xref: /openbmc/linux/drivers/crypto/ccp/ccp-dev-v5.c (revision 1f012283)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Cryptographic Coprocessor (CCP) driver
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Gary R Hook <gary.hook@amd.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/kthread.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
14 #include <linux/compiler.h>
15 #include <linux/ccp.h>
16 
17 #include "ccp-dev.h"
18 
19 /* Allocate the requested number of contiguous LSB slots
20  * from the LSB bitmap. Look in the private range for this
21  * queue first; failing that, check the public area.
22  * If no space is available, wait around.
23  * Return: first slot number
24  */
25 static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
26 {
27 	struct ccp_device *ccp;
28 	int start;
29 
30 	/* First look at the map for the queue */
31 	if (cmd_q->lsb >= 0) {
32 		start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
33 							LSB_SIZE,
34 							0, count, 0);
35 		if (start < LSB_SIZE) {
36 			bitmap_set(cmd_q->lsbmap, start, count);
37 			return start + cmd_q->lsb * LSB_SIZE;
38 		}
39 	}
40 
41 	/* No joy; try to get an entry from the shared blocks */
42 	ccp = cmd_q->ccp;
43 	for (;;) {
44 		mutex_lock(&ccp->sb_mutex);
45 
46 		start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
47 							MAX_LSB_CNT * LSB_SIZE,
48 							0,
49 							count, 0);
50 		if (start <= MAX_LSB_CNT * LSB_SIZE) {
51 			bitmap_set(ccp->lsbmap, start, count);
52 
53 			mutex_unlock(&ccp->sb_mutex);
54 			return start;
55 		}
56 
57 		ccp->sb_avail = 0;
58 
59 		mutex_unlock(&ccp->sb_mutex);
60 
61 		/* Wait for KSB entries to become available */
62 		if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
63 			return 0;
64 	}
65 }
66 
67 /* Free a number of LSB slots from the bitmap, starting at
68  * the indicated starting slot number.
69  */
70 static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
71 			 unsigned int count)
72 {
73 	if (!start)
74 		return;
75 
76 	if (cmd_q->lsb == start) {
77 		/* An entry from the private LSB */
78 		bitmap_clear(cmd_q->lsbmap, start, count);
79 	} else {
80 		/* From the shared LSBs */
81 		struct ccp_device *ccp = cmd_q->ccp;
82 
83 		mutex_lock(&ccp->sb_mutex);
84 		bitmap_clear(ccp->lsbmap, start, count);
85 		ccp->sb_avail = 1;
86 		mutex_unlock(&ccp->sb_mutex);
87 		wake_up_interruptible_all(&ccp->sb_queue);
88 	}
89 }
90 
91 /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
92 union ccp_function {
93 	struct {
94 		u16 size:7;
95 		u16 encrypt:1;
96 		u16 mode:5;
97 		u16 type:2;
98 	} aes;
99 	struct {
100 		u16 size:7;
101 		u16 encrypt:1;
102 		u16 rsvd:5;
103 		u16 type:2;
104 	} aes_xts;
105 	struct {
106 		u16 size:7;
107 		u16 encrypt:1;
108 		u16 mode:5;
109 		u16 type:2;
110 	} des3;
111 	struct {
112 		u16 rsvd1:10;
113 		u16 type:4;
114 		u16 rsvd2:1;
115 	} sha;
116 	struct {
117 		u16 mode:3;
118 		u16 size:12;
119 	} rsa;
120 	struct {
121 		u16 byteswap:2;
122 		u16 bitwise:3;
123 		u16 reflect:2;
124 		u16 rsvd:8;
125 	} pt;
126 	struct  {
127 		u16 rsvd:13;
128 	} zlib;
129 	struct {
130 		u16 size:10;
131 		u16 type:2;
132 		u16 mode:3;
133 	} ecc;
134 	u16 raw;
135 };
136 
137 #define	CCP_AES_SIZE(p)		((p)->aes.size)
138 #define	CCP_AES_ENCRYPT(p)	((p)->aes.encrypt)
139 #define	CCP_AES_MODE(p)		((p)->aes.mode)
140 #define	CCP_AES_TYPE(p)		((p)->aes.type)
141 #define	CCP_XTS_SIZE(p)		((p)->aes_xts.size)
142 #define	CCP_XTS_TYPE(p)		((p)->aes_xts.type)
143 #define	CCP_XTS_ENCRYPT(p)	((p)->aes_xts.encrypt)
144 #define	CCP_DES3_SIZE(p)	((p)->des3.size)
145 #define	CCP_DES3_ENCRYPT(p)	((p)->des3.encrypt)
146 #define	CCP_DES3_MODE(p)	((p)->des3.mode)
147 #define	CCP_DES3_TYPE(p)	((p)->des3.type)
148 #define	CCP_SHA_TYPE(p)		((p)->sha.type)
149 #define	CCP_RSA_SIZE(p)		((p)->rsa.size)
150 #define	CCP_PT_BYTESWAP(p)	((p)->pt.byteswap)
151 #define	CCP_PT_BITWISE(p)	((p)->pt.bitwise)
152 #define	CCP_ECC_MODE(p)		((p)->ecc.mode)
153 #define	CCP_ECC_AFFINE(p)	((p)->ecc.one)
154 
155 /* Word 0 */
156 #define CCP5_CMD_DW0(p)		((p)->dw0)
157 #define CCP5_CMD_SOC(p)		(CCP5_CMD_DW0(p).soc)
158 #define CCP5_CMD_IOC(p)		(CCP5_CMD_DW0(p).ioc)
159 #define CCP5_CMD_INIT(p)	(CCP5_CMD_DW0(p).init)
160 #define CCP5_CMD_EOM(p)		(CCP5_CMD_DW0(p).eom)
161 #define CCP5_CMD_FUNCTION(p)	(CCP5_CMD_DW0(p).function)
162 #define CCP5_CMD_ENGINE(p)	(CCP5_CMD_DW0(p).engine)
163 #define CCP5_CMD_PROT(p)	(CCP5_CMD_DW0(p).prot)
164 
165 /* Word 1 */
166 #define CCP5_CMD_DW1(p)		((p)->length)
167 #define CCP5_CMD_LEN(p)		(CCP5_CMD_DW1(p))
168 
169 /* Word 2 */
170 #define CCP5_CMD_DW2(p)		((p)->src_lo)
171 #define CCP5_CMD_SRC_LO(p)	(CCP5_CMD_DW2(p))
172 
173 /* Word 3 */
174 #define CCP5_CMD_DW3(p)		((p)->dw3)
175 #define CCP5_CMD_SRC_MEM(p)	((p)->dw3.src_mem)
176 #define CCP5_CMD_SRC_HI(p)	((p)->dw3.src_hi)
177 #define CCP5_CMD_LSB_ID(p)	((p)->dw3.lsb_cxt_id)
178 #define CCP5_CMD_FIX_SRC(p)	((p)->dw3.fixed)
179 
180 /* Words 4/5 */
181 #define CCP5_CMD_DW4(p)		((p)->dw4)
182 #define CCP5_CMD_DST_LO(p)	(CCP5_CMD_DW4(p).dst_lo)
183 #define CCP5_CMD_DW5(p)		((p)->dw5.fields.dst_hi)
184 #define CCP5_CMD_DST_HI(p)	(CCP5_CMD_DW5(p))
185 #define CCP5_CMD_DST_MEM(p)	((p)->dw5.fields.dst_mem)
186 #define CCP5_CMD_FIX_DST(p)	((p)->dw5.fields.fixed)
187 #define CCP5_CMD_SHA_LO(p)	((p)->dw4.sha_len_lo)
188 #define CCP5_CMD_SHA_HI(p)	((p)->dw5.sha_len_hi)
189 
190 /* Word 6/7 */
191 #define CCP5_CMD_DW6(p)		((p)->key_lo)
192 #define CCP5_CMD_KEY_LO(p)	(CCP5_CMD_DW6(p))
193 #define CCP5_CMD_DW7(p)		((p)->dw7)
194 #define CCP5_CMD_KEY_HI(p)	((p)->dw7.key_hi)
195 #define CCP5_CMD_KEY_MEM(p)	((p)->dw7.key_mem)
196 
197 static inline u32 low_address(unsigned long addr)
198 {
199 	return (u64)addr & 0x0ffffffff;
200 }
201 
202 static inline u32 high_address(unsigned long addr)
203 {
204 	return ((u64)addr >> 32) & 0x00000ffff;
205 }
206 
207 static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
208 {
209 	unsigned int head_idx, n;
210 	u32 head_lo, queue_start;
211 
212 	queue_start = low_address(cmd_q->qdma_tail);
213 	head_lo = ioread32(cmd_q->reg_head_lo);
214 	head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
215 
216 	n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
217 
218 	return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
219 }
220 
221 static int ccp5_do_cmd(struct ccp5_desc *desc,
222 		       struct ccp_cmd_queue *cmd_q)
223 {
224 	__le32 *mP;
225 	u32 *dP;
226 	u32 tail;
227 	int	i;
228 	int ret = 0;
229 
230 	cmd_q->total_ops++;
231 
232 	if (CCP5_CMD_SOC(desc)) {
233 		CCP5_CMD_IOC(desc) = 1;
234 		CCP5_CMD_SOC(desc) = 0;
235 	}
236 	mutex_lock(&cmd_q->q_mutex);
237 
238 	mP = (__le32 *)&cmd_q->qbase[cmd_q->qidx];
239 	dP = (u32 *)desc;
240 	for (i = 0; i < 8; i++)
241 		mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
242 
243 	cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
244 
245 	/* The data used by this command must be flushed to memory */
246 	wmb();
247 
248 	/* Write the new tail address back to the queue register */
249 	tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
250 	iowrite32(tail, cmd_q->reg_tail_lo);
251 
252 	/* Turn the queue back on using our cached control register */
253 	iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
254 	mutex_unlock(&cmd_q->q_mutex);
255 
256 	if (CCP5_CMD_IOC(desc)) {
257 		/* Wait for the job to complete */
258 		ret = wait_event_interruptible(cmd_q->int_queue,
259 					       cmd_q->int_rcvd);
260 		if (ret || cmd_q->cmd_error) {
261 			/* Log the error and flush the queue by
262 			 * moving the head pointer
263 			 */
264 			if (cmd_q->cmd_error)
265 				ccp_log_error(cmd_q->ccp,
266 					      cmd_q->cmd_error);
267 			iowrite32(tail, cmd_q->reg_head_lo);
268 			if (!ret)
269 				ret = -EIO;
270 		}
271 		cmd_q->int_rcvd = 0;
272 	}
273 
274 	return ret;
275 }
276 
277 static int ccp5_perform_aes(struct ccp_op *op)
278 {
279 	struct ccp5_desc desc;
280 	union ccp_function function;
281 	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
282 
283 	op->cmd_q->total_aes_ops++;
284 
285 	/* Zero out all the fields of the command desc */
286 	memset(&desc, 0, Q_DESC_SIZE);
287 
288 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
289 
290 	CCP5_CMD_SOC(&desc) = op->soc;
291 	CCP5_CMD_IOC(&desc) = 1;
292 	CCP5_CMD_INIT(&desc) = op->init;
293 	CCP5_CMD_EOM(&desc) = op->eom;
294 	CCP5_CMD_PROT(&desc) = 0;
295 
296 	function.raw = 0;
297 	CCP_AES_ENCRYPT(&function) = op->u.aes.action;
298 	CCP_AES_MODE(&function) = op->u.aes.mode;
299 	CCP_AES_TYPE(&function) = op->u.aes.type;
300 	CCP_AES_SIZE(&function) = op->u.aes.size;
301 
302 	CCP5_CMD_FUNCTION(&desc) = function.raw;
303 
304 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
305 
306 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
307 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
308 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
309 
310 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
311 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
312 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
313 
314 	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
315 	CCP5_CMD_KEY_HI(&desc) = 0;
316 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
317 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
318 
319 	return ccp5_do_cmd(&desc, op->cmd_q);
320 }
321 
322 static int ccp5_perform_xts_aes(struct ccp_op *op)
323 {
324 	struct ccp5_desc desc;
325 	union ccp_function function;
326 	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
327 
328 	op->cmd_q->total_xts_aes_ops++;
329 
330 	/* Zero out all the fields of the command desc */
331 	memset(&desc, 0, Q_DESC_SIZE);
332 
333 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
334 
335 	CCP5_CMD_SOC(&desc) = op->soc;
336 	CCP5_CMD_IOC(&desc) = 1;
337 	CCP5_CMD_INIT(&desc) = op->init;
338 	CCP5_CMD_EOM(&desc) = op->eom;
339 	CCP5_CMD_PROT(&desc) = 0;
340 
341 	function.raw = 0;
342 	CCP_XTS_TYPE(&function) = op->u.xts.type;
343 	CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
344 	CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
345 	CCP5_CMD_FUNCTION(&desc) = function.raw;
346 
347 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
348 
349 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
350 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
351 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
352 
353 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
354 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
355 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
356 
357 	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
358 	CCP5_CMD_KEY_HI(&desc) =  0;
359 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
360 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
361 
362 	return ccp5_do_cmd(&desc, op->cmd_q);
363 }
364 
365 static int ccp5_perform_sha(struct ccp_op *op)
366 {
367 	struct ccp5_desc desc;
368 	union ccp_function function;
369 
370 	op->cmd_q->total_sha_ops++;
371 
372 	/* Zero out all the fields of the command desc */
373 	memset(&desc, 0, Q_DESC_SIZE);
374 
375 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
376 
377 	CCP5_CMD_SOC(&desc) = op->soc;
378 	CCP5_CMD_IOC(&desc) = 1;
379 	CCP5_CMD_INIT(&desc) = 1;
380 	CCP5_CMD_EOM(&desc) = op->eom;
381 	CCP5_CMD_PROT(&desc) = 0;
382 
383 	function.raw = 0;
384 	CCP_SHA_TYPE(&function) = op->u.sha.type;
385 	CCP5_CMD_FUNCTION(&desc) = function.raw;
386 
387 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
388 
389 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
390 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
391 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
392 
393 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
394 
395 	if (op->eom) {
396 		CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
397 		CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
398 	} else {
399 		CCP5_CMD_SHA_LO(&desc) = 0;
400 		CCP5_CMD_SHA_HI(&desc) = 0;
401 	}
402 
403 	return ccp5_do_cmd(&desc, op->cmd_q);
404 }
405 
406 static int ccp5_perform_des3(struct ccp_op *op)
407 {
408 	struct ccp5_desc desc;
409 	union ccp_function function;
410 	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
411 
412 	op->cmd_q->total_3des_ops++;
413 
414 	/* Zero out all the fields of the command desc */
415 	memset(&desc, 0, sizeof(struct ccp5_desc));
416 
417 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;
418 
419 	CCP5_CMD_SOC(&desc) = op->soc;
420 	CCP5_CMD_IOC(&desc) = 1;
421 	CCP5_CMD_INIT(&desc) = op->init;
422 	CCP5_CMD_EOM(&desc) = op->eom;
423 	CCP5_CMD_PROT(&desc) = 0;
424 
425 	function.raw = 0;
426 	CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
427 	CCP_DES3_MODE(&function) = op->u.des3.mode;
428 	CCP_DES3_TYPE(&function) = op->u.des3.type;
429 	CCP5_CMD_FUNCTION(&desc) = function.raw;
430 
431 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
432 
433 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
434 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
435 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
436 
437 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
438 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
439 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
440 
441 	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
442 	CCP5_CMD_KEY_HI(&desc) = 0;
443 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
444 	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
445 
446 	return ccp5_do_cmd(&desc, op->cmd_q);
447 }
448 
449 static int ccp5_perform_rsa(struct ccp_op *op)
450 {
451 	struct ccp5_desc desc;
452 	union ccp_function function;
453 
454 	op->cmd_q->total_rsa_ops++;
455 
456 	/* Zero out all the fields of the command desc */
457 	memset(&desc, 0, Q_DESC_SIZE);
458 
459 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
460 
461 	CCP5_CMD_SOC(&desc) = op->soc;
462 	CCP5_CMD_IOC(&desc) = 1;
463 	CCP5_CMD_INIT(&desc) = 0;
464 	CCP5_CMD_EOM(&desc) = 1;
465 	CCP5_CMD_PROT(&desc) = 0;
466 
467 	function.raw = 0;
468 	CCP_RSA_SIZE(&function) = (op->u.rsa.mod_size + 7) >> 3;
469 	CCP5_CMD_FUNCTION(&desc) = function.raw;
470 
471 	CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
472 
473 	/* Source is from external memory */
474 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
475 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
476 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
477 
478 	/* Destination is in external memory */
479 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
480 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
481 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
482 
483 	/* Key (Exponent) is in external memory */
484 	CCP5_CMD_KEY_LO(&desc) = ccp_addr_lo(&op->exp.u.dma);
485 	CCP5_CMD_KEY_HI(&desc) = ccp_addr_hi(&op->exp.u.dma);
486 	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
487 
488 	return ccp5_do_cmd(&desc, op->cmd_q);
489 }
490 
491 static int ccp5_perform_passthru(struct ccp_op *op)
492 {
493 	struct ccp5_desc desc;
494 	union ccp_function function;
495 	struct ccp_dma_info *saddr = &op->src.u.dma;
496 	struct ccp_dma_info *daddr = &op->dst.u.dma;
497 
498 
499 	op->cmd_q->total_pt_ops++;
500 
501 	memset(&desc, 0, Q_DESC_SIZE);
502 
503 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
504 
505 	CCP5_CMD_SOC(&desc) = 0;
506 	CCP5_CMD_IOC(&desc) = 1;
507 	CCP5_CMD_INIT(&desc) = 0;
508 	CCP5_CMD_EOM(&desc) = op->eom;
509 	CCP5_CMD_PROT(&desc) = 0;
510 
511 	function.raw = 0;
512 	CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
513 	CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
514 	CCP5_CMD_FUNCTION(&desc) = function.raw;
515 
516 	/* Length of source data is always 256 bytes */
517 	if (op->src.type == CCP_MEMTYPE_SYSTEM)
518 		CCP5_CMD_LEN(&desc) = saddr->length;
519 	else
520 		CCP5_CMD_LEN(&desc) = daddr->length;
521 
522 	if (op->src.type == CCP_MEMTYPE_SYSTEM) {
523 		CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
524 		CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
525 		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
526 
527 		if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
528 			CCP5_CMD_LSB_ID(&desc) = op->sb_key;
529 	} else {
530 		u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
531 
532 		CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
533 		CCP5_CMD_SRC_HI(&desc) = 0;
534 		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
535 	}
536 
537 	if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
538 		CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
539 		CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
540 		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
541 	} else {
542 		u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
543 
544 		CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
545 		CCP5_CMD_DST_HI(&desc) = 0;
546 		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
547 	}
548 
549 	return ccp5_do_cmd(&desc, op->cmd_q);
550 }
551 
552 static int ccp5_perform_ecc(struct ccp_op *op)
553 {
554 	struct ccp5_desc desc;
555 	union ccp_function function;
556 
557 	op->cmd_q->total_ecc_ops++;
558 
559 	/* Zero out all the fields of the command desc */
560 	memset(&desc, 0, Q_DESC_SIZE);
561 
562 	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
563 
564 	CCP5_CMD_SOC(&desc) = 0;
565 	CCP5_CMD_IOC(&desc) = 1;
566 	CCP5_CMD_INIT(&desc) = 0;
567 	CCP5_CMD_EOM(&desc) = 1;
568 	CCP5_CMD_PROT(&desc) = 0;
569 
570 	function.raw = 0;
571 	function.ecc.mode = op->u.ecc.function;
572 	CCP5_CMD_FUNCTION(&desc) = function.raw;
573 
574 	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
575 
576 	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
577 	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
578 	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
579 
580 	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
581 	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
582 	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
583 
584 	return ccp5_do_cmd(&desc, op->cmd_q);
585 }
586 
587 static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
588 {
589 	int q_mask = 1 << cmd_q->id;
590 	int queues = 0;
591 	int j;
592 
593 	/* Build a bit mask to know which LSBs this queue has access to.
594 	 * Don't bother with segment 0 as it has special privileges.
595 	 */
596 	for (j = 1; j < MAX_LSB_CNT; j++) {
597 		if (status & q_mask)
598 			bitmap_set(cmd_q->lsbmask, j, 1);
599 		status >>= LSB_REGION_WIDTH;
600 	}
601 	queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
602 	dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
603 		 cmd_q->id, queues);
604 
605 	return queues ? 0 : -EINVAL;
606 }
607 
608 static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
609 					int lsb_cnt, int n_lsbs,
610 					unsigned long *lsb_pub)
611 {
612 	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
613 	int bitno;
614 	int qlsb_wgt;
615 	int i;
616 
617 	/* For each queue:
618 	 * If the count of potential LSBs available to a queue matches the
619 	 * ordinal given to us in lsb_cnt:
620 	 * Copy the mask of possible LSBs for this queue into "qlsb";
621 	 * For each bit in qlsb, see if the corresponding bit in the
622 	 * aggregation mask is set; if so, we have a match.
623 	 *     If we have a match, clear the bit in the aggregation to
624 	 *     mark it as no longer available.
625 	 *     If there is no match, clear the bit in qlsb and keep looking.
626 	 */
627 	for (i = 0; i < ccp->cmd_q_count; i++) {
628 		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
629 
630 		qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
631 
632 		if (qlsb_wgt == lsb_cnt) {
633 			bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
634 
635 			bitno = find_first_bit(qlsb, MAX_LSB_CNT);
636 			while (bitno < MAX_LSB_CNT) {
637 				if (test_bit(bitno, lsb_pub)) {
638 					/* We found an available LSB
639 					 * that this queue can access
640 					 */
641 					cmd_q->lsb = bitno;
642 					bitmap_clear(lsb_pub, bitno, 1);
643 					dev_dbg(ccp->dev,
644 						 "Queue %d gets LSB %d\n",
645 						 i, bitno);
646 					break;
647 				}
648 				bitmap_clear(qlsb, bitno, 1);
649 				bitno = find_first_bit(qlsb, MAX_LSB_CNT);
650 			}
651 			if (bitno >= MAX_LSB_CNT)
652 				return -EINVAL;
653 			n_lsbs--;
654 		}
655 	}
656 	return n_lsbs;
657 }
658 
659 /* For each queue, from the most- to least-constrained:
660  * find an LSB that can be assigned to the queue. If there are N queues that
661  * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
662  * dedicated LSB. Remaining LSB regions become a shared resource.
663  * If we have fewer LSBs than queues, all LSB regions become shared resources.
664  */
665 static int ccp_assign_lsbs(struct ccp_device *ccp)
666 {
667 	DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
668 	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
669 	int n_lsbs = 0;
670 	int bitno;
671 	int i, lsb_cnt;
672 	int rc = 0;
673 
674 	bitmap_zero(lsb_pub, MAX_LSB_CNT);
675 
676 	/* Create an aggregate bitmap to get a total count of available LSBs */
677 	for (i = 0; i < ccp->cmd_q_count; i++)
678 		bitmap_or(lsb_pub,
679 			  lsb_pub, ccp->cmd_q[i].lsbmask,
680 			  MAX_LSB_CNT);
681 
682 	n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
683 
684 	if (n_lsbs >= ccp->cmd_q_count) {
685 		/* We have enough LSBS to give every queue a private LSB.
686 		 * Brute force search to start with the queues that are more
687 		 * constrained in LSB choice. When an LSB is privately
688 		 * assigned, it is removed from the public mask.
689 		 * This is an ugly N squared algorithm with some optimization.
690 		 */
691 		for (lsb_cnt = 1;
692 		     n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
693 		     lsb_cnt++) {
694 			rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
695 							  lsb_pub);
696 			if (rc < 0)
697 				return -EINVAL;
698 			n_lsbs = rc;
699 		}
700 	}
701 
702 	rc = 0;
703 	/* What's left of the LSBs, according to the public mask, now become
704 	 * shared. Any zero bits in the lsb_pub mask represent an LSB region
705 	 * that can't be used as a shared resource, so mark the LSB slots for
706 	 * them as "in use".
707 	 */
708 	bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
709 
710 	bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
711 	while (bitno < MAX_LSB_CNT) {
712 		bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
713 		bitmap_set(qlsb, bitno, 1);
714 		bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
715 	}
716 
717 	return rc;
718 }
719 
720 static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
721 {
722 	unsigned int i;
723 
724 	for (i = 0; i < ccp->cmd_q_count; i++)
725 		iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
726 }
727 
728 static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
729 {
730 	unsigned int i;
731 
732 	for (i = 0; i < ccp->cmd_q_count; i++)
733 		iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
734 }
735 
736 static void ccp5_irq_bh(unsigned long data)
737 {
738 	struct ccp_device *ccp = (struct ccp_device *)data;
739 	u32 status;
740 	unsigned int i;
741 
742 	for (i = 0; i < ccp->cmd_q_count; i++) {
743 		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
744 
745 		status = ioread32(cmd_q->reg_interrupt_status);
746 
747 		if (status) {
748 			cmd_q->int_status = status;
749 			cmd_q->q_status = ioread32(cmd_q->reg_status);
750 			cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
751 
752 			/* On error, only save the first error value */
753 			if ((status & INT_ERROR) && !cmd_q->cmd_error)
754 				cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
755 
756 			cmd_q->int_rcvd = 1;
757 
758 			/* Acknowledge the interrupt and wake the kthread */
759 			iowrite32(status, cmd_q->reg_interrupt_status);
760 			wake_up_interruptible(&cmd_q->int_queue);
761 		}
762 	}
763 	ccp5_enable_queue_interrupts(ccp);
764 }
765 
766 static irqreturn_t ccp5_irq_handler(int irq, void *data)
767 {
768 	struct ccp_device *ccp = (struct ccp_device *)data;
769 
770 	ccp5_disable_queue_interrupts(ccp);
771 	ccp->total_interrupts++;
772 	if (ccp->use_tasklet)
773 		tasklet_schedule(&ccp->irq_tasklet);
774 	else
775 		ccp5_irq_bh((unsigned long)ccp);
776 	return IRQ_HANDLED;
777 }
778 
779 static int ccp5_init(struct ccp_device *ccp)
780 {
781 	struct device *dev = ccp->dev;
782 	struct ccp_cmd_queue *cmd_q;
783 	struct dma_pool *dma_pool;
784 	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
785 	unsigned int qmr, i;
786 	u64 status;
787 	u32 status_lo, status_hi;
788 	int ret;
789 
790 	/* Find available queues */
791 	qmr = ioread32(ccp->io_regs + Q_MASK_REG);
792 	/*
793 	 * Check for a access to the registers.  If this read returns
794 	 * 0xffffffff, it's likely that the system is running a broken
795 	 * BIOS which disallows access to the device. Stop here and fail
796 	 * the initialization (but not the load, as the PSP could get
797 	 * properly initialized).
798 	 */
799 	if (qmr == 0xffffffff) {
800 		dev_notice(dev, "ccp: unable to access the device: you might be running a broken BIOS.\n");
801 		return 1;
802 	}
803 
804 	for (i = 0; (i < MAX_HW_QUEUES) && (ccp->cmd_q_count < ccp->max_q_count); i++) {
805 		if (!(qmr & (1 << i)))
806 			continue;
807 
808 		/* Allocate a dma pool for this queue */
809 		snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
810 			 ccp->name, i);
811 		dma_pool = dma_pool_create(dma_pool_name, dev,
812 					   CCP_DMAPOOL_MAX_SIZE,
813 					   CCP_DMAPOOL_ALIGN, 0);
814 		if (!dma_pool) {
815 			dev_err(dev, "unable to allocate dma pool\n");
816 			ret = -ENOMEM;
817 			goto e_pool;
818 		}
819 
820 		cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
821 		ccp->cmd_q_count++;
822 
823 		cmd_q->ccp = ccp;
824 		cmd_q->id = i;
825 		cmd_q->dma_pool = dma_pool;
826 		mutex_init(&cmd_q->q_mutex);
827 
828 		/* Page alignment satisfies our needs for N <= 128 */
829 		BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
830 		cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
831 		cmd_q->qbase = dmam_alloc_coherent(dev, cmd_q->qsize,
832 						   &cmd_q->qbase_dma,
833 						   GFP_KERNEL);
834 		if (!cmd_q->qbase) {
835 			dev_err(dev, "unable to allocate command queue\n");
836 			ret = -ENOMEM;
837 			goto e_pool;
838 		}
839 
840 		cmd_q->qidx = 0;
841 		/* Preset some register values and masks that are queue
842 		 * number dependent
843 		 */
844 		cmd_q->reg_control = ccp->io_regs +
845 				     CMD5_Q_STATUS_INCR * (i + 1);
846 		cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
847 		cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
848 		cmd_q->reg_int_enable = cmd_q->reg_control +
849 					CMD5_Q_INT_ENABLE_BASE;
850 		cmd_q->reg_interrupt_status = cmd_q->reg_control +
851 					      CMD5_Q_INTERRUPT_STATUS_BASE;
852 		cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
853 		cmd_q->reg_int_status = cmd_q->reg_control +
854 					CMD5_Q_INT_STATUS_BASE;
855 		cmd_q->reg_dma_status = cmd_q->reg_control +
856 					CMD5_Q_DMA_STATUS_BASE;
857 		cmd_q->reg_dma_read_status = cmd_q->reg_control +
858 					     CMD5_Q_DMA_READ_STATUS_BASE;
859 		cmd_q->reg_dma_write_status = cmd_q->reg_control +
860 					      CMD5_Q_DMA_WRITE_STATUS_BASE;
861 
862 		init_waitqueue_head(&cmd_q->int_queue);
863 
864 		dev_dbg(dev, "queue #%u available\n", i);
865 	}
866 
867 	if (ccp->cmd_q_count == 0) {
868 		dev_notice(dev, "no command queues available\n");
869 		ret = 1;
870 		goto e_pool;
871 	}
872 
873 	/* Turn off the queues and disable interrupts until ready */
874 	ccp5_disable_queue_interrupts(ccp);
875 	for (i = 0; i < ccp->cmd_q_count; i++) {
876 		cmd_q = &ccp->cmd_q[i];
877 
878 		cmd_q->qcontrol = 0; /* Start with nothing */
879 		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
880 
881 		ioread32(cmd_q->reg_int_status);
882 		ioread32(cmd_q->reg_status);
883 
884 		/* Clear the interrupt status */
885 		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
886 	}
887 
888 	dev_dbg(dev, "Requesting an IRQ...\n");
889 	/* Request an irq */
890 	ret = sp_request_ccp_irq(ccp->sp, ccp5_irq_handler, ccp->name, ccp);
891 	if (ret) {
892 		dev_err(dev, "unable to allocate an IRQ\n");
893 		goto e_pool;
894 	}
895 	/* Initialize the ISR tasklet */
896 	if (ccp->use_tasklet)
897 		tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
898 			     (unsigned long)ccp);
899 
900 	dev_dbg(dev, "Loading LSB map...\n");
901 	/* Copy the private LSB mask to the public registers */
902 	status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
903 	status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
904 	iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
905 	iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
906 	status = ((u64)status_hi<<30) | (u64)status_lo;
907 
908 	dev_dbg(dev, "Configuring virtual queues...\n");
909 	/* Configure size of each virtual queue accessible to host */
910 	for (i = 0; i < ccp->cmd_q_count; i++) {
911 		u32 dma_addr_lo;
912 		u32 dma_addr_hi;
913 
914 		cmd_q = &ccp->cmd_q[i];
915 
916 		cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
917 		cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
918 
919 		cmd_q->qdma_tail = cmd_q->qbase_dma;
920 		dma_addr_lo = low_address(cmd_q->qdma_tail);
921 		iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
922 		iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
923 
924 		dma_addr_hi = high_address(cmd_q->qdma_tail);
925 		cmd_q->qcontrol |= (dma_addr_hi << 16);
926 		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
927 
928 		/* Find the LSB regions accessible to the queue */
929 		ccp_find_lsb_regions(cmd_q, status);
930 		cmd_q->lsb = -1; /* Unassigned value */
931 	}
932 
933 	dev_dbg(dev, "Assigning LSBs...\n");
934 	ret = ccp_assign_lsbs(ccp);
935 	if (ret) {
936 		dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
937 		goto e_irq;
938 	}
939 
940 	/* Optimization: pre-allocate LSB slots for each queue */
941 	for (i = 0; i < ccp->cmd_q_count; i++) {
942 		ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
943 		ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
944 	}
945 
946 	dev_dbg(dev, "Starting threads...\n");
947 	/* Create a kthread for each queue */
948 	for (i = 0; i < ccp->cmd_q_count; i++) {
949 		struct task_struct *kthread;
950 
951 		cmd_q = &ccp->cmd_q[i];
952 
953 		kthread = kthread_run(ccp_cmd_queue_thread, cmd_q,
954 				      "%s-q%u", ccp->name, cmd_q->id);
955 		if (IS_ERR(kthread)) {
956 			dev_err(dev, "error creating queue thread (%ld)\n",
957 				PTR_ERR(kthread));
958 			ret = PTR_ERR(kthread);
959 			goto e_kthread;
960 		}
961 
962 		cmd_q->kthread = kthread;
963 	}
964 
965 	dev_dbg(dev, "Enabling interrupts...\n");
966 	ccp5_enable_queue_interrupts(ccp);
967 
968 	dev_dbg(dev, "Registering device...\n");
969 	/* Put this on the unit list to make it available */
970 	ccp_add_device(ccp);
971 
972 	ret = ccp_register_rng(ccp);
973 	if (ret)
974 		goto e_kthread;
975 
976 	/* Register the DMA engine support */
977 	ret = ccp_dmaengine_register(ccp);
978 	if (ret)
979 		goto e_hwrng;
980 
981 #ifdef CONFIG_CRYPTO_DEV_CCP_DEBUGFS
982 	/* Set up debugfs entries */
983 	ccp5_debugfs_setup(ccp);
984 #endif
985 
986 	return 0;
987 
988 e_hwrng:
989 	ccp_unregister_rng(ccp);
990 
991 e_kthread:
992 	for (i = 0; i < ccp->cmd_q_count; i++)
993 		if (ccp->cmd_q[i].kthread)
994 			kthread_stop(ccp->cmd_q[i].kthread);
995 
996 e_irq:
997 	sp_free_ccp_irq(ccp->sp, ccp);
998 
999 e_pool:
1000 	for (i = 0; i < ccp->cmd_q_count; i++)
1001 		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
1002 
1003 	return ret;
1004 }
1005 
1006 static void ccp5_destroy(struct ccp_device *ccp)
1007 {
1008 	struct ccp_cmd_queue *cmd_q;
1009 	struct ccp_cmd *cmd;
1010 	unsigned int i;
1011 
1012 	/* Unregister the DMA engine */
1013 	ccp_dmaengine_unregister(ccp);
1014 
1015 	/* Unregister the RNG */
1016 	ccp_unregister_rng(ccp);
1017 
1018 	/* Remove this device from the list of available units first */
1019 	ccp_del_device(ccp);
1020 
1021 #ifdef CONFIG_CRYPTO_DEV_CCP_DEBUGFS
1022 	/* We're in the process of tearing down the entire driver;
1023 	 * when all the devices are gone clean up debugfs
1024 	 */
1025 	if (ccp_present())
1026 		ccp5_debugfs_destroy();
1027 #endif
1028 
1029 	/* Disable and clear interrupts */
1030 	ccp5_disable_queue_interrupts(ccp);
1031 	for (i = 0; i < ccp->cmd_q_count; i++) {
1032 		cmd_q = &ccp->cmd_q[i];
1033 
1034 		/* Turn off the run bit */
1035 		iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
1036 
1037 		/* Clear the interrupt status */
1038 		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
1039 		ioread32(cmd_q->reg_int_status);
1040 		ioread32(cmd_q->reg_status);
1041 	}
1042 
1043 	/* Stop the queue kthreads */
1044 	for (i = 0; i < ccp->cmd_q_count; i++)
1045 		if (ccp->cmd_q[i].kthread)
1046 			kthread_stop(ccp->cmd_q[i].kthread);
1047 
1048 	sp_free_ccp_irq(ccp->sp, ccp);
1049 
1050 	/* Flush the cmd and backlog queue */
1051 	while (!list_empty(&ccp->cmd)) {
1052 		/* Invoke the callback directly with an error code */
1053 		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
1054 		list_del(&cmd->entry);
1055 		cmd->callback(cmd->data, -ENODEV);
1056 	}
1057 	while (!list_empty(&ccp->backlog)) {
1058 		/* Invoke the callback directly with an error code */
1059 		cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
1060 		list_del(&cmd->entry);
1061 		cmd->callback(cmd->data, -ENODEV);
1062 	}
1063 }
1064 
1065 static void ccp5_config(struct ccp_device *ccp)
1066 {
1067 	/* Public side */
1068 	iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
1069 }
1070 
1071 static void ccp5other_config(struct ccp_device *ccp)
1072 {
1073 	int i;
1074 	u32 rnd;
1075 
1076 	/* We own all of the queues on the NTB CCP */
1077 
1078 	iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
1079 	iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
1080 	for (i = 0; i < 12; i++) {
1081 		rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
1082 		iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
1083 	}
1084 
1085 	iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
1086 	iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
1087 	iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
1088 
1089 	iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
1090 	iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
1091 
1092 	iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
1093 
1094 	ccp5_config(ccp);
1095 }
1096 
1097 /* Version 5 adds some function, but is essentially the same as v5 */
1098 static const struct ccp_actions ccp5_actions = {
1099 	.aes = ccp5_perform_aes,
1100 	.xts_aes = ccp5_perform_xts_aes,
1101 	.sha = ccp5_perform_sha,
1102 	.des3 = ccp5_perform_des3,
1103 	.rsa = ccp5_perform_rsa,
1104 	.passthru = ccp5_perform_passthru,
1105 	.ecc = ccp5_perform_ecc,
1106 	.sballoc = ccp_lsb_alloc,
1107 	.sbfree = ccp_lsb_free,
1108 	.init = ccp5_init,
1109 	.destroy = ccp5_destroy,
1110 	.get_free_slots = ccp5_get_free_slots,
1111 };
1112 
1113 const struct ccp_vdata ccpv5a = {
1114 	.version = CCP_VERSION(5, 0),
1115 	.setup = ccp5_config,
1116 	.perform = &ccp5_actions,
1117 	.offset = 0x0,
1118 	.rsamax = CCP5_RSA_MAX_WIDTH,
1119 };
1120 
1121 const struct ccp_vdata ccpv5b = {
1122 	.version = CCP_VERSION(5, 0),
1123 	.dma_chan_attr = DMA_PRIVATE,
1124 	.setup = ccp5other_config,
1125 	.perform = &ccp5_actions,
1126 	.offset = 0x0,
1127 	.rsamax = CCP5_RSA_MAX_WIDTH,
1128 };
1129