xref: /openbmc/linux/drivers/crypto/ccp/ccp-dev-v5.c (revision feac8c8b)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2016,2017 Advanced Micro Devices, Inc.
5  *
6  * Author: Gary R Hook <gary.hook@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/kthread.h>
17 #include <linux/debugfs.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/compiler.h>
21 #include <linux/ccp.h>
22 
23 #include "ccp-dev.h"
24 
25 /* Allocate the requested number of contiguous LSB slots
26  * from the LSB bitmap. Look in the private range for this
27  * queue first; failing that, check the public area.
28  * If no space is available, wait around.
29  * Return: first slot number
30  */
31 static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
32 {
33 	struct ccp_device *ccp;
34 	int start;
35 
36 	/* First look at the map for the queue */
37 	if (cmd_q->lsb >= 0) {
38 		start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
39 							LSB_SIZE,
40 							0, count, 0);
41 		if (start < LSB_SIZE) {
42 			bitmap_set(cmd_q->lsbmap, start, count);
43 			return start + cmd_q->lsb * LSB_SIZE;
44 		}
45 	}
46 
47 	/* No joy; try to get an entry from the shared blocks */
48 	ccp = cmd_q->ccp;
49 	for (;;) {
50 		mutex_lock(&ccp->sb_mutex);
51 
52 		start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
53 							MAX_LSB_CNT * LSB_SIZE,
54 							0,
55 							count, 0);
56 		if (start <= MAX_LSB_CNT * LSB_SIZE) {
57 			bitmap_set(ccp->lsbmap, start, count);
58 
59 			mutex_unlock(&ccp->sb_mutex);
60 			return start;
61 		}
62 
63 		ccp->sb_avail = 0;
64 
65 		mutex_unlock(&ccp->sb_mutex);
66 
67 		/* Wait for KSB entries to become available */
68 		if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
69 			return 0;
70 	}
71 }
72 
73 /* Free a number of LSB slots from the bitmap, starting at
74  * the indicated starting slot number.
75  */
76 static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
77 			 unsigned int count)
78 {
79 	if (!start)
80 		return;
81 
82 	if (cmd_q->lsb == start) {
83 		/* An entry from the private LSB */
84 		bitmap_clear(cmd_q->lsbmap, start, count);
85 	} else {
86 		/* From the shared LSBs */
87 		struct ccp_device *ccp = cmd_q->ccp;
88 
89 		mutex_lock(&ccp->sb_mutex);
90 		bitmap_clear(ccp->lsbmap, start, count);
91 		ccp->sb_avail = 1;
92 		mutex_unlock(&ccp->sb_mutex);
93 		wake_up_interruptible_all(&ccp->sb_queue);
94 	}
95 }
96 
97 /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
98 union ccp_function {
99 	struct {
100 		u16 size:7;
101 		u16 encrypt:1;
102 		u16 mode:5;
103 		u16 type:2;
104 	} aes;
105 	struct {
106 		u16 size:7;
107 		u16 encrypt:1;
108 		u16 rsvd:5;
109 		u16 type:2;
110 	} aes_xts;
111 	struct {
112 		u16 size:7;
113 		u16 encrypt:1;
114 		u16 mode:5;
115 		u16 type:2;
116 	} des3;
117 	struct {
118 		u16 rsvd1:10;
119 		u16 type:4;
120 		u16 rsvd2:1;
121 	} sha;
122 	struct {
123 		u16 mode:3;
124 		u16 size:12;
125 	} rsa;
126 	struct {
127 		u16 byteswap:2;
128 		u16 bitwise:3;
129 		u16 reflect:2;
130 		u16 rsvd:8;
131 	} pt;
132 	struct  {
133 		u16 rsvd:13;
134 	} zlib;
135 	struct {
136 		u16 size:10;
137 		u16 type:2;
138 		u16 mode:3;
139 	} ecc;
140 	u16 raw;
141 };
142 
143 #define	CCP_AES_SIZE(p)		((p)->aes.size)
144 #define	CCP_AES_ENCRYPT(p)	((p)->aes.encrypt)
145 #define	CCP_AES_MODE(p)		((p)->aes.mode)
146 #define	CCP_AES_TYPE(p)		((p)->aes.type)
147 #define	CCP_XTS_SIZE(p)		((p)->aes_xts.size)
148 #define	CCP_XTS_TYPE(p)		((p)->aes_xts.type)
149 #define	CCP_XTS_ENCRYPT(p)	((p)->aes_xts.encrypt)
150 #define	CCP_DES3_SIZE(p)	((p)->des3.size)
151 #define	CCP_DES3_ENCRYPT(p)	((p)->des3.encrypt)
152 #define	CCP_DES3_MODE(p)	((p)->des3.mode)
153 #define	CCP_DES3_TYPE(p)	((p)->des3.type)
154 #define	CCP_SHA_TYPE(p)		((p)->sha.type)
155 #define	CCP_RSA_SIZE(p)		((p)->rsa.size)
156 #define	CCP_PT_BYTESWAP(p)	((p)->pt.byteswap)
157 #define	CCP_PT_BITWISE(p)	((p)->pt.bitwise)
158 #define	CCP_ECC_MODE(p)		((p)->ecc.mode)
159 #define	CCP_ECC_AFFINE(p)	((p)->ecc.one)
160 
161 /* Word 0 */
162 #define CCP5_CMD_DW0(p)		((p)->dw0)
163 #define CCP5_CMD_SOC(p)		(CCP5_CMD_DW0(p).soc)
164 #define CCP5_CMD_IOC(p)		(CCP5_CMD_DW0(p).ioc)
165 #define CCP5_CMD_INIT(p)	(CCP5_CMD_DW0(p).init)
166 #define CCP5_CMD_EOM(p)		(CCP5_CMD_DW0(p).eom)
167 #define CCP5_CMD_FUNCTION(p)	(CCP5_CMD_DW0(p).function)
168 #define CCP5_CMD_ENGINE(p)	(CCP5_CMD_DW0(p).engine)
169 #define CCP5_CMD_PROT(p)	(CCP5_CMD_DW0(p).prot)
170 
171 /* Word 1 */
172 #define CCP5_CMD_DW1(p)		((p)->length)
173 #define CCP5_CMD_LEN(p)		(CCP5_CMD_DW1(p))
174 
175 /* Word 2 */
176 #define CCP5_CMD_DW2(p)		((p)->src_lo)
177 #define CCP5_CMD_SRC_LO(p)	(CCP5_CMD_DW2(p))
178 
179 /* Word 3 */
180 #define CCP5_CMD_DW3(p)		((p)->dw3)
181 #define CCP5_CMD_SRC_MEM(p)	((p)->dw3.src_mem)
182 #define CCP5_CMD_SRC_HI(p)	((p)->dw3.src_hi)
183 #define CCP5_CMD_LSB_ID(p)	((p)->dw3.lsb_cxt_id)
184 #define CCP5_CMD_FIX_SRC(p)	((p)->dw3.fixed)
185 
186 /* Words 4/5 */
187 #define CCP5_CMD_DW4(p)		((p)->dw4)
188 #define CCP5_CMD_DST_LO(p)	(CCP5_CMD_DW4(p).dst_lo)
189 #define CCP5_CMD_DW5(p)		((p)->dw5.fields.dst_hi)
190 #define CCP5_CMD_DST_HI(p)	(CCP5_CMD_DW5(p))
191 #define CCP5_CMD_DST_MEM(p)	((p)->dw5.fields.dst_mem)
192 #define CCP5_CMD_FIX_DST(p)	((p)->dw5.fields.fixed)
193 #define CCP5_CMD_SHA_LO(p)	((p)->dw4.sha_len_lo)
194 #define CCP5_CMD_SHA_HI(p)	((p)->dw5.sha_len_hi)
195 
196 /* Word 6/7 */
197 #define CCP5_CMD_DW6(p)		((p)->key_lo)
198 #define CCP5_CMD_KEY_LO(p)	(CCP5_CMD_DW6(p))
199 #define CCP5_CMD_DW7(p)		((p)->dw7)
200 #define CCP5_CMD_KEY_HI(p)	((p)->dw7.key_hi)
201 #define CCP5_CMD_KEY_MEM(p)	((p)->dw7.key_mem)
202 
203 static inline u32 low_address(unsigned long addr)
204 {
205 	return (u64)addr & 0x0ffffffff;
206 }
207 
208 static inline u32 high_address(unsigned long addr)
209 {
210 	return ((u64)addr >> 32) & 0x00000ffff;
211 }
212 
213 static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
214 {
215 	unsigned int head_idx, n;
216 	u32 head_lo, queue_start;
217 
218 	queue_start = low_address(cmd_q->qdma_tail);
219 	head_lo = ioread32(cmd_q->reg_head_lo);
220 	head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
221 
222 	n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
223 
224 	return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
225 }
226 
227 static int ccp5_do_cmd(struct ccp5_desc *desc,
228 		       struct ccp_cmd_queue *cmd_q)
229 {
230 	u32 *mP;
231 	__le32 *dP;
232 	u32 tail;
233 	int	i;
234 	int ret = 0;
235 
236 	cmd_q->total_ops++;
237 
238 	if (CCP5_CMD_SOC(desc)) {
239 		CCP5_CMD_IOC(desc) = 1;
240 		CCP5_CMD_SOC(desc) = 0;
241 	}
242 	mutex_lock(&cmd_q->q_mutex);
243 
244 	mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
245 	dP = (__le32 *) desc;
246 	for (i = 0; i < 8; i++)
247 		mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
248 
249 	cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
250 
251 	/* The data used by this command must be flushed to memory */
252 	wmb();
253 
254 	/* Write the new tail address back to the queue register */
255 	tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
256 	iowrite32(tail, cmd_q->reg_tail_lo);
257 
258 	/* Turn the queue back on using our cached control register */
259 	iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
260 	mutex_unlock(&cmd_q->q_mutex);
261 
262 	if (CCP5_CMD_IOC(desc)) {
263 		/* Wait for the job to complete */
264 		ret = wait_event_interruptible(cmd_q->int_queue,
265 					       cmd_q->int_rcvd);
266 		if (ret || cmd_q->cmd_error) {
267 			/* Log the error and flush the queue by
268 			 * moving the head pointer
269 			 */
270 			if (cmd_q->cmd_error)
271 				ccp_log_error(cmd_q->ccp,
272 					      cmd_q->cmd_error);
273 			iowrite32(tail, cmd_q->reg_head_lo);
274 			if (!ret)
275 				ret = -EIO;
276 		}
277 		cmd_q->int_rcvd = 0;
278 	}
279 
280 	return ret;
281 }
282 
283 static int ccp5_perform_aes(struct ccp_op *op)
284 {
285 	struct ccp5_desc desc;
286 	union ccp_function function;
287 	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
288 
289 	op->cmd_q->total_aes_ops++;
290 
291 	/* Zero out all the fields of the command desc */
292 	memset(&desc, 0, Q_DESC_SIZE);
293 
294 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
295 
296 	CCP5_CMD_SOC(&desc) = op->soc;
297 	CCP5_CMD_IOC(&desc) = 1;
298 	CCP5_CMD_INIT(&desc) = op->init;
299 	CCP5_CMD_EOM(&desc) = op->eom;
300 	CCP5_CMD_PROT(&desc) = 0;
301 
302 	function.raw = 0;
303 	CCP_AES_ENCRYPT(&function) = op->u.aes.action;
304 	CCP_AES_MODE(&function) = op->u.aes.mode;
305 	CCP_AES_TYPE(&function) = op->u.aes.type;
306 	CCP_AES_SIZE(&function) = op->u.aes.size;
307 
308 	CCP5_CMD_FUNCTION(&desc) = function.raw;
309 
310 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
311 
312 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
313 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
314 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
315 
316 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
317 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
318 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
319 
320 	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
321 	CCP5_CMD_KEY_HI(&desc) = 0;
322 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
323 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
324 
325 	return ccp5_do_cmd(&desc, op->cmd_q);
326 }
327 
328 static int ccp5_perform_xts_aes(struct ccp_op *op)
329 {
330 	struct ccp5_desc desc;
331 	union ccp_function function;
332 	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
333 
334 	op->cmd_q->total_xts_aes_ops++;
335 
336 	/* Zero out all the fields of the command desc */
337 	memset(&desc, 0, Q_DESC_SIZE);
338 
339 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
340 
341 	CCP5_CMD_SOC(&desc) = op->soc;
342 	CCP5_CMD_IOC(&desc) = 1;
343 	CCP5_CMD_INIT(&desc) = op->init;
344 	CCP5_CMD_EOM(&desc) = op->eom;
345 	CCP5_CMD_PROT(&desc) = 0;
346 
347 	function.raw = 0;
348 	CCP_XTS_TYPE(&function) = op->u.xts.type;
349 	CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
350 	CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
351 	CCP5_CMD_FUNCTION(&desc) = function.raw;
352 
353 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
354 
355 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
356 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
357 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
358 
359 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
360 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
361 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
362 
363 	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
364 	CCP5_CMD_KEY_HI(&desc) =  0;
365 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
366 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
367 
368 	return ccp5_do_cmd(&desc, op->cmd_q);
369 }
370 
371 static int ccp5_perform_sha(struct ccp_op *op)
372 {
373 	struct ccp5_desc desc;
374 	union ccp_function function;
375 
376 	op->cmd_q->total_sha_ops++;
377 
378 	/* Zero out all the fields of the command desc */
379 	memset(&desc, 0, Q_DESC_SIZE);
380 
381 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
382 
383 	CCP5_CMD_SOC(&desc) = op->soc;
384 	CCP5_CMD_IOC(&desc) = 1;
385 	CCP5_CMD_INIT(&desc) = 1;
386 	CCP5_CMD_EOM(&desc) = op->eom;
387 	CCP5_CMD_PROT(&desc) = 0;
388 
389 	function.raw = 0;
390 	CCP_SHA_TYPE(&function) = op->u.sha.type;
391 	CCP5_CMD_FUNCTION(&desc) = function.raw;
392 
393 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
394 
395 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
396 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
397 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
398 
399 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
400 
401 	if (op->eom) {
402 		CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
403 		CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
404 	} else {
405 		CCP5_CMD_SHA_LO(&desc) = 0;
406 		CCP5_CMD_SHA_HI(&desc) = 0;
407 	}
408 
409 	return ccp5_do_cmd(&desc, op->cmd_q);
410 }
411 
412 static int ccp5_perform_des3(struct ccp_op *op)
413 {
414 	struct ccp5_desc desc;
415 	union ccp_function function;
416 	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
417 
418 	op->cmd_q->total_3des_ops++;
419 
420 	/* Zero out all the fields of the command desc */
421 	memset(&desc, 0, sizeof(struct ccp5_desc));
422 
423 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;
424 
425 	CCP5_CMD_SOC(&desc) = op->soc;
426 	CCP5_CMD_IOC(&desc) = 1;
427 	CCP5_CMD_INIT(&desc) = op->init;
428 	CCP5_CMD_EOM(&desc) = op->eom;
429 	CCP5_CMD_PROT(&desc) = 0;
430 
431 	function.raw = 0;
432 	CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
433 	CCP_DES3_MODE(&function) = op->u.des3.mode;
434 	CCP_DES3_TYPE(&function) = op->u.des3.type;
435 	CCP5_CMD_FUNCTION(&desc) = function.raw;
436 
437 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
438 
439 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
440 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
441 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
442 
443 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
444 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
445 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
446 
447 	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
448 	CCP5_CMD_KEY_HI(&desc) = 0;
449 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
450 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
451 
452 	return ccp5_do_cmd(&desc, op->cmd_q);
453 }
454 
455 static int ccp5_perform_rsa(struct ccp_op *op)
456 {
457 	struct ccp5_desc desc;
458 	union ccp_function function;
459 
460 	op->cmd_q->total_rsa_ops++;
461 
462 	/* Zero out all the fields of the command desc */
463 	memset(&desc, 0, Q_DESC_SIZE);
464 
465 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
466 
467 	CCP5_CMD_SOC(&desc) = op->soc;
468 	CCP5_CMD_IOC(&desc) = 1;
469 	CCP5_CMD_INIT(&desc) = 0;
470 	CCP5_CMD_EOM(&desc) = 1;
471 	CCP5_CMD_PROT(&desc) = 0;
472 
473 	function.raw = 0;
474 	CCP_RSA_SIZE(&function) = (op->u.rsa.mod_size + 7) >> 3;
475 	CCP5_CMD_FUNCTION(&desc) = function.raw;
476 
477 	CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
478 
479 	/* Source is from external memory */
480 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
481 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
482 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
483 
484 	/* Destination is in external memory */
485 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
486 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
487 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
488 
489 	/* Key (Exponent) is in external memory */
490 	CCP5_CMD_KEY_LO(&desc) = ccp_addr_lo(&op->exp.u.dma);
491 	CCP5_CMD_KEY_HI(&desc) = ccp_addr_hi(&op->exp.u.dma);
492 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
493 
494 	return ccp5_do_cmd(&desc, op->cmd_q);
495 }
496 
497 static int ccp5_perform_passthru(struct ccp_op *op)
498 {
499 	struct ccp5_desc desc;
500 	union ccp_function function;
501 	struct ccp_dma_info *saddr = &op->src.u.dma;
502 	struct ccp_dma_info *daddr = &op->dst.u.dma;
503 
504 
505 	op->cmd_q->total_pt_ops++;
506 
507 	memset(&desc, 0, Q_DESC_SIZE);
508 
509 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
510 
511 	CCP5_CMD_SOC(&desc) = 0;
512 	CCP5_CMD_IOC(&desc) = 1;
513 	CCP5_CMD_INIT(&desc) = 0;
514 	CCP5_CMD_EOM(&desc) = op->eom;
515 	CCP5_CMD_PROT(&desc) = 0;
516 
517 	function.raw = 0;
518 	CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
519 	CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
520 	CCP5_CMD_FUNCTION(&desc) = function.raw;
521 
522 	/* Length of source data is always 256 bytes */
523 	if (op->src.type == CCP_MEMTYPE_SYSTEM)
524 		CCP5_CMD_LEN(&desc) = saddr->length;
525 	else
526 		CCP5_CMD_LEN(&desc) = daddr->length;
527 
528 	if (op->src.type == CCP_MEMTYPE_SYSTEM) {
529 		CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
530 		CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
531 		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
532 
533 		if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
534 			CCP5_CMD_LSB_ID(&desc) = op->sb_key;
535 	} else {
536 		u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
537 
538 		CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
539 		CCP5_CMD_SRC_HI(&desc) = 0;
540 		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
541 	}
542 
543 	if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
544 		CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
545 		CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
546 		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
547 	} else {
548 		u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
549 
550 		CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
551 		CCP5_CMD_DST_HI(&desc) = 0;
552 		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
553 	}
554 
555 	return ccp5_do_cmd(&desc, op->cmd_q);
556 }
557 
558 static int ccp5_perform_ecc(struct ccp_op *op)
559 {
560 	struct ccp5_desc desc;
561 	union ccp_function function;
562 
563 	op->cmd_q->total_ecc_ops++;
564 
565 	/* Zero out all the fields of the command desc */
566 	memset(&desc, 0, Q_DESC_SIZE);
567 
568 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
569 
570 	CCP5_CMD_SOC(&desc) = 0;
571 	CCP5_CMD_IOC(&desc) = 1;
572 	CCP5_CMD_INIT(&desc) = 0;
573 	CCP5_CMD_EOM(&desc) = 1;
574 	CCP5_CMD_PROT(&desc) = 0;
575 
576 	function.raw = 0;
577 	function.ecc.mode = op->u.ecc.function;
578 	CCP5_CMD_FUNCTION(&desc) = function.raw;
579 
580 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
581 
582 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
583 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
584 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
585 
586 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
587 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
588 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
589 
590 	return ccp5_do_cmd(&desc, op->cmd_q);
591 }
592 
593 static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
594 {
595 	int q_mask = 1 << cmd_q->id;
596 	int queues = 0;
597 	int j;
598 
599 	/* Build a bit mask to know which LSBs this queue has access to.
600 	 * Don't bother with segment 0 as it has special privileges.
601 	 */
602 	for (j = 1; j < MAX_LSB_CNT; j++) {
603 		if (status & q_mask)
604 			bitmap_set(cmd_q->lsbmask, j, 1);
605 		status >>= LSB_REGION_WIDTH;
606 	}
607 	queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
608 	dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
609 		 cmd_q->id, queues);
610 
611 	return queues ? 0 : -EINVAL;
612 }
613 
614 static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
615 					int lsb_cnt, int n_lsbs,
616 					unsigned long *lsb_pub)
617 {
618 	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
619 	int bitno;
620 	int qlsb_wgt;
621 	int i;
622 
623 	/* For each queue:
624 	 * If the count of potential LSBs available to a queue matches the
625 	 * ordinal given to us in lsb_cnt:
626 	 * Copy the mask of possible LSBs for this queue into "qlsb";
627 	 * For each bit in qlsb, see if the corresponding bit in the
628 	 * aggregation mask is set; if so, we have a match.
629 	 *     If we have a match, clear the bit in the aggregation to
630 	 *     mark it as no longer available.
631 	 *     If there is no match, clear the bit in qlsb and keep looking.
632 	 */
633 	for (i = 0; i < ccp->cmd_q_count; i++) {
634 		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
635 
636 		qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
637 
638 		if (qlsb_wgt == lsb_cnt) {
639 			bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
640 
641 			bitno = find_first_bit(qlsb, MAX_LSB_CNT);
642 			while (bitno < MAX_LSB_CNT) {
643 				if (test_bit(bitno, lsb_pub)) {
644 					/* We found an available LSB
645 					 * that this queue can access
646 					 */
647 					cmd_q->lsb = bitno;
648 					bitmap_clear(lsb_pub, bitno, 1);
649 					dev_dbg(ccp->dev,
650 						 "Queue %d gets LSB %d\n",
651 						 i, bitno);
652 					break;
653 				}
654 				bitmap_clear(qlsb, bitno, 1);
655 				bitno = find_first_bit(qlsb, MAX_LSB_CNT);
656 			}
657 			if (bitno >= MAX_LSB_CNT)
658 				return -EINVAL;
659 			n_lsbs--;
660 		}
661 	}
662 	return n_lsbs;
663 }
664 
665 /* For each queue, from the most- to least-constrained:
666  * find an LSB that can be assigned to the queue. If there are N queues that
667  * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
668  * dedicated LSB. Remaining LSB regions become a shared resource.
669  * If we have fewer LSBs than queues, all LSB regions become shared resources.
670  */
671 static int ccp_assign_lsbs(struct ccp_device *ccp)
672 {
673 	DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
674 	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
675 	int n_lsbs = 0;
676 	int bitno;
677 	int i, lsb_cnt;
678 	int rc = 0;
679 
680 	bitmap_zero(lsb_pub, MAX_LSB_CNT);
681 
682 	/* Create an aggregate bitmap to get a total count of available LSBs */
683 	for (i = 0; i < ccp->cmd_q_count; i++)
684 		bitmap_or(lsb_pub,
685 			  lsb_pub, ccp->cmd_q[i].lsbmask,
686 			  MAX_LSB_CNT);
687 
688 	n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
689 
690 	if (n_lsbs >= ccp->cmd_q_count) {
691 		/* We have enough LSBS to give every queue a private LSB.
692 		 * Brute force search to start with the queues that are more
693 		 * constrained in LSB choice. When an LSB is privately
694 		 * assigned, it is removed from the public mask.
695 		 * This is an ugly N squared algorithm with some optimization.
696 		 */
697 		for (lsb_cnt = 1;
698 		     n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
699 		     lsb_cnt++) {
700 			rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
701 							  lsb_pub);
702 			if (rc < 0)
703 				return -EINVAL;
704 			n_lsbs = rc;
705 		}
706 	}
707 
708 	rc = 0;
709 	/* What's left of the LSBs, according to the public mask, now become
710 	 * shared. Any zero bits in the lsb_pub mask represent an LSB region
711 	 * that can't be used as a shared resource, so mark the LSB slots for
712 	 * them as "in use".
713 	 */
714 	bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
715 
716 	bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
717 	while (bitno < MAX_LSB_CNT) {
718 		bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
719 		bitmap_set(qlsb, bitno, 1);
720 		bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
721 	}
722 
723 	return rc;
724 }
725 
726 static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
727 {
728 	unsigned int i;
729 
730 	for (i = 0; i < ccp->cmd_q_count; i++)
731 		iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
732 }
733 
734 static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
735 {
736 	unsigned int i;
737 
738 	for (i = 0; i < ccp->cmd_q_count; i++)
739 		iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
740 }
741 
742 static void ccp5_irq_bh(unsigned long data)
743 {
744 	struct ccp_device *ccp = (struct ccp_device *)data;
745 	u32 status;
746 	unsigned int i;
747 
748 	for (i = 0; i < ccp->cmd_q_count; i++) {
749 		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
750 
751 		status = ioread32(cmd_q->reg_interrupt_status);
752 
753 		if (status) {
754 			cmd_q->int_status = status;
755 			cmd_q->q_status = ioread32(cmd_q->reg_status);
756 			cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
757 
758 			/* On error, only save the first error value */
759 			if ((status & INT_ERROR) && !cmd_q->cmd_error)
760 				cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
761 
762 			cmd_q->int_rcvd = 1;
763 
764 			/* Acknowledge the interrupt and wake the kthread */
765 			iowrite32(status, cmd_q->reg_interrupt_status);
766 			wake_up_interruptible(&cmd_q->int_queue);
767 		}
768 	}
769 	ccp5_enable_queue_interrupts(ccp);
770 }
771 
772 static irqreturn_t ccp5_irq_handler(int irq, void *data)
773 {
774 	struct ccp_device *ccp = (struct ccp_device *)data;
775 
776 	ccp5_disable_queue_interrupts(ccp);
777 	ccp->total_interrupts++;
778 	if (ccp->use_tasklet)
779 		tasklet_schedule(&ccp->irq_tasklet);
780 	else
781 		ccp5_irq_bh((unsigned long)ccp);
782 	return IRQ_HANDLED;
783 }
784 
785 static int ccp5_init(struct ccp_device *ccp)
786 {
787 	struct device *dev = ccp->dev;
788 	struct ccp_cmd_queue *cmd_q;
789 	struct dma_pool *dma_pool;
790 	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
791 	unsigned int qmr, i;
792 	u64 status;
793 	u32 status_lo, status_hi;
794 	int ret;
795 
796 	/* Find available queues */
797 	qmr = ioread32(ccp->io_regs + Q_MASK_REG);
798 	for (i = 0; i < MAX_HW_QUEUES; i++) {
799 
800 		if (!(qmr & (1 << i)))
801 			continue;
802 
803 		/* Allocate a dma pool for this queue */
804 		snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
805 			 ccp->name, i);
806 		dma_pool = dma_pool_create(dma_pool_name, dev,
807 					   CCP_DMAPOOL_MAX_SIZE,
808 					   CCP_DMAPOOL_ALIGN, 0);
809 		if (!dma_pool) {
810 			dev_err(dev, "unable to allocate dma pool\n");
811 			ret = -ENOMEM;
812 		}
813 
814 		cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
815 		ccp->cmd_q_count++;
816 
817 		cmd_q->ccp = ccp;
818 		cmd_q->id = i;
819 		cmd_q->dma_pool = dma_pool;
820 		mutex_init(&cmd_q->q_mutex);
821 
822 		/* Page alignment satisfies our needs for N <= 128 */
823 		BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
824 		cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
825 		cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
826 						   &cmd_q->qbase_dma,
827 						   GFP_KERNEL);
828 		if (!cmd_q->qbase) {
829 			dev_err(dev, "unable to allocate command queue\n");
830 			ret = -ENOMEM;
831 			goto e_pool;
832 		}
833 
834 		cmd_q->qidx = 0;
835 		/* Preset some register values and masks that are queue
836 		 * number dependent
837 		 */
838 		cmd_q->reg_control = ccp->io_regs +
839 				     CMD5_Q_STATUS_INCR * (i + 1);
840 		cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
841 		cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
842 		cmd_q->reg_int_enable = cmd_q->reg_control +
843 					CMD5_Q_INT_ENABLE_BASE;
844 		cmd_q->reg_interrupt_status = cmd_q->reg_control +
845 					      CMD5_Q_INTERRUPT_STATUS_BASE;
846 		cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
847 		cmd_q->reg_int_status = cmd_q->reg_control +
848 					CMD5_Q_INT_STATUS_BASE;
849 		cmd_q->reg_dma_status = cmd_q->reg_control +
850 					CMD5_Q_DMA_STATUS_BASE;
851 		cmd_q->reg_dma_read_status = cmd_q->reg_control +
852 					     CMD5_Q_DMA_READ_STATUS_BASE;
853 		cmd_q->reg_dma_write_status = cmd_q->reg_control +
854 					      CMD5_Q_DMA_WRITE_STATUS_BASE;
855 
856 		init_waitqueue_head(&cmd_q->int_queue);
857 
858 		dev_dbg(dev, "queue #%u available\n", i);
859 	}
860 
861 	if (ccp->cmd_q_count == 0) {
862 		dev_notice(dev, "no command queues available\n");
863 		ret = -EIO;
864 		goto e_pool;
865 	}
866 
867 	/* Turn off the queues and disable interrupts until ready */
868 	ccp5_disable_queue_interrupts(ccp);
869 	for (i = 0; i < ccp->cmd_q_count; i++) {
870 		cmd_q = &ccp->cmd_q[i];
871 
872 		cmd_q->qcontrol = 0; /* Start with nothing */
873 		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
874 
875 		ioread32(cmd_q->reg_int_status);
876 		ioread32(cmd_q->reg_status);
877 
878 		/* Clear the interrupt status */
879 		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
880 	}
881 
882 	dev_dbg(dev, "Requesting an IRQ...\n");
883 	/* Request an irq */
884 	ret = sp_request_ccp_irq(ccp->sp, ccp5_irq_handler, ccp->name, ccp);
885 	if (ret) {
886 		dev_err(dev, "unable to allocate an IRQ\n");
887 		goto e_pool;
888 	}
889 	/* Initialize the ISR tasklet */
890 	if (ccp->use_tasklet)
891 		tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
892 			     (unsigned long)ccp);
893 
894 	dev_dbg(dev, "Loading LSB map...\n");
895 	/* Copy the private LSB mask to the public registers */
896 	status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
897 	status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
898 	iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
899 	iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
900 	status = ((u64)status_hi<<30) | (u64)status_lo;
901 
902 	dev_dbg(dev, "Configuring virtual queues...\n");
903 	/* Configure size of each virtual queue accessible to host */
904 	for (i = 0; i < ccp->cmd_q_count; i++) {
905 		u32 dma_addr_lo;
906 		u32 dma_addr_hi;
907 
908 		cmd_q = &ccp->cmd_q[i];
909 
910 		cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
911 		cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
912 
913 		cmd_q->qdma_tail = cmd_q->qbase_dma;
914 		dma_addr_lo = low_address(cmd_q->qdma_tail);
915 		iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
916 		iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
917 
918 		dma_addr_hi = high_address(cmd_q->qdma_tail);
919 		cmd_q->qcontrol |= (dma_addr_hi << 16);
920 		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
921 
922 		/* Find the LSB regions accessible to the queue */
923 		ccp_find_lsb_regions(cmd_q, status);
924 		cmd_q->lsb = -1; /* Unassigned value */
925 	}
926 
927 	dev_dbg(dev, "Assigning LSBs...\n");
928 	ret = ccp_assign_lsbs(ccp);
929 	if (ret) {
930 		dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
931 		goto e_irq;
932 	}
933 
934 	/* Optimization: pre-allocate LSB slots for each queue */
935 	for (i = 0; i < ccp->cmd_q_count; i++) {
936 		ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
937 		ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
938 	}
939 
940 	dev_dbg(dev, "Starting threads...\n");
941 	/* Create a kthread for each queue */
942 	for (i = 0; i < ccp->cmd_q_count; i++) {
943 		struct task_struct *kthread;
944 
945 		cmd_q = &ccp->cmd_q[i];
946 
947 		kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
948 					 "%s-q%u", ccp->name, cmd_q->id);
949 		if (IS_ERR(kthread)) {
950 			dev_err(dev, "error creating queue thread (%ld)\n",
951 				PTR_ERR(kthread));
952 			ret = PTR_ERR(kthread);
953 			goto e_kthread;
954 		}
955 
956 		cmd_q->kthread = kthread;
957 		wake_up_process(kthread);
958 	}
959 
960 	dev_dbg(dev, "Enabling interrupts...\n");
961 	ccp5_enable_queue_interrupts(ccp);
962 
963 	dev_dbg(dev, "Registering device...\n");
964 	/* Put this on the unit list to make it available */
965 	ccp_add_device(ccp);
966 
967 	ret = ccp_register_rng(ccp);
968 	if (ret)
969 		goto e_kthread;
970 
971 	/* Register the DMA engine support */
972 	ret = ccp_dmaengine_register(ccp);
973 	if (ret)
974 		goto e_hwrng;
975 
976 	/* Set up debugfs entries */
977 	ccp5_debugfs_setup(ccp);
978 
979 	return 0;
980 
981 e_hwrng:
982 	ccp_unregister_rng(ccp);
983 
984 e_kthread:
985 	for (i = 0; i < ccp->cmd_q_count; i++)
986 		if (ccp->cmd_q[i].kthread)
987 			kthread_stop(ccp->cmd_q[i].kthread);
988 
989 e_irq:
990 	sp_free_ccp_irq(ccp->sp, ccp);
991 
992 e_pool:
993 	for (i = 0; i < ccp->cmd_q_count; i++)
994 		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
995 
996 	return ret;
997 }
998 
999 static void ccp5_destroy(struct ccp_device *ccp)
1000 {
1001 	struct device *dev = ccp->dev;
1002 	struct ccp_cmd_queue *cmd_q;
1003 	struct ccp_cmd *cmd;
1004 	unsigned int i;
1005 
1006 	/* Unregister the DMA engine */
1007 	ccp_dmaengine_unregister(ccp);
1008 
1009 	/* Unregister the RNG */
1010 	ccp_unregister_rng(ccp);
1011 
1012 	/* Remove this device from the list of available units first */
1013 	ccp_del_device(ccp);
1014 
1015 	/* We're in the process of tearing down the entire driver;
1016 	 * when all the devices are gone clean up debugfs
1017 	 */
1018 	if (ccp_present())
1019 		ccp5_debugfs_destroy();
1020 
1021 	/* Disable and clear interrupts */
1022 	ccp5_disable_queue_interrupts(ccp);
1023 	for (i = 0; i < ccp->cmd_q_count; i++) {
1024 		cmd_q = &ccp->cmd_q[i];
1025 
1026 		/* Turn off the run bit */
1027 		iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
1028 
1029 		/* Clear the interrupt status */
1030 		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
1031 		ioread32(cmd_q->reg_int_status);
1032 		ioread32(cmd_q->reg_status);
1033 	}
1034 
1035 	/* Stop the queue kthreads */
1036 	for (i = 0; i < ccp->cmd_q_count; i++)
1037 		if (ccp->cmd_q[i].kthread)
1038 			kthread_stop(ccp->cmd_q[i].kthread);
1039 
1040 	sp_free_ccp_irq(ccp->sp, ccp);
1041 
1042 	for (i = 0; i < ccp->cmd_q_count; i++) {
1043 		cmd_q = &ccp->cmd_q[i];
1044 		dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
1045 				  cmd_q->qbase_dma);
1046 	}
1047 
1048 	/* Flush the cmd and backlog queue */
1049 	while (!list_empty(&ccp->cmd)) {
1050 		/* Invoke the callback directly with an error code */
1051 		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
1052 		list_del(&cmd->entry);
1053 		cmd->callback(cmd->data, -ENODEV);
1054 	}
1055 	while (!list_empty(&ccp->backlog)) {
1056 		/* Invoke the callback directly with an error code */
1057 		cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
1058 		list_del(&cmd->entry);
1059 		cmd->callback(cmd->data, -ENODEV);
1060 	}
1061 }
1062 
1063 static void ccp5_config(struct ccp_device *ccp)
1064 {
1065 	/* Public side */
1066 	iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
1067 }
1068 
1069 static void ccp5other_config(struct ccp_device *ccp)
1070 {
1071 	int i;
1072 	u32 rnd;
1073 
1074 	/* We own all of the queues on the NTB CCP */
1075 
1076 	iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
1077 	iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
1078 	for (i = 0; i < 12; i++) {
1079 		rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
1080 		iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
1081 	}
1082 
1083 	iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
1084 	iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
1085 	iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
1086 
1087 	iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
1088 	iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
1089 
1090 	iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
1091 
1092 	ccp5_config(ccp);
1093 }
1094 
1095 /* Version 5 adds some function, but is essentially the same as v5 */
1096 static const struct ccp_actions ccp5_actions = {
1097 	.aes = ccp5_perform_aes,
1098 	.xts_aes = ccp5_perform_xts_aes,
1099 	.sha = ccp5_perform_sha,
1100 	.des3 = ccp5_perform_des3,
1101 	.rsa = ccp5_perform_rsa,
1102 	.passthru = ccp5_perform_passthru,
1103 	.ecc = ccp5_perform_ecc,
1104 	.sballoc = ccp_lsb_alloc,
1105 	.sbfree = ccp_lsb_free,
1106 	.init = ccp5_init,
1107 	.destroy = ccp5_destroy,
1108 	.get_free_slots = ccp5_get_free_slots,
1109 };
1110 
1111 const struct ccp_vdata ccpv5a = {
1112 	.version = CCP_VERSION(5, 0),
1113 	.setup = ccp5_config,
1114 	.perform = &ccp5_actions,
1115 	.offset = 0x0,
1116 	.rsamax = CCP5_RSA_MAX_WIDTH,
1117 };
1118 
1119 const struct ccp_vdata ccpv5b = {
1120 	.version = CCP_VERSION(5, 0),
1121 	.dma_chan_attr = DMA_PRIVATE,
1122 	.setup = ccp5other_config,
1123 	.perform = &ccp5_actions,
1124 	.offset = 0x0,
1125 	.rsamax = CCP5_RSA_MAX_WIDTH,
1126 };
1127