1 /*
2  * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/delay.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <crypto/algapi.h>
19 #include <crypto/hash.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22 #include <crypto/scatterwalk.h>
23 
24 #include "ccp-crypto.h"
25 
26 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
27 {
28 	struct ahash_request *req = ahash_request_cast(async_req);
29 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
30 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
31 	unsigned int digest_size = crypto_ahash_digestsize(tfm);
32 
33 	if (ret)
34 		goto e_free;
35 
36 	if (rctx->hash_rem) {
37 		/* Save remaining data to buffer */
38 		unsigned int offset = rctx->nbytes - rctx->hash_rem;
39 
40 		scatterwalk_map_and_copy(rctx->buf, rctx->src,
41 					 offset, rctx->hash_rem, 0);
42 		rctx->buf_count = rctx->hash_rem;
43 	} else {
44 		rctx->buf_count = 0;
45 	}
46 
47 	/* Update result area if supplied */
48 	if (req->result)
49 		memcpy(req->result, rctx->ctx, digest_size);
50 
51 e_free:
52 	sg_free_table(&rctx->data_sg);
53 
54 	return ret;
55 }
56 
57 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
58 			     unsigned int final)
59 {
60 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
61 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
62 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
63 	struct scatterlist *sg;
64 	unsigned int block_size =
65 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
66 	unsigned int sg_count;
67 	gfp_t gfp;
68 	u64 len;
69 	int ret;
70 
71 	len = (u64)rctx->buf_count + (u64)nbytes;
72 
73 	if (!final && (len <= block_size)) {
74 		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
75 					 0, nbytes, 0);
76 		rctx->buf_count += nbytes;
77 
78 		return 0;
79 	}
80 
81 	rctx->src = req->src;
82 	rctx->nbytes = nbytes;
83 
84 	rctx->final = final;
85 	rctx->hash_rem = final ? 0 : len & (block_size - 1);
86 	rctx->hash_cnt = len - rctx->hash_rem;
87 	if (!final && !rctx->hash_rem) {
88 		/* CCP can't do zero length final, so keep some data around */
89 		rctx->hash_cnt -= block_size;
90 		rctx->hash_rem = block_size;
91 	}
92 
93 	/* Initialize the context scatterlist */
94 	sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
95 
96 	sg = NULL;
97 	if (rctx->buf_count && nbytes) {
98 		/* Build the data scatterlist table - allocate enough entries
99 		 * for both data pieces (buffer and input data)
100 		 */
101 		gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
102 			GFP_KERNEL : GFP_ATOMIC;
103 		sg_count = sg_nents(req->src) + 1;
104 		ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
105 		if (ret)
106 			return ret;
107 
108 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
109 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
110 		if (!sg) {
111 			ret = -EINVAL;
112 			goto e_free;
113 		}
114 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
115 		if (!sg) {
116 			ret = -EINVAL;
117 			goto e_free;
118 		}
119 		sg_mark_end(sg);
120 
121 		sg = rctx->data_sg.sgl;
122 	} else if (rctx->buf_count) {
123 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
124 
125 		sg = &rctx->buf_sg;
126 	} else if (nbytes) {
127 		sg = req->src;
128 	}
129 
130 	rctx->msg_bits += (rctx->hash_cnt << 3);	/* Total in bits */
131 
132 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
133 	INIT_LIST_HEAD(&rctx->cmd.entry);
134 	rctx->cmd.engine = CCP_ENGINE_SHA;
135 	rctx->cmd.u.sha.type = rctx->type;
136 	rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
137 	rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
138 	rctx->cmd.u.sha.src = sg;
139 	rctx->cmd.u.sha.src_len = rctx->hash_cnt;
140 	rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
141 		&ctx->u.sha.opad_sg : NULL;
142 	rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
143 		ctx->u.sha.opad_count : 0;
144 	rctx->cmd.u.sha.first = rctx->first;
145 	rctx->cmd.u.sha.final = rctx->final;
146 	rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
147 
148 	rctx->first = 0;
149 
150 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
151 
152 	return ret;
153 
154 e_free:
155 	sg_free_table(&rctx->data_sg);
156 
157 	return ret;
158 }
159 
160 static int ccp_sha_init(struct ahash_request *req)
161 {
162 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
163 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
164 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
165 	struct ccp_crypto_ahash_alg *alg =
166 		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
167 	unsigned int block_size =
168 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
169 
170 	memset(rctx, 0, sizeof(*rctx));
171 
172 	rctx->type = alg->type;
173 	rctx->first = 1;
174 
175 	if (ctx->u.sha.key_len) {
176 		/* Buffer the HMAC key for first update */
177 		memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
178 		rctx->buf_count = block_size;
179 	}
180 
181 	return 0;
182 }
183 
184 static int ccp_sha_update(struct ahash_request *req)
185 {
186 	return ccp_do_sha_update(req, req->nbytes, 0);
187 }
188 
189 static int ccp_sha_final(struct ahash_request *req)
190 {
191 	return ccp_do_sha_update(req, 0, 1);
192 }
193 
194 static int ccp_sha_finup(struct ahash_request *req)
195 {
196 	return ccp_do_sha_update(req, req->nbytes, 1);
197 }
198 
199 static int ccp_sha_digest(struct ahash_request *req)
200 {
201 	int ret;
202 
203 	ret = ccp_sha_init(req);
204 	if (ret)
205 		return ret;
206 
207 	return ccp_sha_finup(req);
208 }
209 
210 static int ccp_sha_export(struct ahash_request *req, void *out)
211 {
212 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
213 	struct ccp_sha_exp_ctx state;
214 
215 	/* Don't let anything leak to 'out' */
216 	memset(&state, 0, sizeof(state));
217 
218 	state.type = rctx->type;
219 	state.msg_bits = rctx->msg_bits;
220 	state.first = rctx->first;
221 	memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
222 	state.buf_count = rctx->buf_count;
223 	memcpy(state.buf, rctx->buf, sizeof(state.buf));
224 
225 	/* 'out' may not be aligned so memcpy from local variable */
226 	memcpy(out, &state, sizeof(state));
227 
228 	return 0;
229 }
230 
231 static int ccp_sha_import(struct ahash_request *req, const void *in)
232 {
233 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
234 	struct ccp_sha_exp_ctx state;
235 
236 	/* 'in' may not be aligned so memcpy to local variable */
237 	memcpy(&state, in, sizeof(state));
238 
239 	memset(rctx, 0, sizeof(*rctx));
240 	rctx->type = state.type;
241 	rctx->msg_bits = state.msg_bits;
242 	rctx->first = state.first;
243 	memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
244 	rctx->buf_count = state.buf_count;
245 	memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
246 
247 	return 0;
248 }
249 
250 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
251 			  unsigned int key_len)
252 {
253 	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
254 	struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
255 
256 	SHASH_DESC_ON_STACK(sdesc, shash);
257 
258 	unsigned int block_size = crypto_shash_blocksize(shash);
259 	unsigned int digest_size = crypto_shash_digestsize(shash);
260 	int i, ret;
261 
262 	/* Set to zero until complete */
263 	ctx->u.sha.key_len = 0;
264 
265 	/* Clear key area to provide zero padding for keys smaller
266 	 * than the block size
267 	 */
268 	memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
269 
270 	if (key_len > block_size) {
271 		/* Must hash the input key */
272 		sdesc->tfm = shash;
273 		sdesc->flags = crypto_ahash_get_flags(tfm) &
274 			CRYPTO_TFM_REQ_MAY_SLEEP;
275 
276 		ret = crypto_shash_digest(sdesc, key, key_len,
277 					  ctx->u.sha.key);
278 		if (ret) {
279 			crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
280 			return -EINVAL;
281 		}
282 
283 		key_len = digest_size;
284 	} else {
285 		memcpy(ctx->u.sha.key, key, key_len);
286 	}
287 
288 	for (i = 0; i < block_size; i++) {
289 		ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
290 		ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
291 	}
292 
293 	sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
294 	ctx->u.sha.opad_count = block_size;
295 
296 	ctx->u.sha.key_len = key_len;
297 
298 	return 0;
299 }
300 
301 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
302 {
303 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
304 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
305 
306 	ctx->complete = ccp_sha_complete;
307 	ctx->u.sha.key_len = 0;
308 
309 	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
310 
311 	return 0;
312 }
313 
314 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
315 {
316 }
317 
318 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
319 {
320 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
321 	struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
322 	struct crypto_shash *hmac_tfm;
323 
324 	hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
325 	if (IS_ERR(hmac_tfm)) {
326 		pr_warn("could not load driver %s need for HMAC support\n",
327 			alg->child_alg);
328 		return PTR_ERR(hmac_tfm);
329 	}
330 
331 	ctx->u.sha.hmac_tfm = hmac_tfm;
332 
333 	return ccp_sha_cra_init(tfm);
334 }
335 
336 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
337 {
338 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
339 
340 	if (ctx->u.sha.hmac_tfm)
341 		crypto_free_shash(ctx->u.sha.hmac_tfm);
342 
343 	ccp_sha_cra_exit(tfm);
344 }
345 
346 struct ccp_sha_def {
347 	unsigned int version;
348 	const char *name;
349 	const char *drv_name;
350 	enum ccp_sha_type type;
351 	u32 digest_size;
352 	u32 block_size;
353 };
354 
355 static struct ccp_sha_def sha_algs[] = {
356 	{
357 		.version	= CCP_VERSION(3, 0),
358 		.name		= "sha1",
359 		.drv_name	= "sha1-ccp",
360 		.type		= CCP_SHA_TYPE_1,
361 		.digest_size	= SHA1_DIGEST_SIZE,
362 		.block_size	= SHA1_BLOCK_SIZE,
363 	},
364 	{
365 		.version	= CCP_VERSION(3, 0),
366 		.name		= "sha224",
367 		.drv_name	= "sha224-ccp",
368 		.type		= CCP_SHA_TYPE_224,
369 		.digest_size	= SHA224_DIGEST_SIZE,
370 		.block_size	= SHA224_BLOCK_SIZE,
371 	},
372 	{
373 		.version	= CCP_VERSION(3, 0),
374 		.name		= "sha256",
375 		.drv_name	= "sha256-ccp",
376 		.type		= CCP_SHA_TYPE_256,
377 		.digest_size	= SHA256_DIGEST_SIZE,
378 		.block_size	= SHA256_BLOCK_SIZE,
379 	},
380 };
381 
382 static int ccp_register_hmac_alg(struct list_head *head,
383 				 const struct ccp_sha_def *def,
384 				 const struct ccp_crypto_ahash_alg *base_alg)
385 {
386 	struct ccp_crypto_ahash_alg *ccp_alg;
387 	struct ahash_alg *alg;
388 	struct hash_alg_common *halg;
389 	struct crypto_alg *base;
390 	int ret;
391 
392 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
393 	if (!ccp_alg)
394 		return -ENOMEM;
395 
396 	/* Copy the base algorithm and only change what's necessary */
397 	*ccp_alg = *base_alg;
398 	INIT_LIST_HEAD(&ccp_alg->entry);
399 
400 	strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
401 
402 	alg = &ccp_alg->alg;
403 	alg->setkey = ccp_sha_setkey;
404 
405 	halg = &alg->halg;
406 
407 	base = &halg->base;
408 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
409 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
410 		 def->drv_name);
411 	base->cra_init = ccp_hmac_sha_cra_init;
412 	base->cra_exit = ccp_hmac_sha_cra_exit;
413 
414 	ret = crypto_register_ahash(alg);
415 	if (ret) {
416 		pr_err("%s ahash algorithm registration error (%d)\n",
417 		       base->cra_name, ret);
418 		kfree(ccp_alg);
419 		return ret;
420 	}
421 
422 	list_add(&ccp_alg->entry, head);
423 
424 	return ret;
425 }
426 
427 static int ccp_register_sha_alg(struct list_head *head,
428 				const struct ccp_sha_def *def)
429 {
430 	struct ccp_crypto_ahash_alg *ccp_alg;
431 	struct ahash_alg *alg;
432 	struct hash_alg_common *halg;
433 	struct crypto_alg *base;
434 	int ret;
435 
436 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
437 	if (!ccp_alg)
438 		return -ENOMEM;
439 
440 	INIT_LIST_HEAD(&ccp_alg->entry);
441 
442 	ccp_alg->type = def->type;
443 
444 	alg = &ccp_alg->alg;
445 	alg->init = ccp_sha_init;
446 	alg->update = ccp_sha_update;
447 	alg->final = ccp_sha_final;
448 	alg->finup = ccp_sha_finup;
449 	alg->digest = ccp_sha_digest;
450 	alg->export = ccp_sha_export;
451 	alg->import = ccp_sha_import;
452 
453 	halg = &alg->halg;
454 	halg->digestsize = def->digest_size;
455 	halg->statesize = sizeof(struct ccp_sha_exp_ctx);
456 
457 	base = &halg->base;
458 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
459 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
460 		 def->drv_name);
461 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
462 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
463 			  CRYPTO_ALG_NEED_FALLBACK;
464 	base->cra_blocksize = def->block_size;
465 	base->cra_ctxsize = sizeof(struct ccp_ctx);
466 	base->cra_priority = CCP_CRA_PRIORITY;
467 	base->cra_type = &crypto_ahash_type;
468 	base->cra_init = ccp_sha_cra_init;
469 	base->cra_exit = ccp_sha_cra_exit;
470 	base->cra_module = THIS_MODULE;
471 
472 	ret = crypto_register_ahash(alg);
473 	if (ret) {
474 		pr_err("%s ahash algorithm registration error (%d)\n",
475 		       base->cra_name, ret);
476 		kfree(ccp_alg);
477 		return ret;
478 	}
479 
480 	list_add(&ccp_alg->entry, head);
481 
482 	ret = ccp_register_hmac_alg(head, def, ccp_alg);
483 
484 	return ret;
485 }
486 
487 int ccp_register_sha_algs(struct list_head *head)
488 {
489 	int i, ret;
490 	unsigned int ccpversion = ccp_version();
491 
492 	for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
493 		if (sha_algs[i].version > ccpversion)
494 			continue;
495 		ret = ccp_register_sha_alg(head, &sha_algs[i]);
496 		if (ret)
497 			return ret;
498 	}
499 
500 	return 0;
501 }
502