1 /* 2 * AMD Cryptographic Coprocessor (CCP) RSA crypto API support 3 * 4 * Copyright (C) 2017 Advanced Micro Devices, Inc. 5 * 6 * Author: Gary R Hook <gary.hook@amd.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/sched.h> 15 #include <linux/scatterlist.h> 16 #include <linux/crypto.h> 17 #include <crypto/algapi.h> 18 #include <crypto/internal/rsa.h> 19 #include <crypto/internal/akcipher.h> 20 #include <crypto/akcipher.h> 21 #include <crypto/scatterwalk.h> 22 23 #include "ccp-crypto.h" 24 25 static inline struct akcipher_request *akcipher_request_cast( 26 struct crypto_async_request *req) 27 { 28 return container_of(req, struct akcipher_request, base); 29 } 30 31 static inline int ccp_copy_and_save_keypart(u8 **kpbuf, unsigned int *kplen, 32 const u8 *buf, size_t sz) 33 { 34 int nskip; 35 36 for (nskip = 0; nskip < sz; nskip++) 37 if (buf[nskip]) 38 break; 39 *kplen = sz - nskip; 40 *kpbuf = kzalloc(*kplen, GFP_KERNEL); 41 if (!*kpbuf) 42 return -ENOMEM; 43 memcpy(*kpbuf, buf + nskip, *kplen); 44 45 return 0; 46 } 47 48 static int ccp_rsa_complete(struct crypto_async_request *async_req, int ret) 49 { 50 struct akcipher_request *req = akcipher_request_cast(async_req); 51 struct ccp_rsa_req_ctx *rctx = akcipher_request_ctx(req); 52 53 if (ret) 54 return ret; 55 56 req->dst_len = rctx->cmd.u.rsa.key_size >> 3; 57 58 return 0; 59 } 60 61 static unsigned int ccp_rsa_maxsize(struct crypto_akcipher *tfm) 62 { 63 struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm); 64 65 return ctx->u.rsa.n_len; 66 } 67 68 static int ccp_rsa_crypt(struct akcipher_request *req, bool encrypt) 69 { 70 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 71 struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm); 72 struct ccp_rsa_req_ctx *rctx = akcipher_request_ctx(req); 73 int ret = 0; 74 75 memset(&rctx->cmd, 0, sizeof(rctx->cmd)); 76 INIT_LIST_HEAD(&rctx->cmd.entry); 77 rctx->cmd.engine = CCP_ENGINE_RSA; 78 79 rctx->cmd.u.rsa.key_size = ctx->u.rsa.key_len; /* in bits */ 80 if (encrypt) { 81 rctx->cmd.u.rsa.exp = &ctx->u.rsa.e_sg; 82 rctx->cmd.u.rsa.exp_len = ctx->u.rsa.e_len; 83 } else { 84 rctx->cmd.u.rsa.exp = &ctx->u.rsa.d_sg; 85 rctx->cmd.u.rsa.exp_len = ctx->u.rsa.d_len; 86 } 87 rctx->cmd.u.rsa.mod = &ctx->u.rsa.n_sg; 88 rctx->cmd.u.rsa.mod_len = ctx->u.rsa.n_len; 89 rctx->cmd.u.rsa.src = req->src; 90 rctx->cmd.u.rsa.src_len = req->src_len; 91 rctx->cmd.u.rsa.dst = req->dst; 92 93 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); 94 95 return ret; 96 } 97 98 static int ccp_rsa_encrypt(struct akcipher_request *req) 99 { 100 return ccp_rsa_crypt(req, true); 101 } 102 103 static int ccp_rsa_decrypt(struct akcipher_request *req) 104 { 105 return ccp_rsa_crypt(req, false); 106 } 107 108 static int ccp_check_key_length(unsigned int len) 109 { 110 /* In bits */ 111 if (len < 8 || len > 4096) 112 return -EINVAL; 113 return 0; 114 } 115 116 static void ccp_rsa_free_key_bufs(struct ccp_ctx *ctx) 117 { 118 /* Clean up old key data */ 119 kzfree(ctx->u.rsa.e_buf); 120 ctx->u.rsa.e_buf = NULL; 121 ctx->u.rsa.e_len = 0; 122 kzfree(ctx->u.rsa.n_buf); 123 ctx->u.rsa.n_buf = NULL; 124 ctx->u.rsa.n_len = 0; 125 kzfree(ctx->u.rsa.d_buf); 126 ctx->u.rsa.d_buf = NULL; 127 ctx->u.rsa.d_len = 0; 128 } 129 130 static int ccp_rsa_setkey(struct crypto_akcipher *tfm, const void *key, 131 unsigned int keylen, bool private) 132 { 133 struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm); 134 struct rsa_key raw_key; 135 int ret; 136 137 ccp_rsa_free_key_bufs(ctx); 138 memset(&raw_key, 0, sizeof(raw_key)); 139 140 /* Code borrowed from crypto/rsa.c */ 141 if (private) 142 ret = rsa_parse_priv_key(&raw_key, key, keylen); 143 else 144 ret = rsa_parse_pub_key(&raw_key, key, keylen); 145 if (ret) 146 goto n_key; 147 148 ret = ccp_copy_and_save_keypart(&ctx->u.rsa.n_buf, &ctx->u.rsa.n_len, 149 raw_key.n, raw_key.n_sz); 150 if (ret) 151 goto key_err; 152 sg_init_one(&ctx->u.rsa.n_sg, ctx->u.rsa.n_buf, ctx->u.rsa.n_len); 153 154 ctx->u.rsa.key_len = ctx->u.rsa.n_len << 3; /* convert to bits */ 155 if (ccp_check_key_length(ctx->u.rsa.key_len)) { 156 ret = -EINVAL; 157 goto key_err; 158 } 159 160 ret = ccp_copy_and_save_keypart(&ctx->u.rsa.e_buf, &ctx->u.rsa.e_len, 161 raw_key.e, raw_key.e_sz); 162 if (ret) 163 goto key_err; 164 sg_init_one(&ctx->u.rsa.e_sg, ctx->u.rsa.e_buf, ctx->u.rsa.e_len); 165 166 if (private) { 167 ret = ccp_copy_and_save_keypart(&ctx->u.rsa.d_buf, 168 &ctx->u.rsa.d_len, 169 raw_key.d, raw_key.d_sz); 170 if (ret) 171 goto key_err; 172 sg_init_one(&ctx->u.rsa.d_sg, 173 ctx->u.rsa.d_buf, ctx->u.rsa.d_len); 174 } 175 176 return 0; 177 178 key_err: 179 ccp_rsa_free_key_bufs(ctx); 180 181 n_key: 182 return ret; 183 } 184 185 static int ccp_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key, 186 unsigned int keylen) 187 { 188 return ccp_rsa_setkey(tfm, key, keylen, true); 189 } 190 191 static int ccp_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key, 192 unsigned int keylen) 193 { 194 return ccp_rsa_setkey(tfm, key, keylen, false); 195 } 196 197 static int ccp_rsa_init_tfm(struct crypto_akcipher *tfm) 198 { 199 struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm); 200 201 akcipher_set_reqsize(tfm, sizeof(struct ccp_rsa_req_ctx)); 202 ctx->complete = ccp_rsa_complete; 203 204 return 0; 205 } 206 207 static void ccp_rsa_exit_tfm(struct crypto_akcipher *tfm) 208 { 209 struct ccp_ctx *ctx = crypto_tfm_ctx(&tfm->base); 210 211 ccp_rsa_free_key_bufs(ctx); 212 } 213 214 static struct akcipher_alg ccp_rsa_defaults = { 215 .encrypt = ccp_rsa_encrypt, 216 .decrypt = ccp_rsa_decrypt, 217 .sign = ccp_rsa_decrypt, 218 .verify = ccp_rsa_encrypt, 219 .set_pub_key = ccp_rsa_setpubkey, 220 .set_priv_key = ccp_rsa_setprivkey, 221 .max_size = ccp_rsa_maxsize, 222 .init = ccp_rsa_init_tfm, 223 .exit = ccp_rsa_exit_tfm, 224 .base = { 225 .cra_name = "rsa", 226 .cra_driver_name = "rsa-ccp", 227 .cra_priority = CCP_CRA_PRIORITY, 228 .cra_module = THIS_MODULE, 229 .cra_ctxsize = 2 * sizeof(struct ccp_ctx), 230 }, 231 }; 232 233 struct ccp_rsa_def { 234 unsigned int version; 235 const char *name; 236 const char *driver_name; 237 unsigned int reqsize; 238 struct akcipher_alg *alg_defaults; 239 }; 240 241 static struct ccp_rsa_def rsa_algs[] = { 242 { 243 .version = CCP_VERSION(3, 0), 244 .name = "rsa", 245 .driver_name = "rsa-ccp", 246 .reqsize = sizeof(struct ccp_rsa_req_ctx), 247 .alg_defaults = &ccp_rsa_defaults, 248 } 249 }; 250 251 int ccp_register_rsa_alg(struct list_head *head, const struct ccp_rsa_def *def) 252 { 253 struct ccp_crypto_akcipher_alg *ccp_alg; 254 struct akcipher_alg *alg; 255 int ret; 256 257 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); 258 if (!ccp_alg) 259 return -ENOMEM; 260 261 INIT_LIST_HEAD(&ccp_alg->entry); 262 263 alg = &ccp_alg->alg; 264 *alg = *def->alg_defaults; 265 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); 266 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 267 def->driver_name); 268 ret = crypto_register_akcipher(alg); 269 if (ret) { 270 pr_err("%s akcipher algorithm registration error (%d)\n", 271 alg->base.cra_name, ret); 272 kfree(ccp_alg); 273 return ret; 274 } 275 276 list_add(&ccp_alg->entry, head); 277 278 return 0; 279 } 280 281 int ccp_register_rsa_algs(struct list_head *head) 282 { 283 int i, ret; 284 unsigned int ccpversion = ccp_version(); 285 286 /* Register the RSA algorithm in standard mode 287 * This works for CCP v3 and later 288 */ 289 for (i = 0; i < ARRAY_SIZE(rsa_algs); i++) { 290 if (rsa_algs[i].version > ccpversion) 291 continue; 292 ret = ccp_register_rsa_alg(head, &rsa_algs[i]); 293 if (ret) 294 return ret; 295 } 296 297 return 0; 298 } 299