1 /* 2 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support 3 * 4 * Copyright (C) 2013,2018 Advanced Micro Devices, Inc. 5 * 6 * Author: Tom Lendacky <thomas.lendacky@amd.com> 7 * Author: Gary R Hook <gary.hook@amd.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/delay.h> 17 #include <linux/scatterlist.h> 18 #include <linux/crypto.h> 19 #include <crypto/algapi.h> 20 #include <crypto/hash.h> 21 #include <crypto/hmac.h> 22 #include <crypto/internal/hash.h> 23 #include <crypto/sha.h> 24 #include <crypto/scatterwalk.h> 25 26 #include "ccp-crypto.h" 27 28 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret) 29 { 30 struct ahash_request *req = ahash_request_cast(async_req); 31 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 32 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 33 unsigned int digest_size = crypto_ahash_digestsize(tfm); 34 35 if (ret) 36 goto e_free; 37 38 if (rctx->hash_rem) { 39 /* Save remaining data to buffer */ 40 unsigned int offset = rctx->nbytes - rctx->hash_rem; 41 42 scatterwalk_map_and_copy(rctx->buf, rctx->src, 43 offset, rctx->hash_rem, 0); 44 rctx->buf_count = rctx->hash_rem; 45 } else { 46 rctx->buf_count = 0; 47 } 48 49 /* Update result area if supplied */ 50 if (req->result && rctx->final) 51 memcpy(req->result, rctx->ctx, digest_size); 52 53 e_free: 54 sg_free_table(&rctx->data_sg); 55 56 return ret; 57 } 58 59 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes, 60 unsigned int final) 61 { 62 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 63 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); 64 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 65 struct scatterlist *sg; 66 unsigned int block_size = 67 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 68 unsigned int sg_count; 69 gfp_t gfp; 70 u64 len; 71 int ret; 72 73 len = (u64)rctx->buf_count + (u64)nbytes; 74 75 if (!final && (len <= block_size)) { 76 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src, 77 0, nbytes, 0); 78 rctx->buf_count += nbytes; 79 80 return 0; 81 } 82 83 rctx->src = req->src; 84 rctx->nbytes = nbytes; 85 86 rctx->final = final; 87 rctx->hash_rem = final ? 0 : len & (block_size - 1); 88 rctx->hash_cnt = len - rctx->hash_rem; 89 if (!final && !rctx->hash_rem) { 90 /* CCP can't do zero length final, so keep some data around */ 91 rctx->hash_cnt -= block_size; 92 rctx->hash_rem = block_size; 93 } 94 95 /* Initialize the context scatterlist */ 96 sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx)); 97 98 sg = NULL; 99 if (rctx->buf_count && nbytes) { 100 /* Build the data scatterlist table - allocate enough entries 101 * for both data pieces (buffer and input data) 102 */ 103 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? 104 GFP_KERNEL : GFP_ATOMIC; 105 sg_count = sg_nents(req->src) + 1; 106 ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp); 107 if (ret) 108 return ret; 109 110 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); 111 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg); 112 if (!sg) { 113 ret = -EINVAL; 114 goto e_free; 115 } 116 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src); 117 if (!sg) { 118 ret = -EINVAL; 119 goto e_free; 120 } 121 sg_mark_end(sg); 122 123 sg = rctx->data_sg.sgl; 124 } else if (rctx->buf_count) { 125 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); 126 127 sg = &rctx->buf_sg; 128 } else if (nbytes) { 129 sg = req->src; 130 } 131 132 rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */ 133 134 memset(&rctx->cmd, 0, sizeof(rctx->cmd)); 135 INIT_LIST_HEAD(&rctx->cmd.entry); 136 rctx->cmd.engine = CCP_ENGINE_SHA; 137 rctx->cmd.u.sha.type = rctx->type; 138 rctx->cmd.u.sha.ctx = &rctx->ctx_sg; 139 140 switch (rctx->type) { 141 case CCP_SHA_TYPE_1: 142 rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE; 143 break; 144 case CCP_SHA_TYPE_224: 145 rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE; 146 break; 147 case CCP_SHA_TYPE_256: 148 rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE; 149 break; 150 case CCP_SHA_TYPE_384: 151 rctx->cmd.u.sha.ctx_len = SHA384_DIGEST_SIZE; 152 break; 153 case CCP_SHA_TYPE_512: 154 rctx->cmd.u.sha.ctx_len = SHA512_DIGEST_SIZE; 155 break; 156 default: 157 /* Should never get here */ 158 break; 159 } 160 161 rctx->cmd.u.sha.src = sg; 162 rctx->cmd.u.sha.src_len = rctx->hash_cnt; 163 rctx->cmd.u.sha.opad = ctx->u.sha.key_len ? 164 &ctx->u.sha.opad_sg : NULL; 165 rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ? 166 ctx->u.sha.opad_count : 0; 167 rctx->cmd.u.sha.first = rctx->first; 168 rctx->cmd.u.sha.final = rctx->final; 169 rctx->cmd.u.sha.msg_bits = rctx->msg_bits; 170 171 rctx->first = 0; 172 173 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); 174 175 return ret; 176 177 e_free: 178 sg_free_table(&rctx->data_sg); 179 180 return ret; 181 } 182 183 static int ccp_sha_init(struct ahash_request *req) 184 { 185 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 186 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); 187 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 188 struct ccp_crypto_ahash_alg *alg = 189 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm)); 190 unsigned int block_size = 191 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 192 193 memset(rctx, 0, sizeof(*rctx)); 194 195 rctx->type = alg->type; 196 rctx->first = 1; 197 198 if (ctx->u.sha.key_len) { 199 /* Buffer the HMAC key for first update */ 200 memcpy(rctx->buf, ctx->u.sha.ipad, block_size); 201 rctx->buf_count = block_size; 202 } 203 204 return 0; 205 } 206 207 static int ccp_sha_update(struct ahash_request *req) 208 { 209 return ccp_do_sha_update(req, req->nbytes, 0); 210 } 211 212 static int ccp_sha_final(struct ahash_request *req) 213 { 214 return ccp_do_sha_update(req, 0, 1); 215 } 216 217 static int ccp_sha_finup(struct ahash_request *req) 218 { 219 return ccp_do_sha_update(req, req->nbytes, 1); 220 } 221 222 static int ccp_sha_digest(struct ahash_request *req) 223 { 224 int ret; 225 226 ret = ccp_sha_init(req); 227 if (ret) 228 return ret; 229 230 return ccp_sha_finup(req); 231 } 232 233 static int ccp_sha_export(struct ahash_request *req, void *out) 234 { 235 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 236 struct ccp_sha_exp_ctx state; 237 238 /* Don't let anything leak to 'out' */ 239 memset(&state, 0, sizeof(state)); 240 241 state.type = rctx->type; 242 state.msg_bits = rctx->msg_bits; 243 state.first = rctx->first; 244 memcpy(state.ctx, rctx->ctx, sizeof(state.ctx)); 245 state.buf_count = rctx->buf_count; 246 memcpy(state.buf, rctx->buf, sizeof(state.buf)); 247 248 /* 'out' may not be aligned so memcpy from local variable */ 249 memcpy(out, &state, sizeof(state)); 250 251 return 0; 252 } 253 254 static int ccp_sha_import(struct ahash_request *req, const void *in) 255 { 256 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 257 struct ccp_sha_exp_ctx state; 258 259 /* 'in' may not be aligned so memcpy to local variable */ 260 memcpy(&state, in, sizeof(state)); 261 262 memset(rctx, 0, sizeof(*rctx)); 263 rctx->type = state.type; 264 rctx->msg_bits = state.msg_bits; 265 rctx->first = state.first; 266 memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx)); 267 rctx->buf_count = state.buf_count; 268 memcpy(rctx->buf, state.buf, sizeof(rctx->buf)); 269 270 return 0; 271 } 272 273 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key, 274 unsigned int key_len) 275 { 276 struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); 277 struct crypto_shash *shash = ctx->u.sha.hmac_tfm; 278 279 SHASH_DESC_ON_STACK(sdesc, shash); 280 281 unsigned int block_size = crypto_shash_blocksize(shash); 282 unsigned int digest_size = crypto_shash_digestsize(shash); 283 int i, ret; 284 285 /* Set to zero until complete */ 286 ctx->u.sha.key_len = 0; 287 288 /* Clear key area to provide zero padding for keys smaller 289 * than the block size 290 */ 291 memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key)); 292 293 if (key_len > block_size) { 294 /* Must hash the input key */ 295 sdesc->tfm = shash; 296 sdesc->flags = crypto_ahash_get_flags(tfm) & 297 CRYPTO_TFM_REQ_MAY_SLEEP; 298 299 ret = crypto_shash_digest(sdesc, key, key_len, 300 ctx->u.sha.key); 301 if (ret) { 302 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); 303 return -EINVAL; 304 } 305 306 key_len = digest_size; 307 } else { 308 memcpy(ctx->u.sha.key, key, key_len); 309 } 310 311 for (i = 0; i < block_size; i++) { 312 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ HMAC_IPAD_VALUE; 313 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ HMAC_OPAD_VALUE; 314 } 315 316 sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size); 317 ctx->u.sha.opad_count = block_size; 318 319 ctx->u.sha.key_len = key_len; 320 321 return 0; 322 } 323 324 static int ccp_sha_cra_init(struct crypto_tfm *tfm) 325 { 326 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 327 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 328 329 ctx->complete = ccp_sha_complete; 330 ctx->u.sha.key_len = 0; 331 332 crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx)); 333 334 return 0; 335 } 336 337 static void ccp_sha_cra_exit(struct crypto_tfm *tfm) 338 { 339 } 340 341 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm) 342 { 343 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 344 struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm); 345 struct crypto_shash *hmac_tfm; 346 347 hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0); 348 if (IS_ERR(hmac_tfm)) { 349 pr_warn("could not load driver %s need for HMAC support\n", 350 alg->child_alg); 351 return PTR_ERR(hmac_tfm); 352 } 353 354 ctx->u.sha.hmac_tfm = hmac_tfm; 355 356 return ccp_sha_cra_init(tfm); 357 } 358 359 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm) 360 { 361 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 362 363 if (ctx->u.sha.hmac_tfm) 364 crypto_free_shash(ctx->u.sha.hmac_tfm); 365 366 ccp_sha_cra_exit(tfm); 367 } 368 369 struct ccp_sha_def { 370 unsigned int version; 371 const char *name; 372 const char *drv_name; 373 enum ccp_sha_type type; 374 u32 digest_size; 375 u32 block_size; 376 }; 377 378 static struct ccp_sha_def sha_algs[] = { 379 { 380 .version = CCP_VERSION(3, 0), 381 .name = "sha1", 382 .drv_name = "sha1-ccp", 383 .type = CCP_SHA_TYPE_1, 384 .digest_size = SHA1_DIGEST_SIZE, 385 .block_size = SHA1_BLOCK_SIZE, 386 }, 387 { 388 .version = CCP_VERSION(3, 0), 389 .name = "sha224", 390 .drv_name = "sha224-ccp", 391 .type = CCP_SHA_TYPE_224, 392 .digest_size = SHA224_DIGEST_SIZE, 393 .block_size = SHA224_BLOCK_SIZE, 394 }, 395 { 396 .version = CCP_VERSION(3, 0), 397 .name = "sha256", 398 .drv_name = "sha256-ccp", 399 .type = CCP_SHA_TYPE_256, 400 .digest_size = SHA256_DIGEST_SIZE, 401 .block_size = SHA256_BLOCK_SIZE, 402 }, 403 { 404 .version = CCP_VERSION(5, 0), 405 .name = "sha384", 406 .drv_name = "sha384-ccp", 407 .type = CCP_SHA_TYPE_384, 408 .digest_size = SHA384_DIGEST_SIZE, 409 .block_size = SHA384_BLOCK_SIZE, 410 }, 411 { 412 .version = CCP_VERSION(5, 0), 413 .name = "sha512", 414 .drv_name = "sha512-ccp", 415 .type = CCP_SHA_TYPE_512, 416 .digest_size = SHA512_DIGEST_SIZE, 417 .block_size = SHA512_BLOCK_SIZE, 418 }, 419 }; 420 421 static int ccp_register_hmac_alg(struct list_head *head, 422 const struct ccp_sha_def *def, 423 const struct ccp_crypto_ahash_alg *base_alg) 424 { 425 struct ccp_crypto_ahash_alg *ccp_alg; 426 struct ahash_alg *alg; 427 struct hash_alg_common *halg; 428 struct crypto_alg *base; 429 int ret; 430 431 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); 432 if (!ccp_alg) 433 return -ENOMEM; 434 435 /* Copy the base algorithm and only change what's necessary */ 436 *ccp_alg = *base_alg; 437 INIT_LIST_HEAD(&ccp_alg->entry); 438 439 strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME); 440 441 alg = &ccp_alg->alg; 442 alg->setkey = ccp_sha_setkey; 443 444 halg = &alg->halg; 445 446 base = &halg->base; 447 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name); 448 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s", 449 def->drv_name); 450 base->cra_init = ccp_hmac_sha_cra_init; 451 base->cra_exit = ccp_hmac_sha_cra_exit; 452 453 ret = crypto_register_ahash(alg); 454 if (ret) { 455 pr_err("%s ahash algorithm registration error (%d)\n", 456 base->cra_name, ret); 457 kfree(ccp_alg); 458 return ret; 459 } 460 461 list_add(&ccp_alg->entry, head); 462 463 return ret; 464 } 465 466 static int ccp_register_sha_alg(struct list_head *head, 467 const struct ccp_sha_def *def) 468 { 469 struct ccp_crypto_ahash_alg *ccp_alg; 470 struct ahash_alg *alg; 471 struct hash_alg_common *halg; 472 struct crypto_alg *base; 473 int ret; 474 475 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); 476 if (!ccp_alg) 477 return -ENOMEM; 478 479 INIT_LIST_HEAD(&ccp_alg->entry); 480 481 ccp_alg->type = def->type; 482 483 alg = &ccp_alg->alg; 484 alg->init = ccp_sha_init; 485 alg->update = ccp_sha_update; 486 alg->final = ccp_sha_final; 487 alg->finup = ccp_sha_finup; 488 alg->digest = ccp_sha_digest; 489 alg->export = ccp_sha_export; 490 alg->import = ccp_sha_import; 491 492 halg = &alg->halg; 493 halg->digestsize = def->digest_size; 494 halg->statesize = sizeof(struct ccp_sha_exp_ctx); 495 496 base = &halg->base; 497 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); 498 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 499 def->drv_name); 500 base->cra_flags = CRYPTO_ALG_ASYNC | 501 CRYPTO_ALG_KERN_DRIVER_ONLY | 502 CRYPTO_ALG_NEED_FALLBACK; 503 base->cra_blocksize = def->block_size; 504 base->cra_ctxsize = sizeof(struct ccp_ctx); 505 base->cra_priority = CCP_CRA_PRIORITY; 506 base->cra_init = ccp_sha_cra_init; 507 base->cra_exit = ccp_sha_cra_exit; 508 base->cra_module = THIS_MODULE; 509 510 ret = crypto_register_ahash(alg); 511 if (ret) { 512 pr_err("%s ahash algorithm registration error (%d)\n", 513 base->cra_name, ret); 514 kfree(ccp_alg); 515 return ret; 516 } 517 518 list_add(&ccp_alg->entry, head); 519 520 ret = ccp_register_hmac_alg(head, def, ccp_alg); 521 522 return ret; 523 } 524 525 int ccp_register_sha_algs(struct list_head *head) 526 { 527 int i, ret; 528 unsigned int ccpversion = ccp_version(); 529 530 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) { 531 if (sha_algs[i].version > ccpversion) 532 continue; 533 ret = ccp_register_sha_alg(head, &sha_algs[i]); 534 if (ret) 535 return ret; 536 } 537 538 return 0; 539 } 540