xref: /openbmc/linux/drivers/crypto/ccp/ccp-dev-v5.c (revision f7d84fa7)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Gary R Hook <gary.hook@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/kthread.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/compiler.h>
20 #include <linux/ccp.h>
21 
22 #include "ccp-dev.h"
23 
24 /* Allocate the requested number of contiguous LSB slots
25  * from the LSB bitmap. Look in the private range for this
26  * queue first; failing that, check the public area.
27  * If no space is available, wait around.
28  * Return: first slot number
29  */
30 static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
31 {
32 	struct ccp_device *ccp;
33 	int start;
34 
35 	/* First look at the map for the queue */
36 	if (cmd_q->lsb >= 0) {
37 		start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
38 							LSB_SIZE,
39 							0, count, 0);
40 		if (start < LSB_SIZE) {
41 			bitmap_set(cmd_q->lsbmap, start, count);
42 			return start + cmd_q->lsb * LSB_SIZE;
43 		}
44 	}
45 
46 	/* No joy; try to get an entry from the shared blocks */
47 	ccp = cmd_q->ccp;
48 	for (;;) {
49 		mutex_lock(&ccp->sb_mutex);
50 
51 		start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
52 							MAX_LSB_CNT * LSB_SIZE,
53 							0,
54 							count, 0);
55 		if (start <= MAX_LSB_CNT * LSB_SIZE) {
56 			bitmap_set(ccp->lsbmap, start, count);
57 
58 			mutex_unlock(&ccp->sb_mutex);
59 			return start;
60 		}
61 
62 		ccp->sb_avail = 0;
63 
64 		mutex_unlock(&ccp->sb_mutex);
65 
66 		/* Wait for KSB entries to become available */
67 		if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
68 			return 0;
69 	}
70 }
71 
72 /* Free a number of LSB slots from the bitmap, starting at
73  * the indicated starting slot number.
74  */
75 static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
76 			 unsigned int count)
77 {
78 	if (!start)
79 		return;
80 
81 	if (cmd_q->lsb == start) {
82 		/* An entry from the private LSB */
83 		bitmap_clear(cmd_q->lsbmap, start, count);
84 	} else {
85 		/* From the shared LSBs */
86 		struct ccp_device *ccp = cmd_q->ccp;
87 
88 		mutex_lock(&ccp->sb_mutex);
89 		bitmap_clear(ccp->lsbmap, start, count);
90 		ccp->sb_avail = 1;
91 		mutex_unlock(&ccp->sb_mutex);
92 		wake_up_interruptible_all(&ccp->sb_queue);
93 	}
94 }
95 
96 /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
97 union ccp_function {
98 	struct {
99 		u16 size:7;
100 		u16 encrypt:1;
101 		u16 mode:5;
102 		u16 type:2;
103 	} aes;
104 	struct {
105 		u16 size:7;
106 		u16 encrypt:1;
107 		u16 rsvd:5;
108 		u16 type:2;
109 	} aes_xts;
110 	struct {
111 		u16 size:7;
112 		u16 encrypt:1;
113 		u16 mode:5;
114 		u16 type:2;
115 	} des3;
116 	struct {
117 		u16 rsvd1:10;
118 		u16 type:4;
119 		u16 rsvd2:1;
120 	} sha;
121 	struct {
122 		u16 mode:3;
123 		u16 size:12;
124 	} rsa;
125 	struct {
126 		u16 byteswap:2;
127 		u16 bitwise:3;
128 		u16 reflect:2;
129 		u16 rsvd:8;
130 	} pt;
131 	struct  {
132 		u16 rsvd:13;
133 	} zlib;
134 	struct {
135 		u16 size:10;
136 		u16 type:2;
137 		u16 mode:3;
138 	} ecc;
139 	u16 raw;
140 };
141 
142 #define	CCP_AES_SIZE(p)		((p)->aes.size)
143 #define	CCP_AES_ENCRYPT(p)	((p)->aes.encrypt)
144 #define	CCP_AES_MODE(p)		((p)->aes.mode)
145 #define	CCP_AES_TYPE(p)		((p)->aes.type)
146 #define	CCP_XTS_SIZE(p)		((p)->aes_xts.size)
147 #define	CCP_XTS_ENCRYPT(p)	((p)->aes_xts.encrypt)
148 #define	CCP_DES3_SIZE(p)	((p)->des3.size)
149 #define	CCP_DES3_ENCRYPT(p)	((p)->des3.encrypt)
150 #define	CCP_DES3_MODE(p)	((p)->des3.mode)
151 #define	CCP_DES3_TYPE(p)	((p)->des3.type)
152 #define	CCP_SHA_TYPE(p)		((p)->sha.type)
153 #define	CCP_RSA_SIZE(p)		((p)->rsa.size)
154 #define	CCP_PT_BYTESWAP(p)	((p)->pt.byteswap)
155 #define	CCP_PT_BITWISE(p)	((p)->pt.bitwise)
156 #define	CCP_ECC_MODE(p)		((p)->ecc.mode)
157 #define	CCP_ECC_AFFINE(p)	((p)->ecc.one)
158 
159 /* Word 0 */
160 #define CCP5_CMD_DW0(p)		((p)->dw0)
161 #define CCP5_CMD_SOC(p)		(CCP5_CMD_DW0(p).soc)
162 #define CCP5_CMD_IOC(p)		(CCP5_CMD_DW0(p).ioc)
163 #define CCP5_CMD_INIT(p)	(CCP5_CMD_DW0(p).init)
164 #define CCP5_CMD_EOM(p)		(CCP5_CMD_DW0(p).eom)
165 #define CCP5_CMD_FUNCTION(p)	(CCP5_CMD_DW0(p).function)
166 #define CCP5_CMD_ENGINE(p)	(CCP5_CMD_DW0(p).engine)
167 #define CCP5_CMD_PROT(p)	(CCP5_CMD_DW0(p).prot)
168 
169 /* Word 1 */
170 #define CCP5_CMD_DW1(p)		((p)->length)
171 #define CCP5_CMD_LEN(p)		(CCP5_CMD_DW1(p))
172 
173 /* Word 2 */
174 #define CCP5_CMD_DW2(p)		((p)->src_lo)
175 #define CCP5_CMD_SRC_LO(p)	(CCP5_CMD_DW2(p))
176 
177 /* Word 3 */
178 #define CCP5_CMD_DW3(p)		((p)->dw3)
179 #define CCP5_CMD_SRC_MEM(p)	((p)->dw3.src_mem)
180 #define CCP5_CMD_SRC_HI(p)	((p)->dw3.src_hi)
181 #define CCP5_CMD_LSB_ID(p)	((p)->dw3.lsb_cxt_id)
182 #define CCP5_CMD_FIX_SRC(p)	((p)->dw3.fixed)
183 
184 /* Words 4/5 */
185 #define CCP5_CMD_DW4(p)		((p)->dw4)
186 #define CCP5_CMD_DST_LO(p)	(CCP5_CMD_DW4(p).dst_lo)
187 #define CCP5_CMD_DW5(p)		((p)->dw5.fields.dst_hi)
188 #define CCP5_CMD_DST_HI(p)	(CCP5_CMD_DW5(p))
189 #define CCP5_CMD_DST_MEM(p)	((p)->dw5.fields.dst_mem)
190 #define CCP5_CMD_FIX_DST(p)	((p)->dw5.fields.fixed)
191 #define CCP5_CMD_SHA_LO(p)	((p)->dw4.sha_len_lo)
192 #define CCP5_CMD_SHA_HI(p)	((p)->dw5.sha_len_hi)
193 
194 /* Word 6/7 */
195 #define CCP5_CMD_DW6(p)		((p)->key_lo)
196 #define CCP5_CMD_KEY_LO(p)	(CCP5_CMD_DW6(p))
197 #define CCP5_CMD_DW7(p)		((p)->dw7)
198 #define CCP5_CMD_KEY_HI(p)	((p)->dw7.key_hi)
199 #define CCP5_CMD_KEY_MEM(p)	((p)->dw7.key_mem)
200 
201 static inline u32 low_address(unsigned long addr)
202 {
203 	return (u64)addr & 0x0ffffffff;
204 }
205 
206 static inline u32 high_address(unsigned long addr)
207 {
208 	return ((u64)addr >> 32) & 0x00000ffff;
209 }
210 
211 static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
212 {
213 	unsigned int head_idx, n;
214 	u32 head_lo, queue_start;
215 
216 	queue_start = low_address(cmd_q->qdma_tail);
217 	head_lo = ioread32(cmd_q->reg_head_lo);
218 	head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
219 
220 	n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
221 
222 	return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
223 }
224 
225 static int ccp5_do_cmd(struct ccp5_desc *desc,
226 		       struct ccp_cmd_queue *cmd_q)
227 {
228 	u32 *mP;
229 	__le32 *dP;
230 	u32 tail;
231 	int	i;
232 	int ret = 0;
233 
234 	if (CCP5_CMD_SOC(desc)) {
235 		CCP5_CMD_IOC(desc) = 1;
236 		CCP5_CMD_SOC(desc) = 0;
237 	}
238 	mutex_lock(&cmd_q->q_mutex);
239 
240 	mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
241 	dP = (__le32 *) desc;
242 	for (i = 0; i < 8; i++)
243 		mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
244 
245 	cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
246 
247 	/* The data used by this command must be flushed to memory */
248 	wmb();
249 
250 	/* Write the new tail address back to the queue register */
251 	tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
252 	iowrite32(tail, cmd_q->reg_tail_lo);
253 
254 	/* Turn the queue back on using our cached control register */
255 	iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
256 	mutex_unlock(&cmd_q->q_mutex);
257 
258 	if (CCP5_CMD_IOC(desc)) {
259 		/* Wait for the job to complete */
260 		ret = wait_event_interruptible(cmd_q->int_queue,
261 					       cmd_q->int_rcvd);
262 		if (ret || cmd_q->cmd_error) {
263 			/* Log the error and flush the queue by
264 			 * moving the head pointer
265 			 */
266 			if (cmd_q->cmd_error)
267 				ccp_log_error(cmd_q->ccp,
268 					      cmd_q->cmd_error);
269 			iowrite32(tail, cmd_q->reg_head_lo);
270 			if (!ret)
271 				ret = -EIO;
272 		}
273 		cmd_q->int_rcvd = 0;
274 	}
275 
276 	return ret;
277 }
278 
279 static int ccp5_perform_aes(struct ccp_op *op)
280 {
281 	struct ccp5_desc desc;
282 	union ccp_function function;
283 	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
284 
285 	/* Zero out all the fields of the command desc */
286 	memset(&desc, 0, Q_DESC_SIZE);
287 
288 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
289 
290 	CCP5_CMD_SOC(&desc) = op->soc;
291 	CCP5_CMD_IOC(&desc) = 1;
292 	CCP5_CMD_INIT(&desc) = op->init;
293 	CCP5_CMD_EOM(&desc) = op->eom;
294 	CCP5_CMD_PROT(&desc) = 0;
295 
296 	function.raw = 0;
297 	CCP_AES_ENCRYPT(&function) = op->u.aes.action;
298 	CCP_AES_MODE(&function) = op->u.aes.mode;
299 	CCP_AES_TYPE(&function) = op->u.aes.type;
300 	CCP_AES_SIZE(&function) = op->u.aes.size;
301 
302 	CCP5_CMD_FUNCTION(&desc) = function.raw;
303 
304 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
305 
306 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
307 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
308 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
309 
310 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
311 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
312 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
313 
314 	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
315 	CCP5_CMD_KEY_HI(&desc) = 0;
316 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
317 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
318 
319 	return ccp5_do_cmd(&desc, op->cmd_q);
320 }
321 
322 static int ccp5_perform_xts_aes(struct ccp_op *op)
323 {
324 	struct ccp5_desc desc;
325 	union ccp_function function;
326 	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
327 
328 	/* Zero out all the fields of the command desc */
329 	memset(&desc, 0, Q_DESC_SIZE);
330 
331 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
332 
333 	CCP5_CMD_SOC(&desc) = op->soc;
334 	CCP5_CMD_IOC(&desc) = 1;
335 	CCP5_CMD_INIT(&desc) = op->init;
336 	CCP5_CMD_EOM(&desc) = op->eom;
337 	CCP5_CMD_PROT(&desc) = 0;
338 
339 	function.raw = 0;
340 	CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
341 	CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
342 	CCP5_CMD_FUNCTION(&desc) = function.raw;
343 
344 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
345 
346 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
347 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
348 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
349 
350 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
351 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
352 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
353 
354 	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
355 	CCP5_CMD_KEY_HI(&desc) =  0;
356 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
357 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
358 
359 	return ccp5_do_cmd(&desc, op->cmd_q);
360 }
361 
362 static int ccp5_perform_sha(struct ccp_op *op)
363 {
364 	struct ccp5_desc desc;
365 	union ccp_function function;
366 
367 	/* Zero out all the fields of the command desc */
368 	memset(&desc, 0, Q_DESC_SIZE);
369 
370 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
371 
372 	CCP5_CMD_SOC(&desc) = op->soc;
373 	CCP5_CMD_IOC(&desc) = 1;
374 	CCP5_CMD_INIT(&desc) = 1;
375 	CCP5_CMD_EOM(&desc) = op->eom;
376 	CCP5_CMD_PROT(&desc) = 0;
377 
378 	function.raw = 0;
379 	CCP_SHA_TYPE(&function) = op->u.sha.type;
380 	CCP5_CMD_FUNCTION(&desc) = function.raw;
381 
382 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
383 
384 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
385 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
386 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
387 
388 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
389 
390 	if (op->eom) {
391 		CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
392 		CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
393 	} else {
394 		CCP5_CMD_SHA_LO(&desc) = 0;
395 		CCP5_CMD_SHA_HI(&desc) = 0;
396 	}
397 
398 	return ccp5_do_cmd(&desc, op->cmd_q);
399 }
400 
401 static int ccp5_perform_des3(struct ccp_op *op)
402 {
403 	struct ccp5_desc desc;
404 	union ccp_function function;
405 	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
406 
407 	/* Zero out all the fields of the command desc */
408 	memset(&desc, 0, sizeof(struct ccp5_desc));
409 
410 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;
411 
412 	CCP5_CMD_SOC(&desc) = op->soc;
413 	CCP5_CMD_IOC(&desc) = 1;
414 	CCP5_CMD_INIT(&desc) = op->init;
415 	CCP5_CMD_EOM(&desc) = op->eom;
416 	CCP5_CMD_PROT(&desc) = 0;
417 
418 	function.raw = 0;
419 	CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
420 	CCP_DES3_MODE(&function) = op->u.des3.mode;
421 	CCP_DES3_TYPE(&function) = op->u.des3.type;
422 	CCP5_CMD_FUNCTION(&desc) = function.raw;
423 
424 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
425 
426 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
427 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
428 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
429 
430 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
431 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
432 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
433 
434 	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
435 	CCP5_CMD_KEY_HI(&desc) = 0;
436 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
437 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
438 
439 	return ccp5_do_cmd(&desc, op->cmd_q);
440 }
441 
442 static int ccp5_perform_rsa(struct ccp_op *op)
443 {
444 	struct ccp5_desc desc;
445 	union ccp_function function;
446 
447 	/* Zero out all the fields of the command desc */
448 	memset(&desc, 0, Q_DESC_SIZE);
449 
450 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
451 
452 	CCP5_CMD_SOC(&desc) = op->soc;
453 	CCP5_CMD_IOC(&desc) = 1;
454 	CCP5_CMD_INIT(&desc) = 0;
455 	CCP5_CMD_EOM(&desc) = 1;
456 	CCP5_CMD_PROT(&desc) = 0;
457 
458 	function.raw = 0;
459 	CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3;
460 	CCP5_CMD_FUNCTION(&desc) = function.raw;
461 
462 	CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
463 
464 	/* Source is from external memory */
465 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
466 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
467 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
468 
469 	/* Destination is in external memory */
470 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
471 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
472 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
473 
474 	/* Exponent is in LSB memory */
475 	CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE;
476 	CCP5_CMD_KEY_HI(&desc) = 0;
477 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
478 
479 	return ccp5_do_cmd(&desc, op->cmd_q);
480 }
481 
482 static int ccp5_perform_passthru(struct ccp_op *op)
483 {
484 	struct ccp5_desc desc;
485 	union ccp_function function;
486 	struct ccp_dma_info *saddr = &op->src.u.dma;
487 	struct ccp_dma_info *daddr = &op->dst.u.dma;
488 
489 
490 	memset(&desc, 0, Q_DESC_SIZE);
491 
492 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
493 
494 	CCP5_CMD_SOC(&desc) = 0;
495 	CCP5_CMD_IOC(&desc) = 1;
496 	CCP5_CMD_INIT(&desc) = 0;
497 	CCP5_CMD_EOM(&desc) = op->eom;
498 	CCP5_CMD_PROT(&desc) = 0;
499 
500 	function.raw = 0;
501 	CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
502 	CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
503 	CCP5_CMD_FUNCTION(&desc) = function.raw;
504 
505 	/* Length of source data is always 256 bytes */
506 	if (op->src.type == CCP_MEMTYPE_SYSTEM)
507 		CCP5_CMD_LEN(&desc) = saddr->length;
508 	else
509 		CCP5_CMD_LEN(&desc) = daddr->length;
510 
511 	if (op->src.type == CCP_MEMTYPE_SYSTEM) {
512 		CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
513 		CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
514 		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
515 
516 		if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
517 			CCP5_CMD_LSB_ID(&desc) = op->sb_key;
518 	} else {
519 		u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
520 
521 		CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
522 		CCP5_CMD_SRC_HI(&desc) = 0;
523 		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
524 	}
525 
526 	if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
527 		CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
528 		CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
529 		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
530 	} else {
531 		u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
532 
533 		CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
534 		CCP5_CMD_DST_HI(&desc) = 0;
535 		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
536 	}
537 
538 	return ccp5_do_cmd(&desc, op->cmd_q);
539 }
540 
541 static int ccp5_perform_ecc(struct ccp_op *op)
542 {
543 	struct ccp5_desc desc;
544 	union ccp_function function;
545 
546 	/* Zero out all the fields of the command desc */
547 	memset(&desc, 0, Q_DESC_SIZE);
548 
549 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
550 
551 	CCP5_CMD_SOC(&desc) = 0;
552 	CCP5_CMD_IOC(&desc) = 1;
553 	CCP5_CMD_INIT(&desc) = 0;
554 	CCP5_CMD_EOM(&desc) = 1;
555 	CCP5_CMD_PROT(&desc) = 0;
556 
557 	function.raw = 0;
558 	function.ecc.mode = op->u.ecc.function;
559 	CCP5_CMD_FUNCTION(&desc) = function.raw;
560 
561 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
562 
563 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
564 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
565 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
566 
567 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
568 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
569 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
570 
571 	return ccp5_do_cmd(&desc, op->cmd_q);
572 }
573 
574 static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
575 {
576 	int q_mask = 1 << cmd_q->id;
577 	int queues = 0;
578 	int j;
579 
580 	/* Build a bit mask to know which LSBs this queue has access to.
581 	 * Don't bother with segment 0 as it has special privileges.
582 	 */
583 	for (j = 1; j < MAX_LSB_CNT; j++) {
584 		if (status & q_mask)
585 			bitmap_set(cmd_q->lsbmask, j, 1);
586 		status >>= LSB_REGION_WIDTH;
587 	}
588 	queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
589 	dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
590 		 cmd_q->id, queues);
591 
592 	return queues ? 0 : -EINVAL;
593 }
594 
595 
596 static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
597 					int lsb_cnt, int n_lsbs,
598 					unsigned long *lsb_pub)
599 {
600 	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
601 	int bitno;
602 	int qlsb_wgt;
603 	int i;
604 
605 	/* For each queue:
606 	 * If the count of potential LSBs available to a queue matches the
607 	 * ordinal given to us in lsb_cnt:
608 	 * Copy the mask of possible LSBs for this queue into "qlsb";
609 	 * For each bit in qlsb, see if the corresponding bit in the
610 	 * aggregation mask is set; if so, we have a match.
611 	 *     If we have a match, clear the bit in the aggregation to
612 	 *     mark it as no longer available.
613 	 *     If there is no match, clear the bit in qlsb and keep looking.
614 	 */
615 	for (i = 0; i < ccp->cmd_q_count; i++) {
616 		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
617 
618 		qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
619 
620 		if (qlsb_wgt == lsb_cnt) {
621 			bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
622 
623 			bitno = find_first_bit(qlsb, MAX_LSB_CNT);
624 			while (bitno < MAX_LSB_CNT) {
625 				if (test_bit(bitno, lsb_pub)) {
626 					/* We found an available LSB
627 					 * that this queue can access
628 					 */
629 					cmd_q->lsb = bitno;
630 					bitmap_clear(lsb_pub, bitno, 1);
631 					dev_dbg(ccp->dev,
632 						 "Queue %d gets LSB %d\n",
633 						 i, bitno);
634 					break;
635 				}
636 				bitmap_clear(qlsb, bitno, 1);
637 				bitno = find_first_bit(qlsb, MAX_LSB_CNT);
638 			}
639 			if (bitno >= MAX_LSB_CNT)
640 				return -EINVAL;
641 			n_lsbs--;
642 		}
643 	}
644 	return n_lsbs;
645 }
646 
647 /* For each queue, from the most- to least-constrained:
648  * find an LSB that can be assigned to the queue. If there are N queues that
649  * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
650  * dedicated LSB. Remaining LSB regions become a shared resource.
651  * If we have fewer LSBs than queues, all LSB regions become shared resources.
652  */
653 static int ccp_assign_lsbs(struct ccp_device *ccp)
654 {
655 	DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
656 	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
657 	int n_lsbs = 0;
658 	int bitno;
659 	int i, lsb_cnt;
660 	int rc = 0;
661 
662 	bitmap_zero(lsb_pub, MAX_LSB_CNT);
663 
664 	/* Create an aggregate bitmap to get a total count of available LSBs */
665 	for (i = 0; i < ccp->cmd_q_count; i++)
666 		bitmap_or(lsb_pub,
667 			  lsb_pub, ccp->cmd_q[i].lsbmask,
668 			  MAX_LSB_CNT);
669 
670 	n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
671 
672 	if (n_lsbs >= ccp->cmd_q_count) {
673 		/* We have enough LSBS to give every queue a private LSB.
674 		 * Brute force search to start with the queues that are more
675 		 * constrained in LSB choice. When an LSB is privately
676 		 * assigned, it is removed from the public mask.
677 		 * This is an ugly N squared algorithm with some optimization.
678 		 */
679 		for (lsb_cnt = 1;
680 		     n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
681 		     lsb_cnt++) {
682 			rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
683 							  lsb_pub);
684 			if (rc < 0)
685 				return -EINVAL;
686 			n_lsbs = rc;
687 		}
688 	}
689 
690 	rc = 0;
691 	/* What's left of the LSBs, according to the public mask, now become
692 	 * shared. Any zero bits in the lsb_pub mask represent an LSB region
693 	 * that can't be used as a shared resource, so mark the LSB slots for
694 	 * them as "in use".
695 	 */
696 	bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
697 
698 	bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
699 	while (bitno < MAX_LSB_CNT) {
700 		bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
701 		bitmap_set(qlsb, bitno, 1);
702 		bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
703 	}
704 
705 	return rc;
706 }
707 
708 static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
709 {
710 	unsigned int i;
711 
712 	for (i = 0; i < ccp->cmd_q_count; i++)
713 		iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
714 }
715 
716 static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
717 {
718 	unsigned int i;
719 
720 	for (i = 0; i < ccp->cmd_q_count; i++)
721 		iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
722 }
723 
724 static void ccp5_irq_bh(unsigned long data)
725 {
726 	struct ccp_device *ccp = (struct ccp_device *)data;
727 	u32 status;
728 	unsigned int i;
729 
730 	for (i = 0; i < ccp->cmd_q_count; i++) {
731 		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
732 
733 		status = ioread32(cmd_q->reg_interrupt_status);
734 
735 		if (status) {
736 			cmd_q->int_status = status;
737 			cmd_q->q_status = ioread32(cmd_q->reg_status);
738 			cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
739 
740 			/* On error, only save the first error value */
741 			if ((status & INT_ERROR) && !cmd_q->cmd_error)
742 				cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
743 
744 			cmd_q->int_rcvd = 1;
745 
746 			/* Acknowledge the interrupt and wake the kthread */
747 			iowrite32(status, cmd_q->reg_interrupt_status);
748 			wake_up_interruptible(&cmd_q->int_queue);
749 		}
750 	}
751 	ccp5_enable_queue_interrupts(ccp);
752 }
753 
754 static irqreturn_t ccp5_irq_handler(int irq, void *data)
755 {
756 	struct device *dev = data;
757 	struct ccp_device *ccp = dev_get_drvdata(dev);
758 
759 	ccp5_disable_queue_interrupts(ccp);
760 	if (ccp->use_tasklet)
761 		tasklet_schedule(&ccp->irq_tasklet);
762 	else
763 		ccp5_irq_bh((unsigned long)ccp);
764 	return IRQ_HANDLED;
765 }
766 
767 static int ccp5_init(struct ccp_device *ccp)
768 {
769 	struct device *dev = ccp->dev;
770 	struct ccp_cmd_queue *cmd_q;
771 	struct dma_pool *dma_pool;
772 	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
773 	unsigned int qmr, qim, i;
774 	u64 status;
775 	u32 status_lo, status_hi;
776 	int ret;
777 
778 	/* Find available queues */
779 	qim = 0;
780 	qmr = ioread32(ccp->io_regs + Q_MASK_REG);
781 	for (i = 0; i < MAX_HW_QUEUES; i++) {
782 
783 		if (!(qmr & (1 << i)))
784 			continue;
785 
786 		/* Allocate a dma pool for this queue */
787 		snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
788 			 ccp->name, i);
789 		dma_pool = dma_pool_create(dma_pool_name, dev,
790 					   CCP_DMAPOOL_MAX_SIZE,
791 					   CCP_DMAPOOL_ALIGN, 0);
792 		if (!dma_pool) {
793 			dev_err(dev, "unable to allocate dma pool\n");
794 			ret = -ENOMEM;
795 		}
796 
797 		cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
798 		ccp->cmd_q_count++;
799 
800 		cmd_q->ccp = ccp;
801 		cmd_q->id = i;
802 		cmd_q->dma_pool = dma_pool;
803 		mutex_init(&cmd_q->q_mutex);
804 
805 		/* Page alignment satisfies our needs for N <= 128 */
806 		BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
807 		cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
808 		cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
809 						   &cmd_q->qbase_dma,
810 						   GFP_KERNEL);
811 		if (!cmd_q->qbase) {
812 			dev_err(dev, "unable to allocate command queue\n");
813 			ret = -ENOMEM;
814 			goto e_pool;
815 		}
816 
817 		cmd_q->qidx = 0;
818 		/* Preset some register values and masks that are queue
819 		 * number dependent
820 		 */
821 		cmd_q->reg_control = ccp->io_regs +
822 				     CMD5_Q_STATUS_INCR * (i + 1);
823 		cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
824 		cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
825 		cmd_q->reg_int_enable = cmd_q->reg_control +
826 					CMD5_Q_INT_ENABLE_BASE;
827 		cmd_q->reg_interrupt_status = cmd_q->reg_control +
828 					      CMD5_Q_INTERRUPT_STATUS_BASE;
829 		cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
830 		cmd_q->reg_int_status = cmd_q->reg_control +
831 					CMD5_Q_INT_STATUS_BASE;
832 		cmd_q->reg_dma_status = cmd_q->reg_control +
833 					CMD5_Q_DMA_STATUS_BASE;
834 		cmd_q->reg_dma_read_status = cmd_q->reg_control +
835 					     CMD5_Q_DMA_READ_STATUS_BASE;
836 		cmd_q->reg_dma_write_status = cmd_q->reg_control +
837 					      CMD5_Q_DMA_WRITE_STATUS_BASE;
838 
839 		init_waitqueue_head(&cmd_q->int_queue);
840 
841 		dev_dbg(dev, "queue #%u available\n", i);
842 	}
843 
844 	if (ccp->cmd_q_count == 0) {
845 		dev_notice(dev, "no command queues available\n");
846 		ret = -EIO;
847 		goto e_pool;
848 	}
849 
850 	/* Turn off the queues and disable interrupts until ready */
851 	ccp5_disable_queue_interrupts(ccp);
852 	for (i = 0; i < ccp->cmd_q_count; i++) {
853 		cmd_q = &ccp->cmd_q[i];
854 
855 		cmd_q->qcontrol = 0; /* Start with nothing */
856 		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
857 
858 		ioread32(cmd_q->reg_int_status);
859 		ioread32(cmd_q->reg_status);
860 
861 		/* Clear the interrupt status */
862 		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
863 	}
864 
865 	dev_dbg(dev, "Requesting an IRQ...\n");
866 	/* Request an irq */
867 	ret = ccp->get_irq(ccp);
868 	if (ret) {
869 		dev_err(dev, "unable to allocate an IRQ\n");
870 		goto e_pool;
871 	}
872 	/* Initialize the ISR tasklet */
873 	if (ccp->use_tasklet)
874 		tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
875 			     (unsigned long)ccp);
876 
877 	dev_dbg(dev, "Loading LSB map...\n");
878 	/* Copy the private LSB mask to the public registers */
879 	status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
880 	status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
881 	iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
882 	iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
883 	status = ((u64)status_hi<<30) | (u64)status_lo;
884 
885 	dev_dbg(dev, "Configuring virtual queues...\n");
886 	/* Configure size of each virtual queue accessible to host */
887 	for (i = 0; i < ccp->cmd_q_count; i++) {
888 		u32 dma_addr_lo;
889 		u32 dma_addr_hi;
890 
891 		cmd_q = &ccp->cmd_q[i];
892 
893 		cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
894 		cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
895 
896 		cmd_q->qdma_tail = cmd_q->qbase_dma;
897 		dma_addr_lo = low_address(cmd_q->qdma_tail);
898 		iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
899 		iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
900 
901 		dma_addr_hi = high_address(cmd_q->qdma_tail);
902 		cmd_q->qcontrol |= (dma_addr_hi << 16);
903 		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
904 
905 		/* Find the LSB regions accessible to the queue */
906 		ccp_find_lsb_regions(cmd_q, status);
907 		cmd_q->lsb = -1; /* Unassigned value */
908 	}
909 
910 	dev_dbg(dev, "Assigning LSBs...\n");
911 	ret = ccp_assign_lsbs(ccp);
912 	if (ret) {
913 		dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
914 		goto e_irq;
915 	}
916 
917 	/* Optimization: pre-allocate LSB slots for each queue */
918 	for (i = 0; i < ccp->cmd_q_count; i++) {
919 		ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
920 		ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
921 	}
922 
923 	dev_dbg(dev, "Starting threads...\n");
924 	/* Create a kthread for each queue */
925 	for (i = 0; i < ccp->cmd_q_count; i++) {
926 		struct task_struct *kthread;
927 
928 		cmd_q = &ccp->cmd_q[i];
929 
930 		kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
931 					 "%s-q%u", ccp->name, cmd_q->id);
932 		if (IS_ERR(kthread)) {
933 			dev_err(dev, "error creating queue thread (%ld)\n",
934 				PTR_ERR(kthread));
935 			ret = PTR_ERR(kthread);
936 			goto e_kthread;
937 		}
938 
939 		cmd_q->kthread = kthread;
940 		wake_up_process(kthread);
941 	}
942 
943 	dev_dbg(dev, "Enabling interrupts...\n");
944 	ccp5_enable_queue_interrupts(ccp);
945 
946 	dev_dbg(dev, "Registering device...\n");
947 	/* Put this on the unit list to make it available */
948 	ccp_add_device(ccp);
949 
950 	ret = ccp_register_rng(ccp);
951 	if (ret)
952 		goto e_kthread;
953 
954 	/* Register the DMA engine support */
955 	ret = ccp_dmaengine_register(ccp);
956 	if (ret)
957 		goto e_hwrng;
958 
959 	return 0;
960 
961 e_hwrng:
962 	ccp_unregister_rng(ccp);
963 
964 e_kthread:
965 	for (i = 0; i < ccp->cmd_q_count; i++)
966 		if (ccp->cmd_q[i].kthread)
967 			kthread_stop(ccp->cmd_q[i].kthread);
968 
969 e_irq:
970 	ccp->free_irq(ccp);
971 
972 e_pool:
973 	for (i = 0; i < ccp->cmd_q_count; i++)
974 		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
975 
976 	return ret;
977 }
978 
979 static void ccp5_destroy(struct ccp_device *ccp)
980 {
981 	struct device *dev = ccp->dev;
982 	struct ccp_cmd_queue *cmd_q;
983 	struct ccp_cmd *cmd;
984 	unsigned int i;
985 
986 	/* Unregister the DMA engine */
987 	ccp_dmaengine_unregister(ccp);
988 
989 	/* Unregister the RNG */
990 	ccp_unregister_rng(ccp);
991 
992 	/* Remove this device from the list of available units first */
993 	ccp_del_device(ccp);
994 
995 	/* Disable and clear interrupts */
996 	ccp5_disable_queue_interrupts(ccp);
997 	for (i = 0; i < ccp->cmd_q_count; i++) {
998 		cmd_q = &ccp->cmd_q[i];
999 
1000 		/* Turn off the run bit */
1001 		iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
1002 
1003 		/* Clear the interrupt status */
1004 		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
1005 		ioread32(cmd_q->reg_int_status);
1006 		ioread32(cmd_q->reg_status);
1007 	}
1008 
1009 	/* Stop the queue kthreads */
1010 	for (i = 0; i < ccp->cmd_q_count; i++)
1011 		if (ccp->cmd_q[i].kthread)
1012 			kthread_stop(ccp->cmd_q[i].kthread);
1013 
1014 	ccp->free_irq(ccp);
1015 
1016 	for (i = 0; i < ccp->cmd_q_count; i++) {
1017 		cmd_q = &ccp->cmd_q[i];
1018 		dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
1019 				  cmd_q->qbase_dma);
1020 	}
1021 
1022 	/* Flush the cmd and backlog queue */
1023 	while (!list_empty(&ccp->cmd)) {
1024 		/* Invoke the callback directly with an error code */
1025 		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
1026 		list_del(&cmd->entry);
1027 		cmd->callback(cmd->data, -ENODEV);
1028 	}
1029 	while (!list_empty(&ccp->backlog)) {
1030 		/* Invoke the callback directly with an error code */
1031 		cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
1032 		list_del(&cmd->entry);
1033 		cmd->callback(cmd->data, -ENODEV);
1034 	}
1035 }
1036 
1037 static void ccp5_config(struct ccp_device *ccp)
1038 {
1039 	/* Public side */
1040 	iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
1041 }
1042 
1043 static void ccp5other_config(struct ccp_device *ccp)
1044 {
1045 	int i;
1046 	u32 rnd;
1047 
1048 	/* We own all of the queues on the NTB CCP */
1049 
1050 	iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
1051 	iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
1052 	for (i = 0; i < 12; i++) {
1053 		rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
1054 		iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
1055 	}
1056 
1057 	iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
1058 	iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
1059 	iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
1060 
1061 	iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
1062 	iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
1063 
1064 	iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
1065 
1066 	ccp5_config(ccp);
1067 }
1068 
1069 /* Version 5 adds some function, but is essentially the same as v5 */
1070 static const struct ccp_actions ccp5_actions = {
1071 	.aes = ccp5_perform_aes,
1072 	.xts_aes = ccp5_perform_xts_aes,
1073 	.sha = ccp5_perform_sha,
1074 	.des3 = ccp5_perform_des3,
1075 	.rsa = ccp5_perform_rsa,
1076 	.passthru = ccp5_perform_passthru,
1077 	.ecc = ccp5_perform_ecc,
1078 	.sballoc = ccp_lsb_alloc,
1079 	.sbfree = ccp_lsb_free,
1080 	.init = ccp5_init,
1081 	.destroy = ccp5_destroy,
1082 	.get_free_slots = ccp5_get_free_slots,
1083 	.irqhandler = ccp5_irq_handler,
1084 };
1085 
1086 const struct ccp_vdata ccpv5a = {
1087 	.version = CCP_VERSION(5, 0),
1088 	.setup = ccp5_config,
1089 	.perform = &ccp5_actions,
1090 	.bar = 2,
1091 	.offset = 0x0,
1092 };
1093 
1094 const struct ccp_vdata ccpv5b = {
1095 	.version = CCP_VERSION(5, 0),
1096 	.dma_chan_attr = DMA_PRIVATE,
1097 	.setup = ccp5other_config,
1098 	.perform = &ccp5_actions,
1099 	.bar = 2,
1100 	.offset = 0x0,
1101 };
1102