1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support 4 * 5 * Copyright (C) 2013,2018 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 * Author: Gary R Hook <gary.hook@amd.com> 9 */ 10 11 #include <linux/module.h> 12 #include <linux/sched.h> 13 #include <linux/delay.h> 14 #include <linux/scatterlist.h> 15 #include <linux/crypto.h> 16 #include <crypto/algapi.h> 17 #include <crypto/hash.h> 18 #include <crypto/hmac.h> 19 #include <crypto/internal/hash.h> 20 #include <crypto/sha.h> 21 #include <crypto/scatterwalk.h> 22 #include <linux/string.h> 23 24 #include "ccp-crypto.h" 25 26 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret) 27 { 28 struct ahash_request *req = ahash_request_cast(async_req); 29 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 30 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 31 unsigned int digest_size = crypto_ahash_digestsize(tfm); 32 33 if (ret) 34 goto e_free; 35 36 if (rctx->hash_rem) { 37 /* Save remaining data to buffer */ 38 unsigned int offset = rctx->nbytes - rctx->hash_rem; 39 40 scatterwalk_map_and_copy(rctx->buf, rctx->src, 41 offset, rctx->hash_rem, 0); 42 rctx->buf_count = rctx->hash_rem; 43 } else { 44 rctx->buf_count = 0; 45 } 46 47 /* Update result area if supplied */ 48 if (req->result && rctx->final) 49 memcpy(req->result, rctx->ctx, digest_size); 50 51 e_free: 52 sg_free_table(&rctx->data_sg); 53 54 return ret; 55 } 56 57 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes, 58 unsigned int final) 59 { 60 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 61 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); 62 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 63 struct scatterlist *sg; 64 unsigned int block_size = 65 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 66 unsigned int sg_count; 67 gfp_t gfp; 68 u64 len; 69 int ret; 70 71 len = (u64)rctx->buf_count + (u64)nbytes; 72 73 if (!final && (len <= block_size)) { 74 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src, 75 0, nbytes, 0); 76 rctx->buf_count += nbytes; 77 78 return 0; 79 } 80 81 rctx->src = req->src; 82 rctx->nbytes = nbytes; 83 84 rctx->final = final; 85 rctx->hash_rem = final ? 0 : len & (block_size - 1); 86 rctx->hash_cnt = len - rctx->hash_rem; 87 if (!final && !rctx->hash_rem) { 88 /* CCP can't do zero length final, so keep some data around */ 89 rctx->hash_cnt -= block_size; 90 rctx->hash_rem = block_size; 91 } 92 93 /* Initialize the context scatterlist */ 94 sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx)); 95 96 sg = NULL; 97 if (rctx->buf_count && nbytes) { 98 /* Build the data scatterlist table - allocate enough entries 99 * for both data pieces (buffer and input data) 100 */ 101 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? 102 GFP_KERNEL : GFP_ATOMIC; 103 sg_count = sg_nents(req->src) + 1; 104 ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp); 105 if (ret) 106 return ret; 107 108 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); 109 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg); 110 if (!sg) { 111 ret = -EINVAL; 112 goto e_free; 113 } 114 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src); 115 if (!sg) { 116 ret = -EINVAL; 117 goto e_free; 118 } 119 sg_mark_end(sg); 120 121 sg = rctx->data_sg.sgl; 122 } else if (rctx->buf_count) { 123 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); 124 125 sg = &rctx->buf_sg; 126 } else if (nbytes) { 127 sg = req->src; 128 } 129 130 rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */ 131 132 memset(&rctx->cmd, 0, sizeof(rctx->cmd)); 133 INIT_LIST_HEAD(&rctx->cmd.entry); 134 rctx->cmd.engine = CCP_ENGINE_SHA; 135 rctx->cmd.u.sha.type = rctx->type; 136 rctx->cmd.u.sha.ctx = &rctx->ctx_sg; 137 138 switch (rctx->type) { 139 case CCP_SHA_TYPE_1: 140 rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE; 141 break; 142 case CCP_SHA_TYPE_224: 143 rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE; 144 break; 145 case CCP_SHA_TYPE_256: 146 rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE; 147 break; 148 case CCP_SHA_TYPE_384: 149 rctx->cmd.u.sha.ctx_len = SHA384_DIGEST_SIZE; 150 break; 151 case CCP_SHA_TYPE_512: 152 rctx->cmd.u.sha.ctx_len = SHA512_DIGEST_SIZE; 153 break; 154 default: 155 /* Should never get here */ 156 break; 157 } 158 159 rctx->cmd.u.sha.src = sg; 160 rctx->cmd.u.sha.src_len = rctx->hash_cnt; 161 rctx->cmd.u.sha.opad = ctx->u.sha.key_len ? 162 &ctx->u.sha.opad_sg : NULL; 163 rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ? 164 ctx->u.sha.opad_count : 0; 165 rctx->cmd.u.sha.first = rctx->first; 166 rctx->cmd.u.sha.final = rctx->final; 167 rctx->cmd.u.sha.msg_bits = rctx->msg_bits; 168 169 rctx->first = 0; 170 171 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); 172 173 return ret; 174 175 e_free: 176 sg_free_table(&rctx->data_sg); 177 178 return ret; 179 } 180 181 static int ccp_sha_init(struct ahash_request *req) 182 { 183 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 184 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); 185 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 186 struct ccp_crypto_ahash_alg *alg = 187 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm)); 188 unsigned int block_size = 189 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 190 191 memset(rctx, 0, sizeof(*rctx)); 192 193 rctx->type = alg->type; 194 rctx->first = 1; 195 196 if (ctx->u.sha.key_len) { 197 /* Buffer the HMAC key for first update */ 198 memcpy(rctx->buf, ctx->u.sha.ipad, block_size); 199 rctx->buf_count = block_size; 200 } 201 202 return 0; 203 } 204 205 static int ccp_sha_update(struct ahash_request *req) 206 { 207 return ccp_do_sha_update(req, req->nbytes, 0); 208 } 209 210 static int ccp_sha_final(struct ahash_request *req) 211 { 212 return ccp_do_sha_update(req, 0, 1); 213 } 214 215 static int ccp_sha_finup(struct ahash_request *req) 216 { 217 return ccp_do_sha_update(req, req->nbytes, 1); 218 } 219 220 static int ccp_sha_digest(struct ahash_request *req) 221 { 222 int ret; 223 224 ret = ccp_sha_init(req); 225 if (ret) 226 return ret; 227 228 return ccp_sha_finup(req); 229 } 230 231 static int ccp_sha_export(struct ahash_request *req, void *out) 232 { 233 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 234 struct ccp_sha_exp_ctx state; 235 236 /* Don't let anything leak to 'out' */ 237 memset(&state, 0, sizeof(state)); 238 239 state.type = rctx->type; 240 state.msg_bits = rctx->msg_bits; 241 state.first = rctx->first; 242 memcpy(state.ctx, rctx->ctx, sizeof(state.ctx)); 243 state.buf_count = rctx->buf_count; 244 memcpy(state.buf, rctx->buf, sizeof(state.buf)); 245 246 /* 'out' may not be aligned so memcpy from local variable */ 247 memcpy(out, &state, sizeof(state)); 248 249 return 0; 250 } 251 252 static int ccp_sha_import(struct ahash_request *req, const void *in) 253 { 254 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); 255 struct ccp_sha_exp_ctx state; 256 257 /* 'in' may not be aligned so memcpy to local variable */ 258 memcpy(&state, in, sizeof(state)); 259 260 memset(rctx, 0, sizeof(*rctx)); 261 rctx->type = state.type; 262 rctx->msg_bits = state.msg_bits; 263 rctx->first = state.first; 264 memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx)); 265 rctx->buf_count = state.buf_count; 266 memcpy(rctx->buf, state.buf, sizeof(rctx->buf)); 267 268 return 0; 269 } 270 271 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key, 272 unsigned int key_len) 273 { 274 struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); 275 struct crypto_shash *shash = ctx->u.sha.hmac_tfm; 276 unsigned int block_size = crypto_shash_blocksize(shash); 277 unsigned int digest_size = crypto_shash_digestsize(shash); 278 int i, ret; 279 280 /* Set to zero until complete */ 281 ctx->u.sha.key_len = 0; 282 283 /* Clear key area to provide zero padding for keys smaller 284 * than the block size 285 */ 286 memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key)); 287 288 if (key_len > block_size) { 289 /* Must hash the input key */ 290 ret = crypto_shash_tfm_digest(shash, key, key_len, 291 ctx->u.sha.key); 292 if (ret) 293 return -EINVAL; 294 295 key_len = digest_size; 296 } else { 297 memcpy(ctx->u.sha.key, key, key_len); 298 } 299 300 for (i = 0; i < block_size; i++) { 301 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ HMAC_IPAD_VALUE; 302 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ HMAC_OPAD_VALUE; 303 } 304 305 sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size); 306 ctx->u.sha.opad_count = block_size; 307 308 ctx->u.sha.key_len = key_len; 309 310 return 0; 311 } 312 313 static int ccp_sha_cra_init(struct crypto_tfm *tfm) 314 { 315 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 316 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 317 318 ctx->complete = ccp_sha_complete; 319 ctx->u.sha.key_len = 0; 320 321 crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx)); 322 323 return 0; 324 } 325 326 static void ccp_sha_cra_exit(struct crypto_tfm *tfm) 327 { 328 } 329 330 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm) 331 { 332 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 333 struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm); 334 struct crypto_shash *hmac_tfm; 335 336 hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0); 337 if (IS_ERR(hmac_tfm)) { 338 pr_warn("could not load driver %s need for HMAC support\n", 339 alg->child_alg); 340 return PTR_ERR(hmac_tfm); 341 } 342 343 ctx->u.sha.hmac_tfm = hmac_tfm; 344 345 return ccp_sha_cra_init(tfm); 346 } 347 348 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm) 349 { 350 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); 351 352 if (ctx->u.sha.hmac_tfm) 353 crypto_free_shash(ctx->u.sha.hmac_tfm); 354 355 ccp_sha_cra_exit(tfm); 356 } 357 358 struct ccp_sha_def { 359 unsigned int version; 360 const char *name; 361 const char *drv_name; 362 enum ccp_sha_type type; 363 u32 digest_size; 364 u32 block_size; 365 }; 366 367 static struct ccp_sha_def sha_algs[] = { 368 { 369 .version = CCP_VERSION(3, 0), 370 .name = "sha1", 371 .drv_name = "sha1-ccp", 372 .type = CCP_SHA_TYPE_1, 373 .digest_size = SHA1_DIGEST_SIZE, 374 .block_size = SHA1_BLOCK_SIZE, 375 }, 376 { 377 .version = CCP_VERSION(3, 0), 378 .name = "sha224", 379 .drv_name = "sha224-ccp", 380 .type = CCP_SHA_TYPE_224, 381 .digest_size = SHA224_DIGEST_SIZE, 382 .block_size = SHA224_BLOCK_SIZE, 383 }, 384 { 385 .version = CCP_VERSION(3, 0), 386 .name = "sha256", 387 .drv_name = "sha256-ccp", 388 .type = CCP_SHA_TYPE_256, 389 .digest_size = SHA256_DIGEST_SIZE, 390 .block_size = SHA256_BLOCK_SIZE, 391 }, 392 { 393 .version = CCP_VERSION(5, 0), 394 .name = "sha384", 395 .drv_name = "sha384-ccp", 396 .type = CCP_SHA_TYPE_384, 397 .digest_size = SHA384_DIGEST_SIZE, 398 .block_size = SHA384_BLOCK_SIZE, 399 }, 400 { 401 .version = CCP_VERSION(5, 0), 402 .name = "sha512", 403 .drv_name = "sha512-ccp", 404 .type = CCP_SHA_TYPE_512, 405 .digest_size = SHA512_DIGEST_SIZE, 406 .block_size = SHA512_BLOCK_SIZE, 407 }, 408 }; 409 410 static int ccp_register_hmac_alg(struct list_head *head, 411 const struct ccp_sha_def *def, 412 const struct ccp_crypto_ahash_alg *base_alg) 413 { 414 struct ccp_crypto_ahash_alg *ccp_alg; 415 struct ahash_alg *alg; 416 struct hash_alg_common *halg; 417 struct crypto_alg *base; 418 int ret; 419 420 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); 421 if (!ccp_alg) 422 return -ENOMEM; 423 424 /* Copy the base algorithm and only change what's necessary */ 425 *ccp_alg = *base_alg; 426 INIT_LIST_HEAD(&ccp_alg->entry); 427 428 strscpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME); 429 430 alg = &ccp_alg->alg; 431 alg->setkey = ccp_sha_setkey; 432 433 halg = &alg->halg; 434 435 base = &halg->base; 436 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name); 437 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s", 438 def->drv_name); 439 base->cra_init = ccp_hmac_sha_cra_init; 440 base->cra_exit = ccp_hmac_sha_cra_exit; 441 442 ret = crypto_register_ahash(alg); 443 if (ret) { 444 pr_err("%s ahash algorithm registration error (%d)\n", 445 base->cra_name, ret); 446 kfree(ccp_alg); 447 return ret; 448 } 449 450 list_add(&ccp_alg->entry, head); 451 452 return ret; 453 } 454 455 static int ccp_register_sha_alg(struct list_head *head, 456 const struct ccp_sha_def *def) 457 { 458 struct ccp_crypto_ahash_alg *ccp_alg; 459 struct ahash_alg *alg; 460 struct hash_alg_common *halg; 461 struct crypto_alg *base; 462 int ret; 463 464 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); 465 if (!ccp_alg) 466 return -ENOMEM; 467 468 INIT_LIST_HEAD(&ccp_alg->entry); 469 470 ccp_alg->type = def->type; 471 472 alg = &ccp_alg->alg; 473 alg->init = ccp_sha_init; 474 alg->update = ccp_sha_update; 475 alg->final = ccp_sha_final; 476 alg->finup = ccp_sha_finup; 477 alg->digest = ccp_sha_digest; 478 alg->export = ccp_sha_export; 479 alg->import = ccp_sha_import; 480 481 halg = &alg->halg; 482 halg->digestsize = def->digest_size; 483 halg->statesize = sizeof(struct ccp_sha_exp_ctx); 484 485 base = &halg->base; 486 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); 487 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 488 def->drv_name); 489 base->cra_flags = CRYPTO_ALG_ASYNC | 490 CRYPTO_ALG_ALLOCATES_MEMORY | 491 CRYPTO_ALG_KERN_DRIVER_ONLY | 492 CRYPTO_ALG_NEED_FALLBACK; 493 base->cra_blocksize = def->block_size; 494 base->cra_ctxsize = sizeof(struct ccp_ctx); 495 base->cra_priority = CCP_CRA_PRIORITY; 496 base->cra_init = ccp_sha_cra_init; 497 base->cra_exit = ccp_sha_cra_exit; 498 base->cra_module = THIS_MODULE; 499 500 ret = crypto_register_ahash(alg); 501 if (ret) { 502 pr_err("%s ahash algorithm registration error (%d)\n", 503 base->cra_name, ret); 504 kfree(ccp_alg); 505 return ret; 506 } 507 508 list_add(&ccp_alg->entry, head); 509 510 ret = ccp_register_hmac_alg(head, def, ccp_alg); 511 512 return ret; 513 } 514 515 int ccp_register_sha_algs(struct list_head *head) 516 { 517 int i, ret; 518 unsigned int ccpversion = ccp_version(); 519 520 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) { 521 if (sha_algs[i].version > ccpversion) 522 continue; 523 ret = ccp_register_sha_alg(head, &sha_algs[i]); 524 if (ret) 525 return ret; 526 } 527 528 return 0; 529 } 530