xref: /openbmc/linux/drivers/crypto/ccp/ccp-dev.c (revision 5f32c314)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/kthread.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/spinlock.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/cpu.h>
23 #include <asm/cpu_device_id.h>
24 #include <linux/ccp.h>
25 
26 #include "ccp-dev.h"
27 
28 MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
29 MODULE_LICENSE("GPL");
30 MODULE_VERSION("1.0.0");
31 MODULE_DESCRIPTION("AMD Cryptographic Coprocessor driver");
32 
33 
34 static struct ccp_device *ccp_dev;
35 static inline struct ccp_device *ccp_get_device(void)
36 {
37 	return ccp_dev;
38 }
39 
40 static inline void ccp_add_device(struct ccp_device *ccp)
41 {
42 	ccp_dev = ccp;
43 }
44 
45 static inline void ccp_del_device(struct ccp_device *ccp)
46 {
47 	ccp_dev = NULL;
48 }
49 
50 /**
51  * ccp_enqueue_cmd - queue an operation for processing by the CCP
52  *
53  * @cmd: ccp_cmd struct to be processed
54  *
55  * Queue a cmd to be processed by the CCP. If queueing the cmd
56  * would exceed the defined length of the cmd queue the cmd will
57  * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
58  * result in a return code of -EBUSY.
59  *
60  * The callback routine specified in the ccp_cmd struct will be
61  * called to notify the caller of completion (if the cmd was not
62  * backlogged) or advancement out of the backlog. If the cmd has
63  * advanced out of the backlog the "err" value of the callback
64  * will be -EINPROGRESS. Any other "err" value during callback is
65  * the result of the operation.
66  *
67  * The cmd has been successfully queued if:
68  *   the return code is -EINPROGRESS or
69  *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
70  */
71 int ccp_enqueue_cmd(struct ccp_cmd *cmd)
72 {
73 	struct ccp_device *ccp = ccp_get_device();
74 	unsigned long flags;
75 	unsigned int i;
76 	int ret;
77 
78 	if (!ccp)
79 		return -ENODEV;
80 
81 	/* Caller must supply a callback routine */
82 	if (!cmd->callback)
83 		return -EINVAL;
84 
85 	cmd->ccp = ccp;
86 
87 	spin_lock_irqsave(&ccp->cmd_lock, flags);
88 
89 	i = ccp->cmd_q_count;
90 
91 	if (ccp->cmd_count >= MAX_CMD_QLEN) {
92 		ret = -EBUSY;
93 		if (cmd->flags & CCP_CMD_MAY_BACKLOG)
94 			list_add_tail(&cmd->entry, &ccp->backlog);
95 	} else {
96 		ret = -EINPROGRESS;
97 		ccp->cmd_count++;
98 		list_add_tail(&cmd->entry, &ccp->cmd);
99 
100 		/* Find an idle queue */
101 		if (!ccp->suspending) {
102 			for (i = 0; i < ccp->cmd_q_count; i++) {
103 				if (ccp->cmd_q[i].active)
104 					continue;
105 
106 				break;
107 			}
108 		}
109 	}
110 
111 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
112 
113 	/* If we found an idle queue, wake it up */
114 	if (i < ccp->cmd_q_count)
115 		wake_up_process(ccp->cmd_q[i].kthread);
116 
117 	return ret;
118 }
119 EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
120 
121 static void ccp_do_cmd_backlog(struct work_struct *work)
122 {
123 	struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
124 	struct ccp_device *ccp = cmd->ccp;
125 	unsigned long flags;
126 	unsigned int i;
127 
128 	cmd->callback(cmd->data, -EINPROGRESS);
129 
130 	spin_lock_irqsave(&ccp->cmd_lock, flags);
131 
132 	ccp->cmd_count++;
133 	list_add_tail(&cmd->entry, &ccp->cmd);
134 
135 	/* Find an idle queue */
136 	for (i = 0; i < ccp->cmd_q_count; i++) {
137 		if (ccp->cmd_q[i].active)
138 			continue;
139 
140 		break;
141 	}
142 
143 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
144 
145 	/* If we found an idle queue, wake it up */
146 	if (i < ccp->cmd_q_count)
147 		wake_up_process(ccp->cmd_q[i].kthread);
148 }
149 
150 static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
151 {
152 	struct ccp_device *ccp = cmd_q->ccp;
153 	struct ccp_cmd *cmd = NULL;
154 	struct ccp_cmd *backlog = NULL;
155 	unsigned long flags;
156 
157 	spin_lock_irqsave(&ccp->cmd_lock, flags);
158 
159 	cmd_q->active = 0;
160 
161 	if (ccp->suspending) {
162 		cmd_q->suspended = 1;
163 
164 		spin_unlock_irqrestore(&ccp->cmd_lock, flags);
165 		wake_up_interruptible(&ccp->suspend_queue);
166 
167 		return NULL;
168 	}
169 
170 	if (ccp->cmd_count) {
171 		cmd_q->active = 1;
172 
173 		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
174 		list_del(&cmd->entry);
175 
176 		ccp->cmd_count--;
177 	}
178 
179 	if (!list_empty(&ccp->backlog)) {
180 		backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
181 					   entry);
182 		list_del(&backlog->entry);
183 	}
184 
185 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
186 
187 	if (backlog) {
188 		INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
189 		schedule_work(&backlog->work);
190 	}
191 
192 	return cmd;
193 }
194 
195 static void ccp_do_cmd_complete(struct work_struct *work)
196 {
197 	struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
198 
199 	cmd->callback(cmd->data, cmd->ret);
200 }
201 
202 static int ccp_cmd_queue_thread(void *data)
203 {
204 	struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
205 	struct ccp_cmd *cmd;
206 
207 	set_current_state(TASK_INTERRUPTIBLE);
208 	while (!kthread_should_stop()) {
209 		schedule();
210 
211 		set_current_state(TASK_INTERRUPTIBLE);
212 
213 		cmd = ccp_dequeue_cmd(cmd_q);
214 		if (!cmd)
215 			continue;
216 
217 		__set_current_state(TASK_RUNNING);
218 
219 		/* Execute the command */
220 		cmd->ret = ccp_run_cmd(cmd_q, cmd);
221 
222 		/* Schedule the completion callback */
223 		INIT_WORK(&cmd->work, ccp_do_cmd_complete);
224 		schedule_work(&cmd->work);
225 	}
226 
227 	__set_current_state(TASK_RUNNING);
228 
229 	return 0;
230 }
231 
232 static int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
233 {
234 	struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
235 	u32 trng_value;
236 	int len = min_t(int, sizeof(trng_value), max);
237 
238 	/*
239 	 * Locking is provided by the caller so we can update device
240 	 * hwrng-related fields safely
241 	 */
242 	trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
243 	if (!trng_value) {
244 		/* Zero is returned if not data is available or if a
245 		 * bad-entropy error is present. Assume an error if
246 		 * we exceed TRNG_RETRIES reads of zero.
247 		 */
248 		if (ccp->hwrng_retries++ > TRNG_RETRIES)
249 			return -EIO;
250 
251 		return 0;
252 	}
253 
254 	/* Reset the counter and save the rng value */
255 	ccp->hwrng_retries = 0;
256 	memcpy(data, &trng_value, len);
257 
258 	return len;
259 }
260 
261 /**
262  * ccp_alloc_struct - allocate and initialize the ccp_device struct
263  *
264  * @dev: device struct of the CCP
265  */
266 struct ccp_device *ccp_alloc_struct(struct device *dev)
267 {
268 	struct ccp_device *ccp;
269 
270 	ccp = kzalloc(sizeof(*ccp), GFP_KERNEL);
271 	if (ccp == NULL) {
272 		dev_err(dev, "unable to allocate device struct\n");
273 		return NULL;
274 	}
275 	ccp->dev = dev;
276 
277 	INIT_LIST_HEAD(&ccp->cmd);
278 	INIT_LIST_HEAD(&ccp->backlog);
279 
280 	spin_lock_init(&ccp->cmd_lock);
281 	mutex_init(&ccp->req_mutex);
282 	mutex_init(&ccp->ksb_mutex);
283 	ccp->ksb_count = KSB_COUNT;
284 	ccp->ksb_start = 0;
285 
286 	return ccp;
287 }
288 
289 /**
290  * ccp_init - initialize the CCP device
291  *
292  * @ccp: ccp_device struct
293  */
294 int ccp_init(struct ccp_device *ccp)
295 {
296 	struct device *dev = ccp->dev;
297 	struct ccp_cmd_queue *cmd_q;
298 	struct dma_pool *dma_pool;
299 	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
300 	unsigned int qmr, qim, i;
301 	int ret;
302 
303 	/* Find available queues */
304 	qim = 0;
305 	qmr = ioread32(ccp->io_regs + Q_MASK_REG);
306 	for (i = 0; i < MAX_HW_QUEUES; i++) {
307 		if (!(qmr & (1 << i)))
308 			continue;
309 
310 		/* Allocate a dma pool for this queue */
311 		snprintf(dma_pool_name, sizeof(dma_pool_name), "ccp_q%d", i);
312 		dma_pool = dma_pool_create(dma_pool_name, dev,
313 					   CCP_DMAPOOL_MAX_SIZE,
314 					   CCP_DMAPOOL_ALIGN, 0);
315 		if (!dma_pool) {
316 			dev_err(dev, "unable to allocate dma pool\n");
317 			ret = -ENOMEM;
318 			goto e_pool;
319 		}
320 
321 		cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
322 		ccp->cmd_q_count++;
323 
324 		cmd_q->ccp = ccp;
325 		cmd_q->id = i;
326 		cmd_q->dma_pool = dma_pool;
327 
328 		/* Reserve 2 KSB regions for the queue */
329 		cmd_q->ksb_key = KSB_START + ccp->ksb_start++;
330 		cmd_q->ksb_ctx = KSB_START + ccp->ksb_start++;
331 		ccp->ksb_count -= 2;
332 
333 		/* Preset some register values and masks that are queue
334 		 * number dependent
335 		 */
336 		cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
337 				    (CMD_Q_STATUS_INCR * i);
338 		cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
339 					(CMD_Q_STATUS_INCR * i);
340 		cmd_q->int_ok = 1 << (i * 2);
341 		cmd_q->int_err = 1 << ((i * 2) + 1);
342 
343 		cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
344 
345 		init_waitqueue_head(&cmd_q->int_queue);
346 
347 		/* Build queue interrupt mask (two interrupts per queue) */
348 		qim |= cmd_q->int_ok | cmd_q->int_err;
349 
350 		dev_dbg(dev, "queue #%u available\n", i);
351 	}
352 	if (ccp->cmd_q_count == 0) {
353 		dev_notice(dev, "no command queues available\n");
354 		ret = -EIO;
355 		goto e_pool;
356 	}
357 	dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
358 
359 	/* Disable and clear interrupts until ready */
360 	iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
361 	for (i = 0; i < ccp->cmd_q_count; i++) {
362 		cmd_q = &ccp->cmd_q[i];
363 
364 		ioread32(cmd_q->reg_int_status);
365 		ioread32(cmd_q->reg_status);
366 	}
367 	iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
368 
369 	/* Request an irq */
370 	ret = ccp->get_irq(ccp);
371 	if (ret) {
372 		dev_err(dev, "unable to allocate an IRQ\n");
373 		goto e_pool;
374 	}
375 
376 	/* Initialize the queues used to wait for KSB space and suspend */
377 	init_waitqueue_head(&ccp->ksb_queue);
378 	init_waitqueue_head(&ccp->suspend_queue);
379 
380 	/* Create a kthread for each queue */
381 	for (i = 0; i < ccp->cmd_q_count; i++) {
382 		struct task_struct *kthread;
383 
384 		cmd_q = &ccp->cmd_q[i];
385 
386 		kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
387 					 "ccp-q%u", cmd_q->id);
388 		if (IS_ERR(kthread)) {
389 			dev_err(dev, "error creating queue thread (%ld)\n",
390 				PTR_ERR(kthread));
391 			ret = PTR_ERR(kthread);
392 			goto e_kthread;
393 		}
394 
395 		cmd_q->kthread = kthread;
396 		wake_up_process(kthread);
397 	}
398 
399 	/* Register the RNG */
400 	ccp->hwrng.name = "ccp-rng";
401 	ccp->hwrng.read = ccp_trng_read;
402 	ret = hwrng_register(&ccp->hwrng);
403 	if (ret) {
404 		dev_err(dev, "error registering hwrng (%d)\n", ret);
405 		goto e_kthread;
406 	}
407 
408 	/* Make the device struct available before enabling interrupts */
409 	ccp_add_device(ccp);
410 
411 	/* Enable interrupts */
412 	iowrite32(qim, ccp->io_regs + IRQ_MASK_REG);
413 
414 	return 0;
415 
416 e_kthread:
417 	for (i = 0; i < ccp->cmd_q_count; i++)
418 		if (ccp->cmd_q[i].kthread)
419 			kthread_stop(ccp->cmd_q[i].kthread);
420 
421 	ccp->free_irq(ccp);
422 
423 e_pool:
424 	for (i = 0; i < ccp->cmd_q_count; i++)
425 		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
426 
427 	return ret;
428 }
429 
430 /**
431  * ccp_destroy - tear down the CCP device
432  *
433  * @ccp: ccp_device struct
434  */
435 void ccp_destroy(struct ccp_device *ccp)
436 {
437 	struct ccp_cmd_queue *cmd_q;
438 	struct ccp_cmd *cmd;
439 	unsigned int qim, i;
440 
441 	/* Remove general access to the device struct */
442 	ccp_del_device(ccp);
443 
444 	/* Unregister the RNG */
445 	hwrng_unregister(&ccp->hwrng);
446 
447 	/* Stop the queue kthreads */
448 	for (i = 0; i < ccp->cmd_q_count; i++)
449 		if (ccp->cmd_q[i].kthread)
450 			kthread_stop(ccp->cmd_q[i].kthread);
451 
452 	/* Build queue interrupt mask (two interrupt masks per queue) */
453 	qim = 0;
454 	for (i = 0; i < ccp->cmd_q_count; i++) {
455 		cmd_q = &ccp->cmd_q[i];
456 		qim |= cmd_q->int_ok | cmd_q->int_err;
457 	}
458 
459 	/* Disable and clear interrupts */
460 	iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
461 	for (i = 0; i < ccp->cmd_q_count; i++) {
462 		cmd_q = &ccp->cmd_q[i];
463 
464 		ioread32(cmd_q->reg_int_status);
465 		ioread32(cmd_q->reg_status);
466 	}
467 	iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
468 
469 	ccp->free_irq(ccp);
470 
471 	for (i = 0; i < ccp->cmd_q_count; i++)
472 		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
473 
474 	/* Flush the cmd and backlog queue */
475 	while (!list_empty(&ccp->cmd)) {
476 		/* Invoke the callback directly with an error code */
477 		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
478 		list_del(&cmd->entry);
479 		cmd->callback(cmd->data, -ENODEV);
480 	}
481 	while (!list_empty(&ccp->backlog)) {
482 		/* Invoke the callback directly with an error code */
483 		cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
484 		list_del(&cmd->entry);
485 		cmd->callback(cmd->data, -ENODEV);
486 	}
487 }
488 
489 /**
490  * ccp_irq_handler - handle interrupts generated by the CCP device
491  *
492  * @irq: the irq associated with the interrupt
493  * @data: the data value supplied when the irq was created
494  */
495 irqreturn_t ccp_irq_handler(int irq, void *data)
496 {
497 	struct device *dev = data;
498 	struct ccp_device *ccp = dev_get_drvdata(dev);
499 	struct ccp_cmd_queue *cmd_q;
500 	u32 q_int, status;
501 	unsigned int i;
502 
503 	status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
504 
505 	for (i = 0; i < ccp->cmd_q_count; i++) {
506 		cmd_q = &ccp->cmd_q[i];
507 
508 		q_int = status & (cmd_q->int_ok | cmd_q->int_err);
509 		if (q_int) {
510 			cmd_q->int_status = status;
511 			cmd_q->q_status = ioread32(cmd_q->reg_status);
512 			cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
513 
514 			/* On error, only save the first error value */
515 			if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
516 				cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
517 
518 			cmd_q->int_rcvd = 1;
519 
520 			/* Acknowledge the interrupt and wake the kthread */
521 			iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
522 			wake_up_interruptible(&cmd_q->int_queue);
523 		}
524 	}
525 
526 	return IRQ_HANDLED;
527 }
528 
529 #ifdef CONFIG_PM
530 bool ccp_queues_suspended(struct ccp_device *ccp)
531 {
532 	unsigned int suspended = 0;
533 	unsigned long flags;
534 	unsigned int i;
535 
536 	spin_lock_irqsave(&ccp->cmd_lock, flags);
537 
538 	for (i = 0; i < ccp->cmd_q_count; i++)
539 		if (ccp->cmd_q[i].suspended)
540 			suspended++;
541 
542 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
543 
544 	return ccp->cmd_q_count == suspended;
545 }
546 #endif
547 
548 static const struct x86_cpu_id ccp_support[] = {
549 	{ X86_VENDOR_AMD, 22, },
550 };
551 
552 static int __init ccp_mod_init(void)
553 {
554 	struct cpuinfo_x86 *cpuinfo = &boot_cpu_data;
555 	int ret;
556 
557 	if (!x86_match_cpu(ccp_support))
558 		return -ENODEV;
559 
560 	switch (cpuinfo->x86) {
561 	case 22:
562 		if ((cpuinfo->x86_model < 48) || (cpuinfo->x86_model > 63))
563 			return -ENODEV;
564 
565 		ret = ccp_pci_init();
566 		if (ret)
567 			return ret;
568 
569 		/* Don't leave the driver loaded if init failed */
570 		if (!ccp_get_device()) {
571 			ccp_pci_exit();
572 			return -ENODEV;
573 		}
574 
575 		return 0;
576 
577 		break;
578 	}
579 
580 	return -ENODEV;
581 }
582 
583 static void __exit ccp_mod_exit(void)
584 {
585 	struct cpuinfo_x86 *cpuinfo = &boot_cpu_data;
586 
587 	switch (cpuinfo->x86) {
588 	case 22:
589 		ccp_pci_exit();
590 		break;
591 	}
592 }
593 
594 module_init(ccp_mod_init);
595 module_exit(ccp_mod_exit);
596