xref: /openbmc/linux/drivers/crypto/ccp/ccp-crypto-main.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) crypto API support
3  *
4  * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/ccp.h>
18 #include <linux/scatterlist.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/internal/akcipher.h>
21 
22 #include "ccp-crypto.h"
23 
24 MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
25 MODULE_LICENSE("GPL");
26 MODULE_VERSION("1.0.0");
27 MODULE_DESCRIPTION("AMD Cryptographic Coprocessor crypto API support");
28 
29 static unsigned int aes_disable;
30 module_param(aes_disable, uint, 0444);
31 MODULE_PARM_DESC(aes_disable, "Disable use of AES - any non-zero value");
32 
33 static unsigned int sha_disable;
34 module_param(sha_disable, uint, 0444);
35 MODULE_PARM_DESC(sha_disable, "Disable use of SHA - any non-zero value");
36 
37 static unsigned int des3_disable;
38 module_param(des3_disable, uint, 0444);
39 MODULE_PARM_DESC(des3_disable, "Disable use of 3DES - any non-zero value");
40 
41 static unsigned int rsa_disable;
42 module_param(rsa_disable, uint, 0444);
43 MODULE_PARM_DESC(rsa_disable, "Disable use of RSA - any non-zero value");
44 
45 /* List heads for the supported algorithms */
46 static LIST_HEAD(hash_algs);
47 static LIST_HEAD(cipher_algs);
48 static LIST_HEAD(aead_algs);
49 static LIST_HEAD(akcipher_algs);
50 
51 /* For any tfm, requests for that tfm must be returned on the order
52  * received.  With multiple queues available, the CCP can process more
53  * than one cmd at a time.  Therefore we must maintain a cmd list to insure
54  * the proper ordering of requests on a given tfm.
55  */
56 struct ccp_crypto_queue {
57 	struct list_head cmds;
58 	struct list_head *backlog;
59 	unsigned int cmd_count;
60 };
61 
62 #define CCP_CRYPTO_MAX_QLEN	100
63 
64 static struct ccp_crypto_queue req_queue;
65 static spinlock_t req_queue_lock;
66 
67 struct ccp_crypto_cmd {
68 	struct list_head entry;
69 
70 	struct ccp_cmd *cmd;
71 
72 	/* Save the crypto_tfm and crypto_async_request addresses
73 	 * separately to avoid any reference to a possibly invalid
74 	 * crypto_async_request structure after invoking the request
75 	 * callback
76 	 */
77 	struct crypto_async_request *req;
78 	struct crypto_tfm *tfm;
79 
80 	/* Used for held command processing to determine state */
81 	int ret;
82 };
83 
84 struct ccp_crypto_cpu {
85 	struct work_struct work;
86 	struct completion completion;
87 	struct ccp_crypto_cmd *crypto_cmd;
88 	int err;
89 };
90 
91 static inline bool ccp_crypto_success(int err)
92 {
93 	if (err && (err != -EINPROGRESS) && (err != -EBUSY))
94 		return false;
95 
96 	return true;
97 }
98 
99 static struct ccp_crypto_cmd *ccp_crypto_cmd_complete(
100 	struct ccp_crypto_cmd *crypto_cmd, struct ccp_crypto_cmd **backlog)
101 {
102 	struct ccp_crypto_cmd *held = NULL, *tmp;
103 	unsigned long flags;
104 
105 	*backlog = NULL;
106 
107 	spin_lock_irqsave(&req_queue_lock, flags);
108 
109 	/* Held cmds will be after the current cmd in the queue so start
110 	 * searching for a cmd with a matching tfm for submission.
111 	 */
112 	tmp = crypto_cmd;
113 	list_for_each_entry_continue(tmp, &req_queue.cmds, entry) {
114 		if (crypto_cmd->tfm != tmp->tfm)
115 			continue;
116 		held = tmp;
117 		break;
118 	}
119 
120 	/* Process the backlog:
121 	 *   Because cmds can be executed from any point in the cmd list
122 	 *   special precautions have to be taken when handling the backlog.
123 	 */
124 	if (req_queue.backlog != &req_queue.cmds) {
125 		/* Skip over this cmd if it is the next backlog cmd */
126 		if (req_queue.backlog == &crypto_cmd->entry)
127 			req_queue.backlog = crypto_cmd->entry.next;
128 
129 		*backlog = container_of(req_queue.backlog,
130 					struct ccp_crypto_cmd, entry);
131 		req_queue.backlog = req_queue.backlog->next;
132 
133 		/* Skip over this cmd if it is now the next backlog cmd */
134 		if (req_queue.backlog == &crypto_cmd->entry)
135 			req_queue.backlog = crypto_cmd->entry.next;
136 	}
137 
138 	/* Remove the cmd entry from the list of cmds */
139 	req_queue.cmd_count--;
140 	list_del(&crypto_cmd->entry);
141 
142 	spin_unlock_irqrestore(&req_queue_lock, flags);
143 
144 	return held;
145 }
146 
147 static void ccp_crypto_complete(void *data, int err)
148 {
149 	struct ccp_crypto_cmd *crypto_cmd = data;
150 	struct ccp_crypto_cmd *held, *next, *backlog;
151 	struct crypto_async_request *req = crypto_cmd->req;
152 	struct ccp_ctx *ctx = crypto_tfm_ctx(req->tfm);
153 	int ret;
154 
155 	if (err == -EINPROGRESS) {
156 		/* Only propagate the -EINPROGRESS if necessary */
157 		if (crypto_cmd->ret == -EBUSY) {
158 			crypto_cmd->ret = -EINPROGRESS;
159 			req->complete(req, -EINPROGRESS);
160 		}
161 
162 		return;
163 	}
164 
165 	/* Operation has completed - update the queue before invoking
166 	 * the completion callbacks and retrieve the next cmd (cmd with
167 	 * a matching tfm) that can be submitted to the CCP.
168 	 */
169 	held = ccp_crypto_cmd_complete(crypto_cmd, &backlog);
170 	if (backlog) {
171 		backlog->ret = -EINPROGRESS;
172 		backlog->req->complete(backlog->req, -EINPROGRESS);
173 	}
174 
175 	/* Transition the state from -EBUSY to -EINPROGRESS first */
176 	if (crypto_cmd->ret == -EBUSY)
177 		req->complete(req, -EINPROGRESS);
178 
179 	/* Completion callbacks */
180 	ret = err;
181 	if (ctx->complete)
182 		ret = ctx->complete(req, ret);
183 	req->complete(req, ret);
184 
185 	/* Submit the next cmd */
186 	while (held) {
187 		/* Since we have already queued the cmd, we must indicate that
188 		 * we can backlog so as not to "lose" this request.
189 		 */
190 		held->cmd->flags |= CCP_CMD_MAY_BACKLOG;
191 		ret = ccp_enqueue_cmd(held->cmd);
192 		if (ccp_crypto_success(ret))
193 			break;
194 
195 		/* Error occurred, report it and get the next entry */
196 		ctx = crypto_tfm_ctx(held->req->tfm);
197 		if (ctx->complete)
198 			ret = ctx->complete(held->req, ret);
199 		held->req->complete(held->req, ret);
200 
201 		next = ccp_crypto_cmd_complete(held, &backlog);
202 		if (backlog) {
203 			backlog->ret = -EINPROGRESS;
204 			backlog->req->complete(backlog->req, -EINPROGRESS);
205 		}
206 
207 		kfree(held);
208 		held = next;
209 	}
210 
211 	kfree(crypto_cmd);
212 }
213 
214 static int ccp_crypto_enqueue_cmd(struct ccp_crypto_cmd *crypto_cmd)
215 {
216 	struct ccp_crypto_cmd *active = NULL, *tmp;
217 	unsigned long flags;
218 	bool free_cmd = true;
219 	int ret;
220 
221 	spin_lock_irqsave(&req_queue_lock, flags);
222 
223 	/* Check if the cmd can/should be queued */
224 	if (req_queue.cmd_count >= CCP_CRYPTO_MAX_QLEN) {
225 		if (!(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG)) {
226 			ret = -ENOSPC;
227 			goto e_lock;
228 		}
229 	}
230 
231 	/* Look for an entry with the same tfm.  If there is a cmd
232 	 * with the same tfm in the list then the current cmd cannot
233 	 * be submitted to the CCP yet.
234 	 */
235 	list_for_each_entry(tmp, &req_queue.cmds, entry) {
236 		if (crypto_cmd->tfm != tmp->tfm)
237 			continue;
238 		active = tmp;
239 		break;
240 	}
241 
242 	ret = -EINPROGRESS;
243 	if (!active) {
244 		ret = ccp_enqueue_cmd(crypto_cmd->cmd);
245 		if (!ccp_crypto_success(ret))
246 			goto e_lock;	/* Error, don't queue it */
247 	}
248 
249 	if (req_queue.cmd_count >= CCP_CRYPTO_MAX_QLEN) {
250 		ret = -EBUSY;
251 		if (req_queue.backlog == &req_queue.cmds)
252 			req_queue.backlog = &crypto_cmd->entry;
253 	}
254 	crypto_cmd->ret = ret;
255 
256 	req_queue.cmd_count++;
257 	list_add_tail(&crypto_cmd->entry, &req_queue.cmds);
258 
259 	free_cmd = false;
260 
261 e_lock:
262 	spin_unlock_irqrestore(&req_queue_lock, flags);
263 
264 	if (free_cmd)
265 		kfree(crypto_cmd);
266 
267 	return ret;
268 }
269 
270 /**
271  * ccp_crypto_enqueue_request - queue an crypto async request for processing
272  *				by the CCP
273  *
274  * @req: crypto_async_request struct to be processed
275  * @cmd: ccp_cmd struct to be sent to the CCP
276  */
277 int ccp_crypto_enqueue_request(struct crypto_async_request *req,
278 			       struct ccp_cmd *cmd)
279 {
280 	struct ccp_crypto_cmd *crypto_cmd;
281 	gfp_t gfp;
282 
283 	gfp = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
284 
285 	crypto_cmd = kzalloc(sizeof(*crypto_cmd), gfp);
286 	if (!crypto_cmd)
287 		return -ENOMEM;
288 
289 	/* The tfm pointer must be saved and not referenced from the
290 	 * crypto_async_request (req) pointer because it is used after
291 	 * completion callback for the request and the req pointer
292 	 * might not be valid anymore.
293 	 */
294 	crypto_cmd->cmd = cmd;
295 	crypto_cmd->req = req;
296 	crypto_cmd->tfm = req->tfm;
297 
298 	cmd->callback = ccp_crypto_complete;
299 	cmd->data = crypto_cmd;
300 
301 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
302 		cmd->flags |= CCP_CMD_MAY_BACKLOG;
303 	else
304 		cmd->flags &= ~CCP_CMD_MAY_BACKLOG;
305 
306 	return ccp_crypto_enqueue_cmd(crypto_cmd);
307 }
308 
309 struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
310 					    struct scatterlist *sg_add)
311 {
312 	struct scatterlist *sg, *sg_last = NULL;
313 
314 	for (sg = table->sgl; sg; sg = sg_next(sg))
315 		if (!sg_page(sg))
316 			break;
317 	if (WARN_ON(!sg))
318 		return NULL;
319 
320 	for (; sg && sg_add; sg = sg_next(sg), sg_add = sg_next(sg_add)) {
321 		sg_set_page(sg, sg_page(sg_add), sg_add->length,
322 			    sg_add->offset);
323 		sg_last = sg;
324 	}
325 	if (WARN_ON(sg_add))
326 		return NULL;
327 
328 	return sg_last;
329 }
330 
331 static int ccp_register_algs(void)
332 {
333 	int ret;
334 
335 	if (!aes_disable) {
336 		ret = ccp_register_aes_algs(&cipher_algs);
337 		if (ret)
338 			return ret;
339 
340 		ret = ccp_register_aes_cmac_algs(&hash_algs);
341 		if (ret)
342 			return ret;
343 
344 		ret = ccp_register_aes_xts_algs(&cipher_algs);
345 		if (ret)
346 			return ret;
347 
348 		ret = ccp_register_aes_aeads(&aead_algs);
349 		if (ret)
350 			return ret;
351 	}
352 
353 	if (!des3_disable) {
354 		ret = ccp_register_des3_algs(&cipher_algs);
355 		if (ret)
356 			return ret;
357 	}
358 
359 	if (!sha_disable) {
360 		ret = ccp_register_sha_algs(&hash_algs);
361 		if (ret)
362 			return ret;
363 	}
364 
365 	if (!rsa_disable) {
366 		ret = ccp_register_rsa_algs(&akcipher_algs);
367 		if (ret)
368 			return ret;
369 	}
370 
371 	return 0;
372 }
373 
374 static void ccp_unregister_algs(void)
375 {
376 	struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
377 	struct ccp_crypto_ablkcipher_alg *ablk_alg, *ablk_tmp;
378 	struct ccp_crypto_aead *aead_alg, *aead_tmp;
379 	struct ccp_crypto_akcipher_alg *akc_alg, *akc_tmp;
380 
381 	list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
382 		crypto_unregister_ahash(&ahash_alg->alg);
383 		list_del(&ahash_alg->entry);
384 		kfree(ahash_alg);
385 	}
386 
387 	list_for_each_entry_safe(ablk_alg, ablk_tmp, &cipher_algs, entry) {
388 		crypto_unregister_alg(&ablk_alg->alg);
389 		list_del(&ablk_alg->entry);
390 		kfree(ablk_alg);
391 	}
392 
393 	list_for_each_entry_safe(aead_alg, aead_tmp, &aead_algs, entry) {
394 		crypto_unregister_aead(&aead_alg->alg);
395 		list_del(&aead_alg->entry);
396 		kfree(aead_alg);
397 	}
398 
399 	list_for_each_entry_safe(akc_alg, akc_tmp, &akcipher_algs, entry) {
400 		crypto_unregister_akcipher(&akc_alg->alg);
401 		list_del(&akc_alg->entry);
402 		kfree(akc_alg);
403 	}
404 }
405 
406 static int ccp_crypto_init(void)
407 {
408 	int ret;
409 
410 	ret = ccp_present();
411 	if (ret)
412 		return ret;
413 
414 	spin_lock_init(&req_queue_lock);
415 	INIT_LIST_HEAD(&req_queue.cmds);
416 	req_queue.backlog = &req_queue.cmds;
417 	req_queue.cmd_count = 0;
418 
419 	ret = ccp_register_algs();
420 	if (ret)
421 		ccp_unregister_algs();
422 
423 	return ret;
424 }
425 
426 static void ccp_crypto_exit(void)
427 {
428 	ccp_unregister_algs();
429 }
430 
431 module_init(ccp_crypto_init);
432 module_exit(ccp_crypto_exit);
433