1 /*
2  * AMD Cryptographic Coprocessor (CCP) AES XTS crypto API support
3  *
4  * Copyright (C) 2013 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/delay.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <crypto/algapi.h>
19 #include <crypto/aes.h>
20 #include <crypto/scatterwalk.h>
21 
22 #include "ccp-crypto.h"
23 
24 struct ccp_aes_xts_def {
25 	const char *name;
26 	const char *drv_name;
27 };
28 
29 static struct ccp_aes_xts_def aes_xts_algs[] = {
30 	{
31 		.name		= "xts(aes)",
32 		.drv_name	= "xts-aes-ccp",
33 	},
34 };
35 
36 struct ccp_unit_size_map {
37 	unsigned int size;
38 	u32 value;
39 };
40 
41 static struct ccp_unit_size_map unit_size_map[] = {
42 	{
43 		.size	= 4096,
44 		.value	= CCP_XTS_AES_UNIT_SIZE_4096,
45 	},
46 	{
47 		.size	= 2048,
48 		.value	= CCP_XTS_AES_UNIT_SIZE_2048,
49 	},
50 	{
51 		.size	= 1024,
52 		.value	= CCP_XTS_AES_UNIT_SIZE_1024,
53 	},
54 	{
55 		.size	= 512,
56 		.value	= CCP_XTS_AES_UNIT_SIZE_512,
57 	},
58 	{
59 		.size	= 256,
60 		.value	= CCP_XTS_AES_UNIT_SIZE__LAST,
61 	},
62 	{
63 		.size	= 128,
64 		.value	= CCP_XTS_AES_UNIT_SIZE__LAST,
65 	},
66 	{
67 		.size	= 64,
68 		.value	= CCP_XTS_AES_UNIT_SIZE__LAST,
69 	},
70 	{
71 		.size	= 32,
72 		.value	= CCP_XTS_AES_UNIT_SIZE__LAST,
73 	},
74 	{
75 		.size	= 16,
76 		.value	= CCP_XTS_AES_UNIT_SIZE_16,
77 	},
78 	{
79 		.size	= 1,
80 		.value	= CCP_XTS_AES_UNIT_SIZE__LAST,
81 	},
82 };
83 
84 static int ccp_aes_xts_complete(struct crypto_async_request *async_req, int ret)
85 {
86 	struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
87 	struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
88 
89 	if (ret)
90 		return ret;
91 
92 	memcpy(req->info, rctx->iv, AES_BLOCK_SIZE);
93 
94 	return 0;
95 }
96 
97 static int ccp_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
98 			      unsigned int key_len)
99 {
100 	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ablkcipher_tfm(tfm));
101 
102 	/* Only support 128-bit AES key with a 128-bit Tweak key,
103 	 * otherwise use the fallback
104 	 */
105 	switch (key_len) {
106 	case AES_KEYSIZE_128 * 2:
107 		memcpy(ctx->u.aes.key, key, key_len);
108 		break;
109 	}
110 	ctx->u.aes.key_len = key_len / 2;
111 	sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
112 
113 	return crypto_ablkcipher_setkey(ctx->u.aes.tfm_ablkcipher, key,
114 					key_len);
115 }
116 
117 static int ccp_aes_xts_crypt(struct ablkcipher_request *req,
118 			     unsigned int encrypt)
119 {
120 	struct crypto_tfm *tfm =
121 		crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
122 	struct ccp_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
123 	struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
124 	unsigned int unit;
125 	int ret;
126 
127 	if (!ctx->u.aes.key_len)
128 		return -EINVAL;
129 
130 	if (req->nbytes & (AES_BLOCK_SIZE - 1))
131 		return -EINVAL;
132 
133 	if (!req->info)
134 		return -EINVAL;
135 
136 	for (unit = 0; unit < ARRAY_SIZE(unit_size_map); unit++)
137 		if (!(req->nbytes & (unit_size_map[unit].size - 1)))
138 			break;
139 
140 	if ((unit_size_map[unit].value == CCP_XTS_AES_UNIT_SIZE__LAST) ||
141 	    (ctx->u.aes.key_len != AES_KEYSIZE_128)) {
142 		/* Use the fallback to process the request for any
143 		 * unsupported unit sizes or key sizes
144 		 */
145 		ablkcipher_request_set_tfm(req, ctx->u.aes.tfm_ablkcipher);
146 		ret = (encrypt) ? crypto_ablkcipher_encrypt(req) :
147 				  crypto_ablkcipher_decrypt(req);
148 		ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
149 
150 		return ret;
151 	}
152 
153 	memcpy(rctx->iv, req->info, AES_BLOCK_SIZE);
154 	sg_init_one(&rctx->iv_sg, rctx->iv, AES_BLOCK_SIZE);
155 
156 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
157 	INIT_LIST_HEAD(&rctx->cmd.entry);
158 	rctx->cmd.engine = CCP_ENGINE_XTS_AES_128;
159 	rctx->cmd.u.xts.action = (encrypt) ? CCP_AES_ACTION_ENCRYPT
160 					   : CCP_AES_ACTION_DECRYPT;
161 	rctx->cmd.u.xts.unit_size = unit_size_map[unit].value;
162 	rctx->cmd.u.xts.key = &ctx->u.aes.key_sg;
163 	rctx->cmd.u.xts.key_len = ctx->u.aes.key_len;
164 	rctx->cmd.u.xts.iv = &rctx->iv_sg;
165 	rctx->cmd.u.xts.iv_len = AES_BLOCK_SIZE;
166 	rctx->cmd.u.xts.src = req->src;
167 	rctx->cmd.u.xts.src_len = req->nbytes;
168 	rctx->cmd.u.xts.dst = req->dst;
169 
170 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
171 
172 	return ret;
173 }
174 
175 static int ccp_aes_xts_encrypt(struct ablkcipher_request *req)
176 {
177 	return ccp_aes_xts_crypt(req, 1);
178 }
179 
180 static int ccp_aes_xts_decrypt(struct ablkcipher_request *req)
181 {
182 	return ccp_aes_xts_crypt(req, 0);
183 }
184 
185 static int ccp_aes_xts_cra_init(struct crypto_tfm *tfm)
186 {
187 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
188 	struct crypto_ablkcipher *fallback_tfm;
189 
190 	ctx->complete = ccp_aes_xts_complete;
191 	ctx->u.aes.key_len = 0;
192 
193 	fallback_tfm = crypto_alloc_ablkcipher(crypto_tfm_alg_name(tfm), 0,
194 					       CRYPTO_ALG_ASYNC |
195 					       CRYPTO_ALG_NEED_FALLBACK);
196 	if (IS_ERR(fallback_tfm)) {
197 		pr_warn("could not load fallback driver %s\n",
198 			crypto_tfm_alg_name(tfm));
199 		return PTR_ERR(fallback_tfm);
200 	}
201 	ctx->u.aes.tfm_ablkcipher = fallback_tfm;
202 
203 	tfm->crt_ablkcipher.reqsize = sizeof(struct ccp_aes_req_ctx) +
204 				      fallback_tfm->base.crt_ablkcipher.reqsize;
205 
206 	return 0;
207 }
208 
209 static void ccp_aes_xts_cra_exit(struct crypto_tfm *tfm)
210 {
211 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
212 
213 	if (ctx->u.aes.tfm_ablkcipher)
214 		crypto_free_ablkcipher(ctx->u.aes.tfm_ablkcipher);
215 	ctx->u.aes.tfm_ablkcipher = NULL;
216 }
217 
218 static int ccp_register_aes_xts_alg(struct list_head *head,
219 				    const struct ccp_aes_xts_def *def)
220 {
221 	struct ccp_crypto_ablkcipher_alg *ccp_alg;
222 	struct crypto_alg *alg;
223 	int ret;
224 
225 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
226 	if (!ccp_alg)
227 		return -ENOMEM;
228 
229 	INIT_LIST_HEAD(&ccp_alg->entry);
230 
231 	alg = &ccp_alg->alg;
232 
233 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
234 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
235 		 def->drv_name);
236 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
237 			 CRYPTO_ALG_KERN_DRIVER_ONLY |
238 			 CRYPTO_ALG_NEED_FALLBACK;
239 	alg->cra_blocksize = AES_BLOCK_SIZE;
240 	alg->cra_ctxsize = sizeof(struct ccp_ctx);
241 	alg->cra_priority = CCP_CRA_PRIORITY;
242 	alg->cra_type = &crypto_ablkcipher_type;
243 	alg->cra_ablkcipher.setkey = ccp_aes_xts_setkey;
244 	alg->cra_ablkcipher.encrypt = ccp_aes_xts_encrypt;
245 	alg->cra_ablkcipher.decrypt = ccp_aes_xts_decrypt;
246 	alg->cra_ablkcipher.min_keysize = AES_MIN_KEY_SIZE * 2;
247 	alg->cra_ablkcipher.max_keysize = AES_MAX_KEY_SIZE * 2;
248 	alg->cra_ablkcipher.ivsize = AES_BLOCK_SIZE;
249 	alg->cra_init = ccp_aes_xts_cra_init;
250 	alg->cra_exit = ccp_aes_xts_cra_exit;
251 	alg->cra_module = THIS_MODULE;
252 
253 	ret = crypto_register_alg(alg);
254 	if (ret) {
255 		pr_err("%s ablkcipher algorithm registration error (%d)\n",
256 		       alg->cra_name, ret);
257 		kfree(ccp_alg);
258 		return ret;
259 	}
260 
261 	list_add(&ccp_alg->entry, head);
262 
263 	return 0;
264 }
265 
266 int ccp_register_aes_xts_algs(struct list_head *head)
267 {
268 	int i, ret;
269 
270 	for (i = 0; i < ARRAY_SIZE(aes_xts_algs); i++) {
271 		ret = ccp_register_aes_xts_alg(head, &aes_xts_algs[i]);
272 		if (ret)
273 			return ret;
274 	}
275 
276 	return 0;
277 }
278