xref: /openbmc/linux/drivers/crypto/ccp/ccp-dev.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/kthread.h>
17 #include <linux/sched.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/spinlock_types.h>
21 #include <linux/types.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/hw_random.h>
25 #include <linux/cpu.h>
26 #ifdef CONFIG_X86
27 #include <asm/cpu_device_id.h>
28 #endif
29 #include <linux/ccp.h>
30 
31 #include "ccp-dev.h"
32 
33 MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
34 MODULE_LICENSE("GPL");
35 MODULE_VERSION("1.0.0");
36 MODULE_DESCRIPTION("AMD Cryptographic Coprocessor driver");
37 
38 struct ccp_tasklet_data {
39 	struct completion completion;
40 	struct ccp_cmd *cmd;
41 };
42 
43 /* Human-readable error strings */
44 static char *ccp_error_codes[] = {
45 	"",
46 	"ERR 01: ILLEGAL_ENGINE",
47 	"ERR 02: ILLEGAL_KEY_ID",
48 	"ERR 03: ILLEGAL_FUNCTION_TYPE",
49 	"ERR 04: ILLEGAL_FUNCTION_MODE",
50 	"ERR 05: ILLEGAL_FUNCTION_ENCRYPT",
51 	"ERR 06: ILLEGAL_FUNCTION_SIZE",
52 	"ERR 07: Zlib_MISSING_INIT_EOM",
53 	"ERR 08: ILLEGAL_FUNCTION_RSVD",
54 	"ERR 09: ILLEGAL_BUFFER_LENGTH",
55 	"ERR 10: VLSB_FAULT",
56 	"ERR 11: ILLEGAL_MEM_ADDR",
57 	"ERR 12: ILLEGAL_MEM_SEL",
58 	"ERR 13: ILLEGAL_CONTEXT_ID",
59 	"ERR 14: ILLEGAL_KEY_ADDR",
60 	"ERR 15: 0xF Reserved",
61 	"ERR 16: Zlib_ILLEGAL_MULTI_QUEUE",
62 	"ERR 17: Zlib_ILLEGAL_JOBID_CHANGE",
63 	"ERR 18: CMD_TIMEOUT",
64 	"ERR 19: IDMA0_AXI_SLVERR",
65 	"ERR 20: IDMA0_AXI_DECERR",
66 	"ERR 21: 0x15 Reserved",
67 	"ERR 22: IDMA1_AXI_SLAVE_FAULT",
68 	"ERR 23: IDMA1_AIXI_DECERR",
69 	"ERR 24: 0x18 Reserved",
70 	"ERR 25: ZLIBVHB_AXI_SLVERR",
71 	"ERR 26: ZLIBVHB_AXI_DECERR",
72 	"ERR 27: 0x1B Reserved",
73 	"ERR 27: ZLIB_UNEXPECTED_EOM",
74 	"ERR 27: ZLIB_EXTRA_DATA",
75 	"ERR 30: ZLIB_BTYPE",
76 	"ERR 31: ZLIB_UNDEFINED_SYMBOL",
77 	"ERR 32: ZLIB_UNDEFINED_DISTANCE_S",
78 	"ERR 33: ZLIB_CODE_LENGTH_SYMBOL",
79 	"ERR 34: ZLIB _VHB_ILLEGAL_FETCH",
80 	"ERR 35: ZLIB_UNCOMPRESSED_LEN",
81 	"ERR 36: ZLIB_LIMIT_REACHED",
82 	"ERR 37: ZLIB_CHECKSUM_MISMATCH0",
83 	"ERR 38: ODMA0_AXI_SLVERR",
84 	"ERR 39: ODMA0_AXI_DECERR",
85 	"ERR 40: 0x28 Reserved",
86 	"ERR 41: ODMA1_AXI_SLVERR",
87 	"ERR 42: ODMA1_AXI_DECERR",
88 	"ERR 43: LSB_PARITY_ERR",
89 };
90 
91 void ccp_log_error(struct ccp_device *d, int e)
92 {
93 	dev_err(d->dev, "CCP error: %s (0x%x)\n", ccp_error_codes[e], e);
94 }
95 
96 /* List of CCPs, CCP count, read-write access lock, and access functions
97  *
98  * Lock structure: get ccp_unit_lock for reading whenever we need to
99  * examine the CCP list. While holding it for reading we can acquire
100  * the RR lock to update the round-robin next-CCP pointer. The unit lock
101  * must be acquired before the RR lock.
102  *
103  * If the unit-lock is acquired for writing, we have total control over
104  * the list, so there's no value in getting the RR lock.
105  */
106 static DEFINE_RWLOCK(ccp_unit_lock);
107 static LIST_HEAD(ccp_units);
108 
109 /* Round-robin counter */
110 static DEFINE_SPINLOCK(ccp_rr_lock);
111 static struct ccp_device *ccp_rr;
112 
113 /* Ever-increasing value to produce unique unit numbers */
114 static atomic_t ccp_unit_ordinal;
115 static unsigned int ccp_increment_unit_ordinal(void)
116 {
117 	return atomic_inc_return(&ccp_unit_ordinal);
118 }
119 
120 /**
121  * ccp_add_device - add a CCP device to the list
122  *
123  * @ccp: ccp_device struct pointer
124  *
125  * Put this CCP on the unit list, which makes it available
126  * for use.
127  *
128  * Returns zero if a CCP device is present, -ENODEV otherwise.
129  */
130 void ccp_add_device(struct ccp_device *ccp)
131 {
132 	unsigned long flags;
133 
134 	write_lock_irqsave(&ccp_unit_lock, flags);
135 	list_add_tail(&ccp->entry, &ccp_units);
136 	if (!ccp_rr)
137 		/* We already have the list lock (we're first) so this
138 		 * pointer can't change on us. Set its initial value.
139 		 */
140 		ccp_rr = ccp;
141 	write_unlock_irqrestore(&ccp_unit_lock, flags);
142 }
143 
144 /**
145  * ccp_del_device - remove a CCP device from the list
146  *
147  * @ccp: ccp_device struct pointer
148  *
149  * Remove this unit from the list of devices. If the next device
150  * up for use is this one, adjust the pointer. If this is the last
151  * device, NULL the pointer.
152  */
153 void ccp_del_device(struct ccp_device *ccp)
154 {
155 	unsigned long flags;
156 
157 	write_lock_irqsave(&ccp_unit_lock, flags);
158 	if (ccp_rr == ccp) {
159 		/* ccp_unit_lock is read/write; any read access
160 		 * will be suspended while we make changes to the
161 		 * list and RR pointer.
162 		 */
163 		if (list_is_last(&ccp_rr->entry, &ccp_units))
164 			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
165 						  entry);
166 		else
167 			ccp_rr = list_next_entry(ccp_rr, entry);
168 	}
169 	list_del(&ccp->entry);
170 	if (list_empty(&ccp_units))
171 		ccp_rr = NULL;
172 	write_unlock_irqrestore(&ccp_unit_lock, flags);
173 }
174 
175 
176 
177 int ccp_register_rng(struct ccp_device *ccp)
178 {
179 	int ret = 0;
180 
181 	dev_dbg(ccp->dev, "Registering RNG...\n");
182 	/* Register an RNG */
183 	ccp->hwrng.name = ccp->rngname;
184 	ccp->hwrng.read = ccp_trng_read;
185 	ret = hwrng_register(&ccp->hwrng);
186 	if (ret)
187 		dev_err(ccp->dev, "error registering hwrng (%d)\n", ret);
188 
189 	return ret;
190 }
191 
192 void ccp_unregister_rng(struct ccp_device *ccp)
193 {
194 	if (ccp->hwrng.name)
195 		hwrng_unregister(&ccp->hwrng);
196 }
197 
198 static struct ccp_device *ccp_get_device(void)
199 {
200 	unsigned long flags;
201 	struct ccp_device *dp = NULL;
202 
203 	/* We round-robin through the unit list.
204 	 * The (ccp_rr) pointer refers to the next unit to use.
205 	 */
206 	read_lock_irqsave(&ccp_unit_lock, flags);
207 	if (!list_empty(&ccp_units)) {
208 		spin_lock(&ccp_rr_lock);
209 		dp = ccp_rr;
210 		if (list_is_last(&ccp_rr->entry, &ccp_units))
211 			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
212 						  entry);
213 		else
214 			ccp_rr = list_next_entry(ccp_rr, entry);
215 		spin_unlock(&ccp_rr_lock);
216 	}
217 	read_unlock_irqrestore(&ccp_unit_lock, flags);
218 
219 	return dp;
220 }
221 
222 /**
223  * ccp_present - check if a CCP device is present
224  *
225  * Returns zero if a CCP device is present, -ENODEV otherwise.
226  */
227 int ccp_present(void)
228 {
229 	unsigned long flags;
230 	int ret;
231 
232 	read_lock_irqsave(&ccp_unit_lock, flags);
233 	ret = list_empty(&ccp_units);
234 	read_unlock_irqrestore(&ccp_unit_lock, flags);
235 
236 	return ret ? -ENODEV : 0;
237 }
238 EXPORT_SYMBOL_GPL(ccp_present);
239 
240 /**
241  * ccp_version - get the version of the CCP device
242  *
243  * Returns the version from the first unit on the list;
244  * otherwise a zero if no CCP device is present
245  */
246 unsigned int ccp_version(void)
247 {
248 	struct ccp_device *dp;
249 	unsigned long flags;
250 	int ret = 0;
251 
252 	read_lock_irqsave(&ccp_unit_lock, flags);
253 	if (!list_empty(&ccp_units)) {
254 		dp = list_first_entry(&ccp_units, struct ccp_device, entry);
255 		ret = dp->vdata->version;
256 	}
257 	read_unlock_irqrestore(&ccp_unit_lock, flags);
258 
259 	return ret;
260 }
261 EXPORT_SYMBOL_GPL(ccp_version);
262 
263 /**
264  * ccp_enqueue_cmd - queue an operation for processing by the CCP
265  *
266  * @cmd: ccp_cmd struct to be processed
267  *
268  * Queue a cmd to be processed by the CCP. If queueing the cmd
269  * would exceed the defined length of the cmd queue the cmd will
270  * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
271  * result in a return code of -EBUSY.
272  *
273  * The callback routine specified in the ccp_cmd struct will be
274  * called to notify the caller of completion (if the cmd was not
275  * backlogged) or advancement out of the backlog. If the cmd has
276  * advanced out of the backlog the "err" value of the callback
277  * will be -EINPROGRESS. Any other "err" value during callback is
278  * the result of the operation.
279  *
280  * The cmd has been successfully queued if:
281  *   the return code is -EINPROGRESS or
282  *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
283  */
284 int ccp_enqueue_cmd(struct ccp_cmd *cmd)
285 {
286 	struct ccp_device *ccp = ccp_get_device();
287 	unsigned long flags;
288 	unsigned int i;
289 	int ret;
290 
291 	if (!ccp)
292 		return -ENODEV;
293 
294 	/* Caller must supply a callback routine */
295 	if (!cmd->callback)
296 		return -EINVAL;
297 
298 	cmd->ccp = ccp;
299 
300 	spin_lock_irqsave(&ccp->cmd_lock, flags);
301 
302 	i = ccp->cmd_q_count;
303 
304 	if (ccp->cmd_count >= MAX_CMD_QLEN) {
305 		ret = -EBUSY;
306 		if (cmd->flags & CCP_CMD_MAY_BACKLOG)
307 			list_add_tail(&cmd->entry, &ccp->backlog);
308 	} else {
309 		ret = -EINPROGRESS;
310 		ccp->cmd_count++;
311 		list_add_tail(&cmd->entry, &ccp->cmd);
312 
313 		/* Find an idle queue */
314 		if (!ccp->suspending) {
315 			for (i = 0; i < ccp->cmd_q_count; i++) {
316 				if (ccp->cmd_q[i].active)
317 					continue;
318 
319 				break;
320 			}
321 		}
322 	}
323 
324 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
325 
326 	/* If we found an idle queue, wake it up */
327 	if (i < ccp->cmd_q_count)
328 		wake_up_process(ccp->cmd_q[i].kthread);
329 
330 	return ret;
331 }
332 EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
333 
334 static void ccp_do_cmd_backlog(struct work_struct *work)
335 {
336 	struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
337 	struct ccp_device *ccp = cmd->ccp;
338 	unsigned long flags;
339 	unsigned int i;
340 
341 	cmd->callback(cmd->data, -EINPROGRESS);
342 
343 	spin_lock_irqsave(&ccp->cmd_lock, flags);
344 
345 	ccp->cmd_count++;
346 	list_add_tail(&cmd->entry, &ccp->cmd);
347 
348 	/* Find an idle queue */
349 	for (i = 0; i < ccp->cmd_q_count; i++) {
350 		if (ccp->cmd_q[i].active)
351 			continue;
352 
353 		break;
354 	}
355 
356 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
357 
358 	/* If we found an idle queue, wake it up */
359 	if (i < ccp->cmd_q_count)
360 		wake_up_process(ccp->cmd_q[i].kthread);
361 }
362 
363 static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
364 {
365 	struct ccp_device *ccp = cmd_q->ccp;
366 	struct ccp_cmd *cmd = NULL;
367 	struct ccp_cmd *backlog = NULL;
368 	unsigned long flags;
369 
370 	spin_lock_irqsave(&ccp->cmd_lock, flags);
371 
372 	cmd_q->active = 0;
373 
374 	if (ccp->suspending) {
375 		cmd_q->suspended = 1;
376 
377 		spin_unlock_irqrestore(&ccp->cmd_lock, flags);
378 		wake_up_interruptible(&ccp->suspend_queue);
379 
380 		return NULL;
381 	}
382 
383 	if (ccp->cmd_count) {
384 		cmd_q->active = 1;
385 
386 		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
387 		list_del(&cmd->entry);
388 
389 		ccp->cmd_count--;
390 	}
391 
392 	if (!list_empty(&ccp->backlog)) {
393 		backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
394 					   entry);
395 		list_del(&backlog->entry);
396 	}
397 
398 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
399 
400 	if (backlog) {
401 		INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
402 		schedule_work(&backlog->work);
403 	}
404 
405 	return cmd;
406 }
407 
408 static void ccp_do_cmd_complete(unsigned long data)
409 {
410 	struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
411 	struct ccp_cmd *cmd = tdata->cmd;
412 
413 	cmd->callback(cmd->data, cmd->ret);
414 	complete(&tdata->completion);
415 }
416 
417 /**
418  * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
419  *
420  * @data: thread-specific data
421  */
422 int ccp_cmd_queue_thread(void *data)
423 {
424 	struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
425 	struct ccp_cmd *cmd;
426 	struct ccp_tasklet_data tdata;
427 	struct tasklet_struct tasklet;
428 
429 	tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
430 
431 	set_current_state(TASK_INTERRUPTIBLE);
432 	while (!kthread_should_stop()) {
433 		schedule();
434 
435 		set_current_state(TASK_INTERRUPTIBLE);
436 
437 		cmd = ccp_dequeue_cmd(cmd_q);
438 		if (!cmd)
439 			continue;
440 
441 		__set_current_state(TASK_RUNNING);
442 
443 		/* Execute the command */
444 		cmd->ret = ccp_run_cmd(cmd_q, cmd);
445 
446 		/* Schedule the completion callback */
447 		tdata.cmd = cmd;
448 		init_completion(&tdata.completion);
449 		tasklet_schedule(&tasklet);
450 		wait_for_completion(&tdata.completion);
451 	}
452 
453 	__set_current_state(TASK_RUNNING);
454 
455 	return 0;
456 }
457 
458 /**
459  * ccp_alloc_struct - allocate and initialize the ccp_device struct
460  *
461  * @dev: device struct of the CCP
462  */
463 struct ccp_device *ccp_alloc_struct(struct device *dev)
464 {
465 	struct ccp_device *ccp;
466 
467 	ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
468 	if (!ccp)
469 		return NULL;
470 	ccp->dev = dev;
471 
472 	INIT_LIST_HEAD(&ccp->cmd);
473 	INIT_LIST_HEAD(&ccp->backlog);
474 
475 	spin_lock_init(&ccp->cmd_lock);
476 	mutex_init(&ccp->req_mutex);
477 	mutex_init(&ccp->sb_mutex);
478 	ccp->sb_count = KSB_COUNT;
479 	ccp->sb_start = 0;
480 
481 	/* Initialize the wait queues */
482 	init_waitqueue_head(&ccp->sb_queue);
483 	init_waitqueue_head(&ccp->suspend_queue);
484 
485 	ccp->ord = ccp_increment_unit_ordinal();
486 	snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", ccp->ord);
487 	snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", ccp->ord);
488 
489 	return ccp;
490 }
491 
492 int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
493 {
494 	struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
495 	u32 trng_value;
496 	int len = min_t(int, sizeof(trng_value), max);
497 
498 	/* Locking is provided by the caller so we can update device
499 	 * hwrng-related fields safely
500 	 */
501 	trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
502 	if (!trng_value) {
503 		/* Zero is returned if not data is available or if a
504 		 * bad-entropy error is present. Assume an error if
505 		 * we exceed TRNG_RETRIES reads of zero.
506 		 */
507 		if (ccp->hwrng_retries++ > TRNG_RETRIES)
508 			return -EIO;
509 
510 		return 0;
511 	}
512 
513 	/* Reset the counter and save the rng value */
514 	ccp->hwrng_retries = 0;
515 	memcpy(data, &trng_value, len);
516 
517 	return len;
518 }
519 
520 #ifdef CONFIG_PM
521 bool ccp_queues_suspended(struct ccp_device *ccp)
522 {
523 	unsigned int suspended = 0;
524 	unsigned long flags;
525 	unsigned int i;
526 
527 	spin_lock_irqsave(&ccp->cmd_lock, flags);
528 
529 	for (i = 0; i < ccp->cmd_q_count; i++)
530 		if (ccp->cmd_q[i].suspended)
531 			suspended++;
532 
533 	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
534 
535 	return ccp->cmd_q_count == suspended;
536 }
537 #endif
538 
539 static int __init ccp_mod_init(void)
540 {
541 #ifdef CONFIG_X86
542 	int ret;
543 
544 	ret = ccp_pci_init();
545 	if (ret)
546 		return ret;
547 
548 	/* Don't leave the driver loaded if init failed */
549 	if (ccp_present() != 0) {
550 		ccp_pci_exit();
551 		return -ENODEV;
552 	}
553 
554 	return 0;
555 #endif
556 
557 #ifdef CONFIG_ARM64
558 	int ret;
559 
560 	ret = ccp_platform_init();
561 	if (ret)
562 		return ret;
563 
564 	/* Don't leave the driver loaded if init failed */
565 	if (ccp_present() != 0) {
566 		ccp_platform_exit();
567 		return -ENODEV;
568 	}
569 
570 	return 0;
571 #endif
572 
573 	return -ENODEV;
574 }
575 
576 static void __exit ccp_mod_exit(void)
577 {
578 #ifdef CONFIG_X86
579 	ccp_pci_exit();
580 #endif
581 
582 #ifdef CONFIG_ARM64
583 	ccp_platform_exit();
584 #endif
585 }
586 
587 module_init(ccp_mod_init);
588 module_exit(ccp_mod_exit);
589