmd_q = cmd_q; 435 op.jobid = jobid; 436 op.eom = 1; 437 438 if (from) { 439 op.soc = 1; 440 op.src.type = CCP_MEMTYPE_SB; 441 op.src.u.sb = sb; 442 op.dst.type = CCP_MEMTYPE_SYSTEM; 443 op.dst.u.dma.address = wa->dma.address; 444 op.dst.u.dma.length = wa->length; 445 } else { 446 op.src.type = CCP_MEMTYPE_SYSTEM; 447 op.src.u.dma.address = wa->dma.address; 448 op.src.u.dma.length = wa->length; 449 op.dst.type = CCP_MEMTYPE_SB; 450 op.dst.u.sb = sb; 451 } 452 453 op.u.passthru.byte_swap = byte_swap; 454 455 return cmd_q->ccp->vdata->perform->passthru(&op); 456 } 457 458 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q, 459 struct ccp_dm_workarea *wa, u32 jobid, u32 sb, 460 u32 byte_swap) 461 { 462 return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false); 463 } 464 465 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q, 466 struct ccp_dm_workarea *wa, u32 jobid, u32 sb, 467 u32 byte_swap) 468 { 469 return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true); 470 } 471 472 static noinline_for_stack int 473 ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 474 { 475 struct ccp_aes_engine *aes = &cmd->u.aes; 476 struct ccp_dm_workarea key, ctx; 477 struct ccp_data src; 478 struct ccp_op op; 479 unsigned int dm_offset; 480 int ret; 481 482 if (!((aes->key_len == AES_KEYSIZE_128) || 483 (aes->key_len == AES_KEYSIZE_192) || 484 (aes->key_len == AES_KEYSIZE_256))) 485 return -EINVAL; 486 487 if (aes->src_len & (AES_BLOCK_SIZE - 1)) 488 return -EINVAL; 489 490 if (aes->iv_len != AES_BLOCK_SIZE) 491 return -EINVAL; 492 493 if (!aes->key || !aes->iv || !aes->src) 494 return -EINVAL; 495 496 if (aes->cmac_final) { 497 if (aes->cmac_key_len != AES_BLOCK_SIZE) 498 return -EINVAL; 499 500 if (!aes->cmac_key) 501 return -EINVAL; 502 } 503 504 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); 505 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); 506 507 ret = -EIO; 508 memset(&op, 0, sizeof(op)); 509 op.cmd_q = cmd_q; 510 op.jobid = CCP_NEW_JOBID(cmd_q->ccp); 511 op.sb_key = cmd_q->sb_key; 512 op.sb_ctx = cmd_q->sb_ctx; 513 op.init = 1; 514 op.u.aes.type = aes->type; 515 op.u.aes.mode = aes->mode; 516 op.u.aes.action = aes->action; 517 518 /* All supported key sizes fit in a single (32-byte) SB entry 519 * and must be in little endian format. Use the 256-bit byte 520 * swap passthru option to convert from big endian to little 521 * endian. 522 */ 523 ret = ccp_init_dm_workarea(&key, cmd_q, 524 CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, 525 DMA_TO_DEVICE); 526 if (ret) 527 return ret; 528 529 dm_offset = CCP_SB_BYTES - aes->key_len; 530 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); 531 if (ret) 532 goto e_key; 533 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, 534 CCP_PASSTHRU_BYTESWAP_256BIT); 535 if (ret) { 536 cmd->engine_error = cmd_q->cmd_error; 537 goto e_key; 538 } 539 540 /* The AES context fits in a single (32-byte) SB entry and 541 * must be in little endian format. Use the 256-bit byte swap 542 * passthru option to convert from big endian to little endian. 543 */ 544 ret = ccp_init_dm_workarea(&ctx, cmd_q, 545 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, 546 DMA_BIDIRECTIONAL); 547 if (ret) 548 goto e_key; 549 550 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; 551 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); 552 if (ret) 553 goto e_ctx; 554 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 555 CCP_PASSTHRU_BYTESWAP_256BIT); 556 if (ret) { 557 cmd->engine_error = cmd_q->cmd_error; 558 goto e_ctx; 559 } 560 561 /* Send data to the CCP AES engine */ 562 ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, 563 AES_BLOCK_SIZE, DMA_TO_DEVICE); 564 if (ret) 565 goto e_ctx; 566 567 while (src.sg_wa.bytes_left) { 568 ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true); 569 if (aes->cmac_final && !src.sg_wa.bytes_left) { 570 op.eom = 1; 571 572 /* Push the K1/K2 key to the CCP now */ 573 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, 574 op.sb_ctx, 575 CCP_PASSTHRU_BYTESWAP_256BIT); 576 if (ret) { 577 cmd->engine_error = cmd_q->cmd_error; 578 goto e_src; 579 } 580 581 ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0, 582 aes->cmac_key_len); 583 if (ret) 584 goto e_src; 585 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 586 CCP_PASSTHRU_BYTESWAP_256BIT); 587 if (ret) { 588 cmd->engine_error = cmd_q->cmd_error; 589 goto e_src; 590 } 591 } 592 593 ret = cmd_q->ccp->vdata->perform->aes(&op); 594 if (ret) { 595 cmd->engine_error = cmd_q->cmd_error; 596 goto e_src; 597 } 598 599 ccp_process_data(&src, NULL, &op); 600 } 601 602 /* Retrieve the AES context - convert from LE to BE using 603 * 32-byte (256-bit) byteswapping 604 */ 605 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 606 CCP_PASSTHRU_BYTESWAP_256BIT); 607 if (ret) { 608 cmd->engine_error = cmd_q->cmd_error; 609 goto e_src; 610 } 611 612 /* ...but we only need AES_BLOCK_SIZE bytes */ 613 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; 614 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); 615 616 e_src: 617 ccp_free_data(&src, cmd_q); 618 619 e_ctx: 620 ccp_dm_free(&ctx); 621 622 e_key: 623 ccp_dm_free(&key); 624 625 return ret; 626 } 627 628 static noinline_for_stack int 629 ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 630 { 631 struct ccp_aes_engine *aes = &cmd->u.aes; 632 struct ccp_dm_workarea key, ctx, final_wa, tag; 633 struct ccp_data src, dst; 634 struct ccp_data aad; 635 struct ccp_op op; 636 unsigned int dm_offset; 637 unsigned int authsize; 638 unsigned int jobid; 639 unsigned int ilen; 640 bool in_place = true; /* Default value */ 641 __be64 *final; 642 int ret; 643 644 struct scatterlist *p_inp, sg_inp[2]; 645 struct scatterlist *p_tag, sg_tag[2]; 646 struct scatterlist *p_outp, sg_outp[2]; 647 struct scatterlist *p_aad; 648 649 if (!aes->iv) 650 return -EINVAL; 651 652 if (!((aes->key_len == AES_KEYSIZE_128) || 653 (aes->key_len == AES_KEYSIZE_192) || 654 (aes->key_len == AES_KEYSIZE_256))) 655 return -EINVAL; 656 657 if (!aes->key) /* Gotta have a key SGL */ 658 return -EINVAL; 659 660 /* Zero defaults to 16 bytes, the maximum size */ 661 authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE; 662 switch (authsize) { 663 case 16: 664 case 15: 665 case 14: 666 case 13: 667 case 12: 668 case 8: 669 case 4: 670 break; 671 default: 672 return -EINVAL; 673 } 674 675 /* First, decompose the source buffer into AAD & PT, 676 * and the destination buffer into AAD, CT & tag, or 677 * the input into CT & tag. 678 * It is expected that the input and output SGs will 679 * be valid, even if the AAD and input lengths are 0. 680 */ 681 p_aad = aes->src; 682 p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len); 683 p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len); 684 if (aes->action == CCP_AES_ACTION_ENCRYPT) { 685 ilen = aes->src_len; 686 p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen); 687 } else { 688 /* Input length for decryption includes tag */ 689 ilen = aes->src_len - authsize; 690 p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen); 691 } 692 693 jobid = CCP_NEW_JOBID(cmd_q->ccp); 694 695 memset(&op, 0, sizeof(op)); 696 op.cmd_q = cmd_q; 697 op.jobid = jobid; 698 op.sb_key = cmd_q->sb_key; /* Pre-allocated */ 699 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ 700 op.init = 1; 701 op.u.aes.type = aes->type; 702 703 /* Copy the key to the LSB */ 704 ret = ccp_init_dm_workarea(&key, cmd_q, 705 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, 706 DMA_TO_DEVICE); 707 if (ret) 708 return ret; 709 710 dm_offset = CCP_SB_BYTES - aes->key_len; 711 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); 712 if (ret) 713 goto e_key; 714 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, 715 CCP_PASSTHRU_BYTESWAP_256BIT); 716 if (ret) { 717 cmd->engine_error = cmd_q->cmd_error; 718 goto e_key; 719 } 720 721 /* Copy the context (IV) to the LSB. 722 * There is an assumption here that the IV is 96 bits in length, plus 723 * a nonce of 32 bits. If no IV is present, use a zeroed buffer. 724 */ 725 ret = ccp_init_dm_workarea(&ctx, cmd_q, 726 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, 727 DMA_BIDIRECTIONAL); 728 if (ret) 729 goto e_key; 730 731 dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len; 732 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); 733 if (ret) 734 goto e_ctx; 735 736 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 737 CCP_PASSTHRU_BYTESWAP_256BIT); 738 if (ret) { 739 cmd->engine_error = cmd_q->cmd_error; 740 goto e_ctx; 741 } 742 743 op.init = 1; 744 if (aes->aad_len > 0) { 745 /* Step 1: Run a GHASH over the Additional Authenticated Data */ 746 ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len, 747 AES_BLOCK_SIZE, 748 DMA_TO_DEVICE); 749 if (ret) 750 goto e_ctx; 751 752 op.u.aes.mode = CCP_AES_MODE_GHASH; 753 op.u.aes.action = CCP_AES_GHASHAAD; 754 755 while (aad.sg_wa.bytes_left) { 756 ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true); 757 758 ret = cmd_q->ccp->vdata->perform->aes(&op); 759 if (ret) { 760 cmd->engine_error = cmd_q->cmd_error; 761 goto e_aad; 762 } 763 764 ccp_process_data(&aad, NULL, &op); 765 op.init = 0; 766 } 767 } 768 769 op.u.aes.mode = CCP_AES_MODE_GCTR; 770 op.u.aes.action = aes->action; 771 772 if (ilen > 0) { 773 /* Step 2: Run a GCTR over the plaintext */ 774 in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false; 775 776 ret = ccp_init_data(&src, cmd_q, p_inp, ilen, 777 AES_BLOCK_SIZE, 778 in_place ? DMA_BIDIRECTIONAL 779 : DMA_TO_DEVICE); 780 if (ret) 781 goto e_aad; 782 783 if (in_place) { 784 dst = src; 785 } else { 786 ret = ccp_init_data(&dst, cmd_q, p_outp, ilen, 787 AES_BLOCK_SIZE, DMA_FROM_DEVICE); 788 if (ret) 789 goto e_src; 790 } 791 792 op.soc = 0; 793 op.eom = 0; 794 op.init = 1; 795 while (src.sg_wa.bytes_left) { 796 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); 797 if (!src.sg_wa.bytes_left) { 798 unsigned int nbytes = ilen % AES_BLOCK_SIZE; 799 800 if (nbytes) { 801 op.eom = 1; 802 op.u.aes.size = (nbytes * 8) - 1; 803 } 804 } 805 806 ret = cmd_q->ccp->vdata->perform->aes(&op); 807 if (ret) { 808 cmd->engine_error = cmd_q->cmd_error; 809 goto e_dst; 810 } 811 812 ccp_process_data(&src, &dst, &op); 813 op.init = 0; 814 } 815 } 816 817 /* Step 3: Update the IV portion of the context with the original IV */ 818 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 819 CCP_PASSTHRU_BYTESWAP_256BIT); 820 if (ret) { 821 cmd->engine_error = cmd_q->cmd_error; 822 goto e_dst; 823 } 824 825 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); 826 if (ret) 827 goto e_dst; 828 829 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 830 CCP_PASSTHRU_BYTESWAP_256BIT); 831 if (ret) { 832 cmd->engine_error = cmd_q->cmd_error; 833 goto e_dst; 834 } 835 836 /* Step 4: Concatenate the lengths of the AAD and source, and 837 * hash that 16 byte buffer. 838 */ 839 ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE, 840 DMA_BIDIRECTIONAL); 841 if (ret) 842 goto e_dst; 843 final = (__be64 *)final_wa.address; 844 final[0] = cpu_to_be64(aes->aad_len * 8); 845 final[1] = cpu_to_be64(ilen * 8); 846 847 memset(&op, 0, sizeof(op)); 848 op.cmd_q = cmd_q; 849 op.jobid = jobid; 850 op.sb_key = cmd_q->sb_key; /* Pre-allocated */ 851 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ 852 op.init = 1; 853 op.u.aes.type = aes->type; 854 op.u.aes.mode = CCP_AES_MODE_GHASH; 855 op.u.aes.action = CCP_AES_GHASHFINAL; 856 op.src.type = CCP_MEMTYPE_SYSTEM; 857 op.src.u.dma.address = final_wa.dma.address; 858 op.src.u.dma.length = AES_BLOCK_SIZE; 859 op.dst.type = CCP_MEMTYPE_SYSTEM; 860 op.dst.u.dma.address = final_wa.dma.address; 861 op.dst.u.dma.length = AES_BLOCK_SIZE; 862 op.eom = 1; 863 op.u.aes.size = 0; 864 ret = cmd_q->ccp->vdata->perform->aes(&op); 865 if (ret) 866 goto e_final_wa; 867 868 if (aes->action == CCP_AES_ACTION_ENCRYPT) { 869 /* Put the ciphered tag after the ciphertext. */ 870 ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize); 871 } else { 872 /* Does this ciphered tag match the input? */ 873 ret = ccp_init_dm_workarea(&tag, cmd_q, authsize, 874 DMA_BIDIRECTIONAL); 875 if (ret) 876 goto e_final_wa; 877 ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize); 878 if (ret) { 879 ccp_dm_free(&tag); 880 goto e_final_wa; 881 } 882 883 ret = crypto_memneq(tag.address, final_wa.address, 884 authsize) ? -EBADMSG : 0; 885 ccp_dm_free(&tag); 886 } 887 888 e_final_wa: 889 ccp_dm_free(&final_wa); 890 891 e_dst: 892 if (ilen > 0 && !in_place) 893 ccp_free_data(&dst, cmd_q); 894 895 e_src: 896 if (ilen > 0) 897 ccp_free_data(&src, cmd_q); 898 899 e_aad: 900 if (aes->aad_len) 901 ccp_free_data(&aad, cmd_q); 902 903 e_ctx: 904 ccp_dm_free(&ctx); 905 906 e_key: 907 ccp_dm_free(&key); 908 909 return ret; 910 } 911 912 static noinline_for_stack int 913 ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 914 { 915 struct ccp_aes_engine *aes = &cmd->u.aes; 916 struct ccp_dm_workarea key, ctx; 917 struct ccp_data src, dst; 918 struct ccp_op op; 919 unsigned int dm_offset; 920 bool in_place = false; 921 int ret; 922 923 if (!((aes->key_len == AES_KEYSIZE_128) || 924 (aes->key_len == AES_KEYSIZE_192) || 925 (aes->key_len == AES_KEYSIZE_256))) 926 return -EINVAL; 927 928 if (((aes->mode == CCP_AES_MODE_ECB) || 929 (aes->mode == CCP_AES_MODE_CBC)) && 930 (aes->src_len & (AES_BLOCK_SIZE - 1))) 931 return -EINVAL; 932 933 if (!aes->key || !aes->src || !aes->dst) 934 return -EINVAL; 935 936 if (aes->mode != CCP_AES_MODE_ECB) { 937 if (aes->iv_len != AES_BLOCK_SIZE) 938 return -EINVAL; 939 940 if (!aes->iv) 941 return -EINVAL; 942 } 943 944 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); 945 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); 946 947 ret = -EIO; 948 memset(&op, 0, sizeof(op)); 949 op.cmd_q = cmd_q; 950 op.jobid = CCP_NEW_JOBID(cmd_q->ccp); 951 op.sb_key = cmd_q->sb_key; 952 op.sb_ctx = cmd_q->sb_ctx; 953 op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1; 954 op.u.aes.type = aes->type; 955 op.u.aes.mode = aes->mode; 956 op.u.aes.action = aes->action; 957 958 /* All supported key sizes fit in a single (32-byte) SB entry 959 * and must be in little endian format. Use the 256-bit byte 960 * swap passthru option to convert from big endian to little 961 * endian. 962 */ 963 ret = ccp_init_dm_workarea(&key, cmd_q, 964 CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, 965 DMA_TO_DEVICE); 966 if (ret) 967 return ret; 968 969 dm_offset = CCP_SB_BYTES - aes->key_len; 970 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); 971 if (ret) 972 goto e_key; 973 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, 974 CCP_PASSTHRU_BYTESWAP_256BIT); 975 if (ret) { 976 cmd->engine_error = cmd_q->cmd_error; 977 goto e_key; 978 } 979 980 /* The AES context fits in a single (32-byte) SB entry and 981 * must be in little endian format. Use the 256-bit byte swap 982 * passthru option to convert from big endian to little endian. 983 */ 984 ret = ccp_init_dm_workarea(&ctx, cmd_q, 985 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, 986 DMA_BIDIRECTIONAL); 987 if (ret) 988 goto e_key; 989 990 if (aes->mode != CCP_AES_MODE_ECB) { 991 /* Load the AES context - convert to LE */ 992 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; 993 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); 994 if (ret) 995 goto e_ctx; 996 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 997 CCP_PASSTHRU_BYTESWAP_256BIT); 998 if (ret) { 999 cmd->engine_error = cmd_q->cmd_error; 1000 goto e_ctx; 1001 } 1002 } 1003 switch (aes->mode) { 1004 case CCP_AES_MODE_CFB: /* CFB128 only */ 1005 case CCP_AES_MODE_CTR: 1006 op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1; 1007 break; 1008 default: 1009 op.u.aes.size = 0; 1010 } 1011 1012 /* Prepare the input and output data workareas. For in-place 1013 * operations we need to set the dma direction to BIDIRECTIONAL 1014 * and copy the src workarea to the dst workarea. 1015 */ 1016 if (sg_virt(aes->src) == sg_virt(aes->dst)) 1017 in_place = true; 1018 1019 ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, 1020 AES_BLOCK_SIZE, 1021 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); 1022 if (ret) 1023 goto e_ctx; 1024 1025 if (in_place) { 1026 dst = src; 1027 } else { 1028 ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len, 1029 AES_BLOCK_SIZE, DMA_FROM_DEVICE); 1030 if (ret) 1031 goto e_src; 1032 } 1033 1034 /* Send data to the CCP AES engine */ 1035 while (src.sg_wa.bytes_left) { 1036 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); 1037 if (!src.sg_wa.bytes_left) { 1038 op.eom = 1; 1039 1040 /* Since we don't retrieve the AES context in ECB 1041 * mode we have to wait for the operation to complete 1042 * on the last piece of data 1043 */ 1044 if (aes->mode == CCP_AES_MODE_ECB) 1045 op.soc = 1; 1046 } 1047 1048 ret = cmd_q->ccp->vdata->perform->aes(&op); 1049 if (ret) { 1050 cmd->engine_error = cmd_q->cmd_error; 1051 goto e_dst; 1052 } 1053 1054 ccp_process_data(&src, &dst, &op); 1055 } 1056 1057 if (aes->mode != CCP_AES_MODE_ECB) { 1058 /* Retrieve the AES context - convert from LE to BE using 1059 * 32-byte (256-bit) byteswapping 1060 */ 1061 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 1062 CCP_PASSTHRU_BYTESWAP_256BIT); 1063 if (ret) { 1064 cmd->engine_error = cmd_q->cmd_error; 1065 goto e_dst; 1066 } 1067 1068 /* ...but we only need AES_BLOCK_SIZE bytes */ 1069 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; 1070 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); 1071 } 1072 1073 e_dst: 1074 if (!in_place) 1075 ccp_free_data(&dst, cmd_q); 1076 1077 e_src: 1078 ccp_free_data(&src, cmd_q); 1079 1080 e_ctx: 1081 ccp_dm_free(&ctx); 1082 1083 e_key: 1084 ccp_dm_free(&key); 1085 1086 return ret; 1087 } 1088 1089 static noinline_for_stack int 1090 ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 1091 { 1092 struct ccp_xts_aes_engine *xts = &cmd->u.xts; 1093 struct ccp_dm_workarea key, ctx; 1094 struct ccp_data src, dst; 1095 struct ccp_op op; 1096 unsigned int unit_size, dm_offset; 1097 bool in_place = false; 1098 unsigned int sb_count; 1099 enum ccp_aes_type aestype; 1100 int ret; 1101 1102 switch (xts->unit_size) { 1103 case CCP_XTS_AES_UNIT_SIZE_16: 1104 unit_size = 16; 1105 break; 1106 case CCP_XTS_AES_UNIT_SIZE_512: 1107 unit_size = 512; 1108 break; 1109 case CCP_XTS_AES_UNIT_SIZE_1024: 1110 unit_size = 1024; 1111 break; 1112 case CCP_XTS_AES_UNIT_SIZE_2048: 1113 unit_size = 2048; 1114 break; 1115 case CCP_XTS_AES_UNIT_SIZE_4096: 1116 unit_size = 4096; 1117 break; 1118 1119 default: 1120 return -EINVAL; 1121 } 1122 1123 if (xts->key_len == AES_KEYSIZE_128) 1124 aestype = CCP_AES_TYPE_128; 1125 else if (xts->key_len == AES_KEYSIZE_256) 1126 aestype = CCP_AES_TYPE_256; 1127 else 1128 return -EINVAL; 1129 1130 if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1))) 1131 return -EINVAL; 1132 1133 if (xts->iv_len != AES_BLOCK_SIZE) 1134 return -EINVAL; 1135 1136 if (!xts->key || !xts->iv || !xts->src || !xts->dst) 1137 return -EINVAL; 1138 1139 BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1); 1140 BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1); 1141 1142 ret = -EIO; 1143 memset(&op, 0, sizeof(op)); 1144 op.cmd_q = cmd_q; 1145 op.jobid = CCP_NEW_JOBID(cmd_q->ccp); 1146 op.sb_key = cmd_q->sb_key; 1147 op.sb_ctx = cmd_q->sb_ctx; 1148 op.init = 1; 1149 op.u.xts.type = aestype; 1150 op.u.xts.action = xts->action; 1151 op.u.xts.unit_size = xts->unit_size; 1152 1153 /* A version 3 device only supports 128-bit keys, which fits into a 1154 * single SB entry. A version 5 device uses a 512-bit vector, so two 1155 * SB entries. 1156 */ 1157 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) 1158 sb_count = CCP_XTS_AES_KEY_SB_COUNT; 1159 else 1160 sb_count = CCP5_XTS_AES_KEY_SB_COUNT; 1161 ret = ccp_init_dm_workarea(&key, cmd_q, 1162 sb_count * CCP_SB_BYTES, 1163 DMA_TO_DEVICE); 1164 if (ret) 1165 return ret; 1166 1167 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { 1168 /* All supported key sizes must be in little endian format. 1169 * Use the 256-bit byte swap passthru option to convert from 1170 * big endian to little endian. 1171 */ 1172 dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128; 1173 ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len); 1174 if (ret) 1175 goto e_key; 1176 ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len); 1177 if (ret) 1178 goto e_key; 1179 } else { 1180 /* Version 5 CCPs use a 512-bit space for the key: each portion 1181 * occupies 256 bits, or one entire slot, and is zero-padded. 1182 */ 1183 unsigned int pad; 1184 1185 dm_offset = CCP_SB_BYTES; 1186 pad = dm_offset - xts->key_len; 1187 ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len); 1188 if (ret) 1189 goto e_key; 1190 ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key, 1191 xts->key_len, xts->key_len); 1192 if (ret) 1193 goto e_key; 1194 } 1195 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, 1196 CCP_PASSTHRU_BYTESWAP_256BIT); 1197 if (ret) { 1198 cmd->engine_error = cmd_q->cmd_error; 1199 goto e_key; 1200 } 1201 1202 /* The AES context fits in a single (32-byte) SB entry and 1203 * for XTS is already in little endian format so no byte swapping 1204 * is needed. 1205 */ 1206 ret = ccp_init_dm_workarea(&ctx, cmd_q, 1207 CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES, 1208 DMA_BIDIRECTIONAL); 1209 if (ret) 1210 goto e_key; 1211 1212 ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len); 1213 if (ret) 1214 goto e_ctx; 1215 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 1216 CCP_PASSTHRU_BYTESWAP_NOOP); 1217 if (ret) { 1218 cmd->engine_error = cmd_q->cmd_error; 1219 goto e_ctx; 1220 } 1221 1222 /* Prepare the input and output data workareas. For in-place 1223 * operations we need to set the dma direction to BIDIRECTIONAL 1224 * and copy the src workarea to the dst workarea. 1225 */ 1226 if (sg_virt(xts->src) == sg_virt(xts->dst)) 1227 in_place = true; 1228 1229 ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len, 1230 unit_size, 1231 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); 1232 if (ret) 1233 goto e_ctx; 1234 1235 if (in_place) { 1236 dst = src; 1237 } else { 1238 ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len, 1239 unit_size, DMA_FROM_DEVICE); 1240 if (ret) 1241 goto e_src; 1242 } 1243 1244 /* Send data to the CCP AES engine */ 1245 while (src.sg_wa.bytes_left) { 1246 ccp_prepare_data(&src, &dst, &op, unit_size, true); 1247 if (!src.sg_wa.bytes_left) 1248 op.eom = 1; 1249 1250 ret = cmd_q->ccp->vdata->perform->xts_aes(&op); 1251 if (ret) { 1252 cmd->engine_error = cmd_q->cmd_error; 1253 goto e_dst; 1254 } 1255 1256 ccp_process_data(&src, &dst, &op); 1257 } 1258 1259 /* Retrieve the AES context - convert from LE to BE using 1260 * 32-byte (256-bit) byteswapping 1261 */ 1262 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 1263 CCP_PASSTHRU_BYTESWAP_256BIT); 1264 if (ret) { 1265 cmd->engine_error = cmd_q->cmd_error; 1266 goto e_dst; 1267 } 1268 1269 /* ...but we only need AES_BLOCK_SIZE bytes */ 1270 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; 1271 ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len); 1272 1273 e_dst: 1274 if (!in_place) 1275 ccp_free_data(&dst, cmd_q); 1276 1277 e_src: 1278 ccp_free_data(&src, cmd_q); 1279 1280 e_ctx: 1281 ccp_dm_free(&ctx); 1282 1283 e_key: 1284 ccp_dm_free(&key); 1285 1286 return ret; 1287 } 1288 1289 static noinline_for_stack int 1290 ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 1291 { 1292 struct ccp_des3_engine *des3 = &cmd->u.des3; 1293 1294 struct ccp_dm_workarea key, ctx; 1295 struct ccp_data src, dst; 1296 struct ccp_op op; 1297 unsigned int dm_offset; 1298 unsigned int len_singlekey; 1299 bool in_place = false; 1300 int ret; 1301 1302 /* Error checks */ 1303 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) 1304 return -EINVAL; 1305 1306 if (!cmd_q->ccp->vdata->perform->des3) 1307 return -EINVAL; 1308 1309 if (des3->key_len != DES3_EDE_KEY_SIZE) 1310 return -EINVAL; 1311 1312 if (((des3->mode == CCP_DES3_MODE_ECB) || 1313 (des3->mode == CCP_DES3_MODE_CBC)) && 1314 (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1))) 1315 return -EINVAL; 1316 1317 if (!des3->key || !des3->src || !des3->dst) 1318 return -EINVAL; 1319 1320 if (des3->mode != CCP_DES3_MODE_ECB) { 1321 if (des3->iv_len != DES3_EDE_BLOCK_SIZE) 1322 return -EINVAL; 1323 1324 if (!des3->iv) 1325 return -EINVAL; 1326 } 1327 1328 /* Zero out all the fields of the command desc */ 1329 memset(&op, 0, sizeof(op)); 1330 1331 /* Set up the Function field */ 1332 op.cmd_q = cmd_q; 1333 op.jobid = CCP_NEW_JOBID(cmd_q->ccp); 1334 op.sb_key = cmd_q->sb_key; 1335 1336 op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1; 1337 op.u.des3.type = des3->type; 1338 op.u.des3.mode = des3->mode; 1339 op.u.des3.action = des3->action; 1340 1341 /* 1342 * All supported key sizes fit in a single (32-byte) KSB entry and 1343 * (like AES) must be in little endian format. Use the 256-bit byte 1344 * swap passthru option to convert from big endian to little endian. 1345 */ 1346 ret = ccp_init_dm_workarea(&key, cmd_q, 1347 CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES, 1348 DMA_TO_DEVICE); 1349 if (ret) 1350 return ret; 1351 1352 /* 1353 * The contents of the key triplet are in the reverse order of what 1354 * is required by the engine. Copy the 3 pieces individually to put 1355 * them where they belong. 1356 */ 1357 dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */ 1358 1359 len_singlekey = des3->key_len / 3; 1360 ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey, 1361 des3->key, 0, len_singlekey); 1362 if (ret) 1363 goto e_key; 1364 ret = ccp_set_dm_area(&key, dm_offset + len_singlekey, 1365 des3->key, len_singlekey, len_singlekey); 1366 if (ret) 1367 goto e_key; 1368 ret = ccp_set_dm_area(&key, dm_offset, 1369 des3->key, 2 * len_singlekey, len_singlekey); 1370 if (ret) 1371 goto e_key; 1372 1373 /* Copy the key to the SB */ 1374 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, 1375 CCP_PASSTHRU_BYTESWAP_256BIT); 1376 if (ret) { 1377 cmd->engine_error = cmd_q->cmd_error; 1378 goto e_key; 1379 } 1380 1381 /* 1382 * The DES3 context fits in a single (32-byte) KSB entry and 1383 * must be in little endian format. Use the 256-bit byte swap 1384 * passthru option to convert from big endian to little endian. 1385 */ 1386 if (des3->mode != CCP_DES3_MODE_ECB) { 1387 op.sb_ctx = cmd_q->sb_ctx; 1388 1389 ret = ccp_init_dm_workarea(&ctx, cmd_q, 1390 CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES, 1391 DMA_BIDIRECTIONAL); 1392 if (ret) 1393 goto e_key; 1394 1395 /* Load the context into the LSB */ 1396 dm_offset = CCP_SB_BYTES - des3->iv_len; 1397 ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, 1398 des3->iv_len); 1399 if (ret) 1400 goto e_ctx; 1401 1402 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 1403 CCP_PASSTHRU_BYTESWAP_256BIT); 1404 if (ret) { 1405 cmd->engine_error = cmd_q->cmd_error; 1406 goto e_ctx; 1407 } 1408 } 1409 1410 /* 1411 * Prepare the input and output data workareas. For in-place 1412 * operations we need to set the dma direction to BIDIRECTIONAL 1413 * and copy the src workarea to the dst workarea. 1414 */ 1415 if (sg_virt(des3->src) == sg_virt(des3->dst)) 1416 in_place = true; 1417 1418 ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len, 1419 DES3_EDE_BLOCK_SIZE, 1420 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); 1421 if (ret) 1422 goto e_ctx; 1423 1424 if (in_place) 1425 dst = src; 1426 else { 1427 ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len, 1428 DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE); 1429 if (ret) 1430 goto e_src; 1431 } 1432 1433 /* Send data to the CCP DES3 engine */ 1434 while (src.sg_wa.bytes_left) { 1435 ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true); 1436 if (!src.sg_wa.bytes_left) { 1437 op.eom = 1; 1438 1439 /* Since we don't retrieve the context in ECB mode 1440 * we have to wait for the operation to complete 1441 * on the last piece of data 1442 */ 1443 op.soc = 0; 1444 } 1445 1446 ret = cmd_q->ccp->vdata->perform->des3(&op); 1447 if (ret) { 1448 cmd->engine_error = cmd_q->cmd_error; 1449 goto e_dst; 1450 } 1451 1452 ccp_process_data(&src, &dst, &op); 1453 } 1454 1455 if (des3->mode != CCP_DES3_MODE_ECB) { 1456 /* Retrieve the context and make BE */ 1457 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 1458 CCP_PASSTHRU_BYTESWAP_256BIT); 1459 if (ret) { 1460 cmd->engine_error = cmd_q->cmd_error; 1461 goto e_dst; 1462 } 1463 1464 /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */ 1465 ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0, 1466 DES3_EDE_BLOCK_SIZE); 1467 } 1468 e_dst: 1469 if (!in_place) 1470 ccp_free_data(&dst, cmd_q); 1471 1472 e_src: 1473 ccp_free_data(&src, cmd_q); 1474 1475 e_ctx: 1476 if (des3->mode != CCP_DES3_MODE_ECB) 1477 ccp_dm_free(&ctx); 1478 1479 e_key: 1480 ccp_dm_free(&key); 1481 1482 return ret; 1483 } 1484 1485 static noinline_for_stack int 1486 ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 1487 { 1488 struct ccp_sha_engine *sha = &cmd->u.sha; 1489 struct ccp_dm_workarea ctx; 1490 struct ccp_data src; 1491 struct ccp_op op; 1492 unsigned int ioffset, ooffset; 1493 unsigned int digest_size; 1494 int sb_count; 1495 const void *init; 1496 u64 block_size; 1497 int ctx_size; 1498 int ret; 1499 1500 switch (sha->type) { 1501 case CCP_SHA_TYPE_1: 1502 if (sha->ctx_len < SHA1_DIGEST_SIZE) 1503 return -EINVAL; 1504 block_size = SHA1_BLOCK_SIZE; 1505 break; 1506 case CCP_SHA_TYPE_224: 1507 if (sha->ctx_len < SHA224_DIGEST_SIZE) 1508 return -EINVAL; 1509 block_size = SHA224_BLOCK_SIZE; 1510 break; 1511 case CCP_SHA_TYPE_256: 1512 if (sha->ctx_len < SHA256_DIGEST_SIZE) 1513 return -EINVAL; 1514 block_size = SHA256_BLOCK_SIZE; 1515 break; 1516 case CCP_SHA_TYPE_384: 1517 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) 1518 || sha->ctx_len < SHA384_DIGEST_SIZE) 1519 return -EINVAL; 1520 block_size = SHA384_BLOCK_SIZE; 1521 break; 1522 case CCP_SHA_TYPE_512: 1523 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) 1524 || sha->ctx_len < SHA512_DIGEST_SIZE) 1525 return -EINVAL; 1526 block_size = SHA512_BLOCK_SIZE; 1527 break; 1528 default: 1529 return -EINVAL; 1530 } 1531 1532 if (!sha->ctx) 1533 return -EINVAL; 1534 1535 if (!sha->final && (sha->src_len & (block_size - 1))) 1536 return -EINVAL; 1537 1538 /* The version 3 device can't handle zero-length input */ 1539 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { 1540 1541 if (!sha->src_len) { 1542 unsigned int digest_len; 1543 const u8 *sha_zero; 1544 1545 /* Not final, just return */ 1546 if (!sha->final) 1547 return 0; 1548 1549 /* CCP can't do a zero length sha operation so the 1550 * caller must buffer the data. 1551 */ 1552 if (sha->msg_bits) 1553 return -EINVAL; 1554 1555 /* The CCP cannot perform zero-length sha operations 1556 * so the caller is required to buffer data for the 1557 * final operation. However, a sha operation for a 1558 * message with a total length of zero is valid so 1559 * known values are required to supply the result. 1560 */ 1561 switch (sha->type) { 1562 case CCP_SHA_TYPE_1: 1563 sha_zero = sha1_zero_message_hash; 1564 digest_len = SHA1_DIGEST_SIZE; 1565 break; 1566 case CCP_SHA_TYPE_224: 1567 sha_zero = sha224_zero_message_hash; 1568 digest_len = SHA224_DIGEST_SIZE; 1569 break; 1570 case CCP_SHA_TYPE_256: 1571 sha_zero = sha256_zero_message_hash; 1572 digest_len = SHA256_DIGEST_SIZE; 1573 break; 1574 default: 1575 return -EINVAL; 1576 } 1577 1578 scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0, 1579 digest_len, 1); 1580 1581 return 0; 1582 } 1583 } 1584 1585 /* Set variables used throughout */ 1586 switch (sha->type) { 1587 case CCP_SHA_TYPE_1: 1588 digest_size = SHA1_DIGEST_SIZE; 1589 init = (void *) ccp_sha1_init; 1590 ctx_size = SHA1_DIGEST_SIZE; 1591 sb_count = 1; 1592 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) 1593 ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE; 1594 else 1595 ooffset = ioffset = 0; 1596 break; 1597 case CCP_SHA_TYPE_224: 1598 digest_size = SHA224_DIGEST_SIZE; 1599 init = (void *) ccp_sha224_init; 1600 ctx_size = SHA256_DIGEST_SIZE; 1601 sb_count = 1; 1602 ioffset = 0; 1603 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) 1604 ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE; 1605 else 1606 ooffset = 0; 1607 break; 1608 case CCP_SHA_TYPE_256: 1609 digest_size = SHA256_DIGEST_SIZE; 1610 init = (void *) ccp_sha256_init; 1611 ctx_size = SHA256_DIGEST_SIZE; 1612 sb_count = 1; 1613 ooffset = ioffset = 0; 1614 break; 1615 case CCP_SHA_TYPE_384: 1616 digest_size = SHA384_DIGEST_SIZE; 1617 init = (void *) ccp_sha384_init; 1618 ctx_size = SHA512_DIGEST_SIZE; 1619 sb_count = 2; 1620 ioffset = 0; 1621 ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE; 1622 break; 1623 case CCP_SHA_TYPE_512: 1624 digest_size = SHA512_DIGEST_SIZE; 1625 init = (void *) ccp_sha512_init; 1626 ctx_size = SHA512_DIGEST_SIZE; 1627 sb_count = 2; 1628 ooffset = ioffset = 0; 1629 break; 1630 default: 1631 ret = -EINVAL; 1632 goto e_data; 1633 } 1634 1635 /* For zero-length plaintext the src pointer is ignored; 1636 * otherwise both parts must be valid 1637 */ 1638 if (sha->src_len && !sha->src) 1639 return -EINVAL; 1640 1641 memset(&op, 0, sizeof(op)); 1642 op.cmd_q = cmd_q; 1643 op.jobid = CCP_NEW_JOBID(cmd_q->ccp); 1644 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ 1645 op.u.sha.type = sha->type; 1646 op.u.sha.msg_bits = sha->msg_bits; 1647 1648 /* For SHA1/224/256 the context fits in a single (32-byte) SB entry; 1649 * SHA384/512 require 2 adjacent SB slots, with the right half in the 1650 * first slot, and the left half in the second. Each portion must then 1651 * be in little endian format: use the 256-bit byte swap option. 1652 */ 1653 ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES, 1654 DMA_BIDIRECTIONAL); 1655 if (ret) 1656 return ret; 1657 if (sha->first) { 1658 switch (sha->type) { 1659 case CCP_SHA_TYPE_1: 1660 case CCP_SHA_TYPE_224: 1661 case CCP_SHA_TYPE_256: 1662 memcpy(ctx.address + ioffset, init, ctx_size); 1663 break; 1664 case CCP_SHA_TYPE_384: 1665 case CCP_SHA_TYPE_512: 1666 memcpy(ctx.address + ctx_size / 2, init, 1667 ctx_size / 2); 1668 memcpy(ctx.address, init + ctx_size / 2, 1669 ctx_size / 2); 1670 break; 1671 default: 1672 ret = -EINVAL; 1673 goto e_ctx; 1674 } 1675 } else { 1676 /* Restore the context */ 1677 ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0, 1678 sb_count * CCP_SB_BYTES); 1679 if (ret) 1680 goto e_ctx; 1681 } 1682 1683 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 1684 CCP_PASSTHRU_BYTESWAP_256BIT); 1685 if (ret) { 1686 cmd->engine_error = cmd_q->cmd_error; 1687 goto e_ctx; 1688 } 1689 1690 if (sha->src) { 1691 /* Send data to the CCP SHA engine; block_size is set above */ 1692 ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len, 1693 block_size, DMA_TO_DEVICE); 1694 if (ret) 1695 goto e_ctx; 1696 1697 while (src.sg_wa.bytes_left) { 1698 ccp_prepare_data(&src, NULL, &op, block_size, false); 1699 if (sha->final && !src.sg_wa.bytes_left) 1700 op.eom = 1; 1701 1702 ret = cmd_q->ccp->vdata->perform->sha(&op); 1703 if (ret) { 1704 cmd->engine_error = cmd_q->cmd_error; 1705 goto e_data; 1706 } 1707 1708 ccp_process_data(&src, NULL, &op); 1709 } 1710 } else { 1711 op.eom = 1; 1712 ret = cmd_q->ccp->vdata->perform->sha(&op); 1713 if (ret) { 1714 cmd->engine_error = cmd_q->cmd_error; 1715 goto e_data; 1716 } 1717 } 1718 1719 /* Retrieve the SHA context - convert from LE to BE using 1720 * 32-byte (256-bit) byteswapping to BE 1721 */ 1722 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, 1723 CCP_PASSTHRU_BYTESWAP_256BIT); 1724 if (ret) { 1725 cmd->engine_error = cmd_q->cmd_error; 1726 goto e_data; 1727 } 1728 1729 if (sha->final) { 1730 /* Finishing up, so get the digest */ 1731 switch (sha->type) { 1732 case CCP_SHA_TYPE_1: 1733 case CCP_SHA_TYPE_224: 1734 case CCP_SHA_TYPE_256: 1735 ccp_get_dm_area(&ctx, ooffset, 1736 sha->ctx, 0, 1737 digest_size); 1738 break; 1739 case CCP_SHA_TYPE_384: 1740 case CCP_SHA_TYPE_512: 1741 ccp_get_dm_area(&ctx, 0, 1742 sha->ctx, LSB_ITEM_SIZE - ooffset, 1743 LSB_ITEM_SIZE); 1744 ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset, 1745 sha->ctx, 0, 1746 LSB_ITEM_SIZE - ooffset); 1747 break; 1748 default: 1749 ret = -EINVAL; 1750 goto e_data; 1751 } 1752 } else { 1753 /* Stash the context */ 1754 ccp_get_dm_area(&ctx, 0, sha->ctx, 0, 1755 sb_count * CCP_SB_BYTES); 1756 } 1757 1758 if (sha->final && sha->opad) { 1759 /* HMAC operation, recursively perform final SHA */ 1760 struct ccp_cmd hmac_cmd; 1761 struct scatterlist sg; 1762 u8 *hmac_buf; 1763 1764 if (sha->opad_len != block_size) { 1765 ret = -EINVAL; 1766 goto e_data; 1767 } 1768 1769 hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL); 1770 if (!hmac_buf) { 1771 ret = -ENOMEM; 1772 goto e_data; 1773 } 1774 sg_init_one(&sg, hmac_buf, block_size + digest_size); 1775 1776 scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0); 1777 switch (sha->type) { 1778 case CCP_SHA_TYPE_1: 1779 case CCP_SHA_TYPE_224: 1780 case CCP_SHA_TYPE_256: 1781 memcpy(hmac_buf + block_size, 1782 ctx.address + ooffset, 1783 digest_size); 1784 break; 1785 case CCP_SHA_TYPE_384: 1786 case CCP_SHA_TYPE_512: 1787 memcpy(hmac_buf + block_size, 1788 ctx.address + LSB_ITEM_SIZE + ooffset, 1789 LSB_ITEM_SIZE); 1790 memcpy(hmac_buf + block_size + 1791 (LSB_ITEM_SIZE - ooffset), 1792 ctx.address, 1793 LSB_ITEM_SIZE); 1794 break; 1795 default: 1796 kfree(hmac_buf); 1797 ret = -EINVAL; 1798 goto e_data; 1799 } 1800 1801 memset(&hmac_cmd, 0, sizeof(hmac_cmd)); 1802 hmac_cmd.engine = CCP_ENGINE_SHA; 1803 hmac_cmd.u.sha.type = sha->type; 1804 hmac_cmd.u.sha.ctx = sha->ctx; 1805 hmac_cmd.u.sha.ctx_len = sha->ctx_len; 1806 hmac_cmd.u.sha.src = &sg; 1807 hmac_cmd.u.sha.src_len = block_size + digest_size; 1808 hmac_cmd.u.sha.opad = NULL; 1809 hmac_cmd.u.sha.opad_len = 0; 1810 hmac_cmd.u.sha.first = 1; 1811 hmac_cmd.u.sha.final = 1; 1812 hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3; 1813 1814 ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd); 1815 if (ret) 1816 cmd->engine_error = hmac_cmd.engine_error; 1817 1818 kfree(hmac_buf); 1819 } 1820 1821 e_data: 1822 if (sha->src) 1823 ccp_free_data(&src, cmd_q); 1824 1825 e_ctx: 1826 ccp_dm_free(&ctx); 1827 1828 return ret; 1829 } 1830 1831 static noinline_for_stack int 1832 ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 1833 { 1834 struct ccp_rsa_engine *rsa = &cmd->u.rsa; 1835 struct ccp_dm_workarea exp, src, dst; 1836 struct ccp_op op; 1837 unsigned int sb_count, i_len, o_len; 1838 int ret; 1839 1840 /* Check against the maximum allowable size, in bits */ 1841 if (rsa->key_size > cmd_q->ccp->vdata->rsamax) 1842 return -EINVAL; 1843 1844 if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst) 1845 return -EINVAL; 1846 1847 memset(&op, 0, sizeof(op)); 1848 op.cmd_q = cmd_q; 1849 op.jobid = CCP_NEW_JOBID(cmd_q->ccp); 1850 1851 /* The RSA modulus must precede the message being acted upon, so 1852 * it must be copied to a DMA area where the message and the 1853 * modulus can be concatenated. Therefore the input buffer 1854 * length required is twice the output buffer length (which 1855 * must be a multiple of 256-bits). Compute o_len, i_len in bytes. 1856 * Buffer sizes must be a multiple of 32 bytes; rounding up may be 1857 * required. 1858 */ 1859 o_len = 32 * ((rsa->key_size + 255) / 256); 1860 i_len = o_len * 2; 1861 1862 sb_count = 0; 1863 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { 1864 /* sb_count is the number of storage block slots required 1865 * for the modulus. 1866 */ 1867 sb_count = o_len / CCP_SB_BYTES; 1868 op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, 1869 sb_count); 1870 if (!op.sb_key) 1871 return -EIO; 1872 } else { 1873 /* A version 5 device allows a modulus size that will not fit 1874 * in the LSB, so the command will transfer it from memory. 1875 * Set the sb key to the default, even though it's not used. 1876 */ 1877 op.sb_key = cmd_q->sb_key; 1878 } 1879 1880 /* The RSA exponent must be in little endian format. Reverse its 1881 * byte order. 1882 */ 1883 ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE); 1884 if (ret) 1885 goto e_sb; 1886 1887 ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len); 1888 if (ret) 1889 goto e_exp; 1890 1891 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { 1892 /* Copy the exponent to the local storage block, using 1893 * as many 32-byte blocks as were allocated above. It's 1894 * already little endian, so no further change is required. 1895 */ 1896 ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key, 1897 CCP_PASSTHRU_BYTESWAP_NOOP); 1898 if (ret) { 1899 cmd->engine_error = cmd_q->cmd_error; 1900 goto e_exp; 1901 } 1902 } else { 1903 /* The exponent can be retrieved from memory via DMA. */ 1904 op.exp.u.dma.address = exp.dma.address; 1905 op.exp.u.dma.offset = 0; 1906 } 1907 1908 /* Concatenate the modulus and the message. Both the modulus and 1909 * the operands must be in little endian format. Since the input 1910 * is in big endian format it must be converted. 1911 */ 1912 ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE); 1913 if (ret) 1914 goto e_exp; 1915 1916 ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len); 1917 if (ret) 1918 goto e_src; 1919 ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len); 1920 if (ret) 1921 goto e_src; 1922 1923 /* Prepare the output area for the operation */ 1924 ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE); 1925 if (ret) 1926 goto e_src; 1927 1928 op.soc = 1; 1929 op.src.u.dma.address = src.dma.address; 1930 op.src.u.dma.offset = 0; 1931 op.src.u.dma.length = i_len; 1932 op.dst.u.dma.address = dst.dma.address; 1933 op.dst.u.dma.offset = 0; 1934 op.dst.u.dma.length = o_len; 1935 1936 op.u.rsa.mod_size = rsa->key_size; 1937 op.u.rsa.input_len = i_len; 1938 1939 ret = cmd_q->ccp->vdata->perform->rsa(&op); 1940 if (ret) { 1941 cmd->engine_error = cmd_q->cmd_error; 1942 goto e_dst; 1943 } 1944 1945 ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len); 1946 1947 e_dst: 1948 ccp_dm_free(&dst); 1949 1950 e_src: 1951 ccp_dm_free(&src); 1952 1953 e_exp: 1954 ccp_dm_free(&exp); 1955 1956 e_sb: 1957 if (sb_count) 1958 cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count); 1959 1960 return ret; 1961 } 1962 1963 static noinline_for_stack int 1964 ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 1965 { 1966 struct ccp_passthru_engine *pt = &cmd->u.passthru; 1967 struct ccp_dm_workarea mask; 1968 struct ccp_data src, dst; 1969 struct ccp_op op; 1970 bool in_place = false; 1971 unsigned int i; 1972 int ret = 0; 1973 1974 if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) 1975 return -EINVAL; 1976 1977 if (!pt->src || !pt->dst) 1978 return -EINVAL; 1979 1980 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { 1981 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) 1982 return -EINVAL; 1983 if (!pt->mask) 1984 return -EINVAL; 1985 } 1986 1987 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); 1988 1989 memset(&op, 0, sizeof(op)); 1990 op.cmd_q = cmd_q; 1991 op.jobid = CCP_NEW_JOBID(cmd_q->ccp); 1992 1993 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { 1994 /* Load the mask */ 1995 op.sb_key = cmd_q->sb_key; 1996 1997 ret = ccp_init_dm_workarea(&mask, cmd_q, 1998 CCP_PASSTHRU_SB_COUNT * 1999 CCP_SB_BYTES, 2000 DMA_TO_DEVICE); 2001 if (ret) 2002 return ret; 2003 2004 ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len); 2005 if (ret) 2006 goto e_mask; 2007 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, 2008 CCP_PASSTHRU_BYTESWAP_NOOP); 2009 if (ret) { 2010 cmd->engine_error = cmd_q->cmd_error; 2011 goto e_mask; 2012 } 2013 } 2014 2015 /* Prepare the input and output data workareas. For in-place 2016 * operations we need to set the dma direction to BIDIRECTIONAL 2017 * and copy the src workarea to the dst workarea. 2018 */ 2019 if (sg_virt(pt->src) == sg_virt(pt->dst)) 2020 in_place = true; 2021 2022 ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len, 2023 CCP_PASSTHRU_MASKSIZE, 2024 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); 2025 if (ret) 2026 goto e_mask; 2027 2028 if (in_place) { 2029 dst = src; 2030 } else { 2031 ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len, 2032 CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE); 2033 if (ret) 2034 goto e_src; 2035 } 2036 2037 /* Send data to the CCP Passthru engine 2038 * Because the CCP engine works on a single source and destination 2039 * dma address at a time, each entry in the source scatterlist 2040 * (after the dma_map_sg call) must be less than or equal to the 2041 * (remaining) length in the destination scatterlist entry and the 2042 * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE 2043 */ 2044 dst.sg_wa.sg_used = 0; 2045 for (i = 1; i <= src.sg_wa.dma_count; i++) { 2046 if (!dst.sg_wa.sg || 2047 (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) { 2048 ret = -EINVAL; 2049 goto e_dst; 2050 } 2051 2052 if (i == src.sg_wa.dma_count) { 2053 op.eom = 1; 2054 op.soc = 1; 2055 } 2056 2057 op.src.type = CCP_MEMTYPE_SYSTEM; 2058 op.src.u.dma.address = sg_dma_address(src.sg_wa.sg); 2059 op.src.u.dma.offset = 0; 2060 op.src.u.dma.length = sg_dma_len(src.sg_wa.sg); 2061 2062 op.dst.type = CCP_MEMTYPE_SYSTEM; 2063 op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg); 2064 op.dst.u.dma.offset = dst.sg_wa.sg_used; 2065 op.dst.u.dma.length = op.src.u.dma.length; 2066 2067 ret = cmd_q->ccp->vdata->perform->passthru(&op); 2068 if (ret) { 2069 cmd->engine_error = cmd_q->cmd_error; 2070 goto e_dst; 2071 } 2072 2073 dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg); 2074 if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) { 2075 dst.sg_wa.sg = sg_next(dst.sg_wa.sg); 2076 dst.sg_wa.sg_used = 0; 2077 } 2078 src.sg_wa.sg = sg_next(src.sg_wa.sg); 2079 } 2080 2081 e_dst: 2082 if (!in_place) 2083 ccp_free_data(&dst, cmd_q); 2084 2085 e_src: 2086 ccp_free_data(&src, cmd_q); 2087 2088 e_mask: 2089 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) 2090 ccp_dm_free(&mask); 2091 2092 return ret; 2093 } 2094 2095 static noinline_for_stack int 2096 ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q, 2097 struct ccp_cmd *cmd) 2098 { 2099 struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap; 2100 struct ccp_dm_workarea mask; 2101 struct ccp_op op; 2102 int ret; 2103 2104 if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) 2105 return -EINVAL; 2106 2107 if (!pt->src_dma || !pt->dst_dma) 2108 return -EINVAL; 2109 2110 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { 2111 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) 2112 return -EINVAL; 2113 if (!pt->mask) 2114 return -EINVAL; 2115 } 2116 2117 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); 2118 2119 memset(&op, 0, sizeof(op)); 2120 op.cmd_q = cmd_q; 2121 op.jobid = CCP_NEW_JOBID(cmd_q->ccp); 2122 2123 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { 2124 /* Load the mask */ 2125 op.sb_key = cmd_q->sb_key; 2126 2127 mask.length = pt->mask_len; 2128 mask.dma.address = pt->mask; 2129 mask.dma.length = pt->mask_len; 2130 2131 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, 2132 CCP_PASSTHRU_BYTESWAP_NOOP); 2133 if (ret) { 2134 cmd->engine_error = cmd_q->cmd_error; 2135 return ret; 2136 } 2137 } 2138 2139 /* Send data to the CCP Passthru engine */ 2140 op.eom = 1; 2141 op.soc = 1; 2142 2143 op.src.type = CCP_MEMTYPE_SYSTEM; 2144 op.src.u.dma.address = pt->src_dma; 2145 op.src.u.dma.offset = 0; 2146 op.src.u.dma.length = pt->src_len; 2147 2148 op.dst.type = CCP_MEMTYPE_SYSTEM; 2149 op.dst.u.dma.address = pt->dst_dma; 2150 op.dst.u.dma.offset = 0; 2151 op.dst.u.dma.length = pt->src_len; 2152 2153 ret = cmd_q->ccp->vdata->perform->passthru(&op); 2154 if (ret) 2155 cmd->engine_error = cmd_q->cmd_error; 2156 2157 return ret; 2158 } 2159 2160 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 2161 { 2162 struct ccp_ecc_engine *ecc = &cmd->u.ecc; 2163 struct ccp_dm_workarea src, dst; 2164 struct ccp_op op; 2165 int ret; 2166 u8 *save; 2167 2168 if (!ecc->u.mm.operand_1 || 2169 (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES)) 2170 return -EINVAL; 2171 2172 if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) 2173 if (!ecc->u.mm.operand_2 || 2174 (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES)) 2175 return -EINVAL; 2176 2177 if (!ecc->u.mm.result || 2178 (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES)) 2179 return -EINVAL; 2180 2181 memset(&op, 0, sizeof(op)); 2182 op.cmd_q = cmd_q; 2183 op.jobid = CCP_NEW_JOBID(cmd_q->ccp); 2184 2185 /* Concatenate the modulus and the operands. Both the modulus and 2186 * the operands must be in little endian format. Since the input 2187 * is in big endian format it must be converted and placed in a 2188 * fixed length buffer. 2189 */ 2190 ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, 2191 DMA_TO_DEVICE); 2192 if (ret) 2193 return ret; 2194 2195 /* Save the workarea address since it is updated in order to perform 2196 * the concatenation 2197 */ 2198 save = src.address; 2199 2200 /* Copy the ECC modulus */ 2201 ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); 2202 if (ret) 2203 goto e_src; 2204 src.address += CCP_ECC_OPERAND_SIZE; 2205 2206 /* Copy the first operand */ 2207 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0, 2208 ecc->u.mm.operand_1_len); 2209 if (ret) 2210 goto e_src; 2211 src.address += CCP_ECC_OPERAND_SIZE; 2212 2213 if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) { 2214 /* Copy the second operand */ 2215 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0, 2216 ecc->u.mm.operand_2_len); 2217 if (ret) 2218 goto e_src; 2219 src.address += CCP_ECC_OPERAND_SIZE; 2220 } 2221 2222 /* Restore the workarea address */ 2223 src.address = save; 2224 2225 /* Prepare the output area for the operation */ 2226 ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, 2227 DMA_FROM_DEVICE); 2228 if (ret) 2229 goto e_src; 2230 2231 op.soc = 1; 2232 op.src.u.dma.address = src.dma.address; 2233 op.src.u.dma.offset = 0; 2234 op.src.u.dma.length = src.length; 2235 op.dst.u.dma.address = dst.dma.address; 2236 op.dst.u.dma.offset = 0; 2237 op.dst.u.dma.length = dst.length; 2238 2239 op.u.ecc.function = cmd->u.ecc.function; 2240 2241 ret = cmd_q->ccp->vdata->perform->ecc(&op); 2242 if (ret) { 2243 cmd->engine_error = cmd_q->cmd_error; 2244 goto e_dst; 2245 } 2246 2247 ecc->ecc_result = le16_to_cpup( 2248 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); 2249 if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { 2250 ret = -EIO; 2251 goto e_dst; 2252 } 2253 2254 /* Save the ECC result */ 2255 ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0, 2256 CCP_ECC_MODULUS_BYTES); 2257 2258 e_dst: 2259 ccp_dm_free(&dst); 2260 2261 e_src: 2262 ccp_dm_free(&src); 2263 2264 return ret; 2265 } 2266 2267 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 2268 { 2269 struct ccp_ecc_engine *ecc = &cmd->u.ecc; 2270 struct ccp_dm_workarea src, dst; 2271 struct ccp_op op; 2272 int ret; 2273 u8 *save; 2274 2275 if (!ecc->u.pm.point_1.x || 2276 (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) || 2277 !ecc->u.pm.point_1.y || 2278 (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES)) 2279 return -EINVAL; 2280 2281 if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { 2282 if (!ecc->u.pm.point_2.x || 2283 (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) || 2284 !ecc->u.pm.point_2.y || 2285 (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES)) 2286 return -EINVAL; 2287 } else { 2288 if (!ecc->u.pm.domain_a || 2289 (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES)) 2290 return -EINVAL; 2291 2292 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) 2293 if (!ecc->u.pm.scalar || 2294 (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES)) 2295 return -EINVAL; 2296 } 2297 2298 if (!ecc->u.pm.result.x || 2299 (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) || 2300 !ecc->u.pm.result.y || 2301 (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES)) 2302 return -EINVAL; 2303 2304 memset(&op, 0, sizeof(op)); 2305 op.cmd_q = cmd_q; 2306 op.jobid = CCP_NEW_JOBID(cmd_q->ccp); 2307 2308 /* Concatenate the modulus and the operands. Both the modulus and 2309 * the operands must be in little endian format. Since the input 2310 * is in big endian format it must be converted and placed in a 2311 * fixed length buffer. 2312 */ 2313 ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, 2314 DMA_TO_DEVICE); 2315 if (ret) 2316 return ret; 2317 2318 /* Save the workarea address since it is updated in order to perform 2319 * the concatenation 2320 */ 2321 save = src.address; 2322 2323 /* Copy the ECC modulus */ 2324 ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); 2325 if (ret) 2326 goto e_src; 2327 src.address += CCP_ECC_OPERAND_SIZE; 2328 2329 /* Copy the first point X and Y coordinate */ 2330 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0, 2331 ecc->u.pm.point_1.x_len); 2332 if (ret) 2333 goto e_src; 2334 src.address += CCP_ECC_OPERAND_SIZE; 2335 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0, 2336 ecc->u.pm.point_1.y_len); 2337 if (ret) 2338 goto e_src; 2339 src.address += CCP_ECC_OPERAND_SIZE; 2340 2341 /* Set the first point Z coordinate to 1 */ 2342 *src.address = 0x01; 2343 src.address += CCP_ECC_OPERAND_SIZE; 2344 2345 if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { 2346 /* Copy the second point X and Y coordinate */ 2347 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0, 2348 ecc->u.pm.point_2.x_len); 2349 if (ret) 2350 goto e_src; 2351 src.address += CCP_ECC_OPERAND_SIZE; 2352 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0, 2353 ecc->u.pm.point_2.y_len); 2354 if (ret) 2355 goto e_src; 2356 src.address += CCP_ECC_OPERAND_SIZE; 2357 2358 /* Set the second point Z coordinate to 1 */ 2359 *src.address = 0x01; 2360 src.address += CCP_ECC_OPERAND_SIZE; 2361 } else { 2362 /* Copy the Domain "a" parameter */ 2363 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0, 2364 ecc->u.pm.domain_a_len); 2365 if (ret) 2366 goto e_src; 2367 src.address += CCP_ECC_OPERAND_SIZE; 2368 2369 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) { 2370 /* Copy the scalar value */ 2371 ret = ccp_reverse_set_dm_area(&src, 0, 2372 ecc->u.pm.scalar, 0, 2373 ecc->u.pm.scalar_len); 2374 if (ret) 2375 goto e_src; 2376 src.address += CCP_ECC_OPERAND_SIZE; 2377 } 2378 } 2379 2380 /* Restore the workarea address */ 2381 src.address = save; 2382 2383 /* Prepare the output area for the operation */ 2384 ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, 2385 DMA_FROM_DEVICE); 2386 if (ret) 2387 goto e_src; 2388 2389 op.soc = 1; 2390 op.src.u.dma.address = src.dma.address; 2391 op.src.u.dma.offset = 0; 2392 op.src.u.dma.length = src.length; 2393 op.dst.u.dma.address = dst.dma.address; 2394 op.dst.u.dma.offset = 0; 2395 op.dst.u.dma.length = dst.length; 2396 2397 op.u.ecc.function = cmd->u.ecc.function; 2398 2399 ret = cmd_q->ccp->vdata->perform->ecc(&op); 2400 if (ret) { 2401 cmd->engine_error = cmd_q->cmd_error; 2402 goto e_dst; 2403 } 2404 2405 ecc->ecc_result = le16_to_cpup( 2406 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); 2407 if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { 2408 ret = -EIO; 2409 goto e_dst; 2410 } 2411 2412 /* Save the workarea address since it is updated as we walk through 2413 * to copy the point math result 2414 */ 2415 save = dst.address; 2416 2417 /* Save the ECC result X and Y coordinates */ 2418 ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0, 2419 CCP_ECC_MODULUS_BYTES); 2420 dst.address += CCP_ECC_OUTPUT_SIZE; 2421 ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0, 2422 CCP_ECC_MODULUS_BYTES); 2423 2424 /* Restore the workarea address */ 2425 dst.address = save; 2426 2427 e_dst: 2428 ccp_dm_free(&dst); 2429 2430 e_src: 2431 ccp_dm_free(&src); 2432 2433 return ret; 2434 } 2435 2436 static noinline_for_stack int 2437 ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 2438 { 2439 struct ccp_ecc_engine *ecc = &cmd->u.ecc; 2440 2441 ecc->ecc_result = 0; 2442 2443 if (!ecc->mod || 2444 (ecc->mod_len > CCP_ECC_MODULUS_BYTES)) 2445 return -EINVAL; 2446 2447 switch (ecc->function) { 2448 case CCP_ECC_FUNCTION_MMUL_384BIT: 2449 case CCP_ECC_FUNCTION_MADD_384BIT: 2450 case CCP_ECC_FUNCTION_MINV_384BIT: 2451 return ccp_run_ecc_mm_cmd(cmd_q, cmd); 2452 2453 case CCP_ECC_FUNCTION_PADD_384BIT: 2454 case CCP_ECC_FUNCTION_PMUL_384BIT: 2455 case CCP_ECC_FUNCTION_PDBL_384BIT: 2456 return ccp_run_ecc_pm_cmd(cmd_q, cmd); 2457 2458 default: 2459 return -EINVAL; 2460 } 2461 } 2462 2463 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) 2464 { 2465 int ret; 2466 2467 cmd->engine_error = 0; 2468 cmd_q->cmd_error = 0; 2469 cmd_q->int_rcvd = 0; 2470 cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q); 2471 2472 switch (cmd->engine) { 2473 case CCP_ENGINE_AES: 2474 switch (cmd->u.aes.mode) { 2475 case CCP_AES_MODE_CMAC: 2476 ret = ccp_run_aes_cmac_cmd(cmd_q, cmd); 2477 break; 2478 case CCP_AES_MODE_GCM: 2479 ret = ccp_run_aes_gcm_cmd(cmd_q, cmd); 2480 break; 2481 default: 2482 ret = ccp_run_aes_cmd(cmd_q, cmd); 2483 break; 2484 } 2485 break; 2486 case CCP_ENGINE_XTS_AES_128: 2487 ret = ccp_run_xts_aes_cmd(cmd_q, cmd); 2488 break; 2489 case CCP_ENGINE_DES3: 2490 ret = ccp_run_des3_cmd(cmd_q, cmd); 2491 break; 2492 case CCP_ENGINE_SHA: 2493 ret = ccp_run_sha_cmd(cmd_q, cmd); 2494 break; 2495 case CCP_ENGINE_RSA: 2496 ret = ccp_run_rsa_cmd(cmd_q, cmd); 2497 break; 2498 case CCP_ENGINE_PASSTHRU: 2499 if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP) 2500 ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd); 2501 else 2502 ret = ccp_run_passthru_cmd(cmd_q, cmd); 2503 break; 2504 case CCP_ENGINE_ECC: 2505 ret = ccp_run_ecc_cmd(cmd_q, cmd); 2506 break; 2507 default: 2508 ret = -EINVAL; 2509 } 2510 2511 return ret; 2512 } 2513