1 /*
2  * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/delay.h>
17 #include <linux/scatterlist.h>
18 #include <linux/crypto.h>
19 #include <crypto/algapi.h>
20 #include <crypto/hash.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/sha.h>
23 #include <crypto/scatterwalk.h>
24 
25 #include "ccp-crypto.h"
26 
27 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
28 {
29 	struct ahash_request *req = ahash_request_cast(async_req);
30 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
31 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
32 	unsigned int digest_size = crypto_ahash_digestsize(tfm);
33 
34 	if (ret)
35 		goto e_free;
36 
37 	if (rctx->hash_rem) {
38 		/* Save remaining data to buffer */
39 		unsigned int offset = rctx->nbytes - rctx->hash_rem;
40 
41 		scatterwalk_map_and_copy(rctx->buf, rctx->src,
42 					 offset, rctx->hash_rem, 0);
43 		rctx->buf_count = rctx->hash_rem;
44 	} else {
45 		rctx->buf_count = 0;
46 	}
47 
48 	/* Update result area if supplied */
49 	if (req->result)
50 		memcpy(req->result, rctx->ctx, digest_size);
51 
52 e_free:
53 	sg_free_table(&rctx->data_sg);
54 
55 	return ret;
56 }
57 
58 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
59 			     unsigned int final)
60 {
61 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
62 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
63 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
64 	struct scatterlist *sg;
65 	unsigned int block_size =
66 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
67 	unsigned int sg_count;
68 	gfp_t gfp;
69 	u64 len;
70 	int ret;
71 
72 	len = (u64)rctx->buf_count + (u64)nbytes;
73 
74 	if (!final && (len <= block_size)) {
75 		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
76 					 0, nbytes, 0);
77 		rctx->buf_count += nbytes;
78 
79 		return 0;
80 	}
81 
82 	rctx->src = req->src;
83 	rctx->nbytes = nbytes;
84 
85 	rctx->final = final;
86 	rctx->hash_rem = final ? 0 : len & (block_size - 1);
87 	rctx->hash_cnt = len - rctx->hash_rem;
88 	if (!final && !rctx->hash_rem) {
89 		/* CCP can't do zero length final, so keep some data around */
90 		rctx->hash_cnt -= block_size;
91 		rctx->hash_rem = block_size;
92 	}
93 
94 	/* Initialize the context scatterlist */
95 	sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
96 
97 	sg = NULL;
98 	if (rctx->buf_count && nbytes) {
99 		/* Build the data scatterlist table - allocate enough entries
100 		 * for both data pieces (buffer and input data)
101 		 */
102 		gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
103 			GFP_KERNEL : GFP_ATOMIC;
104 		sg_count = sg_nents(req->src) + 1;
105 		ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
106 		if (ret)
107 			return ret;
108 
109 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
110 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
111 		if (!sg) {
112 			ret = -EINVAL;
113 			goto e_free;
114 		}
115 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
116 		if (!sg) {
117 			ret = -EINVAL;
118 			goto e_free;
119 		}
120 		sg_mark_end(sg);
121 
122 		sg = rctx->data_sg.sgl;
123 	} else if (rctx->buf_count) {
124 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
125 
126 		sg = &rctx->buf_sg;
127 	} else if (nbytes) {
128 		sg = req->src;
129 	}
130 
131 	rctx->msg_bits += (rctx->hash_cnt << 3);	/* Total in bits */
132 
133 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
134 	INIT_LIST_HEAD(&rctx->cmd.entry);
135 	rctx->cmd.engine = CCP_ENGINE_SHA;
136 	rctx->cmd.u.sha.type = rctx->type;
137 	rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
138 
139 	switch (rctx->type) {
140 	case CCP_SHA_TYPE_1:
141 		rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
142 		break;
143 	case CCP_SHA_TYPE_224:
144 		rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
145 		break;
146 	case CCP_SHA_TYPE_256:
147 		rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
148 		break;
149 	default:
150 		/* Should never get here */
151 		break;
152 	}
153 
154 	rctx->cmd.u.sha.src = sg;
155 	rctx->cmd.u.sha.src_len = rctx->hash_cnt;
156 	rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
157 		&ctx->u.sha.opad_sg : NULL;
158 	rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
159 		ctx->u.sha.opad_count : 0;
160 	rctx->cmd.u.sha.first = rctx->first;
161 	rctx->cmd.u.sha.final = rctx->final;
162 	rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
163 
164 	rctx->first = 0;
165 
166 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
167 
168 	return ret;
169 
170 e_free:
171 	sg_free_table(&rctx->data_sg);
172 
173 	return ret;
174 }
175 
176 static int ccp_sha_init(struct ahash_request *req)
177 {
178 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
179 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
180 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
181 	struct ccp_crypto_ahash_alg *alg =
182 		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
183 	unsigned int block_size =
184 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
185 
186 	memset(rctx, 0, sizeof(*rctx));
187 
188 	rctx->type = alg->type;
189 	rctx->first = 1;
190 
191 	if (ctx->u.sha.key_len) {
192 		/* Buffer the HMAC key for first update */
193 		memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
194 		rctx->buf_count = block_size;
195 	}
196 
197 	return 0;
198 }
199 
200 static int ccp_sha_update(struct ahash_request *req)
201 {
202 	return ccp_do_sha_update(req, req->nbytes, 0);
203 }
204 
205 static int ccp_sha_final(struct ahash_request *req)
206 {
207 	return ccp_do_sha_update(req, 0, 1);
208 }
209 
210 static int ccp_sha_finup(struct ahash_request *req)
211 {
212 	return ccp_do_sha_update(req, req->nbytes, 1);
213 }
214 
215 static int ccp_sha_digest(struct ahash_request *req)
216 {
217 	int ret;
218 
219 	ret = ccp_sha_init(req);
220 	if (ret)
221 		return ret;
222 
223 	return ccp_sha_finup(req);
224 }
225 
226 static int ccp_sha_export(struct ahash_request *req, void *out)
227 {
228 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
229 	struct ccp_sha_exp_ctx state;
230 
231 	/* Don't let anything leak to 'out' */
232 	memset(&state, 0, sizeof(state));
233 
234 	state.type = rctx->type;
235 	state.msg_bits = rctx->msg_bits;
236 	state.first = rctx->first;
237 	memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
238 	state.buf_count = rctx->buf_count;
239 	memcpy(state.buf, rctx->buf, sizeof(state.buf));
240 
241 	/* 'out' may not be aligned so memcpy from local variable */
242 	memcpy(out, &state, sizeof(state));
243 
244 	return 0;
245 }
246 
247 static int ccp_sha_import(struct ahash_request *req, const void *in)
248 {
249 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
250 	struct ccp_sha_exp_ctx state;
251 
252 	/* 'in' may not be aligned so memcpy to local variable */
253 	memcpy(&state, in, sizeof(state));
254 
255 	memset(rctx, 0, sizeof(*rctx));
256 	rctx->type = state.type;
257 	rctx->msg_bits = state.msg_bits;
258 	rctx->first = state.first;
259 	memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
260 	rctx->buf_count = state.buf_count;
261 	memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
262 
263 	return 0;
264 }
265 
266 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
267 			  unsigned int key_len)
268 {
269 	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
270 	struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
271 
272 	SHASH_DESC_ON_STACK(sdesc, shash);
273 
274 	unsigned int block_size = crypto_shash_blocksize(shash);
275 	unsigned int digest_size = crypto_shash_digestsize(shash);
276 	int i, ret;
277 
278 	/* Set to zero until complete */
279 	ctx->u.sha.key_len = 0;
280 
281 	/* Clear key area to provide zero padding for keys smaller
282 	 * than the block size
283 	 */
284 	memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
285 
286 	if (key_len > block_size) {
287 		/* Must hash the input key */
288 		sdesc->tfm = shash;
289 		sdesc->flags = crypto_ahash_get_flags(tfm) &
290 			CRYPTO_TFM_REQ_MAY_SLEEP;
291 
292 		ret = crypto_shash_digest(sdesc, key, key_len,
293 					  ctx->u.sha.key);
294 		if (ret) {
295 			crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
296 			return -EINVAL;
297 		}
298 
299 		key_len = digest_size;
300 	} else {
301 		memcpy(ctx->u.sha.key, key, key_len);
302 	}
303 
304 	for (i = 0; i < block_size; i++) {
305 		ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
306 		ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
307 	}
308 
309 	sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
310 	ctx->u.sha.opad_count = block_size;
311 
312 	ctx->u.sha.key_len = key_len;
313 
314 	return 0;
315 }
316 
317 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
318 {
319 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
320 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
321 
322 	ctx->complete = ccp_sha_complete;
323 	ctx->u.sha.key_len = 0;
324 
325 	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
326 
327 	return 0;
328 }
329 
330 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
331 {
332 }
333 
334 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
335 {
336 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
337 	struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
338 	struct crypto_shash *hmac_tfm;
339 
340 	hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
341 	if (IS_ERR(hmac_tfm)) {
342 		pr_warn("could not load driver %s need for HMAC support\n",
343 			alg->child_alg);
344 		return PTR_ERR(hmac_tfm);
345 	}
346 
347 	ctx->u.sha.hmac_tfm = hmac_tfm;
348 
349 	return ccp_sha_cra_init(tfm);
350 }
351 
352 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
353 {
354 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
355 
356 	if (ctx->u.sha.hmac_tfm)
357 		crypto_free_shash(ctx->u.sha.hmac_tfm);
358 
359 	ccp_sha_cra_exit(tfm);
360 }
361 
362 struct ccp_sha_def {
363 	unsigned int version;
364 	const char *name;
365 	const char *drv_name;
366 	enum ccp_sha_type type;
367 	u32 digest_size;
368 	u32 block_size;
369 };
370 
371 static struct ccp_sha_def sha_algs[] = {
372 	{
373 		.version	= CCP_VERSION(3, 0),
374 		.name		= "sha1",
375 		.drv_name	= "sha1-ccp",
376 		.type		= CCP_SHA_TYPE_1,
377 		.digest_size	= SHA1_DIGEST_SIZE,
378 		.block_size	= SHA1_BLOCK_SIZE,
379 	},
380 	{
381 		.version	= CCP_VERSION(3, 0),
382 		.name		= "sha224",
383 		.drv_name	= "sha224-ccp",
384 		.type		= CCP_SHA_TYPE_224,
385 		.digest_size	= SHA224_DIGEST_SIZE,
386 		.block_size	= SHA224_BLOCK_SIZE,
387 	},
388 	{
389 		.version	= CCP_VERSION(3, 0),
390 		.name		= "sha256",
391 		.drv_name	= "sha256-ccp",
392 		.type		= CCP_SHA_TYPE_256,
393 		.digest_size	= SHA256_DIGEST_SIZE,
394 		.block_size	= SHA256_BLOCK_SIZE,
395 	},
396 };
397 
398 static int ccp_register_hmac_alg(struct list_head *head,
399 				 const struct ccp_sha_def *def,
400 				 const struct ccp_crypto_ahash_alg *base_alg)
401 {
402 	struct ccp_crypto_ahash_alg *ccp_alg;
403 	struct ahash_alg *alg;
404 	struct hash_alg_common *halg;
405 	struct crypto_alg *base;
406 	int ret;
407 
408 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
409 	if (!ccp_alg)
410 		return -ENOMEM;
411 
412 	/* Copy the base algorithm and only change what's necessary */
413 	*ccp_alg = *base_alg;
414 	INIT_LIST_HEAD(&ccp_alg->entry);
415 
416 	strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
417 
418 	alg = &ccp_alg->alg;
419 	alg->setkey = ccp_sha_setkey;
420 
421 	halg = &alg->halg;
422 
423 	base = &halg->base;
424 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
425 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
426 		 def->drv_name);
427 	base->cra_init = ccp_hmac_sha_cra_init;
428 	base->cra_exit = ccp_hmac_sha_cra_exit;
429 
430 	ret = crypto_register_ahash(alg);
431 	if (ret) {
432 		pr_err("%s ahash algorithm registration error (%d)\n",
433 		       base->cra_name, ret);
434 		kfree(ccp_alg);
435 		return ret;
436 	}
437 
438 	list_add(&ccp_alg->entry, head);
439 
440 	return ret;
441 }
442 
443 static int ccp_register_sha_alg(struct list_head *head,
444 				const struct ccp_sha_def *def)
445 {
446 	struct ccp_crypto_ahash_alg *ccp_alg;
447 	struct ahash_alg *alg;
448 	struct hash_alg_common *halg;
449 	struct crypto_alg *base;
450 	int ret;
451 
452 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
453 	if (!ccp_alg)
454 		return -ENOMEM;
455 
456 	INIT_LIST_HEAD(&ccp_alg->entry);
457 
458 	ccp_alg->type = def->type;
459 
460 	alg = &ccp_alg->alg;
461 	alg->init = ccp_sha_init;
462 	alg->update = ccp_sha_update;
463 	alg->final = ccp_sha_final;
464 	alg->finup = ccp_sha_finup;
465 	alg->digest = ccp_sha_digest;
466 	alg->export = ccp_sha_export;
467 	alg->import = ccp_sha_import;
468 
469 	halg = &alg->halg;
470 	halg->digestsize = def->digest_size;
471 	halg->statesize = sizeof(struct ccp_sha_exp_ctx);
472 
473 	base = &halg->base;
474 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
475 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
476 		 def->drv_name);
477 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
478 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
479 			  CRYPTO_ALG_NEED_FALLBACK;
480 	base->cra_blocksize = def->block_size;
481 	base->cra_ctxsize = sizeof(struct ccp_ctx);
482 	base->cra_priority = CCP_CRA_PRIORITY;
483 	base->cra_type = &crypto_ahash_type;
484 	base->cra_init = ccp_sha_cra_init;
485 	base->cra_exit = ccp_sha_cra_exit;
486 	base->cra_module = THIS_MODULE;
487 
488 	ret = crypto_register_ahash(alg);
489 	if (ret) {
490 		pr_err("%s ahash algorithm registration error (%d)\n",
491 		       base->cra_name, ret);
492 		kfree(ccp_alg);
493 		return ret;
494 	}
495 
496 	list_add(&ccp_alg->entry, head);
497 
498 	ret = ccp_register_hmac_alg(head, def, ccp_alg);
499 
500 	return ret;
501 }
502 
503 int ccp_register_sha_algs(struct list_head *head)
504 {
505 	int i, ret;
506 	unsigned int ccpversion = ccp_version();
507 
508 	for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
509 		if (sha_algs[i].version > ccpversion)
510 			continue;
511 		ret = ccp_register_sha_alg(head, &sha_algs[i]);
512 		if (ret)
513 			return ret;
514 	}
515 
516 	return 0;
517 }
518