1 /* 2 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support 3 * 4 * Copyright (C) 2013 Advanced Micro Devices, Inc. 5 * 6 * Author: Tom Lendacky <thomas.lendacky@amd.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/sched.h> 15 #include <linux/delay.h> 16 #include <linux/scatterlist.h> 17 #include <linux/crypto.h> 18 #include <crypto/algapi.h> 19 #include <crypto/hash.h> 20 #include <crypto/internal/hash.h> 21 #include <crypto/sha.h> 22 #include <crypto/scatterwalk.h> 23 24 #include "ccp-crypto.h" 25 26 27 struct ccp_sha_result { 28 struct completion completion; 29 int err; 30 }; 31 32 static void ccp_sync_hash_complete(struct crypto_async_request *req, int err) 33 { 34 struct ccp_sha_result *result = req->data; 35 36 if (err == -EINPROGRESS) 37 return; 38 39 result->err = err; 40 complete(&result->completion); 41 } 42 43 static int ccp_sync_hash(struct crypto_ahash *tfm, u8 *buf, 44 struct scatterlist *sg, unsigned int len) 45 { 46 struct ccp_sha_result result; 47 struct ahash_request *req; 48 int ret; 49 50 init_completion(&result.completion); 51 52 req = ahash_request_alloc(tfm, GFP_KERNEL); 53 if (!req) 54 return -ENOMEM; 55 56 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 57 ccp_sync_hash_complete, &result); 58 ahash_request_set_crypt(req, sg, buf, len); 59 60 ret = crypto_ahash_digest(req); 61 if ((ret == -EINPROGRESS) || (ret == -EBUSY)) { 62 ret = wait_for_completion_interruptible(&result.completion); 63 if (!ret) 64 ret = result.err; 65 } 66 67 ahash_request_free(req); 68 69 return ret; 70 } 71 72 static int ccp_sha_finish_hmac(struct crypto_async_request *async_req) 73 { 74 struct ahash_request *req = ahash_request_cast(async_req); 75 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 76 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); 77 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 78 struct scatterlist sg[2]; 79 unsigned int block_size = 80 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 81 unsigned int digest_size = crypto_ahash_digestsize(tfm); 82 83 sg_init_table(sg, ARRAY_SIZE(sg)); 84 sg_set_buf(&sg[0], ctx->u.sha.opad, block_size); 85 sg_set_buf(&sg[1], rctx->ctx, digest_size); 86 87 return ccp_sync_hash(ctx->u.sha.hmac_tfm, req->result, sg, 88 block_size + digest_size); 89 } 90 91 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret) 92 { 93 struct ahash_request *req = ahash_request_cast(async_req); 94 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 95 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); 96 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 97 unsigned int digest_size = crypto_ahash_digestsize(tfm); 98 99 if (ret) 100 goto e_free; 101 102 if (rctx->hash_rem) { 103 /* Save remaining data to buffer */ 104 unsigned int offset = rctx->nbytes - rctx->hash_rem; 105 scatterwalk_map_and_copy(rctx->buf, rctx->src, 106 offset, rctx->hash_rem, 0); 107 rctx->buf_count = rctx->hash_rem; 108 } else 109 rctx->buf_count = 0; 110 111 /* Update result area if supplied */ 112 if (req->result) 113 memcpy(req->result, rctx->ctx, digest_size); 114 115 /* If we're doing an HMAC, we need to perform that on the final op */ 116 if (rctx->final && ctx->u.sha.key_len) 117 ret = ccp_sha_finish_hmac(async_req); 118 119 e_free: 120 sg_free_table(&rctx->data_sg); 121 122 return ret; 123 } 124 125 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes, 126 unsigned int final) 127 { 128 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 129 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 130 struct scatterlist *sg; 131 unsigned int block_size = 132 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 133 unsigned int sg_count; 134 gfp_t gfp; 135 u64 len; 136 int ret; 137 138 len = (u64)rctx->buf_count + (u64)nbytes; 139 140 if (!final && (len <= block_size)) { 141 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src, 142 0, nbytes, 0); 143 rctx->buf_count += nbytes; 144 145 return 0; 146 } 147 148 rctx->src = req->src; 149 rctx->nbytes = nbytes; 150 151 rctx->final = final; 152 rctx->hash_rem = final ? 0 : len & (block_size - 1); 153 rctx->hash_cnt = len - rctx->hash_rem; 154 if (!final && !rctx->hash_rem) { 155 /* CCP can't do zero length final, so keep some data around */ 156 rctx->hash_cnt -= block_size; 157 rctx->hash_rem = block_size; 158 } 159 160 /* Initialize the context scatterlist */ 161 sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx)); 162 163 sg = NULL; 164 if (rctx->buf_count && nbytes) { 165 /* Build the data scatterlist table - allocate enough entries 166 * for both data pieces (buffer and input data) 167 */ 168 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? 169 GFP_KERNEL : GFP_ATOMIC; 170 sg_count = sg_nents(req->src) + 1; 171 ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp); 172 if (ret) 173 return ret; 174 175 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); 176 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg); 177 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src); 178 sg_mark_end(sg); 179 180 sg = rctx->data_sg.sgl; 181 } else if (rctx->buf_count) { 182 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); 183 184 sg = &rctx->buf_sg; 185 } else if (nbytes) { 186 sg = req->src; 187 } 188 189 rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */ 190 191 memset(&rctx->cmd, 0, sizeof(rctx->cmd)); 192 INIT_LIST_HEAD(&rctx->cmd.entry); 193 rctx->cmd.engine = CCP_ENGINE_SHA; 194 rctx->cmd.u.sha.type = rctx->type; 195 rctx->cmd.u.sha.ctx = &rctx->ctx_sg; 196 rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx); 197 rctx->cmd.u.sha.src = sg; 198 rctx->cmd.u.sha.src_len = rctx->hash_cnt; 199 rctx->cmd.u.sha.final = rctx->final; 200 rctx->cmd.u.sha.msg_bits = rctx->msg_bits; 201 202 rctx->first = 0; 203 204 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); 205 206 return ret; 207 } 208 209 static int ccp_sha_init(struct ahash_request *req) 210 { 211 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 212 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); 213 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 214 struct ccp_crypto_ahash_alg *alg = 215 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm)); 216 unsigned int block_size = 217 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 218 219 memset(rctx, 0, sizeof(*rctx)); 220 221 memcpy(rctx->ctx, alg->init, sizeof(rctx->ctx)); 222 rctx->type = alg->type; 223 rctx->first = 1; 224 225 if (ctx->u.sha.key_len) { 226 /* Buffer the HMAC key for first update */ 227 memcpy(rctx->buf, ctx->u.sha.ipad, block_size); 228 rctx->buf_count = block_size; 229 } 230 231 return 0; 232 } 233 234 static int ccp_sha_update(struct ahash_request *req) 235 { 236 return ccp_do_sha_update(req, req->nbytes, 0); 237 } 238 239 static int ccp_sha_final(struct ahash_request *req) 240 { 241 return ccp_do_sha_update(req, 0, 1); 242 } 243 244 static int ccp_sha_finup(struct ahash_request *req) 245 { 246 return ccp_do_sha_update(req, req->nbytes, 1); 247 } 248 249 static int ccp_sha_digest(struct ahash_request *req) 250 { 251 int ret; 252 253 ret = ccp_sha_init(req); 254 if (ret) 255 return ret; 256 257 return ccp_sha_finup(req); 258 } 259 260 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key, 261 unsigned int key_len) 262 { 263 struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); 264 struct scatterlist sg; 265 unsigned int block_size = 266 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 267 unsigned int digest_size = crypto_ahash_digestsize(tfm); 268 int i, ret; 269 270 /* Set to zero until complete */ 271 ctx->u.sha.key_len = 0; 272 273 /* Clear key area to provide zero padding for keys smaller 274 * than the block size 275 */ 276 memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key)); 277 278 if (key_len > block_size) { 279 /* Must hash the input key */ 280 sg_init_one(&sg, key, key_len); 281 ret = ccp_sync_hash(tfm, ctx->u.sha.key, &sg, key_len); 282 if (ret) { 283 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); 284 return -EINVAL; 285 } 286 287 key_len = digest_size; 288 } else 289 memcpy(ctx->u.sha.key, key, key_len); 290 291 for (i = 0; i < block_size; i++) { 292 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36; 293 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c; 294 } 295 296 ctx->u.sha.key_len = key_len; 297 298 return 0; 299 } 300 301 static int ccp_sha_cra_init(struct crypto_tfm *tfm) 302 { 303 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 304 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 305 306 ctx->complete = ccp_sha_complete; 307 ctx->u.sha.key_len = 0; 308 309 crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx)); 310 311 return 0; 312 } 313 314 static void ccp_sha_cra_exit(struct crypto_tfm *tfm) 315 { 316 } 317 318 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm) 319 { 320 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 321 struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm); 322 struct crypto_ahash *hmac_tfm; 323 324 hmac_tfm = crypto_alloc_ahash(alg->child_alg, 325 CRYPTO_ALG_TYPE_AHASH, 0); 326 if (IS_ERR(hmac_tfm)) { 327 pr_warn("could not load driver %s need for HMAC support\n", 328 alg->child_alg); 329 return PTR_ERR(hmac_tfm); 330 } 331 332 ctx->u.sha.hmac_tfm = hmac_tfm; 333 334 return ccp_sha_cra_init(tfm); 335 } 336 337 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm) 338 { 339 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 340 341 if (ctx->u.sha.hmac_tfm) 342 crypto_free_ahash(ctx->u.sha.hmac_tfm); 343 344 ccp_sha_cra_exit(tfm); 345 } 346 347 static const __be32 sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = { 348 cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), 349 cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), 350 cpu_to_be32(SHA1_H4), 0, 0, 0, 351 }; 352 353 static const __be32 sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = { 354 cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), 355 cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), 356 cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), 357 cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), 358 }; 359 360 static const __be32 sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = { 361 cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), 362 cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), 363 cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), 364 cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), 365 }; 366 367 struct ccp_sha_def { 368 const char *name; 369 const char *drv_name; 370 const __be32 *init; 371 enum ccp_sha_type type; 372 u32 digest_size; 373 u32 block_size; 374 }; 375 376 static struct ccp_sha_def sha_algs[] = { 377 { 378 .name = "sha1", 379 .drv_name = "sha1-ccp", 380 .init = sha1_init, 381 .type = CCP_SHA_TYPE_1, 382 .digest_size = SHA1_DIGEST_SIZE, 383 .block_size = SHA1_BLOCK_SIZE, 384 }, 385 { 386 .name = "sha224", 387 .drv_name = "sha224-ccp", 388 .init = sha224_init, 389 .type = CCP_SHA_TYPE_224, 390 .digest_size = SHA224_DIGEST_SIZE, 391 .block_size = SHA224_BLOCK_SIZE, 392 }, 393 { 394 .name = "sha256", 395 .drv_name = "sha256-ccp", 396 .init = sha256_init, 397 .type = CCP_SHA_TYPE_256, 398 .digest_size = SHA256_DIGEST_SIZE, 399 .block_size = SHA256_BLOCK_SIZE, 400 }, 401 }; 402 403 static int ccp_register_hmac_alg(struct list_head *head, 404 const struct ccp_sha_def *def, 405 const struct ccp_crypto_ahash_alg *base_alg) 406 { 407 struct ccp_crypto_ahash_alg *ccp_alg; 408 struct ahash_alg *alg; 409 struct hash_alg_common *halg; 410 struct crypto_alg *base; 411 int ret; 412 413 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); 414 if (!ccp_alg) 415 return -ENOMEM; 416 417 /* Copy the base algorithm and only change what's necessary */ 418 *ccp_alg = *base_alg; 419 INIT_LIST_HEAD(&ccp_alg->entry); 420 421 strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME); 422 423 alg = &ccp_alg->alg; 424 alg->setkey = ccp_sha_setkey; 425 426 halg = &alg->halg; 427 428 base = &halg->base; 429 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name); 430 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s", 431 def->drv_name); 432 base->cra_init = ccp_hmac_sha_cra_init; 433 base->cra_exit = ccp_hmac_sha_cra_exit; 434 435 ret = crypto_register_ahash(alg); 436 if (ret) { 437 pr_err("%s ahash algorithm registration error (%d)\n", 438 base->cra_name, ret); 439 kfree(ccp_alg); 440 return ret; 441 } 442 443 list_add(&ccp_alg->entry, head); 444 445 return ret; 446 } 447 448 static int ccp_register_sha_alg(struct list_head *head, 449 const struct ccp_sha_def *def) 450 { 451 struct ccp_crypto_ahash_alg *ccp_alg; 452 struct ahash_alg *alg; 453 struct hash_alg_common *halg; 454 struct crypto_alg *base; 455 int ret; 456 457 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); 458 if (!ccp_alg) 459 return -ENOMEM; 460 461 INIT_LIST_HEAD(&ccp_alg->entry); 462 463 ccp_alg->init = def->init; 464 ccp_alg->type = def->type; 465 466 alg = &ccp_alg->alg; 467 alg->init = ccp_sha_init; 468 alg->update = ccp_sha_update; 469 alg->final = ccp_sha_final; 470 alg->finup = ccp_sha_finup; 471 alg->digest = ccp_sha_digest; 472 473 halg = &alg->halg; 474 halg->digestsize = def->digest_size; 475 476 base = &halg->base; 477 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); 478 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 479 def->drv_name); 480 base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | 481 CRYPTO_ALG_KERN_DRIVER_ONLY | 482 CRYPTO_ALG_NEED_FALLBACK; 483 base->cra_blocksize = def->block_size; 484 base->cra_ctxsize = sizeof(struct ccp_ctx); 485 base->cra_priority = CCP_CRA_PRIORITY; 486 base->cra_type = &crypto_ahash_type; 487 base->cra_init = ccp_sha_cra_init; 488 base->cra_exit = ccp_sha_cra_exit; 489 base->cra_module = THIS_MODULE; 490 491 ret = crypto_register_ahash(alg); 492 if (ret) { 493 pr_err("%s ahash algorithm registration error (%d)\n", 494 base->cra_name, ret); 495 kfree(ccp_alg); 496 return ret; 497 } 498 499 list_add(&ccp_alg->entry, head); 500 501 ret = ccp_register_hmac_alg(head, def, ccp_alg); 502 503 return ret; 504 } 505 506 int ccp_register_sha_algs(struct list_head *head) 507 { 508 int i, ret; 509 510 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) { 511 ret = ccp_register_sha_alg(head, &sha_algs[i]); 512 if (ret) 513 return ret; 514 } 515 516 return 0; 517 } 518