1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support 4 * 5 * Copyright (C) 2013,2018 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 * Author: Gary R Hook <gary.hook@amd.com> 9 */ 10 11 #include <linux/module.h> 12 #include <linux/sched.h> 13 #include <linux/delay.h> 14 #include <linux/scatterlist.h> 15 #include <linux/crypto.h> 16 #include <crypto/algapi.h> 17 #include <crypto/hash.h> 18 #include <crypto/hmac.h> 19 #include <crypto/internal/hash.h> 20 #include <crypto/sha1.h> 21 #include <crypto/sha2.h> 22 #include <crypto/scatterwalk.h> 23 #include <linux/string.h> 24 25 #include "ccp-crypto.h" 26 27 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret) 28 { 29 struct ahash_request *req = ahash_request_cast(async_req); 30 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 31 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 32 unsigned int digest_size = crypto_ahash_digestsize(tfm); 33 34 if (ret) 35 goto e_free; 36 37 if (rctx->hash_rem) { 38 /* Save remaining data to buffer */ 39 unsigned int offset = rctx->nbytes - rctx->hash_rem; 40 41 scatterwalk_map_and_copy(rctx->buf, rctx->src, 42 offset, rctx->hash_rem, 0); 43 rctx->buf_count = rctx->hash_rem; 44 } else { 45 rctx->buf_count = 0; 46 } 47 48 /* Update result area if supplied */ 49 if (req->result && rctx->final) 50 memcpy(req->result, rctx->ctx, digest_size); 51 52 e_free: 53 sg_free_table(&rctx->data_sg); 54 55 return ret; 56 } 57 58 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes, 59 unsigned int final) 60 { 61 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 62 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); 63 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 64 struct scatterlist *sg; 65 unsigned int block_size = 66 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 67 unsigned int sg_count; 68 gfp_t gfp; 69 u64 len; 70 int ret; 71 72 len = (u64)rctx->buf_count + (u64)nbytes; 73 74 if (!final && (len <= block_size)) { 75 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src, 76 0, nbytes, 0); 77 rctx->buf_count += nbytes; 78 79 return 0; 80 } 81 82 rctx->src = req->src; 83 rctx->nbytes = nbytes; 84 85 rctx->final = final; 86 rctx->hash_rem = final ? 0 : len & (block_size - 1); 87 rctx->hash_cnt = len - rctx->hash_rem; 88 if (!final && !rctx->hash_rem) { 89 /* CCP can't do zero length final, so keep some data around */ 90 rctx->hash_cnt -= block_size; 91 rctx->hash_rem = block_size; 92 } 93 94 /* Initialize the context scatterlist */ 95 sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx)); 96 97 sg = NULL; 98 if (rctx->buf_count && nbytes) { 99 /* Build the data scatterlist table - allocate enough entries 100 * for both data pieces (buffer and input data) 101 */ 102 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? 103 GFP_KERNEL : GFP_ATOMIC; 104 sg_count = sg_nents(req->src) + 1; 105 ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp); 106 if (ret) 107 return ret; 108 109 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); 110 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg); 111 if (!sg) { 112 ret = -EINVAL; 113 goto e_free; 114 } 115 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src); 116 if (!sg) { 117 ret = -EINVAL; 118 goto e_free; 119 } 120 sg_mark_end(sg); 121 122 sg = rctx->data_sg.sgl; 123 } else if (rctx->buf_count) { 124 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); 125 126 sg = &rctx->buf_sg; 127 } else if (nbytes) { 128 sg = req->src; 129 } 130 131 rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */ 132 133 memset(&rctx->cmd, 0, sizeof(rctx->cmd)); 134 INIT_LIST_HEAD(&rctx->cmd.entry); 135 rctx->cmd.engine = CCP_ENGINE_SHA; 136 rctx->cmd.u.sha.type = rctx->type; 137 rctx->cmd.u.sha.ctx = &rctx->ctx_sg; 138 139 switch (rctx->type) { 140 case CCP_SHA_TYPE_1: 141 rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE; 142 break; 143 case CCP_SHA_TYPE_224: 144 rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE; 145 break; 146 case CCP_SHA_TYPE_256: 147 rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE; 148 break; 149 case CCP_SHA_TYPE_384: 150 rctx->cmd.u.sha.ctx_len = SHA384_DIGEST_SIZE; 151 break; 152 case CCP_SHA_TYPE_512: 153 rctx->cmd.u.sha.ctx_len = SHA512_DIGEST_SIZE; 154 break; 155 default: 156 /* Should never get here */ 157 break; 158 } 159 160 rctx->cmd.u.sha.src = sg; 161 rctx->cmd.u.sha.src_len = rctx->hash_cnt; 162 rctx->cmd.u.sha.opad = ctx->u.sha.key_len ? 163 &ctx->u.sha.opad_sg : NULL; 164 rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ? 165 ctx->u.sha.opad_count : 0; 166 rctx->cmd.u.sha.first = rctx->first; 167 rctx->cmd.u.sha.final = rctx->final; 168 rctx->cmd.u.sha.msg_bits = rctx->msg_bits; 169 170 rctx->first = 0; 171 172 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); 173 174 return ret; 175 176 e_free: 177 sg_free_table(&rctx->data_sg); 178 179 return ret; 180 } 181 182 static int ccp_sha_init(struct ahash_request *req) 183 { 184 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 185 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); 186 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 187 struct ccp_crypto_ahash_alg *alg = 188 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm)); 189 unsigned int block_size = 190 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 191 192 memset(rctx, 0, sizeof(*rctx)); 193 194 rctx->type = alg->type; 195 rctx->first = 1; 196 197 if (ctx->u.sha.key_len) { 198 /* Buffer the HMAC key for first update */ 199 memcpy(rctx->buf, ctx->u.sha.ipad, block_size); 200 rctx->buf_count = block_size; 201 } 202 203 return 0; 204 } 205 206 static int ccp_sha_update(struct ahash_request *req) 207 { 208 return ccp_do_sha_update(req, req->nbytes, 0); 209 } 210 211 static int ccp_sha_final(struct ahash_request *req) 212 { 213 return ccp_do_sha_update(req, 0, 1); 214 } 215 216 static int ccp_sha_finup(struct ahash_request *req) 217 { 218 return ccp_do_sha_update(req, req->nbytes, 1); 219 } 220 221 static int ccp_sha_digest(struct ahash_request *req) 222 { 223 int ret; 224 225 ret = ccp_sha_init(req); 226 if (ret) 227 return ret; 228 229 return ccp_sha_finup(req); 230 } 231 232 static int ccp_sha_export(struct ahash_request *req, void *out) 233 { 234 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 235 struct ccp_sha_exp_ctx state; 236 237 /* Don't let anything leak to 'out' */ 238 memset(&state, 0, sizeof(state)); 239 240 state.type = rctx->type; 241 state.msg_bits = rctx->msg_bits; 242 state.first = rctx->first; 243 memcpy(state.ctx, rctx->ctx, sizeof(state.ctx)); 244 state.buf_count = rctx->buf_count; 245 memcpy(state.buf, rctx->buf, sizeof(state.buf)); 246 247 /* 'out' may not be aligned so memcpy from local variable */ 248 memcpy(out, &state, sizeof(state)); 249 250 return 0; 251 } 252 253 static int ccp_sha_import(struct ahash_request *req, const void *in) 254 { 255 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 256 struct ccp_sha_exp_ctx state; 257 258 /* 'in' may not be aligned so memcpy to local variable */ 259 memcpy(&state, in, sizeof(state)); 260 261 memset(rctx, 0, sizeof(*rctx)); 262 rctx->type = state.type; 263 rctx->msg_bits = state.msg_bits; 264 rctx->first = state.first; 265 memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx)); 266 rctx->buf_count = state.buf_count; 267 memcpy(rctx->buf, state.buf, sizeof(rctx->buf)); 268 269 return 0; 270 } 271 272 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key, 273 unsigned int key_len) 274 { 275 struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); 276 struct crypto_shash *shash = ctx->u.sha.hmac_tfm; 277 unsigned int block_size = crypto_shash_blocksize(shash); 278 unsigned int digest_size = crypto_shash_digestsize(shash); 279 int i, ret; 280 281 /* Set to zero until complete */ 282 ctx->u.sha.key_len = 0; 283 284 /* Clear key area to provide zero padding for keys smaller 285 * than the block size 286 */ 287 memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key)); 288 289 if (key_len > block_size) { 290 /* Must hash the input key */ 291 ret = crypto_shash_tfm_digest(shash, key, key_len, 292 ctx->u.sha.key); 293 if (ret) 294 return -EINVAL; 295 296 key_len = digest_size; 297 } else { 298 memcpy(ctx->u.sha.key, key, key_len); 299 } 300 301 for (i = 0; i < block_size; i++) { 302 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ HMAC_IPAD_VALUE; 303 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ HMAC_OPAD_VALUE; 304 } 305 306 sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size); 307 ctx->u.sha.opad_count = block_size; 308 309 ctx->u.sha.key_len = key_len; 310 311 return 0; 312 } 313 314 static int ccp_sha_cra_init(struct crypto_tfm *tfm) 315 { 316 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 317 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 318 319 ctx->complete = ccp_sha_complete; 320 ctx->u.sha.key_len = 0; 321 322 crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx)); 323 324 return 0; 325 } 326 327 static void ccp_sha_cra_exit(struct crypto_tfm *tfm) 328 { 329 } 330 331 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm) 332 { 333 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 334 struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm); 335 struct crypto_shash *hmac_tfm; 336 337 hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0); 338 if (IS_ERR(hmac_tfm)) { 339 pr_warn("could not load driver %s need for HMAC support\n", 340 alg->child_alg); 341 return PTR_ERR(hmac_tfm); 342 } 343 344 ctx->u.sha.hmac_tfm = hmac_tfm; 345 346 return ccp_sha_cra_init(tfm); 347 } 348 349 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm) 350 { 351 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 352 353 if (ctx->u.sha.hmac_tfm) 354 crypto_free_shash(ctx->u.sha.hmac_tfm); 355 356 ccp_sha_cra_exit(tfm); 357 } 358 359 struct ccp_sha_def { 360 unsigned int version; 361 const char *name; 362 const char *drv_name; 363 enum ccp_sha_type type; 364 u32 digest_size; 365 u32 block_size; 366 }; 367 368 static struct ccp_sha_def sha_algs[] = { 369 { 370 .version = CCP_VERSION(3, 0), 371 .name = "sha1", 372 .drv_name = "sha1-ccp", 373 .type = CCP_SHA_TYPE_1, 374 .digest_size = SHA1_DIGEST_SIZE, 375 .block_size = SHA1_BLOCK_SIZE, 376 }, 377 { 378 .version = CCP_VERSION(3, 0), 379 .name = "sha224", 380 .drv_name = "sha224-ccp", 381 .type = CCP_SHA_TYPE_224, 382 .digest_size = SHA224_DIGEST_SIZE, 383 .block_size = SHA224_BLOCK_SIZE, 384 }, 385 { 386 .version = CCP_VERSION(3, 0), 387 .name = "sha256", 388 .drv_name = "sha256-ccp", 389 .type = CCP_SHA_TYPE_256, 390 .digest_size = SHA256_DIGEST_SIZE, 391 .block_size = SHA256_BLOCK_SIZE, 392 }, 393 { 394 .version = CCP_VERSION(5, 0), 395 .name = "sha384", 396 .drv_name = "sha384-ccp", 397 .type = CCP_SHA_TYPE_384, 398 .digest_size = SHA384_DIGEST_SIZE, 399 .block_size = SHA384_BLOCK_SIZE, 400 }, 401 { 402 .version = CCP_VERSION(5, 0), 403 .name = "sha512", 404 .drv_name = "sha512-ccp", 405 .type = CCP_SHA_TYPE_512, 406 .digest_size = SHA512_DIGEST_SIZE, 407 .block_size = SHA512_BLOCK_SIZE, 408 }, 409 }; 410 411 static int ccp_register_hmac_alg(struct list_head *head, 412 const struct ccp_sha_def *def, 413 const struct ccp_crypto_ahash_alg *base_alg) 414 { 415 struct ccp_crypto_ahash_alg *ccp_alg; 416 struct ahash_alg *alg; 417 struct hash_alg_common *halg; 418 struct crypto_alg *base; 419 int ret; 420 421 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); 422 if (!ccp_alg) 423 return -ENOMEM; 424 425 /* Copy the base algorithm and only change what's necessary */ 426 *ccp_alg = *base_alg; 427 INIT_LIST_HEAD(&ccp_alg->entry); 428 429 strscpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME); 430 431 alg = &ccp_alg->alg; 432 alg->setkey = ccp_sha_setkey; 433 434 halg = &alg->halg; 435 436 base = &halg->base; 437 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name); 438 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s", 439 def->drv_name); 440 base->cra_init = ccp_hmac_sha_cra_init; 441 base->cra_exit = ccp_hmac_sha_cra_exit; 442 443 ret = crypto_register_ahash(alg); 444 if (ret) { 445 pr_err("%s ahash algorithm registration error (%d)\n", 446 base->cra_name, ret); 447 kfree(ccp_alg); 448 return ret; 449 } 450 451 list_add(&ccp_alg->entry, head); 452 453 return ret; 454 } 455 456 static int ccp_register_sha_alg(struct list_head *head, 457 const struct ccp_sha_def *def) 458 { 459 struct ccp_crypto_ahash_alg *ccp_alg; 460 struct ahash_alg *alg; 461 struct hash_alg_common *halg; 462 struct crypto_alg *base; 463 int ret; 464 465 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); 466 if (!ccp_alg) 467 return -ENOMEM; 468 469 INIT_LIST_HEAD(&ccp_alg->entry); 470 471 ccp_alg->type = def->type; 472 473 alg = &ccp_alg->alg; 474 alg->init = ccp_sha_init; 475 alg->update = ccp_sha_update; 476 alg->final = ccp_sha_final; 477 alg->finup = ccp_sha_finup; 478 alg->digest = ccp_sha_digest; 479 alg->export = ccp_sha_export; 480 alg->import = ccp_sha_import; 481 482 halg = &alg->halg; 483 halg->digestsize = def->digest_size; 484 halg->statesize = sizeof(struct ccp_sha_exp_ctx); 485 486 base = &halg->base; 487 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); 488 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 489 def->drv_name); 490 base->cra_flags = CRYPTO_ALG_ASYNC | 491 CRYPTO_ALG_ALLOCATES_MEMORY | 492 CRYPTO_ALG_KERN_DRIVER_ONLY | 493 CRYPTO_ALG_NEED_FALLBACK; 494 base->cra_blocksize = def->block_size; 495 base->cra_ctxsize = sizeof(struct ccp_ctx); 496 base->cra_priority = CCP_CRA_PRIORITY; 497 base->cra_init = ccp_sha_cra_init; 498 base->cra_exit = ccp_sha_cra_exit; 499 base->cra_module = THIS_MODULE; 500 501 ret = crypto_register_ahash(alg); 502 if (ret) { 503 pr_err("%s ahash algorithm registration error (%d)\n", 504 base->cra_name, ret); 505 kfree(ccp_alg); 506 return ret; 507 } 508 509 list_add(&ccp_alg->entry, head); 510 511 ret = ccp_register_hmac_alg(head, def, ccp_alg); 512 513 return ret; 514 } 515 516 int ccp_register_sha_algs(struct list_head *head) 517 { 518 int i, ret; 519 unsigned int ccpversion = ccp_version(); 520 521 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) { 522 if (sha_algs[i].version > ccpversion) 523 continue; 524 ret = ccp_register_sha_alg(head, &sha_algs[i]); 525 if (ret) 526 return ret; 527 } 528 529 return 0; 530 } 531