1 /* 2 * AMD Cryptographic Coprocessor (CCP) driver 3 * 4 * Copyright (C) 2013 Advanced Micro Devices, Inc. 5 * 6 * Author: Tom Lendacky <thomas.lendacky@amd.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/kthread.h> 16 #include <linux/sched.h> 17 #include <linux/interrupt.h> 18 #include <linux/spinlock.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/cpu.h> 23 #ifdef CONFIG_X86 24 #include <asm/cpu_device_id.h> 25 #endif 26 #include <linux/ccp.h> 27 28 #include "ccp-dev.h" 29 30 MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>"); 31 MODULE_LICENSE("GPL"); 32 MODULE_VERSION("1.0.0"); 33 MODULE_DESCRIPTION("AMD Cryptographic Coprocessor driver"); 34 35 struct ccp_tasklet_data { 36 struct completion completion; 37 struct ccp_cmd *cmd; 38 }; 39 40 41 static struct ccp_device *ccp_dev; 42 static inline struct ccp_device *ccp_get_device(void) 43 { 44 return ccp_dev; 45 } 46 47 static inline void ccp_add_device(struct ccp_device *ccp) 48 { 49 ccp_dev = ccp; 50 } 51 52 static inline void ccp_del_device(struct ccp_device *ccp) 53 { 54 ccp_dev = NULL; 55 } 56 57 /** 58 * ccp_enqueue_cmd - queue an operation for processing by the CCP 59 * 60 * @cmd: ccp_cmd struct to be processed 61 * 62 * Queue a cmd to be processed by the CCP. If queueing the cmd 63 * would exceed the defined length of the cmd queue the cmd will 64 * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will 65 * result in a return code of -EBUSY. 66 * 67 * The callback routine specified in the ccp_cmd struct will be 68 * called to notify the caller of completion (if the cmd was not 69 * backlogged) or advancement out of the backlog. If the cmd has 70 * advanced out of the backlog the "err" value of the callback 71 * will be -EINPROGRESS. Any other "err" value during callback is 72 * the result of the operation. 73 * 74 * The cmd has been successfully queued if: 75 * the return code is -EINPROGRESS or 76 * the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set 77 */ 78 int ccp_enqueue_cmd(struct ccp_cmd *cmd) 79 { 80 struct ccp_device *ccp = ccp_get_device(); 81 unsigned long flags; 82 unsigned int i; 83 int ret; 84 85 if (!ccp) 86 return -ENODEV; 87 88 /* Caller must supply a callback routine */ 89 if (!cmd->callback) 90 return -EINVAL; 91 92 cmd->ccp = ccp; 93 94 spin_lock_irqsave(&ccp->cmd_lock, flags); 95 96 i = ccp->cmd_q_count; 97 98 if (ccp->cmd_count >= MAX_CMD_QLEN) { 99 ret = -EBUSY; 100 if (cmd->flags & CCP_CMD_MAY_BACKLOG) 101 list_add_tail(&cmd->entry, &ccp->backlog); 102 } else { 103 ret = -EINPROGRESS; 104 ccp->cmd_count++; 105 list_add_tail(&cmd->entry, &ccp->cmd); 106 107 /* Find an idle queue */ 108 if (!ccp->suspending) { 109 for (i = 0; i < ccp->cmd_q_count; i++) { 110 if (ccp->cmd_q[i].active) 111 continue; 112 113 break; 114 } 115 } 116 } 117 118 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 119 120 /* If we found an idle queue, wake it up */ 121 if (i < ccp->cmd_q_count) 122 wake_up_process(ccp->cmd_q[i].kthread); 123 124 return ret; 125 } 126 EXPORT_SYMBOL_GPL(ccp_enqueue_cmd); 127 128 static void ccp_do_cmd_backlog(struct work_struct *work) 129 { 130 struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work); 131 struct ccp_device *ccp = cmd->ccp; 132 unsigned long flags; 133 unsigned int i; 134 135 cmd->callback(cmd->data, -EINPROGRESS); 136 137 spin_lock_irqsave(&ccp->cmd_lock, flags); 138 139 ccp->cmd_count++; 140 list_add_tail(&cmd->entry, &ccp->cmd); 141 142 /* Find an idle queue */ 143 for (i = 0; i < ccp->cmd_q_count; i++) { 144 if (ccp->cmd_q[i].active) 145 continue; 146 147 break; 148 } 149 150 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 151 152 /* If we found an idle queue, wake it up */ 153 if (i < ccp->cmd_q_count) 154 wake_up_process(ccp->cmd_q[i].kthread); 155 } 156 157 static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q) 158 { 159 struct ccp_device *ccp = cmd_q->ccp; 160 struct ccp_cmd *cmd = NULL; 161 struct ccp_cmd *backlog = NULL; 162 unsigned long flags; 163 164 spin_lock_irqsave(&ccp->cmd_lock, flags); 165 166 cmd_q->active = 0; 167 168 if (ccp->suspending) { 169 cmd_q->suspended = 1; 170 171 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 172 wake_up_interruptible(&ccp->suspend_queue); 173 174 return NULL; 175 } 176 177 if (ccp->cmd_count) { 178 cmd_q->active = 1; 179 180 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry); 181 list_del(&cmd->entry); 182 183 ccp->cmd_count--; 184 } 185 186 if (!list_empty(&ccp->backlog)) { 187 backlog = list_first_entry(&ccp->backlog, struct ccp_cmd, 188 entry); 189 list_del(&backlog->entry); 190 } 191 192 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 193 194 if (backlog) { 195 INIT_WORK(&backlog->work, ccp_do_cmd_backlog); 196 schedule_work(&backlog->work); 197 } 198 199 return cmd; 200 } 201 202 static void ccp_do_cmd_complete(unsigned long data) 203 { 204 struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data; 205 struct ccp_cmd *cmd = tdata->cmd; 206 207 cmd->callback(cmd->data, cmd->ret); 208 complete(&tdata->completion); 209 } 210 211 static int ccp_cmd_queue_thread(void *data) 212 { 213 struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data; 214 struct ccp_cmd *cmd; 215 struct ccp_tasklet_data tdata; 216 struct tasklet_struct tasklet; 217 218 tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata); 219 220 set_current_state(TASK_INTERRUPTIBLE); 221 while (!kthread_should_stop()) { 222 schedule(); 223 224 set_current_state(TASK_INTERRUPTIBLE); 225 226 cmd = ccp_dequeue_cmd(cmd_q); 227 if (!cmd) 228 continue; 229 230 __set_current_state(TASK_RUNNING); 231 232 /* Execute the command */ 233 cmd->ret = ccp_run_cmd(cmd_q, cmd); 234 235 /* Schedule the completion callback */ 236 tdata.cmd = cmd; 237 init_completion(&tdata.completion); 238 tasklet_schedule(&tasklet); 239 wait_for_completion(&tdata.completion); 240 } 241 242 __set_current_state(TASK_RUNNING); 243 244 return 0; 245 } 246 247 static int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait) 248 { 249 struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng); 250 u32 trng_value; 251 int len = min_t(int, sizeof(trng_value), max); 252 253 /* 254 * Locking is provided by the caller so we can update device 255 * hwrng-related fields safely 256 */ 257 trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG); 258 if (!trng_value) { 259 /* Zero is returned if not data is available or if a 260 * bad-entropy error is present. Assume an error if 261 * we exceed TRNG_RETRIES reads of zero. 262 */ 263 if (ccp->hwrng_retries++ > TRNG_RETRIES) 264 return -EIO; 265 266 return 0; 267 } 268 269 /* Reset the counter and save the rng value */ 270 ccp->hwrng_retries = 0; 271 memcpy(data, &trng_value, len); 272 273 return len; 274 } 275 276 /** 277 * ccp_alloc_struct - allocate and initialize the ccp_device struct 278 * 279 * @dev: device struct of the CCP 280 */ 281 struct ccp_device *ccp_alloc_struct(struct device *dev) 282 { 283 struct ccp_device *ccp; 284 285 ccp = kzalloc(sizeof(*ccp), GFP_KERNEL); 286 if (ccp == NULL) { 287 dev_err(dev, "unable to allocate device struct\n"); 288 return NULL; 289 } 290 ccp->dev = dev; 291 292 INIT_LIST_HEAD(&ccp->cmd); 293 INIT_LIST_HEAD(&ccp->backlog); 294 295 spin_lock_init(&ccp->cmd_lock); 296 mutex_init(&ccp->req_mutex); 297 mutex_init(&ccp->ksb_mutex); 298 ccp->ksb_count = KSB_COUNT; 299 ccp->ksb_start = 0; 300 301 return ccp; 302 } 303 304 /** 305 * ccp_init - initialize the CCP device 306 * 307 * @ccp: ccp_device struct 308 */ 309 int ccp_init(struct ccp_device *ccp) 310 { 311 struct device *dev = ccp->dev; 312 struct ccp_cmd_queue *cmd_q; 313 struct dma_pool *dma_pool; 314 char dma_pool_name[MAX_DMAPOOL_NAME_LEN]; 315 unsigned int qmr, qim, i; 316 int ret; 317 318 /* Find available queues */ 319 qim = 0; 320 qmr = ioread32(ccp->io_regs + Q_MASK_REG); 321 for (i = 0; i < MAX_HW_QUEUES; i++) { 322 if (!(qmr & (1 << i))) 323 continue; 324 325 /* Allocate a dma pool for this queue */ 326 snprintf(dma_pool_name, sizeof(dma_pool_name), "ccp_q%d", i); 327 dma_pool = dma_pool_create(dma_pool_name, dev, 328 CCP_DMAPOOL_MAX_SIZE, 329 CCP_DMAPOOL_ALIGN, 0); 330 if (!dma_pool) { 331 dev_err(dev, "unable to allocate dma pool\n"); 332 ret = -ENOMEM; 333 goto e_pool; 334 } 335 336 cmd_q = &ccp->cmd_q[ccp->cmd_q_count]; 337 ccp->cmd_q_count++; 338 339 cmd_q->ccp = ccp; 340 cmd_q->id = i; 341 cmd_q->dma_pool = dma_pool; 342 343 /* Reserve 2 KSB regions for the queue */ 344 cmd_q->ksb_key = KSB_START + ccp->ksb_start++; 345 cmd_q->ksb_ctx = KSB_START + ccp->ksb_start++; 346 ccp->ksb_count -= 2; 347 348 /* Preset some register values and masks that are queue 349 * number dependent 350 */ 351 cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE + 352 (CMD_Q_STATUS_INCR * i); 353 cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE + 354 (CMD_Q_STATUS_INCR * i); 355 cmd_q->int_ok = 1 << (i * 2); 356 cmd_q->int_err = 1 << ((i * 2) + 1); 357 358 cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status)); 359 360 init_waitqueue_head(&cmd_q->int_queue); 361 362 /* Build queue interrupt mask (two interrupts per queue) */ 363 qim |= cmd_q->int_ok | cmd_q->int_err; 364 365 #ifdef CONFIG_ARM64 366 /* For arm64 set the recommended queue cache settings */ 367 iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE + 368 (CMD_Q_CACHE_INC * i)); 369 #endif 370 371 dev_dbg(dev, "queue #%u available\n", i); 372 } 373 if (ccp->cmd_q_count == 0) { 374 dev_notice(dev, "no command queues available\n"); 375 ret = -EIO; 376 goto e_pool; 377 } 378 dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count); 379 380 /* Disable and clear interrupts until ready */ 381 iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG); 382 for (i = 0; i < ccp->cmd_q_count; i++) { 383 cmd_q = &ccp->cmd_q[i]; 384 385 ioread32(cmd_q->reg_int_status); 386 ioread32(cmd_q->reg_status); 387 } 388 iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG); 389 390 /* Request an irq */ 391 ret = ccp->get_irq(ccp); 392 if (ret) { 393 dev_err(dev, "unable to allocate an IRQ\n"); 394 goto e_pool; 395 } 396 397 /* Initialize the queues used to wait for KSB space and suspend */ 398 init_waitqueue_head(&ccp->ksb_queue); 399 init_waitqueue_head(&ccp->suspend_queue); 400 401 /* Create a kthread for each queue */ 402 for (i = 0; i < ccp->cmd_q_count; i++) { 403 struct task_struct *kthread; 404 405 cmd_q = &ccp->cmd_q[i]; 406 407 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q, 408 "ccp-q%u", cmd_q->id); 409 if (IS_ERR(kthread)) { 410 dev_err(dev, "error creating queue thread (%ld)\n", 411 PTR_ERR(kthread)); 412 ret = PTR_ERR(kthread); 413 goto e_kthread; 414 } 415 416 cmd_q->kthread = kthread; 417 wake_up_process(kthread); 418 } 419 420 /* Register the RNG */ 421 ccp->hwrng.name = "ccp-rng"; 422 ccp->hwrng.read = ccp_trng_read; 423 ret = hwrng_register(&ccp->hwrng); 424 if (ret) { 425 dev_err(dev, "error registering hwrng (%d)\n", ret); 426 goto e_kthread; 427 } 428 429 /* Make the device struct available before enabling interrupts */ 430 ccp_add_device(ccp); 431 432 /* Enable interrupts */ 433 iowrite32(qim, ccp->io_regs + IRQ_MASK_REG); 434 435 return 0; 436 437 e_kthread: 438 for (i = 0; i < ccp->cmd_q_count; i++) 439 if (ccp->cmd_q[i].kthread) 440 kthread_stop(ccp->cmd_q[i].kthread); 441 442 ccp->free_irq(ccp); 443 444 e_pool: 445 for (i = 0; i < ccp->cmd_q_count; i++) 446 dma_pool_destroy(ccp->cmd_q[i].dma_pool); 447 448 return ret; 449 } 450 451 /** 452 * ccp_destroy - tear down the CCP device 453 * 454 * @ccp: ccp_device struct 455 */ 456 void ccp_destroy(struct ccp_device *ccp) 457 { 458 struct ccp_cmd_queue *cmd_q; 459 struct ccp_cmd *cmd; 460 unsigned int qim, i; 461 462 /* Remove general access to the device struct */ 463 ccp_del_device(ccp); 464 465 /* Unregister the RNG */ 466 hwrng_unregister(&ccp->hwrng); 467 468 /* Stop the queue kthreads */ 469 for (i = 0; i < ccp->cmd_q_count; i++) 470 if (ccp->cmd_q[i].kthread) 471 kthread_stop(ccp->cmd_q[i].kthread); 472 473 /* Build queue interrupt mask (two interrupt masks per queue) */ 474 qim = 0; 475 for (i = 0; i < ccp->cmd_q_count; i++) { 476 cmd_q = &ccp->cmd_q[i]; 477 qim |= cmd_q->int_ok | cmd_q->int_err; 478 } 479 480 /* Disable and clear interrupts */ 481 iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG); 482 for (i = 0; i < ccp->cmd_q_count; i++) { 483 cmd_q = &ccp->cmd_q[i]; 484 485 ioread32(cmd_q->reg_int_status); 486 ioread32(cmd_q->reg_status); 487 } 488 iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG); 489 490 ccp->free_irq(ccp); 491 492 for (i = 0; i < ccp->cmd_q_count; i++) 493 dma_pool_destroy(ccp->cmd_q[i].dma_pool); 494 495 /* Flush the cmd and backlog queue */ 496 while (!list_empty(&ccp->cmd)) { 497 /* Invoke the callback directly with an error code */ 498 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry); 499 list_del(&cmd->entry); 500 cmd->callback(cmd->data, -ENODEV); 501 } 502 while (!list_empty(&ccp->backlog)) { 503 /* Invoke the callback directly with an error code */ 504 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry); 505 list_del(&cmd->entry); 506 cmd->callback(cmd->data, -ENODEV); 507 } 508 } 509 510 /** 511 * ccp_irq_handler - handle interrupts generated by the CCP device 512 * 513 * @irq: the irq associated with the interrupt 514 * @data: the data value supplied when the irq was created 515 */ 516 irqreturn_t ccp_irq_handler(int irq, void *data) 517 { 518 struct device *dev = data; 519 struct ccp_device *ccp = dev_get_drvdata(dev); 520 struct ccp_cmd_queue *cmd_q; 521 u32 q_int, status; 522 unsigned int i; 523 524 status = ioread32(ccp->io_regs + IRQ_STATUS_REG); 525 526 for (i = 0; i < ccp->cmd_q_count; i++) { 527 cmd_q = &ccp->cmd_q[i]; 528 529 q_int = status & (cmd_q->int_ok | cmd_q->int_err); 530 if (q_int) { 531 cmd_q->int_status = status; 532 cmd_q->q_status = ioread32(cmd_q->reg_status); 533 cmd_q->q_int_status = ioread32(cmd_q->reg_int_status); 534 535 /* On error, only save the first error value */ 536 if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error) 537 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status); 538 539 cmd_q->int_rcvd = 1; 540 541 /* Acknowledge the interrupt and wake the kthread */ 542 iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG); 543 wake_up_interruptible(&cmd_q->int_queue); 544 } 545 } 546 547 return IRQ_HANDLED; 548 } 549 550 #ifdef CONFIG_PM 551 bool ccp_queues_suspended(struct ccp_device *ccp) 552 { 553 unsigned int suspended = 0; 554 unsigned long flags; 555 unsigned int i; 556 557 spin_lock_irqsave(&ccp->cmd_lock, flags); 558 559 for (i = 0; i < ccp->cmd_q_count; i++) 560 if (ccp->cmd_q[i].suspended) 561 suspended++; 562 563 spin_unlock_irqrestore(&ccp->cmd_lock, flags); 564 565 return ccp->cmd_q_count == suspended; 566 } 567 #endif 568 569 #ifdef CONFIG_X86 570 static const struct x86_cpu_id ccp_support[] = { 571 { X86_VENDOR_AMD, 22, }, 572 }; 573 #endif 574 575 static int __init ccp_mod_init(void) 576 { 577 #ifdef CONFIG_X86 578 struct cpuinfo_x86 *cpuinfo = &boot_cpu_data; 579 int ret; 580 581 if (!x86_match_cpu(ccp_support)) 582 return -ENODEV; 583 584 switch (cpuinfo->x86) { 585 case 22: 586 if ((cpuinfo->x86_model < 48) || (cpuinfo->x86_model > 63)) 587 return -ENODEV; 588 589 ret = ccp_pci_init(); 590 if (ret) 591 return ret; 592 593 /* Don't leave the driver loaded if init failed */ 594 if (!ccp_get_device()) { 595 ccp_pci_exit(); 596 return -ENODEV; 597 } 598 599 return 0; 600 601 break; 602 } 603 #endif 604 605 #ifdef CONFIG_ARM64 606 int ret; 607 608 ret = ccp_platform_init(); 609 if (ret) 610 return ret; 611 612 /* Don't leave the driver loaded if init failed */ 613 if (!ccp_get_device()) { 614 ccp_platform_exit(); 615 return -ENODEV; 616 } 617 618 return 0; 619 #endif 620 621 return -ENODEV; 622 } 623 624 static void __exit ccp_mod_exit(void) 625 { 626 #ifdef CONFIG_X86 627 struct cpuinfo_x86 *cpuinfo = &boot_cpu_data; 628 629 switch (cpuinfo->x86) { 630 case 22: 631 ccp_pci_exit(); 632 break; 633 } 634 #endif 635 636 #ifdef CONFIG_ARM64 637 ccp_platform_exit(); 638 #endif 639 } 640 641 module_init(ccp_mod_init); 642 module_exit(ccp_mod_exit); 643