1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Cryptographic Coprocessor (CCP) driver 4 * 5 * Copyright (C) 2013,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 * Author: Gary R Hook <gary.hook@amd.com> 9 */ 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/cpu.h> 23 #include <linux/atomic.h> 24 #ifdef CONFIG_X86 25 #include <asm/cpu_device_id.h> 26 #endif 27 #include <linux/ccp.h> 28 29 #include "ccp-dev.h" 30 31 #define MAX_CCPS 32 32 33 /* Limit CCP use to a specifed number of queues per device */ 34 static unsigned int nqueues = 0; 35 module_param(nqueues, uint, 0444); 36 MODULE_PARM_DESC(nqueues, "Number of queues per CCP (minimum 1; default: all available)"); 37 38 /* Limit the maximum number of configured CCPs */ 39 static atomic_t dev_count = ATOMIC_INIT(0); 40 static unsigned int max_devs = MAX_CCPS; 41 module_param(max_devs, uint, 0444); 42 MODULE_PARM_DESC(max_devs, "Maximum number of CCPs to enable (default: all; 0 disables all CCPs)"); 43 44 struct ccp_tasklet_data { 45 struct completion completion; 46 struct ccp_cmd *cmd; 47 }; 48 49 /* Human-readable error strings */ 50 #define CCP_MAX_ERROR_CODE 64 51 static char *ccp_error_codes[] = { 52 "", 53 "ILLEGAL_ENGINE", 54 "ILLEGAL_KEY_ID", 55 "ILLEGAL_FUNCTION_TYPE", 56 "ILLEGAL_FUNCTION_MODE", 57 "ILLEGAL_FUNCTION_ENCRYPT", 58 "ILLEGAL_FUNCTION_SIZE", 59 "Zlib_MISSING_INIT_EOM", 60 "ILLEGAL_FUNCTION_RSVD", 61 "ILLEGAL_BUFFER_LENGTH", 62 "VLSB_FAULT", 63 "ILLEGAL_MEM_ADDR", 64 "ILLEGAL_MEM_SEL", 65 "ILLEGAL_CONTEXT_ID", 66 "ILLEGAL_KEY_ADDR", 67 "0xF Reserved", 68 "Zlib_ILLEGAL_MULTI_QUEUE", 69 "Zlib_ILLEGAL_JOBID_CHANGE", 70 "CMD_TIMEOUT", 71 "IDMA0_AXI_SLVERR", 72 "IDMA0_AXI_DECERR", 73 "0x15 Reserved", 74 "IDMA1_AXI_SLAVE_FAULT", 75 "IDMA1_AIXI_DECERR", 76 "0x18 Reserved", 77 "ZLIBVHB_AXI_SLVERR", 78 "ZLIBVHB_AXI_DECERR", 79 "0x1B Reserved", 80 "ZLIB_UNEXPECTED_EOM", 81 "ZLIB_EXTRA_DATA", 82 "ZLIB_BTYPE", 83 "ZLIB_UNDEFINED_SYMBOL", 84 "ZLIB_UNDEFINED_DISTANCE_S", 85 "ZLIB_CODE_LENGTH_SYMBOL", 86 "ZLIB _VHB_ILLEGAL_FETCH", 87 "ZLIB_UNCOMPRESSED_LEN", 88 "ZLIB_LIMIT_REACHED", 89 "ZLIB_CHECKSUM_MISMATCH0", 90 "ODMA0_AXI_SLVERR", 91 "ODMA0_AXI_DECERR", 92 "0x28 Reserved", 93 "ODMA1_AXI_SLVERR", 94 "ODMA1_AXI_DECERR", 95 }; 96 97 void ccp_log_error(struct ccp_device *d, unsigned int e) 98 { 99 if (WARN_ON(e >= CCP_MAX_ERROR_CODE)) 100 return; 101 102 if (e < ARRAY_SIZE(ccp_error_codes)) 103 dev_err(d->dev, "CCP error %d: %s\n", e, ccp_error_codes[e]); 104 else 105 dev_err(d->dev, "CCP error %d: Unknown Error\n", e); 106 } 107 108 /* List of CCPs, CCP count, read-write access lock, and access functions 109 * 110 * Lock structure: get ccp_unit_lock for reading whenever we need to 111 * examine the CCP list. While holding it for reading we can acquire 112 * the RR lock to update the round-robin next-CCP pointer. The unit lock 113 * must be acquired before the RR lock. 114 * 115 * If the unit-lock is acquired for writing, we have total control over 116 * the list, so there's no value in getting the RR lock. 117 */ 118 static DEFINE_RWLOCK(ccp_unit_lock); 119 static LIST_HEAD(ccp_units); 120 121 /* Round-robin counter */ 122 static DEFINE_SPINLOCK(ccp_rr_lock); 123 static struct ccp_device *ccp_rr; 124 125 /** 126 * ccp_add_device - add a CCP device to the list 127 * 128 * @ccp: ccp_device struct pointer 129 * 130 * Put this CCP on the unit list, which makes it available 131 * for use. 132 * 133 * Returns zero if a CCP device is present, -ENODEV otherwise. 134 */ 135 void ccp_add_device(struct ccp_device *ccp) 136 { 137 unsigned long flags; 138 139 write_lock_irqsave(&ccp_unit_lock, flags); 140 list_add_tail(&ccp->entry, &ccp_units); 141 if (!ccp_rr) 142 /* We already have the list lock (we're first) so this 143 * pointer can't change on us. Set its initial value. 144 */ 145 ccp_rr = ccp; 146 write_unlock_irqrestore(&ccp_unit_lock, flags); 147 } 148 149 /** 150 * ccp_del_device - remove a CCP device from the list 151 * 152 * @ccp: ccp_device struct pointer 153 * 154 * Remove this unit from the list of devices. If the next device 155 * up for use is this one, adjust the pointer. If this is the last 156 * device, NULL the pointer. 157 */ 158 void ccp_del_device(struct ccp_device *ccp) 159 { 160 unsigned long flags; 161 162 write_lock_irqsave(&ccp_unit_lock, flags); 163 if (ccp_rr == ccp) { 164 /* ccp_unit_lock is read/write; any read access 165 * will be suspended while we make changes to the 166 * list and RR pointer. 167 */ 168 if (list_is_last(&ccp_rr->entry, &ccp_units)) 169 ccp_rr = list_first_entry(&ccp_units, struct ccp_device, 170 entry); 171 else 172 ccp_rr = list_next_entry(ccp_rr, entry); 173 } 174 list_del(&ccp->entry); 175 if (list_empty(&ccp_units)) 176 ccp_rr = NULL; 177 write_unlock_irqrestore(&ccp_unit_lock, flags); 178 } 179 180 181 182 int ccp_register_rng(struct ccp_device *ccp) 183 { 184 int ret = 0; 185 186 dev_dbg(ccp->dev, "Registering RNG...\n"); 187 /* Register an RNG */ 188 ccp->hwrng.name = ccp->rngname; 189 ccp->hwrng.read = ccp_trng_read; 190 ret = hwrng_register(&ccp->hwrng); 191 if (ret) 192 dev_err(ccp->dev, "error registering hwrng (%d)\n", ret); 193 194 return ret; 195 } 196 197 void ccp_unregister_rng(struct ccp_device *ccp) 198 { 199 if (ccp->hwrng.name) 200 hwrng_unregister(&ccp->hwrng); 201 } 202 203 static struct ccp_device *ccp_get_device(void) 204 { 205 unsigned long flags; 206 struct ccp_device *dp = NULL; 207 208 /* We round-robin through the unit list. 209 * The (ccp_rr) pointer refers to the next unit to use. 210 */ 211 read_lock_irqsave(&ccp_unit_lock, flags); 212 if (!list_empty(&ccp_units)) { 213 spin_lock(&ccp_rr_lock); 214 dp = ccp_rr; 215 if (list_is_last(&ccp_rr->entry, &ccp_units)) 216 ccp_rr = list_first_entry(&ccp_units, struct ccp_device, 217 entry); 218 else 219 ccp_rr = list_next_entry(ccp_rr, entry); 220 spin_unlock(&ccp_rr_lock); 221 } 222 read_unlock_irqrestore(&ccp_unit_lock, flags); 223 224 return dp; 225 } 226 227 /** 228 * ccp_present - check if a CCP device is present 229 * 230 * Returns zero if a CCP device is present, -ENODEV otherwise. 231 */ 232 int ccp_present(void) 233 { 234 unsigned long flags; 235 int ret; 236 237 read_lock_irqsave(&ccp_unit_lock, flags); 238 ret = list_empty(&ccp_units); 239 read_unlock_irqrestore(&ccp_unit_lock, flags); 240 241 return ret ? -ENODEV : 0; 242 } 243 EXPORT_SYMBOL_GPL(ccp_present); 244 245 /** 246 * ccp_version - get the version of the CCP device 247 * 248 * Returns the version from the first unit on the list; 249 * otherwise a zero if no CCP device is present 250 */ 251 unsigned int ccp_version(void) 252 { 253 struct ccp_device *dp; 254 unsigned long flags; 255 int ret = 0; 256 257 read_lock_irqsave(&ccp_unit_lock, flags); 258 if (!list_empty(&ccp_units)) { 259 dp = list_first_entry(&ccp_units, struct ccp_device, entry); 260 ret = dp->vdata->version; 261 } 262 read_unlock_irqrestore(&ccp_unit_lock, flags); 263 264 return ret; 265 } 266 EXPORT_SYMBOL_GPL(ccp_version); 267 268 /** 269 * ccp_enqueue_cmd - queue an operation for processing by the CCP 270 * 271 * @cmd: ccp_cmd struct to be processed 272 * 273 * Queue a cmd to be processed by the CCP. If queueing the cmd 274 * would exceed the defined length of the cmd queue the cmd will 275 * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will 276 * result in a return code of -EBUSY. 277 * 278 * The callback routine specified in the ccp_cmd struct will be 279 * called to notify the caller of completion (if the cmd was not 280 * backlogged) or advancement out of the backlog. If the cmd has 281 * advanced out of the backlog the "err" value of the callback 282 * will be -EINPROGRESS. Any other "err" value during callback is 283 * the result of the operation. 284 * 285 * The cmd has been successfully queued if: 286 * the return code is -EINPROGRESS or 287 * the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set 288 */ 289 int ccp_enqueue_cmd(struct ccp_cmd *cmd) 290 { 291 struct ccp_device *ccp; 292 unsigned long flags; 293 unsigned int i; 294 int ret; 295 296 /* Some commands might need to be sent to a specific device */ 297 ccp = cmd->ccp ? cmd->ccp : ccp_get_device(); 298 299 if (!ccp) 300 return -ENODEV; 301 302 /* Caller must supply a callback routine */ 303 if (!cmd->callback) 304 return -EINVAL; 305 306 cmd->ccp = ccp; 307 308 spin_lock_irqsave(&ccp->cmd_lock, flags); 309 310 i = ccp->cmd_q_count; 311 312 if (ccp->cmd_count >= MAX_CMD_QLEN) { 313 if (cmd->flags & CCP_CMD_MAY_BACKLOG) { 314 ret = -EBUSY; 315 list_add_tail(&cmd->entry, &ccp->backlog); 316 } else { 317 ret = -ENOSPC; 318 } 319 } else { 320 ret = -EINPROGRESS; 321 ccp->cmd_count++; 322 list_add_tail(&cmd->entry, &ccp->cmd); 323 324 /* Find an idle queue */ 325 if (!ccp->suspending) { 326 for (i = 0; i < ccp->cmd_q_count; i++) { 327 if (ccp->cmd_q[i].active) 328 continue; 329 330 break; 331 } 332 } 333 } 334 335 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 336 337 /* If we found an idle queue, wake it up */ 338 if (i < ccp->cmd_q_count) 339 wake_up_process(ccp->cmd_q[i].kthread); 340 341 return ret; 342 } 343 EXPORT_SYMBOL_GPL(ccp_enqueue_cmd); 344 345 static void ccp_do_cmd_backlog(struct work_struct *work) 346 { 347 struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work); 348 struct ccp_device *ccp = cmd->ccp; 349 unsigned long flags; 350 unsigned int i; 351 352 cmd->callback(cmd->data, -EINPROGRESS); 353 354 spin_lock_irqsave(&ccp->cmd_lock, flags); 355 356 ccp->cmd_count++; 357 list_add_tail(&cmd->entry, &ccp->cmd); 358 359 /* Find an idle queue */ 360 for (i = 0; i < ccp->cmd_q_count; i++) { 361 if (ccp->cmd_q[i].active) 362 continue; 363 364 break; 365 } 366 367 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 368 369 /* If we found an idle queue, wake it up */ 370 if (i < ccp->cmd_q_count) 371 wake_up_process(ccp->cmd_q[i].kthread); 372 } 373 374 static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q) 375 { 376 struct ccp_device *ccp = cmd_q->ccp; 377 struct ccp_cmd *cmd = NULL; 378 struct ccp_cmd *backlog = NULL; 379 unsigned long flags; 380 381 spin_lock_irqsave(&ccp->cmd_lock, flags); 382 383 cmd_q->active = 0; 384 385 if (ccp->suspending) { 386 cmd_q->suspended = 1; 387 388 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 389 wake_up_interruptible(&ccp->suspend_queue); 390 391 return NULL; 392 } 393 394 if (ccp->cmd_count) { 395 cmd_q->active = 1; 396 397 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry); 398 list_del(&cmd->entry); 399 400 ccp->cmd_count--; 401 } 402 403 if (!list_empty(&ccp->backlog)) { 404 backlog = list_first_entry(&ccp->backlog, struct ccp_cmd, 405 entry); 406 list_del(&backlog->entry); 407 } 408 409 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 410 411 if (backlog) { 412 INIT_WORK(&backlog->work, ccp_do_cmd_backlog); 413 schedule_work(&backlog->work); 414 } 415 416 return cmd; 417 } 418 419 static void ccp_do_cmd_complete(unsigned long data) 420 { 421 struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data; 422 struct ccp_cmd *cmd = tdata->cmd; 423 424 cmd->callback(cmd->data, cmd->ret); 425 426 complete(&tdata->completion); 427 } 428 429 /** 430 * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue 431 * 432 * @data: thread-specific data 433 */ 434 int ccp_cmd_queue_thread(void *data) 435 { 436 struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data; 437 struct ccp_cmd *cmd; 438 struct ccp_tasklet_data tdata; 439 struct tasklet_struct tasklet; 440 441 tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata); 442 443 set_current_state(TASK_INTERRUPTIBLE); 444 while (!kthread_should_stop()) { 445 schedule(); 446 447 set_current_state(TASK_INTERRUPTIBLE); 448 449 cmd = ccp_dequeue_cmd(cmd_q); 450 if (!cmd) 451 continue; 452 453 __set_current_state(TASK_RUNNING); 454 455 /* Execute the command */ 456 cmd->ret = ccp_run_cmd(cmd_q, cmd); 457 458 /* Schedule the completion callback */ 459 tdata.cmd = cmd; 460 init_completion(&tdata.completion); 461 tasklet_schedule(&tasklet); 462 wait_for_completion(&tdata.completion); 463 } 464 465 __set_current_state(TASK_RUNNING); 466 467 return 0; 468 } 469 470 /** 471 * ccp_alloc_struct - allocate and initialize the ccp_device struct 472 * 473 * @dev: device struct of the CCP 474 */ 475 struct ccp_device *ccp_alloc_struct(struct sp_device *sp) 476 { 477 struct device *dev = sp->dev; 478 struct ccp_device *ccp; 479 480 ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL); 481 if (!ccp) 482 return NULL; 483 ccp->dev = dev; 484 ccp->sp = sp; 485 ccp->axcache = sp->axcache; 486 487 INIT_LIST_HEAD(&ccp->cmd); 488 INIT_LIST_HEAD(&ccp->backlog); 489 490 spin_lock_init(&ccp->cmd_lock); 491 mutex_init(&ccp->req_mutex); 492 mutex_init(&ccp->sb_mutex); 493 ccp->sb_count = KSB_COUNT; 494 ccp->sb_start = 0; 495 496 /* Initialize the wait queues */ 497 init_waitqueue_head(&ccp->sb_queue); 498 init_waitqueue_head(&ccp->suspend_queue); 499 500 snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", sp->ord); 501 snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", sp->ord); 502 503 return ccp; 504 } 505 506 int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait) 507 { 508 struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng); 509 u32 trng_value; 510 int len = min_t(int, sizeof(trng_value), max); 511 512 /* Locking is provided by the caller so we can update device 513 * hwrng-related fields safely 514 */ 515 trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG); 516 if (!trng_value) { 517 /* Zero is returned if not data is available or if a 518 * bad-entropy error is present. Assume an error if 519 * we exceed TRNG_RETRIES reads of zero. 520 */ 521 if (ccp->hwrng_retries++ > TRNG_RETRIES) 522 return -EIO; 523 524 return 0; 525 } 526 527 /* Reset the counter and save the rng value */ 528 ccp->hwrng_retries = 0; 529 memcpy(data, &trng_value, len); 530 531 return len; 532 } 533 534 bool ccp_queues_suspended(struct ccp_device *ccp) 535 { 536 unsigned int suspended = 0; 537 unsigned long flags; 538 unsigned int i; 539 540 spin_lock_irqsave(&ccp->cmd_lock, flags); 541 542 for (i = 0; i < ccp->cmd_q_count; i++) 543 if (ccp->cmd_q[i].suspended) 544 suspended++; 545 546 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 547 548 return ccp->cmd_q_count == suspended; 549 } 550 551 int ccp_dev_suspend(struct sp_device *sp) 552 { 553 struct ccp_device *ccp = sp->ccp_data; 554 unsigned long flags; 555 unsigned int i; 556 557 /* If there's no device there's nothing to do */ 558 if (!ccp) 559 return 0; 560 561 spin_lock_irqsave(&ccp->cmd_lock, flags); 562 563 ccp->suspending = 1; 564 565 /* Wake all the queue kthreads to prepare for suspend */ 566 for (i = 0; i < ccp->cmd_q_count; i++) 567 wake_up_process(ccp->cmd_q[i].kthread); 568 569 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 570 571 /* Wait for all queue kthreads to say they're done */ 572 while (!ccp_queues_suspended(ccp)) 573 wait_event_interruptible(ccp->suspend_queue, 574 ccp_queues_suspended(ccp)); 575 576 return 0; 577 } 578 579 int ccp_dev_resume(struct sp_device *sp) 580 { 581 struct ccp_device *ccp = sp->ccp_data; 582 unsigned long flags; 583 unsigned int i; 584 585 /* If there's no device there's nothing to do */ 586 if (!ccp) 587 return 0; 588 589 spin_lock_irqsave(&ccp->cmd_lock, flags); 590 591 ccp->suspending = 0; 592 593 /* Wake up all the kthreads */ 594 for (i = 0; i < ccp->cmd_q_count; i++) { 595 ccp->cmd_q[i].suspended = 0; 596 wake_up_process(ccp->cmd_q[i].kthread); 597 } 598 599 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 600 601 return 0; 602 } 603 604 int ccp_dev_init(struct sp_device *sp) 605 { 606 struct device *dev = sp->dev; 607 struct ccp_device *ccp; 608 int ret; 609 610 /* 611 * Check how many we have so far, and stop after reaching 612 * that number 613 */ 614 if (atomic_inc_return(&dev_count) > max_devs) 615 return 0; /* don't fail the load */ 616 617 ret = -ENOMEM; 618 ccp = ccp_alloc_struct(sp); 619 if (!ccp) 620 goto e_err; 621 sp->ccp_data = ccp; 622 623 if (!nqueues || (nqueues > MAX_HW_QUEUES)) 624 ccp->max_q_count = MAX_HW_QUEUES; 625 else 626 ccp->max_q_count = nqueues; 627 628 ccp->vdata = (struct ccp_vdata *)sp->dev_vdata->ccp_vdata; 629 if (!ccp->vdata || !ccp->vdata->version) { 630 ret = -ENODEV; 631 dev_err(dev, "missing driver data\n"); 632 goto e_err; 633 } 634 635 ccp->use_tasklet = sp->use_tasklet; 636 637 ccp->io_regs = sp->io_map + ccp->vdata->offset; 638 if (ccp->vdata->setup) 639 ccp->vdata->setup(ccp); 640 641 ret = ccp->vdata->perform->init(ccp); 642 if (ret) { 643 /* A positive number means that the device cannot be initialized, 644 * but no additional message is required. 645 */ 646 if (ret > 0) 647 goto e_quiet; 648 649 /* An unexpected problem occurred, and should be reported in the log */ 650 goto e_err; 651 } 652 653 dev_notice(dev, "ccp enabled\n"); 654 655 return 0; 656 657 e_err: 658 dev_notice(dev, "ccp initialization failed\n"); 659 660 e_quiet: 661 sp->ccp_data = NULL; 662 663 return ret; 664 } 665 666 void ccp_dev_destroy(struct sp_device *sp) 667 { 668 struct ccp_device *ccp = sp->ccp_data; 669 670 if (!ccp) 671 return; 672 673 ccp->vdata->perform->destroy(ccp); 674 } 675