xref: /openbmc/linux/drivers/crypto/ccp/ccp-ops.c (revision 22d55f02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Cryptographic Coprocessor (CCP) driver
4  *
5  * Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  * Author: Gary R Hook <gary.hook@amd.com>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/pci.h>
14 #include <linux/interrupt.h>
15 #include <crypto/scatterwalk.h>
16 #include <crypto/des.h>
17 #include <linux/ccp.h>
18 
19 #include "ccp-dev.h"
20 
21 /* SHA initial context values */
22 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
23 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
24 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
25 	cpu_to_be32(SHA1_H4),
26 };
27 
28 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
29 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
30 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
31 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
32 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
33 };
34 
35 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
36 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
37 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
38 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
39 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
40 };
41 
42 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
43 	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
44 	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
45 	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
46 	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
47 };
48 
49 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
50 	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
51 	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
52 	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
53 	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
54 };
55 
56 #define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
57 					ccp_gen_jobid(ccp) : 0)
58 
59 static u32 ccp_gen_jobid(struct ccp_device *ccp)
60 {
61 	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
62 }
63 
64 static void ccp_sg_free(struct ccp_sg_workarea *wa)
65 {
66 	if (wa->dma_count)
67 		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
68 
69 	wa->dma_count = 0;
70 }
71 
72 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
73 				struct scatterlist *sg, u64 len,
74 				enum dma_data_direction dma_dir)
75 {
76 	memset(wa, 0, sizeof(*wa));
77 
78 	wa->sg = sg;
79 	if (!sg)
80 		return 0;
81 
82 	wa->nents = sg_nents_for_len(sg, len);
83 	if (wa->nents < 0)
84 		return wa->nents;
85 
86 	wa->bytes_left = len;
87 	wa->sg_used = 0;
88 
89 	if (len == 0)
90 		return 0;
91 
92 	if (dma_dir == DMA_NONE)
93 		return 0;
94 
95 	wa->dma_sg = sg;
96 	wa->dma_dev = dev;
97 	wa->dma_dir = dma_dir;
98 	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
99 	if (!wa->dma_count)
100 		return -ENOMEM;
101 
102 	return 0;
103 }
104 
105 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
106 {
107 	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
108 
109 	if (!wa->sg)
110 		return;
111 
112 	wa->sg_used += nbytes;
113 	wa->bytes_left -= nbytes;
114 	if (wa->sg_used == wa->sg->length) {
115 		wa->sg = sg_next(wa->sg);
116 		wa->sg_used = 0;
117 	}
118 }
119 
120 static void ccp_dm_free(struct ccp_dm_workarea *wa)
121 {
122 	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
123 		if (wa->address)
124 			dma_pool_free(wa->dma_pool, wa->address,
125 				      wa->dma.address);
126 	} else {
127 		if (wa->dma.address)
128 			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
129 					 wa->dma.dir);
130 		kfree(wa->address);
131 	}
132 
133 	wa->address = NULL;
134 	wa->dma.address = 0;
135 }
136 
137 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
138 				struct ccp_cmd_queue *cmd_q,
139 				unsigned int len,
140 				enum dma_data_direction dir)
141 {
142 	memset(wa, 0, sizeof(*wa));
143 
144 	if (!len)
145 		return 0;
146 
147 	wa->dev = cmd_q->ccp->dev;
148 	wa->length = len;
149 
150 	if (len <= CCP_DMAPOOL_MAX_SIZE) {
151 		wa->dma_pool = cmd_q->dma_pool;
152 
153 		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
154 					     &wa->dma.address);
155 		if (!wa->address)
156 			return -ENOMEM;
157 
158 		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
159 
160 		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
161 	} else {
162 		wa->address = kzalloc(len, GFP_KERNEL);
163 		if (!wa->address)
164 			return -ENOMEM;
165 
166 		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
167 						 dir);
168 		if (dma_mapping_error(wa->dev, wa->dma.address))
169 			return -ENOMEM;
170 
171 		wa->dma.length = len;
172 	}
173 	wa->dma.dir = dir;
174 
175 	return 0;
176 }
177 
178 static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
179 			   struct scatterlist *sg, unsigned int sg_offset,
180 			   unsigned int len)
181 {
182 	WARN_ON(!wa->address);
183 
184 	if (len > (wa->length - wa_offset))
185 		return -EINVAL;
186 
187 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
188 				 0);
189 	return 0;
190 }
191 
192 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
193 			    struct scatterlist *sg, unsigned int sg_offset,
194 			    unsigned int len)
195 {
196 	WARN_ON(!wa->address);
197 
198 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
199 				 1);
200 }
201 
202 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
203 				   unsigned int wa_offset,
204 				   struct scatterlist *sg,
205 				   unsigned int sg_offset,
206 				   unsigned int len)
207 {
208 	u8 *p, *q;
209 	int	rc;
210 
211 	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
212 	if (rc)
213 		return rc;
214 
215 	p = wa->address + wa_offset;
216 	q = p + len - 1;
217 	while (p < q) {
218 		*p = *p ^ *q;
219 		*q = *p ^ *q;
220 		*p = *p ^ *q;
221 		p++;
222 		q--;
223 	}
224 	return 0;
225 }
226 
227 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
228 				    unsigned int wa_offset,
229 				    struct scatterlist *sg,
230 				    unsigned int sg_offset,
231 				    unsigned int len)
232 {
233 	u8 *p, *q;
234 
235 	p = wa->address + wa_offset;
236 	q = p + len - 1;
237 	while (p < q) {
238 		*p = *p ^ *q;
239 		*q = *p ^ *q;
240 		*p = *p ^ *q;
241 		p++;
242 		q--;
243 	}
244 
245 	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
246 }
247 
248 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
249 {
250 	ccp_dm_free(&data->dm_wa);
251 	ccp_sg_free(&data->sg_wa);
252 }
253 
254 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
255 			 struct scatterlist *sg, u64 sg_len,
256 			 unsigned int dm_len,
257 			 enum dma_data_direction dir)
258 {
259 	int ret;
260 
261 	memset(data, 0, sizeof(*data));
262 
263 	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
264 				   dir);
265 	if (ret)
266 		goto e_err;
267 
268 	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
269 	if (ret)
270 		goto e_err;
271 
272 	return 0;
273 
274 e_err:
275 	ccp_free_data(data, cmd_q);
276 
277 	return ret;
278 }
279 
280 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
281 {
282 	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
283 	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
284 	unsigned int buf_count, nbytes;
285 
286 	/* Clear the buffer if setting it */
287 	if (!from)
288 		memset(dm_wa->address, 0, dm_wa->length);
289 
290 	if (!sg_wa->sg)
291 		return 0;
292 
293 	/* Perform the copy operation
294 	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
295 	 *   an unsigned int
296 	 */
297 	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
298 	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
299 				 nbytes, from);
300 
301 	/* Update the structures and generate the count */
302 	buf_count = 0;
303 	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
304 		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
305 			     dm_wa->length - buf_count);
306 		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
307 
308 		buf_count += nbytes;
309 		ccp_update_sg_workarea(sg_wa, nbytes);
310 	}
311 
312 	return buf_count;
313 }
314 
315 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
316 {
317 	return ccp_queue_buf(data, 0);
318 }
319 
320 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
321 {
322 	return ccp_queue_buf(data, 1);
323 }
324 
325 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
326 			     struct ccp_op *op, unsigned int block_size,
327 			     bool blocksize_op)
328 {
329 	unsigned int sg_src_len, sg_dst_len, op_len;
330 
331 	/* The CCP can only DMA from/to one address each per operation. This
332 	 * requires that we find the smallest DMA area between the source
333 	 * and destination. The resulting len values will always be <= UINT_MAX
334 	 * because the dma length is an unsigned int.
335 	 */
336 	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
337 	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
338 
339 	if (dst) {
340 		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
341 		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
342 		op_len = min(sg_src_len, sg_dst_len);
343 	} else {
344 		op_len = sg_src_len;
345 	}
346 
347 	/* The data operation length will be at least block_size in length
348 	 * or the smaller of available sg room remaining for the source or
349 	 * the destination
350 	 */
351 	op_len = max(op_len, block_size);
352 
353 	/* Unless we have to buffer data, there's no reason to wait */
354 	op->soc = 0;
355 
356 	if (sg_src_len < block_size) {
357 		/* Not enough data in the sg element, so it
358 		 * needs to be buffered into a blocksize chunk
359 		 */
360 		int cp_len = ccp_fill_queue_buf(src);
361 
362 		op->soc = 1;
363 		op->src.u.dma.address = src->dm_wa.dma.address;
364 		op->src.u.dma.offset = 0;
365 		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
366 	} else {
367 		/* Enough data in the sg element, but we need to
368 		 * adjust for any previously copied data
369 		 */
370 		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
371 		op->src.u.dma.offset = src->sg_wa.sg_used;
372 		op->src.u.dma.length = op_len & ~(block_size - 1);
373 
374 		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
375 	}
376 
377 	if (dst) {
378 		if (sg_dst_len < block_size) {
379 			/* Not enough room in the sg element or we're on the
380 			 * last piece of data (when using padding), so the
381 			 * output needs to be buffered into a blocksize chunk
382 			 */
383 			op->soc = 1;
384 			op->dst.u.dma.address = dst->dm_wa.dma.address;
385 			op->dst.u.dma.offset = 0;
386 			op->dst.u.dma.length = op->src.u.dma.length;
387 		} else {
388 			/* Enough room in the sg element, but we need to
389 			 * adjust for any previously used area
390 			 */
391 			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
392 			op->dst.u.dma.offset = dst->sg_wa.sg_used;
393 			op->dst.u.dma.length = op->src.u.dma.length;
394 		}
395 	}
396 }
397 
398 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
399 			     struct ccp_op *op)
400 {
401 	op->init = 0;
402 
403 	if (dst) {
404 		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
405 			ccp_empty_queue_buf(dst);
406 		else
407 			ccp_update_sg_workarea(&dst->sg_wa,
408 					       op->dst.u.dma.length);
409 	}
410 }
411 
412 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
413 			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
414 			       u32 byte_swap, bool from)
415 {
416 	struct ccp_op op;
417 
418 	memset(&op, 0, sizeof(op));
419 
420 	op.cmd_q = cmd_q;
421 	op.jobid = jobid;
422 	op.eom = 1;
423 
424 	if (from) {
425 		op.soc = 1;
426 		op.src.type = CCP_MEMTYPE_SB;
427 		op.src.u.sb = sb;
428 		op.dst.type = CCP_MEMTYPE_SYSTEM;
429 		op.dst.u.dma.address = wa->dma.address;
430 		op.dst.u.dma.length = wa->length;
431 	} else {
432 		op.src.type = CCP_MEMTYPE_SYSTEM;
433 		op.src.u.dma.address = wa->dma.address;
434 		op.src.u.dma.length = wa->length;
435 		op.dst.type = CCP_MEMTYPE_SB;
436 		op.dst.u.sb = sb;
437 	}
438 
439 	op.u.passthru.byte_swap = byte_swap;
440 
441 	return cmd_q->ccp->vdata->perform->passthru(&op);
442 }
443 
444 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
445 			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
446 			  u32 byte_swap)
447 {
448 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
449 }
450 
451 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
452 			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
453 			    u32 byte_swap)
454 {
455 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
456 }
457 
458 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
459 				struct ccp_cmd *cmd)
460 {
461 	struct ccp_aes_engine *aes = &cmd->u.aes;
462 	struct ccp_dm_workarea key, ctx;
463 	struct ccp_data src;
464 	struct ccp_op op;
465 	unsigned int dm_offset;
466 	int ret;
467 
468 	if (!((aes->key_len == AES_KEYSIZE_128) ||
469 	      (aes->key_len == AES_KEYSIZE_192) ||
470 	      (aes->key_len == AES_KEYSIZE_256)))
471 		return -EINVAL;
472 
473 	if (aes->src_len & (AES_BLOCK_SIZE - 1))
474 		return -EINVAL;
475 
476 	if (aes->iv_len != AES_BLOCK_SIZE)
477 		return -EINVAL;
478 
479 	if (!aes->key || !aes->iv || !aes->src)
480 		return -EINVAL;
481 
482 	if (aes->cmac_final) {
483 		if (aes->cmac_key_len != AES_BLOCK_SIZE)
484 			return -EINVAL;
485 
486 		if (!aes->cmac_key)
487 			return -EINVAL;
488 	}
489 
490 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
491 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
492 
493 	ret = -EIO;
494 	memset(&op, 0, sizeof(op));
495 	op.cmd_q = cmd_q;
496 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
497 	op.sb_key = cmd_q->sb_key;
498 	op.sb_ctx = cmd_q->sb_ctx;
499 	op.init = 1;
500 	op.u.aes.type = aes->type;
501 	op.u.aes.mode = aes->mode;
502 	op.u.aes.action = aes->action;
503 
504 	/* All supported key sizes fit in a single (32-byte) SB entry
505 	 * and must be in little endian format. Use the 256-bit byte
506 	 * swap passthru option to convert from big endian to little
507 	 * endian.
508 	 */
509 	ret = ccp_init_dm_workarea(&key, cmd_q,
510 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
511 				   DMA_TO_DEVICE);
512 	if (ret)
513 		return ret;
514 
515 	dm_offset = CCP_SB_BYTES - aes->key_len;
516 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
517 	if (ret)
518 		goto e_key;
519 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
520 			     CCP_PASSTHRU_BYTESWAP_256BIT);
521 	if (ret) {
522 		cmd->engine_error = cmd_q->cmd_error;
523 		goto e_key;
524 	}
525 
526 	/* The AES context fits in a single (32-byte) SB entry and
527 	 * must be in little endian format. Use the 256-bit byte swap
528 	 * passthru option to convert from big endian to little endian.
529 	 */
530 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
531 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
532 				   DMA_BIDIRECTIONAL);
533 	if (ret)
534 		goto e_key;
535 
536 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
537 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
538 	if (ret)
539 		goto e_ctx;
540 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
541 			     CCP_PASSTHRU_BYTESWAP_256BIT);
542 	if (ret) {
543 		cmd->engine_error = cmd_q->cmd_error;
544 		goto e_ctx;
545 	}
546 
547 	/* Send data to the CCP AES engine */
548 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
549 			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
550 	if (ret)
551 		goto e_ctx;
552 
553 	while (src.sg_wa.bytes_left) {
554 		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
555 		if (aes->cmac_final && !src.sg_wa.bytes_left) {
556 			op.eom = 1;
557 
558 			/* Push the K1/K2 key to the CCP now */
559 			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
560 					       op.sb_ctx,
561 					       CCP_PASSTHRU_BYTESWAP_256BIT);
562 			if (ret) {
563 				cmd->engine_error = cmd_q->cmd_error;
564 				goto e_src;
565 			}
566 
567 			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
568 					      aes->cmac_key_len);
569 			if (ret)
570 				goto e_src;
571 			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
572 					     CCP_PASSTHRU_BYTESWAP_256BIT);
573 			if (ret) {
574 				cmd->engine_error = cmd_q->cmd_error;
575 				goto e_src;
576 			}
577 		}
578 
579 		ret = cmd_q->ccp->vdata->perform->aes(&op);
580 		if (ret) {
581 			cmd->engine_error = cmd_q->cmd_error;
582 			goto e_src;
583 		}
584 
585 		ccp_process_data(&src, NULL, &op);
586 	}
587 
588 	/* Retrieve the AES context - convert from LE to BE using
589 	 * 32-byte (256-bit) byteswapping
590 	 */
591 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
592 			       CCP_PASSTHRU_BYTESWAP_256BIT);
593 	if (ret) {
594 		cmd->engine_error = cmd_q->cmd_error;
595 		goto e_src;
596 	}
597 
598 	/* ...but we only need AES_BLOCK_SIZE bytes */
599 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
600 	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
601 
602 e_src:
603 	ccp_free_data(&src, cmd_q);
604 
605 e_ctx:
606 	ccp_dm_free(&ctx);
607 
608 e_key:
609 	ccp_dm_free(&key);
610 
611 	return ret;
612 }
613 
614 static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
615 			       struct ccp_cmd *cmd)
616 {
617 	struct ccp_aes_engine *aes = &cmd->u.aes;
618 	struct ccp_dm_workarea key, ctx, final_wa, tag;
619 	struct ccp_data src, dst;
620 	struct ccp_data aad;
621 	struct ccp_op op;
622 
623 	unsigned long long *final;
624 	unsigned int dm_offset;
625 	unsigned int ilen;
626 	bool in_place = true; /* Default value */
627 	int ret;
628 
629 	struct scatterlist *p_inp, sg_inp[2];
630 	struct scatterlist *p_tag, sg_tag[2];
631 	struct scatterlist *p_outp, sg_outp[2];
632 	struct scatterlist *p_aad;
633 
634 	if (!aes->iv)
635 		return -EINVAL;
636 
637 	if (!((aes->key_len == AES_KEYSIZE_128) ||
638 		(aes->key_len == AES_KEYSIZE_192) ||
639 		(aes->key_len == AES_KEYSIZE_256)))
640 		return -EINVAL;
641 
642 	if (!aes->key) /* Gotta have a key SGL */
643 		return -EINVAL;
644 
645 	/* First, decompose the source buffer into AAD & PT,
646 	 * and the destination buffer into AAD, CT & tag, or
647 	 * the input into CT & tag.
648 	 * It is expected that the input and output SGs will
649 	 * be valid, even if the AAD and input lengths are 0.
650 	 */
651 	p_aad = aes->src;
652 	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
653 	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
654 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
655 		ilen = aes->src_len;
656 		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
657 	} else {
658 		/* Input length for decryption includes tag */
659 		ilen = aes->src_len - AES_BLOCK_SIZE;
660 		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
661 	}
662 
663 	memset(&op, 0, sizeof(op));
664 	op.cmd_q = cmd_q;
665 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
666 	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
667 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
668 	op.init = 1;
669 	op.u.aes.type = aes->type;
670 
671 	/* Copy the key to the LSB */
672 	ret = ccp_init_dm_workarea(&key, cmd_q,
673 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
674 				   DMA_TO_DEVICE);
675 	if (ret)
676 		return ret;
677 
678 	dm_offset = CCP_SB_BYTES - aes->key_len;
679 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
680 	if (ret)
681 		goto e_key;
682 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
683 			     CCP_PASSTHRU_BYTESWAP_256BIT);
684 	if (ret) {
685 		cmd->engine_error = cmd_q->cmd_error;
686 		goto e_key;
687 	}
688 
689 	/* Copy the context (IV) to the LSB.
690 	 * There is an assumption here that the IV is 96 bits in length, plus
691 	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
692 	 */
693 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
694 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
695 				   DMA_BIDIRECTIONAL);
696 	if (ret)
697 		goto e_key;
698 
699 	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
700 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
701 	if (ret)
702 		goto e_ctx;
703 
704 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
705 			     CCP_PASSTHRU_BYTESWAP_256BIT);
706 	if (ret) {
707 		cmd->engine_error = cmd_q->cmd_error;
708 		goto e_ctx;
709 	}
710 
711 	op.init = 1;
712 	if (aes->aad_len > 0) {
713 		/* Step 1: Run a GHASH over the Additional Authenticated Data */
714 		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
715 				    AES_BLOCK_SIZE,
716 				    DMA_TO_DEVICE);
717 		if (ret)
718 			goto e_ctx;
719 
720 		op.u.aes.mode = CCP_AES_MODE_GHASH;
721 		op.u.aes.action = CCP_AES_GHASHAAD;
722 
723 		while (aad.sg_wa.bytes_left) {
724 			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
725 
726 			ret = cmd_q->ccp->vdata->perform->aes(&op);
727 			if (ret) {
728 				cmd->engine_error = cmd_q->cmd_error;
729 				goto e_aad;
730 			}
731 
732 			ccp_process_data(&aad, NULL, &op);
733 			op.init = 0;
734 		}
735 	}
736 
737 	op.u.aes.mode = CCP_AES_MODE_GCTR;
738 	op.u.aes.action = aes->action;
739 
740 	if (ilen > 0) {
741 		/* Step 2: Run a GCTR over the plaintext */
742 		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
743 
744 		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
745 				    AES_BLOCK_SIZE,
746 				    in_place ? DMA_BIDIRECTIONAL
747 					     : DMA_TO_DEVICE);
748 		if (ret)
749 			goto e_ctx;
750 
751 		if (in_place) {
752 			dst = src;
753 		} else {
754 			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
755 					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
756 			if (ret)
757 				goto e_src;
758 		}
759 
760 		op.soc = 0;
761 		op.eom = 0;
762 		op.init = 1;
763 		while (src.sg_wa.bytes_left) {
764 			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
765 			if (!src.sg_wa.bytes_left) {
766 				unsigned int nbytes = aes->src_len
767 						      % AES_BLOCK_SIZE;
768 
769 				if (nbytes) {
770 					op.eom = 1;
771 					op.u.aes.size = (nbytes * 8) - 1;
772 				}
773 			}
774 
775 			ret = cmd_q->ccp->vdata->perform->aes(&op);
776 			if (ret) {
777 				cmd->engine_error = cmd_q->cmd_error;
778 				goto e_dst;
779 			}
780 
781 			ccp_process_data(&src, &dst, &op);
782 			op.init = 0;
783 		}
784 	}
785 
786 	/* Step 3: Update the IV portion of the context with the original IV */
787 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
788 			       CCP_PASSTHRU_BYTESWAP_256BIT);
789 	if (ret) {
790 		cmd->engine_error = cmd_q->cmd_error;
791 		goto e_dst;
792 	}
793 
794 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
795 	if (ret)
796 		goto e_dst;
797 
798 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
799 			     CCP_PASSTHRU_BYTESWAP_256BIT);
800 	if (ret) {
801 		cmd->engine_error = cmd_q->cmd_error;
802 		goto e_dst;
803 	}
804 
805 	/* Step 4: Concatenate the lengths of the AAD and source, and
806 	 * hash that 16 byte buffer.
807 	 */
808 	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
809 				   DMA_BIDIRECTIONAL);
810 	if (ret)
811 		goto e_dst;
812 	final = (unsigned long long *) final_wa.address;
813 	final[0] = cpu_to_be64(aes->aad_len * 8);
814 	final[1] = cpu_to_be64(ilen * 8);
815 
816 	op.u.aes.mode = CCP_AES_MODE_GHASH;
817 	op.u.aes.action = CCP_AES_GHASHFINAL;
818 	op.src.type = CCP_MEMTYPE_SYSTEM;
819 	op.src.u.dma.address = final_wa.dma.address;
820 	op.src.u.dma.length = AES_BLOCK_SIZE;
821 	op.dst.type = CCP_MEMTYPE_SYSTEM;
822 	op.dst.u.dma.address = final_wa.dma.address;
823 	op.dst.u.dma.length = AES_BLOCK_SIZE;
824 	op.eom = 1;
825 	op.u.aes.size = 0;
826 	ret = cmd_q->ccp->vdata->perform->aes(&op);
827 	if (ret)
828 		goto e_dst;
829 
830 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
831 		/* Put the ciphered tag after the ciphertext. */
832 		ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
833 	} else {
834 		/* Does this ciphered tag match the input? */
835 		ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
836 					   DMA_BIDIRECTIONAL);
837 		if (ret)
838 			goto e_tag;
839 		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
840 		if (ret)
841 			goto e_tag;
842 
843 		ret = memcmp(tag.address, final_wa.address, AES_BLOCK_SIZE);
844 		ccp_dm_free(&tag);
845 	}
846 
847 e_tag:
848 	ccp_dm_free(&final_wa);
849 
850 e_dst:
851 	if (aes->src_len && !in_place)
852 		ccp_free_data(&dst, cmd_q);
853 
854 e_src:
855 	if (aes->src_len)
856 		ccp_free_data(&src, cmd_q);
857 
858 e_aad:
859 	if (aes->aad_len)
860 		ccp_free_data(&aad, cmd_q);
861 
862 e_ctx:
863 	ccp_dm_free(&ctx);
864 
865 e_key:
866 	ccp_dm_free(&key);
867 
868 	return ret;
869 }
870 
871 static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
872 {
873 	struct ccp_aes_engine *aes = &cmd->u.aes;
874 	struct ccp_dm_workarea key, ctx;
875 	struct ccp_data src, dst;
876 	struct ccp_op op;
877 	unsigned int dm_offset;
878 	bool in_place = false;
879 	int ret;
880 
881 	if (aes->mode == CCP_AES_MODE_CMAC)
882 		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
883 
884 	if (aes->mode == CCP_AES_MODE_GCM)
885 		return ccp_run_aes_gcm_cmd(cmd_q, cmd);
886 
887 	if (!((aes->key_len == AES_KEYSIZE_128) ||
888 	      (aes->key_len == AES_KEYSIZE_192) ||
889 	      (aes->key_len == AES_KEYSIZE_256)))
890 		return -EINVAL;
891 
892 	if (((aes->mode == CCP_AES_MODE_ECB) ||
893 	     (aes->mode == CCP_AES_MODE_CBC) ||
894 	     (aes->mode == CCP_AES_MODE_CFB)) &&
895 	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
896 		return -EINVAL;
897 
898 	if (!aes->key || !aes->src || !aes->dst)
899 		return -EINVAL;
900 
901 	if (aes->mode != CCP_AES_MODE_ECB) {
902 		if (aes->iv_len != AES_BLOCK_SIZE)
903 			return -EINVAL;
904 
905 		if (!aes->iv)
906 			return -EINVAL;
907 	}
908 
909 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
910 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
911 
912 	ret = -EIO;
913 	memset(&op, 0, sizeof(op));
914 	op.cmd_q = cmd_q;
915 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
916 	op.sb_key = cmd_q->sb_key;
917 	op.sb_ctx = cmd_q->sb_ctx;
918 	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
919 	op.u.aes.type = aes->type;
920 	op.u.aes.mode = aes->mode;
921 	op.u.aes.action = aes->action;
922 
923 	/* All supported key sizes fit in a single (32-byte) SB entry
924 	 * and must be in little endian format. Use the 256-bit byte
925 	 * swap passthru option to convert from big endian to little
926 	 * endian.
927 	 */
928 	ret = ccp_init_dm_workarea(&key, cmd_q,
929 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
930 				   DMA_TO_DEVICE);
931 	if (ret)
932 		return ret;
933 
934 	dm_offset = CCP_SB_BYTES - aes->key_len;
935 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
936 	if (ret)
937 		goto e_key;
938 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
939 			     CCP_PASSTHRU_BYTESWAP_256BIT);
940 	if (ret) {
941 		cmd->engine_error = cmd_q->cmd_error;
942 		goto e_key;
943 	}
944 
945 	/* The AES context fits in a single (32-byte) SB entry and
946 	 * must be in little endian format. Use the 256-bit byte swap
947 	 * passthru option to convert from big endian to little endian.
948 	 */
949 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
950 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
951 				   DMA_BIDIRECTIONAL);
952 	if (ret)
953 		goto e_key;
954 
955 	if (aes->mode != CCP_AES_MODE_ECB) {
956 		/* Load the AES context - convert to LE */
957 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
958 		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
959 		if (ret)
960 			goto e_ctx;
961 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
962 				     CCP_PASSTHRU_BYTESWAP_256BIT);
963 		if (ret) {
964 			cmd->engine_error = cmd_q->cmd_error;
965 			goto e_ctx;
966 		}
967 	}
968 	switch (aes->mode) {
969 	case CCP_AES_MODE_CFB: /* CFB128 only */
970 	case CCP_AES_MODE_CTR:
971 		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
972 		break;
973 	default:
974 		op.u.aes.size = 0;
975 	}
976 
977 	/* Prepare the input and output data workareas. For in-place
978 	 * operations we need to set the dma direction to BIDIRECTIONAL
979 	 * and copy the src workarea to the dst workarea.
980 	 */
981 	if (sg_virt(aes->src) == sg_virt(aes->dst))
982 		in_place = true;
983 
984 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
985 			    AES_BLOCK_SIZE,
986 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
987 	if (ret)
988 		goto e_ctx;
989 
990 	if (in_place) {
991 		dst = src;
992 	} else {
993 		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
994 				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
995 		if (ret)
996 			goto e_src;
997 	}
998 
999 	/* Send data to the CCP AES engine */
1000 	while (src.sg_wa.bytes_left) {
1001 		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1002 		if (!src.sg_wa.bytes_left) {
1003 			op.eom = 1;
1004 
1005 			/* Since we don't retrieve the AES context in ECB
1006 			 * mode we have to wait for the operation to complete
1007 			 * on the last piece of data
1008 			 */
1009 			if (aes->mode == CCP_AES_MODE_ECB)
1010 				op.soc = 1;
1011 		}
1012 
1013 		ret = cmd_q->ccp->vdata->perform->aes(&op);
1014 		if (ret) {
1015 			cmd->engine_error = cmd_q->cmd_error;
1016 			goto e_dst;
1017 		}
1018 
1019 		ccp_process_data(&src, &dst, &op);
1020 	}
1021 
1022 	if (aes->mode != CCP_AES_MODE_ECB) {
1023 		/* Retrieve the AES context - convert from LE to BE using
1024 		 * 32-byte (256-bit) byteswapping
1025 		 */
1026 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1027 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1028 		if (ret) {
1029 			cmd->engine_error = cmd_q->cmd_error;
1030 			goto e_dst;
1031 		}
1032 
1033 		/* ...but we only need AES_BLOCK_SIZE bytes */
1034 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1035 		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1036 	}
1037 
1038 e_dst:
1039 	if (!in_place)
1040 		ccp_free_data(&dst, cmd_q);
1041 
1042 e_src:
1043 	ccp_free_data(&src, cmd_q);
1044 
1045 e_ctx:
1046 	ccp_dm_free(&ctx);
1047 
1048 e_key:
1049 	ccp_dm_free(&key);
1050 
1051 	return ret;
1052 }
1053 
1054 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
1055 			       struct ccp_cmd *cmd)
1056 {
1057 	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1058 	struct ccp_dm_workarea key, ctx;
1059 	struct ccp_data src, dst;
1060 	struct ccp_op op;
1061 	unsigned int unit_size, dm_offset;
1062 	bool in_place = false;
1063 	unsigned int sb_count;
1064 	enum ccp_aes_type aestype;
1065 	int ret;
1066 
1067 	switch (xts->unit_size) {
1068 	case CCP_XTS_AES_UNIT_SIZE_16:
1069 		unit_size = 16;
1070 		break;
1071 	case CCP_XTS_AES_UNIT_SIZE_512:
1072 		unit_size = 512;
1073 		break;
1074 	case CCP_XTS_AES_UNIT_SIZE_1024:
1075 		unit_size = 1024;
1076 		break;
1077 	case CCP_XTS_AES_UNIT_SIZE_2048:
1078 		unit_size = 2048;
1079 		break;
1080 	case CCP_XTS_AES_UNIT_SIZE_4096:
1081 		unit_size = 4096;
1082 		break;
1083 
1084 	default:
1085 		return -EINVAL;
1086 	}
1087 
1088 	if (xts->key_len == AES_KEYSIZE_128)
1089 		aestype = CCP_AES_TYPE_128;
1090 	else if (xts->key_len == AES_KEYSIZE_256)
1091 		aestype = CCP_AES_TYPE_256;
1092 	else
1093 		return -EINVAL;
1094 
1095 	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1096 		return -EINVAL;
1097 
1098 	if (xts->iv_len != AES_BLOCK_SIZE)
1099 		return -EINVAL;
1100 
1101 	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1102 		return -EINVAL;
1103 
1104 	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1105 	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1106 
1107 	ret = -EIO;
1108 	memset(&op, 0, sizeof(op));
1109 	op.cmd_q = cmd_q;
1110 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1111 	op.sb_key = cmd_q->sb_key;
1112 	op.sb_ctx = cmd_q->sb_ctx;
1113 	op.init = 1;
1114 	op.u.xts.type = aestype;
1115 	op.u.xts.action = xts->action;
1116 	op.u.xts.unit_size = xts->unit_size;
1117 
1118 	/* A version 3 device only supports 128-bit keys, which fits into a
1119 	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1120 	 * SB entries.
1121 	 */
1122 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1123 		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1124 	else
1125 		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1126 	ret = ccp_init_dm_workarea(&key, cmd_q,
1127 				   sb_count * CCP_SB_BYTES,
1128 				   DMA_TO_DEVICE);
1129 	if (ret)
1130 		return ret;
1131 
1132 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1133 		/* All supported key sizes must be in little endian format.
1134 		 * Use the 256-bit byte swap passthru option to convert from
1135 		 * big endian to little endian.
1136 		 */
1137 		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1138 		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1139 		if (ret)
1140 			goto e_key;
1141 		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1142 		if (ret)
1143 			goto e_key;
1144 	} else {
1145 		/* Version 5 CCPs use a 512-bit space for the key: each portion
1146 		 * occupies 256 bits, or one entire slot, and is zero-padded.
1147 		 */
1148 		unsigned int pad;
1149 
1150 		dm_offset = CCP_SB_BYTES;
1151 		pad = dm_offset - xts->key_len;
1152 		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1153 		if (ret)
1154 			goto e_key;
1155 		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1156 				      xts->key_len, xts->key_len);
1157 		if (ret)
1158 			goto e_key;
1159 	}
1160 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1161 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1162 	if (ret) {
1163 		cmd->engine_error = cmd_q->cmd_error;
1164 		goto e_key;
1165 	}
1166 
1167 	/* The AES context fits in a single (32-byte) SB entry and
1168 	 * for XTS is already in little endian format so no byte swapping
1169 	 * is needed.
1170 	 */
1171 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1172 				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1173 				   DMA_BIDIRECTIONAL);
1174 	if (ret)
1175 		goto e_key;
1176 
1177 	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1178 	if (ret)
1179 		goto e_ctx;
1180 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1181 			     CCP_PASSTHRU_BYTESWAP_NOOP);
1182 	if (ret) {
1183 		cmd->engine_error = cmd_q->cmd_error;
1184 		goto e_ctx;
1185 	}
1186 
1187 	/* Prepare the input and output data workareas. For in-place
1188 	 * operations we need to set the dma direction to BIDIRECTIONAL
1189 	 * and copy the src workarea to the dst workarea.
1190 	 */
1191 	if (sg_virt(xts->src) == sg_virt(xts->dst))
1192 		in_place = true;
1193 
1194 	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1195 			    unit_size,
1196 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1197 	if (ret)
1198 		goto e_ctx;
1199 
1200 	if (in_place) {
1201 		dst = src;
1202 	} else {
1203 		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1204 				    unit_size, DMA_FROM_DEVICE);
1205 		if (ret)
1206 			goto e_src;
1207 	}
1208 
1209 	/* Send data to the CCP AES engine */
1210 	while (src.sg_wa.bytes_left) {
1211 		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1212 		if (!src.sg_wa.bytes_left)
1213 			op.eom = 1;
1214 
1215 		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1216 		if (ret) {
1217 			cmd->engine_error = cmd_q->cmd_error;
1218 			goto e_dst;
1219 		}
1220 
1221 		ccp_process_data(&src, &dst, &op);
1222 	}
1223 
1224 	/* Retrieve the AES context - convert from LE to BE using
1225 	 * 32-byte (256-bit) byteswapping
1226 	 */
1227 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1228 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1229 	if (ret) {
1230 		cmd->engine_error = cmd_q->cmd_error;
1231 		goto e_dst;
1232 	}
1233 
1234 	/* ...but we only need AES_BLOCK_SIZE bytes */
1235 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1236 	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1237 
1238 e_dst:
1239 	if (!in_place)
1240 		ccp_free_data(&dst, cmd_q);
1241 
1242 e_src:
1243 	ccp_free_data(&src, cmd_q);
1244 
1245 e_ctx:
1246 	ccp_dm_free(&ctx);
1247 
1248 e_key:
1249 	ccp_dm_free(&key);
1250 
1251 	return ret;
1252 }
1253 
1254 static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1255 {
1256 	struct ccp_des3_engine *des3 = &cmd->u.des3;
1257 
1258 	struct ccp_dm_workarea key, ctx;
1259 	struct ccp_data src, dst;
1260 	struct ccp_op op;
1261 	unsigned int dm_offset;
1262 	unsigned int len_singlekey;
1263 	bool in_place = false;
1264 	int ret;
1265 
1266 	/* Error checks */
1267 	if (!cmd_q->ccp->vdata->perform->des3)
1268 		return -EINVAL;
1269 
1270 	if (des3->key_len != DES3_EDE_KEY_SIZE)
1271 		return -EINVAL;
1272 
1273 	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1274 		(des3->mode == CCP_DES3_MODE_CBC)) &&
1275 		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1276 		return -EINVAL;
1277 
1278 	if (!des3->key || !des3->src || !des3->dst)
1279 		return -EINVAL;
1280 
1281 	if (des3->mode != CCP_DES3_MODE_ECB) {
1282 		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1283 			return -EINVAL;
1284 
1285 		if (!des3->iv)
1286 			return -EINVAL;
1287 	}
1288 
1289 	ret = -EIO;
1290 	/* Zero out all the fields of the command desc */
1291 	memset(&op, 0, sizeof(op));
1292 
1293 	/* Set up the Function field */
1294 	op.cmd_q = cmd_q;
1295 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1296 	op.sb_key = cmd_q->sb_key;
1297 
1298 	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1299 	op.u.des3.type = des3->type;
1300 	op.u.des3.mode = des3->mode;
1301 	op.u.des3.action = des3->action;
1302 
1303 	/*
1304 	 * All supported key sizes fit in a single (32-byte) KSB entry and
1305 	 * (like AES) must be in little endian format. Use the 256-bit byte
1306 	 * swap passthru option to convert from big endian to little endian.
1307 	 */
1308 	ret = ccp_init_dm_workarea(&key, cmd_q,
1309 				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1310 				   DMA_TO_DEVICE);
1311 	if (ret)
1312 		return ret;
1313 
1314 	/*
1315 	 * The contents of the key triplet are in the reverse order of what
1316 	 * is required by the engine. Copy the 3 pieces individually to put
1317 	 * them where they belong.
1318 	 */
1319 	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1320 
1321 	len_singlekey = des3->key_len / 3;
1322 	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1323 			      des3->key, 0, len_singlekey);
1324 	if (ret)
1325 		goto e_key;
1326 	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1327 			      des3->key, len_singlekey, len_singlekey);
1328 	if (ret)
1329 		goto e_key;
1330 	ret = ccp_set_dm_area(&key, dm_offset,
1331 			      des3->key, 2 * len_singlekey, len_singlekey);
1332 	if (ret)
1333 		goto e_key;
1334 
1335 	/* Copy the key to the SB */
1336 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1337 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1338 	if (ret) {
1339 		cmd->engine_error = cmd_q->cmd_error;
1340 		goto e_key;
1341 	}
1342 
1343 	/*
1344 	 * The DES3 context fits in a single (32-byte) KSB entry and
1345 	 * must be in little endian format. Use the 256-bit byte swap
1346 	 * passthru option to convert from big endian to little endian.
1347 	 */
1348 	if (des3->mode != CCP_DES3_MODE_ECB) {
1349 		u32 load_mode;
1350 
1351 		op.sb_ctx = cmd_q->sb_ctx;
1352 
1353 		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1354 					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1355 					   DMA_BIDIRECTIONAL);
1356 		if (ret)
1357 			goto e_key;
1358 
1359 		/* Load the context into the LSB */
1360 		dm_offset = CCP_SB_BYTES - des3->iv_len;
1361 		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1362 				      des3->iv_len);
1363 		if (ret)
1364 			goto e_ctx;
1365 
1366 		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1367 			load_mode = CCP_PASSTHRU_BYTESWAP_NOOP;
1368 		else
1369 			load_mode = CCP_PASSTHRU_BYTESWAP_256BIT;
1370 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1371 				     load_mode);
1372 		if (ret) {
1373 			cmd->engine_error = cmd_q->cmd_error;
1374 			goto e_ctx;
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * Prepare the input and output data workareas. For in-place
1380 	 * operations we need to set the dma direction to BIDIRECTIONAL
1381 	 * and copy the src workarea to the dst workarea.
1382 	 */
1383 	if (sg_virt(des3->src) == sg_virt(des3->dst))
1384 		in_place = true;
1385 
1386 	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1387 			DES3_EDE_BLOCK_SIZE,
1388 			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1389 	if (ret)
1390 		goto e_ctx;
1391 
1392 	if (in_place)
1393 		dst = src;
1394 	else {
1395 		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1396 				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1397 		if (ret)
1398 			goto e_src;
1399 	}
1400 
1401 	/* Send data to the CCP DES3 engine */
1402 	while (src.sg_wa.bytes_left) {
1403 		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1404 		if (!src.sg_wa.bytes_left) {
1405 			op.eom = 1;
1406 
1407 			/* Since we don't retrieve the context in ECB mode
1408 			 * we have to wait for the operation to complete
1409 			 * on the last piece of data
1410 			 */
1411 			op.soc = 0;
1412 		}
1413 
1414 		ret = cmd_q->ccp->vdata->perform->des3(&op);
1415 		if (ret) {
1416 			cmd->engine_error = cmd_q->cmd_error;
1417 			goto e_dst;
1418 		}
1419 
1420 		ccp_process_data(&src, &dst, &op);
1421 	}
1422 
1423 	if (des3->mode != CCP_DES3_MODE_ECB) {
1424 		/* Retrieve the context and make BE */
1425 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1426 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1427 		if (ret) {
1428 			cmd->engine_error = cmd_q->cmd_error;
1429 			goto e_dst;
1430 		}
1431 
1432 		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1433 		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1434 			dm_offset = CCP_SB_BYTES - des3->iv_len;
1435 		else
1436 			dm_offset = 0;
1437 		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1438 				DES3_EDE_BLOCK_SIZE);
1439 	}
1440 e_dst:
1441 	if (!in_place)
1442 		ccp_free_data(&dst, cmd_q);
1443 
1444 e_src:
1445 	ccp_free_data(&src, cmd_q);
1446 
1447 e_ctx:
1448 	if (des3->mode != CCP_DES3_MODE_ECB)
1449 		ccp_dm_free(&ctx);
1450 
1451 e_key:
1452 	ccp_dm_free(&key);
1453 
1454 	return ret;
1455 }
1456 
1457 static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1458 {
1459 	struct ccp_sha_engine *sha = &cmd->u.sha;
1460 	struct ccp_dm_workarea ctx;
1461 	struct ccp_data src;
1462 	struct ccp_op op;
1463 	unsigned int ioffset, ooffset;
1464 	unsigned int digest_size;
1465 	int sb_count;
1466 	const void *init;
1467 	u64 block_size;
1468 	int ctx_size;
1469 	int ret;
1470 
1471 	switch (sha->type) {
1472 	case CCP_SHA_TYPE_1:
1473 		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1474 			return -EINVAL;
1475 		block_size = SHA1_BLOCK_SIZE;
1476 		break;
1477 	case CCP_SHA_TYPE_224:
1478 		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1479 			return -EINVAL;
1480 		block_size = SHA224_BLOCK_SIZE;
1481 		break;
1482 	case CCP_SHA_TYPE_256:
1483 		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1484 			return -EINVAL;
1485 		block_size = SHA256_BLOCK_SIZE;
1486 		break;
1487 	case CCP_SHA_TYPE_384:
1488 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1489 		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1490 			return -EINVAL;
1491 		block_size = SHA384_BLOCK_SIZE;
1492 		break;
1493 	case CCP_SHA_TYPE_512:
1494 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1495 		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1496 			return -EINVAL;
1497 		block_size = SHA512_BLOCK_SIZE;
1498 		break;
1499 	default:
1500 		return -EINVAL;
1501 	}
1502 
1503 	if (!sha->ctx)
1504 		return -EINVAL;
1505 
1506 	if (!sha->final && (sha->src_len & (block_size - 1)))
1507 		return -EINVAL;
1508 
1509 	/* The version 3 device can't handle zero-length input */
1510 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1511 
1512 		if (!sha->src_len) {
1513 			unsigned int digest_len;
1514 			const u8 *sha_zero;
1515 
1516 			/* Not final, just return */
1517 			if (!sha->final)
1518 				return 0;
1519 
1520 			/* CCP can't do a zero length sha operation so the
1521 			 * caller must buffer the data.
1522 			 */
1523 			if (sha->msg_bits)
1524 				return -EINVAL;
1525 
1526 			/* The CCP cannot perform zero-length sha operations
1527 			 * so the caller is required to buffer data for the
1528 			 * final operation. However, a sha operation for a
1529 			 * message with a total length of zero is valid so
1530 			 * known values are required to supply the result.
1531 			 */
1532 			switch (sha->type) {
1533 			case CCP_SHA_TYPE_1:
1534 				sha_zero = sha1_zero_message_hash;
1535 				digest_len = SHA1_DIGEST_SIZE;
1536 				break;
1537 			case CCP_SHA_TYPE_224:
1538 				sha_zero = sha224_zero_message_hash;
1539 				digest_len = SHA224_DIGEST_SIZE;
1540 				break;
1541 			case CCP_SHA_TYPE_256:
1542 				sha_zero = sha256_zero_message_hash;
1543 				digest_len = SHA256_DIGEST_SIZE;
1544 				break;
1545 			default:
1546 				return -EINVAL;
1547 			}
1548 
1549 			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1550 						 digest_len, 1);
1551 
1552 			return 0;
1553 		}
1554 	}
1555 
1556 	/* Set variables used throughout */
1557 	switch (sha->type) {
1558 	case CCP_SHA_TYPE_1:
1559 		digest_size = SHA1_DIGEST_SIZE;
1560 		init = (void *) ccp_sha1_init;
1561 		ctx_size = SHA1_DIGEST_SIZE;
1562 		sb_count = 1;
1563 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1564 			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1565 		else
1566 			ooffset = ioffset = 0;
1567 		break;
1568 	case CCP_SHA_TYPE_224:
1569 		digest_size = SHA224_DIGEST_SIZE;
1570 		init = (void *) ccp_sha224_init;
1571 		ctx_size = SHA256_DIGEST_SIZE;
1572 		sb_count = 1;
1573 		ioffset = 0;
1574 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1575 			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1576 		else
1577 			ooffset = 0;
1578 		break;
1579 	case CCP_SHA_TYPE_256:
1580 		digest_size = SHA256_DIGEST_SIZE;
1581 		init = (void *) ccp_sha256_init;
1582 		ctx_size = SHA256_DIGEST_SIZE;
1583 		sb_count = 1;
1584 		ooffset = ioffset = 0;
1585 		break;
1586 	case CCP_SHA_TYPE_384:
1587 		digest_size = SHA384_DIGEST_SIZE;
1588 		init = (void *) ccp_sha384_init;
1589 		ctx_size = SHA512_DIGEST_SIZE;
1590 		sb_count = 2;
1591 		ioffset = 0;
1592 		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1593 		break;
1594 	case CCP_SHA_TYPE_512:
1595 		digest_size = SHA512_DIGEST_SIZE;
1596 		init = (void *) ccp_sha512_init;
1597 		ctx_size = SHA512_DIGEST_SIZE;
1598 		sb_count = 2;
1599 		ooffset = ioffset = 0;
1600 		break;
1601 	default:
1602 		ret = -EINVAL;
1603 		goto e_data;
1604 	}
1605 
1606 	/* For zero-length plaintext the src pointer is ignored;
1607 	 * otherwise both parts must be valid
1608 	 */
1609 	if (sha->src_len && !sha->src)
1610 		return -EINVAL;
1611 
1612 	memset(&op, 0, sizeof(op));
1613 	op.cmd_q = cmd_q;
1614 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1615 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1616 	op.u.sha.type = sha->type;
1617 	op.u.sha.msg_bits = sha->msg_bits;
1618 
1619 	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1620 	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1621 	 * first slot, and the left half in the second. Each portion must then
1622 	 * be in little endian format: use the 256-bit byte swap option.
1623 	 */
1624 	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1625 				   DMA_BIDIRECTIONAL);
1626 	if (ret)
1627 		return ret;
1628 	if (sha->first) {
1629 		switch (sha->type) {
1630 		case CCP_SHA_TYPE_1:
1631 		case CCP_SHA_TYPE_224:
1632 		case CCP_SHA_TYPE_256:
1633 			memcpy(ctx.address + ioffset, init, ctx_size);
1634 			break;
1635 		case CCP_SHA_TYPE_384:
1636 		case CCP_SHA_TYPE_512:
1637 			memcpy(ctx.address + ctx_size / 2, init,
1638 			       ctx_size / 2);
1639 			memcpy(ctx.address, init + ctx_size / 2,
1640 			       ctx_size / 2);
1641 			break;
1642 		default:
1643 			ret = -EINVAL;
1644 			goto e_ctx;
1645 		}
1646 	} else {
1647 		/* Restore the context */
1648 		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1649 				      sb_count * CCP_SB_BYTES);
1650 		if (ret)
1651 			goto e_ctx;
1652 	}
1653 
1654 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1655 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1656 	if (ret) {
1657 		cmd->engine_error = cmd_q->cmd_error;
1658 		goto e_ctx;
1659 	}
1660 
1661 	if (sha->src) {
1662 		/* Send data to the CCP SHA engine; block_size is set above */
1663 		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1664 				    block_size, DMA_TO_DEVICE);
1665 		if (ret)
1666 			goto e_ctx;
1667 
1668 		while (src.sg_wa.bytes_left) {
1669 			ccp_prepare_data(&src, NULL, &op, block_size, false);
1670 			if (sha->final && !src.sg_wa.bytes_left)
1671 				op.eom = 1;
1672 
1673 			ret = cmd_q->ccp->vdata->perform->sha(&op);
1674 			if (ret) {
1675 				cmd->engine_error = cmd_q->cmd_error;
1676 				goto e_data;
1677 			}
1678 
1679 			ccp_process_data(&src, NULL, &op);
1680 		}
1681 	} else {
1682 		op.eom = 1;
1683 		ret = cmd_q->ccp->vdata->perform->sha(&op);
1684 		if (ret) {
1685 			cmd->engine_error = cmd_q->cmd_error;
1686 			goto e_data;
1687 		}
1688 	}
1689 
1690 	/* Retrieve the SHA context - convert from LE to BE using
1691 	 * 32-byte (256-bit) byteswapping to BE
1692 	 */
1693 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1694 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1695 	if (ret) {
1696 		cmd->engine_error = cmd_q->cmd_error;
1697 		goto e_data;
1698 	}
1699 
1700 	if (sha->final) {
1701 		/* Finishing up, so get the digest */
1702 		switch (sha->type) {
1703 		case CCP_SHA_TYPE_1:
1704 		case CCP_SHA_TYPE_224:
1705 		case CCP_SHA_TYPE_256:
1706 			ccp_get_dm_area(&ctx, ooffset,
1707 					sha->ctx, 0,
1708 					digest_size);
1709 			break;
1710 		case CCP_SHA_TYPE_384:
1711 		case CCP_SHA_TYPE_512:
1712 			ccp_get_dm_area(&ctx, 0,
1713 					sha->ctx, LSB_ITEM_SIZE - ooffset,
1714 					LSB_ITEM_SIZE);
1715 			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1716 					sha->ctx, 0,
1717 					LSB_ITEM_SIZE - ooffset);
1718 			break;
1719 		default:
1720 			ret = -EINVAL;
1721 			goto e_ctx;
1722 		}
1723 	} else {
1724 		/* Stash the context */
1725 		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1726 				sb_count * CCP_SB_BYTES);
1727 	}
1728 
1729 	if (sha->final && sha->opad) {
1730 		/* HMAC operation, recursively perform final SHA */
1731 		struct ccp_cmd hmac_cmd;
1732 		struct scatterlist sg;
1733 		u8 *hmac_buf;
1734 
1735 		if (sha->opad_len != block_size) {
1736 			ret = -EINVAL;
1737 			goto e_data;
1738 		}
1739 
1740 		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1741 		if (!hmac_buf) {
1742 			ret = -ENOMEM;
1743 			goto e_data;
1744 		}
1745 		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1746 
1747 		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1748 		switch (sha->type) {
1749 		case CCP_SHA_TYPE_1:
1750 		case CCP_SHA_TYPE_224:
1751 		case CCP_SHA_TYPE_256:
1752 			memcpy(hmac_buf + block_size,
1753 			       ctx.address + ooffset,
1754 			       digest_size);
1755 			break;
1756 		case CCP_SHA_TYPE_384:
1757 		case CCP_SHA_TYPE_512:
1758 			memcpy(hmac_buf + block_size,
1759 			       ctx.address + LSB_ITEM_SIZE + ooffset,
1760 			       LSB_ITEM_SIZE);
1761 			memcpy(hmac_buf + block_size +
1762 			       (LSB_ITEM_SIZE - ooffset),
1763 			       ctx.address,
1764 			       LSB_ITEM_SIZE);
1765 			break;
1766 		default:
1767 			ret = -EINVAL;
1768 			goto e_ctx;
1769 		}
1770 
1771 		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1772 		hmac_cmd.engine = CCP_ENGINE_SHA;
1773 		hmac_cmd.u.sha.type = sha->type;
1774 		hmac_cmd.u.sha.ctx = sha->ctx;
1775 		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1776 		hmac_cmd.u.sha.src = &sg;
1777 		hmac_cmd.u.sha.src_len = block_size + digest_size;
1778 		hmac_cmd.u.sha.opad = NULL;
1779 		hmac_cmd.u.sha.opad_len = 0;
1780 		hmac_cmd.u.sha.first = 1;
1781 		hmac_cmd.u.sha.final = 1;
1782 		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1783 
1784 		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1785 		if (ret)
1786 			cmd->engine_error = hmac_cmd.engine_error;
1787 
1788 		kfree(hmac_buf);
1789 	}
1790 
1791 e_data:
1792 	if (sha->src)
1793 		ccp_free_data(&src, cmd_q);
1794 
1795 e_ctx:
1796 	ccp_dm_free(&ctx);
1797 
1798 	return ret;
1799 }
1800 
1801 static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1802 {
1803 	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1804 	struct ccp_dm_workarea exp, src, dst;
1805 	struct ccp_op op;
1806 	unsigned int sb_count, i_len, o_len;
1807 	int ret;
1808 
1809 	/* Check against the maximum allowable size, in bits */
1810 	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1811 		return -EINVAL;
1812 
1813 	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1814 		return -EINVAL;
1815 
1816 	memset(&op, 0, sizeof(op));
1817 	op.cmd_q = cmd_q;
1818 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1819 
1820 	/* The RSA modulus must precede the message being acted upon, so
1821 	 * it must be copied to a DMA area where the message and the
1822 	 * modulus can be concatenated.  Therefore the input buffer
1823 	 * length required is twice the output buffer length (which
1824 	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1825 	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1826 	 * required.
1827 	 */
1828 	o_len = 32 * ((rsa->key_size + 255) / 256);
1829 	i_len = o_len * 2;
1830 
1831 	sb_count = 0;
1832 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1833 		/* sb_count is the number of storage block slots required
1834 		 * for the modulus.
1835 		 */
1836 		sb_count = o_len / CCP_SB_BYTES;
1837 		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1838 								sb_count);
1839 		if (!op.sb_key)
1840 			return -EIO;
1841 	} else {
1842 		/* A version 5 device allows a modulus size that will not fit
1843 		 * in the LSB, so the command will transfer it from memory.
1844 		 * Set the sb key to the default, even though it's not used.
1845 		 */
1846 		op.sb_key = cmd_q->sb_key;
1847 	}
1848 
1849 	/* The RSA exponent must be in little endian format. Reverse its
1850 	 * byte order.
1851 	 */
1852 	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1853 	if (ret)
1854 		goto e_sb;
1855 
1856 	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1857 	if (ret)
1858 		goto e_exp;
1859 
1860 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1861 		/* Copy the exponent to the local storage block, using
1862 		 * as many 32-byte blocks as were allocated above. It's
1863 		 * already little endian, so no further change is required.
1864 		 */
1865 		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1866 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1867 		if (ret) {
1868 			cmd->engine_error = cmd_q->cmd_error;
1869 			goto e_exp;
1870 		}
1871 	} else {
1872 		/* The exponent can be retrieved from memory via DMA. */
1873 		op.exp.u.dma.address = exp.dma.address;
1874 		op.exp.u.dma.offset = 0;
1875 	}
1876 
1877 	/* Concatenate the modulus and the message. Both the modulus and
1878 	 * the operands must be in little endian format.  Since the input
1879 	 * is in big endian format it must be converted.
1880 	 */
1881 	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1882 	if (ret)
1883 		goto e_exp;
1884 
1885 	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1886 	if (ret)
1887 		goto e_src;
1888 	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1889 	if (ret)
1890 		goto e_src;
1891 
1892 	/* Prepare the output area for the operation */
1893 	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1894 	if (ret)
1895 		goto e_src;
1896 
1897 	op.soc = 1;
1898 	op.src.u.dma.address = src.dma.address;
1899 	op.src.u.dma.offset = 0;
1900 	op.src.u.dma.length = i_len;
1901 	op.dst.u.dma.address = dst.dma.address;
1902 	op.dst.u.dma.offset = 0;
1903 	op.dst.u.dma.length = o_len;
1904 
1905 	op.u.rsa.mod_size = rsa->key_size;
1906 	op.u.rsa.input_len = i_len;
1907 
1908 	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1909 	if (ret) {
1910 		cmd->engine_error = cmd_q->cmd_error;
1911 		goto e_dst;
1912 	}
1913 
1914 	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1915 
1916 e_dst:
1917 	ccp_dm_free(&dst);
1918 
1919 e_src:
1920 	ccp_dm_free(&src);
1921 
1922 e_exp:
1923 	ccp_dm_free(&exp);
1924 
1925 e_sb:
1926 	if (sb_count)
1927 		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1928 
1929 	return ret;
1930 }
1931 
1932 static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1933 				struct ccp_cmd *cmd)
1934 {
1935 	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1936 	struct ccp_dm_workarea mask;
1937 	struct ccp_data src, dst;
1938 	struct ccp_op op;
1939 	bool in_place = false;
1940 	unsigned int i;
1941 	int ret = 0;
1942 
1943 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1944 		return -EINVAL;
1945 
1946 	if (!pt->src || !pt->dst)
1947 		return -EINVAL;
1948 
1949 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1950 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1951 			return -EINVAL;
1952 		if (!pt->mask)
1953 			return -EINVAL;
1954 	}
1955 
1956 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1957 
1958 	memset(&op, 0, sizeof(op));
1959 	op.cmd_q = cmd_q;
1960 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1961 
1962 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1963 		/* Load the mask */
1964 		op.sb_key = cmd_q->sb_key;
1965 
1966 		ret = ccp_init_dm_workarea(&mask, cmd_q,
1967 					   CCP_PASSTHRU_SB_COUNT *
1968 					   CCP_SB_BYTES,
1969 					   DMA_TO_DEVICE);
1970 		if (ret)
1971 			return ret;
1972 
1973 		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1974 		if (ret)
1975 			goto e_mask;
1976 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1977 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1978 		if (ret) {
1979 			cmd->engine_error = cmd_q->cmd_error;
1980 			goto e_mask;
1981 		}
1982 	}
1983 
1984 	/* Prepare the input and output data workareas. For in-place
1985 	 * operations we need to set the dma direction to BIDIRECTIONAL
1986 	 * and copy the src workarea to the dst workarea.
1987 	 */
1988 	if (sg_virt(pt->src) == sg_virt(pt->dst))
1989 		in_place = true;
1990 
1991 	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1992 			    CCP_PASSTHRU_MASKSIZE,
1993 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1994 	if (ret)
1995 		goto e_mask;
1996 
1997 	if (in_place) {
1998 		dst = src;
1999 	} else {
2000 		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2001 				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2002 		if (ret)
2003 			goto e_src;
2004 	}
2005 
2006 	/* Send data to the CCP Passthru engine
2007 	 *   Because the CCP engine works on a single source and destination
2008 	 *   dma address at a time, each entry in the source scatterlist
2009 	 *   (after the dma_map_sg call) must be less than or equal to the
2010 	 *   (remaining) length in the destination scatterlist entry and the
2011 	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2012 	 */
2013 	dst.sg_wa.sg_used = 0;
2014 	for (i = 1; i <= src.sg_wa.dma_count; i++) {
2015 		if (!dst.sg_wa.sg ||
2016 		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2017 			ret = -EINVAL;
2018 			goto e_dst;
2019 		}
2020 
2021 		if (i == src.sg_wa.dma_count) {
2022 			op.eom = 1;
2023 			op.soc = 1;
2024 		}
2025 
2026 		op.src.type = CCP_MEMTYPE_SYSTEM;
2027 		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2028 		op.src.u.dma.offset = 0;
2029 		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2030 
2031 		op.dst.type = CCP_MEMTYPE_SYSTEM;
2032 		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2033 		op.dst.u.dma.offset = dst.sg_wa.sg_used;
2034 		op.dst.u.dma.length = op.src.u.dma.length;
2035 
2036 		ret = cmd_q->ccp->vdata->perform->passthru(&op);
2037 		if (ret) {
2038 			cmd->engine_error = cmd_q->cmd_error;
2039 			goto e_dst;
2040 		}
2041 
2042 		dst.sg_wa.sg_used += src.sg_wa.sg->length;
2043 		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2044 			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2045 			dst.sg_wa.sg_used = 0;
2046 		}
2047 		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2048 	}
2049 
2050 e_dst:
2051 	if (!in_place)
2052 		ccp_free_data(&dst, cmd_q);
2053 
2054 e_src:
2055 	ccp_free_data(&src, cmd_q);
2056 
2057 e_mask:
2058 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2059 		ccp_dm_free(&mask);
2060 
2061 	return ret;
2062 }
2063 
2064 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2065 				      struct ccp_cmd *cmd)
2066 {
2067 	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2068 	struct ccp_dm_workarea mask;
2069 	struct ccp_op op;
2070 	int ret;
2071 
2072 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2073 		return -EINVAL;
2074 
2075 	if (!pt->src_dma || !pt->dst_dma)
2076 		return -EINVAL;
2077 
2078 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2079 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2080 			return -EINVAL;
2081 		if (!pt->mask)
2082 			return -EINVAL;
2083 	}
2084 
2085 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2086 
2087 	memset(&op, 0, sizeof(op));
2088 	op.cmd_q = cmd_q;
2089 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2090 
2091 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2092 		/* Load the mask */
2093 		op.sb_key = cmd_q->sb_key;
2094 
2095 		mask.length = pt->mask_len;
2096 		mask.dma.address = pt->mask;
2097 		mask.dma.length = pt->mask_len;
2098 
2099 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2100 				     CCP_PASSTHRU_BYTESWAP_NOOP);
2101 		if (ret) {
2102 			cmd->engine_error = cmd_q->cmd_error;
2103 			return ret;
2104 		}
2105 	}
2106 
2107 	/* Send data to the CCP Passthru engine */
2108 	op.eom = 1;
2109 	op.soc = 1;
2110 
2111 	op.src.type = CCP_MEMTYPE_SYSTEM;
2112 	op.src.u.dma.address = pt->src_dma;
2113 	op.src.u.dma.offset = 0;
2114 	op.src.u.dma.length = pt->src_len;
2115 
2116 	op.dst.type = CCP_MEMTYPE_SYSTEM;
2117 	op.dst.u.dma.address = pt->dst_dma;
2118 	op.dst.u.dma.offset = 0;
2119 	op.dst.u.dma.length = pt->src_len;
2120 
2121 	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2122 	if (ret)
2123 		cmd->engine_error = cmd_q->cmd_error;
2124 
2125 	return ret;
2126 }
2127 
2128 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2129 {
2130 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2131 	struct ccp_dm_workarea src, dst;
2132 	struct ccp_op op;
2133 	int ret;
2134 	u8 *save;
2135 
2136 	if (!ecc->u.mm.operand_1 ||
2137 	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2138 		return -EINVAL;
2139 
2140 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2141 		if (!ecc->u.mm.operand_2 ||
2142 		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2143 			return -EINVAL;
2144 
2145 	if (!ecc->u.mm.result ||
2146 	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2147 		return -EINVAL;
2148 
2149 	memset(&op, 0, sizeof(op));
2150 	op.cmd_q = cmd_q;
2151 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2152 
2153 	/* Concatenate the modulus and the operands. Both the modulus and
2154 	 * the operands must be in little endian format.  Since the input
2155 	 * is in big endian format it must be converted and placed in a
2156 	 * fixed length buffer.
2157 	 */
2158 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2159 				   DMA_TO_DEVICE);
2160 	if (ret)
2161 		return ret;
2162 
2163 	/* Save the workarea address since it is updated in order to perform
2164 	 * the concatenation
2165 	 */
2166 	save = src.address;
2167 
2168 	/* Copy the ECC modulus */
2169 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2170 	if (ret)
2171 		goto e_src;
2172 	src.address += CCP_ECC_OPERAND_SIZE;
2173 
2174 	/* Copy the first operand */
2175 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2176 				      ecc->u.mm.operand_1_len);
2177 	if (ret)
2178 		goto e_src;
2179 	src.address += CCP_ECC_OPERAND_SIZE;
2180 
2181 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2182 		/* Copy the second operand */
2183 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2184 					      ecc->u.mm.operand_2_len);
2185 		if (ret)
2186 			goto e_src;
2187 		src.address += CCP_ECC_OPERAND_SIZE;
2188 	}
2189 
2190 	/* Restore the workarea address */
2191 	src.address = save;
2192 
2193 	/* Prepare the output area for the operation */
2194 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2195 				   DMA_FROM_DEVICE);
2196 	if (ret)
2197 		goto e_src;
2198 
2199 	op.soc = 1;
2200 	op.src.u.dma.address = src.dma.address;
2201 	op.src.u.dma.offset = 0;
2202 	op.src.u.dma.length = src.length;
2203 	op.dst.u.dma.address = dst.dma.address;
2204 	op.dst.u.dma.offset = 0;
2205 	op.dst.u.dma.length = dst.length;
2206 
2207 	op.u.ecc.function = cmd->u.ecc.function;
2208 
2209 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2210 	if (ret) {
2211 		cmd->engine_error = cmd_q->cmd_error;
2212 		goto e_dst;
2213 	}
2214 
2215 	ecc->ecc_result = le16_to_cpup(
2216 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2217 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2218 		ret = -EIO;
2219 		goto e_dst;
2220 	}
2221 
2222 	/* Save the ECC result */
2223 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2224 				CCP_ECC_MODULUS_BYTES);
2225 
2226 e_dst:
2227 	ccp_dm_free(&dst);
2228 
2229 e_src:
2230 	ccp_dm_free(&src);
2231 
2232 	return ret;
2233 }
2234 
2235 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2236 {
2237 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2238 	struct ccp_dm_workarea src, dst;
2239 	struct ccp_op op;
2240 	int ret;
2241 	u8 *save;
2242 
2243 	if (!ecc->u.pm.point_1.x ||
2244 	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2245 	    !ecc->u.pm.point_1.y ||
2246 	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2247 		return -EINVAL;
2248 
2249 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2250 		if (!ecc->u.pm.point_2.x ||
2251 		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2252 		    !ecc->u.pm.point_2.y ||
2253 		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2254 			return -EINVAL;
2255 	} else {
2256 		if (!ecc->u.pm.domain_a ||
2257 		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2258 			return -EINVAL;
2259 
2260 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2261 			if (!ecc->u.pm.scalar ||
2262 			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2263 				return -EINVAL;
2264 	}
2265 
2266 	if (!ecc->u.pm.result.x ||
2267 	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2268 	    !ecc->u.pm.result.y ||
2269 	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2270 		return -EINVAL;
2271 
2272 	memset(&op, 0, sizeof(op));
2273 	op.cmd_q = cmd_q;
2274 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2275 
2276 	/* Concatenate the modulus and the operands. Both the modulus and
2277 	 * the operands must be in little endian format.  Since the input
2278 	 * is in big endian format it must be converted and placed in a
2279 	 * fixed length buffer.
2280 	 */
2281 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2282 				   DMA_TO_DEVICE);
2283 	if (ret)
2284 		return ret;
2285 
2286 	/* Save the workarea address since it is updated in order to perform
2287 	 * the concatenation
2288 	 */
2289 	save = src.address;
2290 
2291 	/* Copy the ECC modulus */
2292 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2293 	if (ret)
2294 		goto e_src;
2295 	src.address += CCP_ECC_OPERAND_SIZE;
2296 
2297 	/* Copy the first point X and Y coordinate */
2298 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2299 				      ecc->u.pm.point_1.x_len);
2300 	if (ret)
2301 		goto e_src;
2302 	src.address += CCP_ECC_OPERAND_SIZE;
2303 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2304 				      ecc->u.pm.point_1.y_len);
2305 	if (ret)
2306 		goto e_src;
2307 	src.address += CCP_ECC_OPERAND_SIZE;
2308 
2309 	/* Set the first point Z coordinate to 1 */
2310 	*src.address = 0x01;
2311 	src.address += CCP_ECC_OPERAND_SIZE;
2312 
2313 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2314 		/* Copy the second point X and Y coordinate */
2315 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2316 					      ecc->u.pm.point_2.x_len);
2317 		if (ret)
2318 			goto e_src;
2319 		src.address += CCP_ECC_OPERAND_SIZE;
2320 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2321 					      ecc->u.pm.point_2.y_len);
2322 		if (ret)
2323 			goto e_src;
2324 		src.address += CCP_ECC_OPERAND_SIZE;
2325 
2326 		/* Set the second point Z coordinate to 1 */
2327 		*src.address = 0x01;
2328 		src.address += CCP_ECC_OPERAND_SIZE;
2329 	} else {
2330 		/* Copy the Domain "a" parameter */
2331 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2332 					      ecc->u.pm.domain_a_len);
2333 		if (ret)
2334 			goto e_src;
2335 		src.address += CCP_ECC_OPERAND_SIZE;
2336 
2337 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2338 			/* Copy the scalar value */
2339 			ret = ccp_reverse_set_dm_area(&src, 0,
2340 						      ecc->u.pm.scalar, 0,
2341 						      ecc->u.pm.scalar_len);
2342 			if (ret)
2343 				goto e_src;
2344 			src.address += CCP_ECC_OPERAND_SIZE;
2345 		}
2346 	}
2347 
2348 	/* Restore the workarea address */
2349 	src.address = save;
2350 
2351 	/* Prepare the output area for the operation */
2352 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2353 				   DMA_FROM_DEVICE);
2354 	if (ret)
2355 		goto e_src;
2356 
2357 	op.soc = 1;
2358 	op.src.u.dma.address = src.dma.address;
2359 	op.src.u.dma.offset = 0;
2360 	op.src.u.dma.length = src.length;
2361 	op.dst.u.dma.address = dst.dma.address;
2362 	op.dst.u.dma.offset = 0;
2363 	op.dst.u.dma.length = dst.length;
2364 
2365 	op.u.ecc.function = cmd->u.ecc.function;
2366 
2367 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2368 	if (ret) {
2369 		cmd->engine_error = cmd_q->cmd_error;
2370 		goto e_dst;
2371 	}
2372 
2373 	ecc->ecc_result = le16_to_cpup(
2374 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2375 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2376 		ret = -EIO;
2377 		goto e_dst;
2378 	}
2379 
2380 	/* Save the workarea address since it is updated as we walk through
2381 	 * to copy the point math result
2382 	 */
2383 	save = dst.address;
2384 
2385 	/* Save the ECC result X and Y coordinates */
2386 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2387 				CCP_ECC_MODULUS_BYTES);
2388 	dst.address += CCP_ECC_OUTPUT_SIZE;
2389 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2390 				CCP_ECC_MODULUS_BYTES);
2391 	dst.address += CCP_ECC_OUTPUT_SIZE;
2392 
2393 	/* Restore the workarea address */
2394 	dst.address = save;
2395 
2396 e_dst:
2397 	ccp_dm_free(&dst);
2398 
2399 e_src:
2400 	ccp_dm_free(&src);
2401 
2402 	return ret;
2403 }
2404 
2405 static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2406 {
2407 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2408 
2409 	ecc->ecc_result = 0;
2410 
2411 	if (!ecc->mod ||
2412 	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2413 		return -EINVAL;
2414 
2415 	switch (ecc->function) {
2416 	case CCP_ECC_FUNCTION_MMUL_384BIT:
2417 	case CCP_ECC_FUNCTION_MADD_384BIT:
2418 	case CCP_ECC_FUNCTION_MINV_384BIT:
2419 		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2420 
2421 	case CCP_ECC_FUNCTION_PADD_384BIT:
2422 	case CCP_ECC_FUNCTION_PMUL_384BIT:
2423 	case CCP_ECC_FUNCTION_PDBL_384BIT:
2424 		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2425 
2426 	default:
2427 		return -EINVAL;
2428 	}
2429 }
2430 
2431 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2432 {
2433 	int ret;
2434 
2435 	cmd->engine_error = 0;
2436 	cmd_q->cmd_error = 0;
2437 	cmd_q->int_rcvd = 0;
2438 	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2439 
2440 	switch (cmd->engine) {
2441 	case CCP_ENGINE_AES:
2442 		ret = ccp_run_aes_cmd(cmd_q, cmd);
2443 		break;
2444 	case CCP_ENGINE_XTS_AES_128:
2445 		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2446 		break;
2447 	case CCP_ENGINE_DES3:
2448 		ret = ccp_run_des3_cmd(cmd_q, cmd);
2449 		break;
2450 	case CCP_ENGINE_SHA:
2451 		ret = ccp_run_sha_cmd(cmd_q, cmd);
2452 		break;
2453 	case CCP_ENGINE_RSA:
2454 		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2455 		break;
2456 	case CCP_ENGINE_PASSTHRU:
2457 		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2458 			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2459 		else
2460 			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2461 		break;
2462 	case CCP_ENGINE_ECC:
2463 		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2464 		break;
2465 	default:
2466 		ret = -EINVAL;
2467 	}
2468 
2469 	return ret;
2470 }
2471