1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Cryptographic Coprocessor (CCP) AES XTS crypto API support 4 * 5 * Copyright (C) 2013,2017 Advanced Micro Devices, Inc. 6 * 7 * Author: Gary R Hook <gary.hook@amd.com> 8 * Author: Tom Lendacky <thomas.lendacky@amd.com> 9 */ 10 11 #include <linux/module.h> 12 #include <linux/sched.h> 13 #include <linux/delay.h> 14 #include <linux/scatterlist.h> 15 #include <crypto/aes.h> 16 #include <crypto/xts.h> 17 #include <crypto/internal/skcipher.h> 18 #include <crypto/scatterwalk.h> 19 20 #include "ccp-crypto.h" 21 22 struct ccp_aes_xts_def { 23 const char *name; 24 const char *drv_name; 25 }; 26 27 static const struct ccp_aes_xts_def aes_xts_algs[] = { 28 { 29 .name = "xts(aes)", 30 .drv_name = "xts-aes-ccp", 31 }, 32 }; 33 34 struct ccp_unit_size_map { 35 unsigned int size; 36 u32 value; 37 }; 38 39 static struct ccp_unit_size_map xts_unit_sizes[] = { 40 { 41 .size = 16, 42 .value = CCP_XTS_AES_UNIT_SIZE_16, 43 }, 44 { 45 .size = 512, 46 .value = CCP_XTS_AES_UNIT_SIZE_512, 47 }, 48 { 49 .size = 1024, 50 .value = CCP_XTS_AES_UNIT_SIZE_1024, 51 }, 52 { 53 .size = 2048, 54 .value = CCP_XTS_AES_UNIT_SIZE_2048, 55 }, 56 { 57 .size = 4096, 58 .value = CCP_XTS_AES_UNIT_SIZE_4096, 59 }, 60 }; 61 62 static int ccp_aes_xts_complete(struct crypto_async_request *async_req, int ret) 63 { 64 struct skcipher_request *req = skcipher_request_cast(async_req); 65 struct ccp_aes_req_ctx *rctx = skcipher_request_ctx(req); 66 67 if (ret) 68 return ret; 69 70 memcpy(req->iv, rctx->iv, AES_BLOCK_SIZE); 71 72 return 0; 73 } 74 75 static int ccp_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, 76 unsigned int key_len) 77 { 78 struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm); 79 unsigned int ccpversion = ccp_version(); 80 int ret; 81 82 ret = xts_verify_key(tfm, key, key_len); 83 if (ret) 84 return ret; 85 86 /* Version 3 devices support 128-bit keys; version 5 devices can 87 * accommodate 128- and 256-bit keys. 88 */ 89 switch (key_len) { 90 case AES_KEYSIZE_128 * 2: 91 memcpy(ctx->u.aes.key, key, key_len); 92 break; 93 case AES_KEYSIZE_256 * 2: 94 if (ccpversion > CCP_VERSION(3, 0)) 95 memcpy(ctx->u.aes.key, key, key_len); 96 break; 97 } 98 ctx->u.aes.key_len = key_len / 2; 99 sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len); 100 101 return crypto_sync_skcipher_setkey(ctx->u.aes.tfm_skcipher, key, key_len); 102 } 103 104 static int ccp_aes_xts_crypt(struct skcipher_request *req, 105 unsigned int encrypt) 106 { 107 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 108 struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm); 109 struct ccp_aes_req_ctx *rctx = skcipher_request_ctx(req); 110 unsigned int ccpversion = ccp_version(); 111 unsigned int fallback = 0; 112 unsigned int unit; 113 u32 unit_size; 114 int ret; 115 116 if (!ctx->u.aes.key_len) 117 return -EINVAL; 118 119 if (!req->iv) 120 return -EINVAL; 121 122 /* Check conditions under which the CCP can fulfill a request. The 123 * device can handle input plaintext of a length that is a multiple 124 * of the unit_size, bug the crypto implementation only supports 125 * the unit_size being equal to the input length. This limits the 126 * number of scenarios we can handle. 127 */ 128 unit_size = CCP_XTS_AES_UNIT_SIZE__LAST; 129 for (unit = 0; unit < ARRAY_SIZE(xts_unit_sizes); unit++) { 130 if (req->cryptlen == xts_unit_sizes[unit].size) { 131 unit_size = unit; 132 break; 133 } 134 } 135 /* The CCP has restrictions on block sizes. Also, a version 3 device 136 * only supports AES-128 operations; version 5 CCPs support both 137 * AES-128 and -256 operations. 138 */ 139 if (unit_size == CCP_XTS_AES_UNIT_SIZE__LAST) 140 fallback = 1; 141 if ((ccpversion < CCP_VERSION(5, 0)) && 142 (ctx->u.aes.key_len != AES_KEYSIZE_128)) 143 fallback = 1; 144 if ((ctx->u.aes.key_len != AES_KEYSIZE_128) && 145 (ctx->u.aes.key_len != AES_KEYSIZE_256)) 146 fallback = 1; 147 if (fallback) { 148 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, 149 ctx->u.aes.tfm_skcipher); 150 151 /* Use the fallback to process the request for any 152 * unsupported unit sizes or key sizes 153 */ 154 skcipher_request_set_sync_tfm(subreq, ctx->u.aes.tfm_skcipher); 155 skcipher_request_set_callback(subreq, req->base.flags, 156 NULL, NULL); 157 skcipher_request_set_crypt(subreq, req->src, req->dst, 158 req->cryptlen, req->iv); 159 ret = encrypt ? crypto_skcipher_encrypt(subreq) : 160 crypto_skcipher_decrypt(subreq); 161 skcipher_request_zero(subreq); 162 return ret; 163 } 164 165 memcpy(rctx->iv, req->iv, AES_BLOCK_SIZE); 166 sg_init_one(&rctx->iv_sg, rctx->iv, AES_BLOCK_SIZE); 167 168 memset(&rctx->cmd, 0, sizeof(rctx->cmd)); 169 INIT_LIST_HEAD(&rctx->cmd.entry); 170 rctx->cmd.engine = CCP_ENGINE_XTS_AES_128; 171 rctx->cmd.u.xts.type = CCP_AES_TYPE_128; 172 rctx->cmd.u.xts.action = (encrypt) ? CCP_AES_ACTION_ENCRYPT 173 : CCP_AES_ACTION_DECRYPT; 174 rctx->cmd.u.xts.unit_size = unit_size; 175 rctx->cmd.u.xts.key = &ctx->u.aes.key_sg; 176 rctx->cmd.u.xts.key_len = ctx->u.aes.key_len; 177 rctx->cmd.u.xts.iv = &rctx->iv_sg; 178 rctx->cmd.u.xts.iv_len = AES_BLOCK_SIZE; 179 rctx->cmd.u.xts.src = req->src; 180 rctx->cmd.u.xts.src_len = req->cryptlen; 181 rctx->cmd.u.xts.dst = req->dst; 182 183 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); 184 185 return ret; 186 } 187 188 static int ccp_aes_xts_encrypt(struct skcipher_request *req) 189 { 190 return ccp_aes_xts_crypt(req, 1); 191 } 192 193 static int ccp_aes_xts_decrypt(struct skcipher_request *req) 194 { 195 return ccp_aes_xts_crypt(req, 0); 196 } 197 198 static int ccp_aes_xts_init_tfm(struct crypto_skcipher *tfm) 199 { 200 struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm); 201 struct crypto_sync_skcipher *fallback_tfm; 202 203 ctx->complete = ccp_aes_xts_complete; 204 ctx->u.aes.key_len = 0; 205 206 fallback_tfm = crypto_alloc_sync_skcipher("xts(aes)", 0, 207 CRYPTO_ALG_ASYNC | 208 CRYPTO_ALG_NEED_FALLBACK); 209 if (IS_ERR(fallback_tfm)) { 210 pr_warn("could not load fallback driver xts(aes)\n"); 211 return PTR_ERR(fallback_tfm); 212 } 213 ctx->u.aes.tfm_skcipher = fallback_tfm; 214 215 crypto_skcipher_set_reqsize(tfm, sizeof(struct ccp_aes_req_ctx)); 216 217 return 0; 218 } 219 220 static void ccp_aes_xts_exit_tfm(struct crypto_skcipher *tfm) 221 { 222 struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm); 223 224 crypto_free_sync_skcipher(ctx->u.aes.tfm_skcipher); 225 } 226 227 static int ccp_register_aes_xts_alg(struct list_head *head, 228 const struct ccp_aes_xts_def *def) 229 { 230 struct ccp_crypto_skcipher_alg *ccp_alg; 231 struct skcipher_alg *alg; 232 int ret; 233 234 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); 235 if (!ccp_alg) 236 return -ENOMEM; 237 238 INIT_LIST_HEAD(&ccp_alg->entry); 239 240 alg = &ccp_alg->alg; 241 242 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); 243 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 244 def->drv_name); 245 alg->base.cra_flags = CRYPTO_ALG_ASYNC | 246 CRYPTO_ALG_KERN_DRIVER_ONLY | 247 CRYPTO_ALG_NEED_FALLBACK; 248 alg->base.cra_blocksize = AES_BLOCK_SIZE; 249 alg->base.cra_ctxsize = sizeof(struct ccp_ctx); 250 alg->base.cra_priority = CCP_CRA_PRIORITY; 251 alg->base.cra_module = THIS_MODULE; 252 253 alg->setkey = ccp_aes_xts_setkey; 254 alg->encrypt = ccp_aes_xts_encrypt; 255 alg->decrypt = ccp_aes_xts_decrypt; 256 alg->min_keysize = AES_MIN_KEY_SIZE * 2; 257 alg->max_keysize = AES_MAX_KEY_SIZE * 2; 258 alg->ivsize = AES_BLOCK_SIZE; 259 alg->init = ccp_aes_xts_init_tfm; 260 alg->exit = ccp_aes_xts_exit_tfm; 261 262 ret = crypto_register_skcipher(alg); 263 if (ret) { 264 pr_err("%s skcipher algorithm registration error (%d)\n", 265 alg->base.cra_name, ret); 266 kfree(ccp_alg); 267 return ret; 268 } 269 270 list_add(&ccp_alg->entry, head); 271 272 return 0; 273 } 274 275 int ccp_register_aes_xts_algs(struct list_head *head) 276 { 277 int i, ret; 278 279 for (i = 0; i < ARRAY_SIZE(aes_xts_algs); i++) { 280 ret = ccp_register_aes_xts_alg(head, &aes_xts_algs[i]); 281 if (ret) 282 return ret; 283 } 284 285 return 0; 286 } 287