xref: /openbmc/linux/drivers/crypto/ccp/ccp-dev.c (revision 62e7ca52)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/kthread.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/spinlock.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/cpu.h>
23 #ifdef CONFIG_X86
24 #include <asm/cpu_device_id.h>
25 #endif
26 #include <linux/ccp.h>
27 
28 #include "ccp-dev.h"
29 
30 MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
31 MODULE_LICENSE("GPL");
32 MODULE_VERSION("1.0.0");
33 MODULE_DESCRIPTION("AMD Cryptographic Coprocessor driver");
34 
35 struct ccp_tasklet_data {
36 	struct completion completion;
37 	struct ccp_cmd *cmd;
38 };
39 
40 
41 static struct ccp_device *ccp_dev;
42 static inline struct ccp_device *ccp_get_device(void)
43 {
44 	return ccp_dev;
45 }
46 
47 static inline void ccp_add_device(struct ccp_device *ccp)
48 {
49 	ccp_dev = ccp;
50 }
51 
52 static inline void ccp_del_device(struct ccp_device *ccp)
53 {
54 	ccp_dev = NULL;
55 }
56 
57 /**
58  * ccp_enqueue_cmd - queue an operation for processing by the CCP
59  *
60  * @cmd: ccp_cmd struct to be processed
61  *
62  * Queue a cmd to be processed by the CCP. If queueing the cmd
63  * would exceed the defined length of the cmd queue the cmd will
64  * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
65  * result in a return code of -EBUSY.
66  *
67  * The callback routine specified in the ccp_cmd struct will be
68  * called to notify the caller of completion (if the cmd was not
69  * backlogged) or advancement out of the backlog. If the cmd has
70  * advanced out of the backlog the "err" value of the callback
71  * will be -EINPROGRESS. Any other "err" value during callback is
72  * the result of the operation.
73  *
74  * The cmd has been successfully queued if:
75  *   the return code is -EINPROGRESS or
76  *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
77  */
78 int ccp_enqueue_cmd(struct ccp_cmd *cmd)
79 {
80 	struct ccp_device *ccp = ccp_get_device();
81 	unsigned long flags;
82 	unsigned int i;
83 	int ret;
84 
85 	if (!ccp)
86 		return -ENODEV;
87 
88 	/* Caller must supply a callback routine */
89 	if (!cmd->callback)
90 		return -EINVAL;
91 
92 	cmd->ccp = ccp;
93 
94 	spin_lock_irqsave(&ccp->cmd_lock, flags);
95 
96 	i = ccp->cmd_q_count;
97 
98 	if (ccp->cmd_count >= MAX_CMD_QLEN) {
99 		ret = -EBUSY;
100 		if (cmd->flags & CCP_CMD_MAY_BACKLOG)
101 			list_add_tail(&cmd->entry, &ccp->backlog);
102 	} else {
103 		ret = -EINPROGRESS;
104 		ccp->cmd_count++;
105 		list_add_tail(&cmd->entry, &ccp->cmd);
106 
107 		/* Find an idle queue */
108 		if (!ccp->suspending) {
109 			for (i = 0; i < ccp->cmd_q_count; i++) {
110 				if (ccp->cmd_q[i].active)
111 					continue;
112 
113 				break;
114 			}
115 		}
116 	}
117 
118 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
119 
120 	/* If we found an idle queue, wake it up */
121 	if (i < ccp->cmd_q_count)
122 		wake_up_process(ccp->cmd_q[i].kthread);
123 
124 	return ret;
125 }
126 EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
127 
128 static void ccp_do_cmd_backlog(struct work_struct *work)
129 {
130 	struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
131 	struct ccp_device *ccp = cmd->ccp;
132 	unsigned long flags;
133 	unsigned int i;
134 
135 	cmd->callback(cmd->data, -EINPROGRESS);
136 
137 	spin_lock_irqsave(&ccp->cmd_lock, flags);
138 
139 	ccp->cmd_count++;
140 	list_add_tail(&cmd->entry, &ccp->cmd);
141 
142 	/* Find an idle queue */
143 	for (i = 0; i < ccp->cmd_q_count; i++) {
144 		if (ccp->cmd_q[i].active)
145 			continue;
146 
147 		break;
148 	}
149 
150 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
151 
152 	/* If we found an idle queue, wake it up */
153 	if (i < ccp->cmd_q_count)
154 		wake_up_process(ccp->cmd_q[i].kthread);
155 }
156 
157 static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
158 {
159 	struct ccp_device *ccp = cmd_q->ccp;
160 	struct ccp_cmd *cmd = NULL;
161 	struct ccp_cmd *backlog = NULL;
162 	unsigned long flags;
163 
164 	spin_lock_irqsave(&ccp->cmd_lock, flags);
165 
166 	cmd_q->active = 0;
167 
168 	if (ccp->suspending) {
169 		cmd_q->suspended = 1;
170 
171 		spin_unlock_irqrestore(&ccp->cmd_lock, flags);
172 		wake_up_interruptible(&ccp->suspend_queue);
173 
174 		return NULL;
175 	}
176 
177 	if (ccp->cmd_count) {
178 		cmd_q->active = 1;
179 
180 		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
181 		list_del(&cmd->entry);
182 
183 		ccp->cmd_count--;
184 	}
185 
186 	if (!list_empty(&ccp->backlog)) {
187 		backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
188 					   entry);
189 		list_del(&backlog->entry);
190 	}
191 
192 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
193 
194 	if (backlog) {
195 		INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
196 		schedule_work(&backlog->work);
197 	}
198 
199 	return cmd;
200 }
201 
202 static void ccp_do_cmd_complete(unsigned long data)
203 {
204 	struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
205 	struct ccp_cmd *cmd = tdata->cmd;
206 
207 	cmd->callback(cmd->data, cmd->ret);
208 	complete(&tdata->completion);
209 }
210 
211 static int ccp_cmd_queue_thread(void *data)
212 {
213 	struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
214 	struct ccp_cmd *cmd;
215 	struct ccp_tasklet_data tdata;
216 	struct tasklet_struct tasklet;
217 
218 	tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
219 
220 	set_current_state(TASK_INTERRUPTIBLE);
221 	while (!kthread_should_stop()) {
222 		schedule();
223 
224 		set_current_state(TASK_INTERRUPTIBLE);
225 
226 		cmd = ccp_dequeue_cmd(cmd_q);
227 		if (!cmd)
228 			continue;
229 
230 		__set_current_state(TASK_RUNNING);
231 
232 		/* Execute the command */
233 		cmd->ret = ccp_run_cmd(cmd_q, cmd);
234 
235 		/* Schedule the completion callback */
236 		tdata.cmd = cmd;
237 		init_completion(&tdata.completion);
238 		tasklet_schedule(&tasklet);
239 		wait_for_completion(&tdata.completion);
240 	}
241 
242 	__set_current_state(TASK_RUNNING);
243 
244 	return 0;
245 }
246 
247 static int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
248 {
249 	struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
250 	u32 trng_value;
251 	int len = min_t(int, sizeof(trng_value), max);
252 
253 	/*
254 	 * Locking is provided by the caller so we can update device
255 	 * hwrng-related fields safely
256 	 */
257 	trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
258 	if (!trng_value) {
259 		/* Zero is returned if not data is available or if a
260 		 * bad-entropy error is present. Assume an error if
261 		 * we exceed TRNG_RETRIES reads of zero.
262 		 */
263 		if (ccp->hwrng_retries++ > TRNG_RETRIES)
264 			return -EIO;
265 
266 		return 0;
267 	}
268 
269 	/* Reset the counter and save the rng value */
270 	ccp->hwrng_retries = 0;
271 	memcpy(data, &trng_value, len);
272 
273 	return len;
274 }
275 
276 /**
277  * ccp_alloc_struct - allocate and initialize the ccp_device struct
278  *
279  * @dev: device struct of the CCP
280  */
281 struct ccp_device *ccp_alloc_struct(struct device *dev)
282 {
283 	struct ccp_device *ccp;
284 
285 	ccp = kzalloc(sizeof(*ccp), GFP_KERNEL);
286 	if (ccp == NULL) {
287 		dev_err(dev, "unable to allocate device struct\n");
288 		return NULL;
289 	}
290 	ccp->dev = dev;
291 
292 	INIT_LIST_HEAD(&ccp->cmd);
293 	INIT_LIST_HEAD(&ccp->backlog);
294 
295 	spin_lock_init(&ccp->cmd_lock);
296 	mutex_init(&ccp->req_mutex);
297 	mutex_init(&ccp->ksb_mutex);
298 	ccp->ksb_count = KSB_COUNT;
299 	ccp->ksb_start = 0;
300 
301 	return ccp;
302 }
303 
304 /**
305  * ccp_init - initialize the CCP device
306  *
307  * @ccp: ccp_device struct
308  */
309 int ccp_init(struct ccp_device *ccp)
310 {
311 	struct device *dev = ccp->dev;
312 	struct ccp_cmd_queue *cmd_q;
313 	struct dma_pool *dma_pool;
314 	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
315 	unsigned int qmr, qim, i;
316 	int ret;
317 
318 	/* Find available queues */
319 	qim = 0;
320 	qmr = ioread32(ccp->io_regs + Q_MASK_REG);
321 	for (i = 0; i < MAX_HW_QUEUES; i++) {
322 		if (!(qmr & (1 << i)))
323 			continue;
324 
325 		/* Allocate a dma pool for this queue */
326 		snprintf(dma_pool_name, sizeof(dma_pool_name), "ccp_q%d", i);
327 		dma_pool = dma_pool_create(dma_pool_name, dev,
328 					   CCP_DMAPOOL_MAX_SIZE,
329 					   CCP_DMAPOOL_ALIGN, 0);
330 		if (!dma_pool) {
331 			dev_err(dev, "unable to allocate dma pool\n");
332 			ret = -ENOMEM;
333 			goto e_pool;
334 		}
335 
336 		cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
337 		ccp->cmd_q_count++;
338 
339 		cmd_q->ccp = ccp;
340 		cmd_q->id = i;
341 		cmd_q->dma_pool = dma_pool;
342 
343 		/* Reserve 2 KSB regions for the queue */
344 		cmd_q->ksb_key = KSB_START + ccp->ksb_start++;
345 		cmd_q->ksb_ctx = KSB_START + ccp->ksb_start++;
346 		ccp->ksb_count -= 2;
347 
348 		/* Preset some register values and masks that are queue
349 		 * number dependent
350 		 */
351 		cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
352 				    (CMD_Q_STATUS_INCR * i);
353 		cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
354 					(CMD_Q_STATUS_INCR * i);
355 		cmd_q->int_ok = 1 << (i * 2);
356 		cmd_q->int_err = 1 << ((i * 2) + 1);
357 
358 		cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
359 
360 		init_waitqueue_head(&cmd_q->int_queue);
361 
362 		/* Build queue interrupt mask (two interrupts per queue) */
363 		qim |= cmd_q->int_ok | cmd_q->int_err;
364 
365 #ifdef CONFIG_ARM64
366 		/* For arm64 set the recommended queue cache settings */
367 		iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
368 			  (CMD_Q_CACHE_INC * i));
369 #endif
370 
371 		dev_dbg(dev, "queue #%u available\n", i);
372 	}
373 	if (ccp->cmd_q_count == 0) {
374 		dev_notice(dev, "no command queues available\n");
375 		ret = -EIO;
376 		goto e_pool;
377 	}
378 	dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
379 
380 	/* Disable and clear interrupts until ready */
381 	iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
382 	for (i = 0; i < ccp->cmd_q_count; i++) {
383 		cmd_q = &ccp->cmd_q[i];
384 
385 		ioread32(cmd_q->reg_int_status);
386 		ioread32(cmd_q->reg_status);
387 	}
388 	iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
389 
390 	/* Request an irq */
391 	ret = ccp->get_irq(ccp);
392 	if (ret) {
393 		dev_err(dev, "unable to allocate an IRQ\n");
394 		goto e_pool;
395 	}
396 
397 	/* Initialize the queues used to wait for KSB space and suspend */
398 	init_waitqueue_head(&ccp->ksb_queue);
399 	init_waitqueue_head(&ccp->suspend_queue);
400 
401 	/* Create a kthread for each queue */
402 	for (i = 0; i < ccp->cmd_q_count; i++) {
403 		struct task_struct *kthread;
404 
405 		cmd_q = &ccp->cmd_q[i];
406 
407 		kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
408 					 "ccp-q%u", cmd_q->id);
409 		if (IS_ERR(kthread)) {
410 			dev_err(dev, "error creating queue thread (%ld)\n",
411 				PTR_ERR(kthread));
412 			ret = PTR_ERR(kthread);
413 			goto e_kthread;
414 		}
415 
416 		cmd_q->kthread = kthread;
417 		wake_up_process(kthread);
418 	}
419 
420 	/* Register the RNG */
421 	ccp->hwrng.name = "ccp-rng";
422 	ccp->hwrng.read = ccp_trng_read;
423 	ret = hwrng_register(&ccp->hwrng);
424 	if (ret) {
425 		dev_err(dev, "error registering hwrng (%d)\n", ret);
426 		goto e_kthread;
427 	}
428 
429 	/* Make the device struct available before enabling interrupts */
430 	ccp_add_device(ccp);
431 
432 	/* Enable interrupts */
433 	iowrite32(qim, ccp->io_regs + IRQ_MASK_REG);
434 
435 	return 0;
436 
437 e_kthread:
438 	for (i = 0; i < ccp->cmd_q_count; i++)
439 		if (ccp->cmd_q[i].kthread)
440 			kthread_stop(ccp->cmd_q[i].kthread);
441 
442 	ccp->free_irq(ccp);
443 
444 e_pool:
445 	for (i = 0; i < ccp->cmd_q_count; i++)
446 		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
447 
448 	return ret;
449 }
450 
451 /**
452  * ccp_destroy - tear down the CCP device
453  *
454  * @ccp: ccp_device struct
455  */
456 void ccp_destroy(struct ccp_device *ccp)
457 {
458 	struct ccp_cmd_queue *cmd_q;
459 	struct ccp_cmd *cmd;
460 	unsigned int qim, i;
461 
462 	/* Remove general access to the device struct */
463 	ccp_del_device(ccp);
464 
465 	/* Unregister the RNG */
466 	hwrng_unregister(&ccp->hwrng);
467 
468 	/* Stop the queue kthreads */
469 	for (i = 0; i < ccp->cmd_q_count; i++)
470 		if (ccp->cmd_q[i].kthread)
471 			kthread_stop(ccp->cmd_q[i].kthread);
472 
473 	/* Build queue interrupt mask (two interrupt masks per queue) */
474 	qim = 0;
475 	for (i = 0; i < ccp->cmd_q_count; i++) {
476 		cmd_q = &ccp->cmd_q[i];
477 		qim |= cmd_q->int_ok | cmd_q->int_err;
478 	}
479 
480 	/* Disable and clear interrupts */
481 	iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
482 	for (i = 0; i < ccp->cmd_q_count; i++) {
483 		cmd_q = &ccp->cmd_q[i];
484 
485 		ioread32(cmd_q->reg_int_status);
486 		ioread32(cmd_q->reg_status);
487 	}
488 	iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
489 
490 	ccp->free_irq(ccp);
491 
492 	for (i = 0; i < ccp->cmd_q_count; i++)
493 		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
494 
495 	/* Flush the cmd and backlog queue */
496 	while (!list_empty(&ccp->cmd)) {
497 		/* Invoke the callback directly with an error code */
498 		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
499 		list_del(&cmd->entry);
500 		cmd->callback(cmd->data, -ENODEV);
501 	}
502 	while (!list_empty(&ccp->backlog)) {
503 		/* Invoke the callback directly with an error code */
504 		cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
505 		list_del(&cmd->entry);
506 		cmd->callback(cmd->data, -ENODEV);
507 	}
508 }
509 
510 /**
511  * ccp_irq_handler - handle interrupts generated by the CCP device
512  *
513  * @irq: the irq associated with the interrupt
514  * @data: the data value supplied when the irq was created
515  */
516 irqreturn_t ccp_irq_handler(int irq, void *data)
517 {
518 	struct device *dev = data;
519 	struct ccp_device *ccp = dev_get_drvdata(dev);
520 	struct ccp_cmd_queue *cmd_q;
521 	u32 q_int, status;
522 	unsigned int i;
523 
524 	status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
525 
526 	for (i = 0; i < ccp->cmd_q_count; i++) {
527 		cmd_q = &ccp->cmd_q[i];
528 
529 		q_int = status & (cmd_q->int_ok | cmd_q->int_err);
530 		if (q_int) {
531 			cmd_q->int_status = status;
532 			cmd_q->q_status = ioread32(cmd_q->reg_status);
533 			cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
534 
535 			/* On error, only save the first error value */
536 			if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
537 				cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
538 
539 			cmd_q->int_rcvd = 1;
540 
541 			/* Acknowledge the interrupt and wake the kthread */
542 			iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
543 			wake_up_interruptible(&cmd_q->int_queue);
544 		}
545 	}
546 
547 	return IRQ_HANDLED;
548 }
549 
550 #ifdef CONFIG_PM
551 bool ccp_queues_suspended(struct ccp_device *ccp)
552 {
553 	unsigned int suspended = 0;
554 	unsigned long flags;
555 	unsigned int i;
556 
557 	spin_lock_irqsave(&ccp->cmd_lock, flags);
558 
559 	for (i = 0; i < ccp->cmd_q_count; i++)
560 		if (ccp->cmd_q[i].suspended)
561 			suspended++;
562 
563 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
564 
565 	return ccp->cmd_q_count == suspended;
566 }
567 #endif
568 
569 #ifdef CONFIG_X86
570 static const struct x86_cpu_id ccp_support[] = {
571 	{ X86_VENDOR_AMD, 22, },
572 };
573 #endif
574 
575 static int __init ccp_mod_init(void)
576 {
577 #ifdef CONFIG_X86
578 	struct cpuinfo_x86 *cpuinfo = &boot_cpu_data;
579 	int ret;
580 
581 	if (!x86_match_cpu(ccp_support))
582 		return -ENODEV;
583 
584 	switch (cpuinfo->x86) {
585 	case 22:
586 		if ((cpuinfo->x86_model < 48) || (cpuinfo->x86_model > 63))
587 			return -ENODEV;
588 
589 		ret = ccp_pci_init();
590 		if (ret)
591 			return ret;
592 
593 		/* Don't leave the driver loaded if init failed */
594 		if (!ccp_get_device()) {
595 			ccp_pci_exit();
596 			return -ENODEV;
597 		}
598 
599 		return 0;
600 
601 		break;
602 	}
603 #endif
604 
605 #ifdef CONFIG_ARM64
606 	int ret;
607 
608 	ret = ccp_platform_init();
609 	if (ret)
610 		return ret;
611 
612 	/* Don't leave the driver loaded if init failed */
613 	if (!ccp_get_device()) {
614 		ccp_platform_exit();
615 		return -ENODEV;
616 	}
617 
618 	return 0;
619 #endif
620 
621 	return -ENODEV;
622 }
623 
624 static void __exit ccp_mod_exit(void)
625 {
626 #ifdef CONFIG_X86
627 	struct cpuinfo_x86 *cpuinfo = &boot_cpu_data;
628 
629 	switch (cpuinfo->x86) {
630 	case 22:
631 		ccp_pci_exit();
632 		break;
633 	}
634 #endif
635 
636 #ifdef CONFIG_ARM64
637 	ccp_platform_exit();
638 #endif
639 }
640 
641 module_init(ccp_mod_init);
642 module_exit(ccp_mod_exit);
643