1 /*
2  * AMD Cryptographic Coprocessor (CCP) AES XTS crypto API support
3  *
4  * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
5  *
6  * Author: Gary R Hook <gary.hook@amd.com>
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/delay.h>
17 #include <linux/scatterlist.h>
18 #include <crypto/aes.h>
19 #include <crypto/xts.h>
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 
23 #include "ccp-crypto.h"
24 
25 struct ccp_aes_xts_def {
26 	const char *name;
27 	const char *drv_name;
28 };
29 
30 static struct ccp_aes_xts_def aes_xts_algs[] = {
31 	{
32 		.name		= "xts(aes)",
33 		.drv_name	= "xts-aes-ccp",
34 	},
35 };
36 
37 struct ccp_unit_size_map {
38 	unsigned int size;
39 	u32 value;
40 };
41 
42 static struct ccp_unit_size_map xts_unit_sizes[] = {
43 	{
44 		.size   = 16,
45 		.value	= CCP_XTS_AES_UNIT_SIZE_16,
46 	},
47 	{
48 		.size   = 512,
49 		.value	= CCP_XTS_AES_UNIT_SIZE_512,
50 	},
51 	{
52 		.size   = 1024,
53 		.value	= CCP_XTS_AES_UNIT_SIZE_1024,
54 	},
55 	{
56 		.size   = 2048,
57 		.value	= CCP_XTS_AES_UNIT_SIZE_2048,
58 	},
59 	{
60 		.size   = 4096,
61 		.value	= CCP_XTS_AES_UNIT_SIZE_4096,
62 	},
63 };
64 
65 static int ccp_aes_xts_complete(struct crypto_async_request *async_req, int ret)
66 {
67 	struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
68 	struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
69 
70 	if (ret)
71 		return ret;
72 
73 	memcpy(req->info, rctx->iv, AES_BLOCK_SIZE);
74 
75 	return 0;
76 }
77 
78 static int ccp_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
79 			      unsigned int key_len)
80 {
81 	struct crypto_tfm *xfm = crypto_ablkcipher_tfm(tfm);
82 	struct ccp_ctx *ctx = crypto_tfm_ctx(xfm);
83 	unsigned int ccpversion = ccp_version();
84 	int ret;
85 
86 	ret = xts_check_key(xfm, key, key_len);
87 	if (ret)
88 		return ret;
89 
90 	/* Version 3 devices support 128-bit keys; version 5 devices can
91 	 * accommodate 128- and 256-bit keys.
92 	 */
93 	switch (key_len) {
94 	case AES_KEYSIZE_128 * 2:
95 		memcpy(ctx->u.aes.key, key, key_len);
96 		break;
97 	case AES_KEYSIZE_256 * 2:
98 		if (ccpversion > CCP_VERSION(3, 0))
99 			memcpy(ctx->u.aes.key, key, key_len);
100 		break;
101 	}
102 	ctx->u.aes.key_len = key_len / 2;
103 	sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
104 
105 	return crypto_sync_skcipher_setkey(ctx->u.aes.tfm_skcipher, key, key_len);
106 }
107 
108 static int ccp_aes_xts_crypt(struct ablkcipher_request *req,
109 			     unsigned int encrypt)
110 {
111 	struct ccp_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
112 	struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
113 	unsigned int ccpversion = ccp_version();
114 	unsigned int fallback = 0;
115 	unsigned int unit;
116 	u32 unit_size;
117 	int ret;
118 
119 	if (!ctx->u.aes.key_len)
120 		return -EINVAL;
121 
122 	if (req->nbytes & (AES_BLOCK_SIZE - 1))
123 		return -EINVAL;
124 
125 	if (!req->info)
126 		return -EINVAL;
127 
128 	/* Check conditions under which the CCP can fulfill a request. The
129 	 * device can handle input plaintext of a length that is a multiple
130 	 * of the unit_size, bug the crypto implementation only supports
131 	 * the unit_size being equal to the input length. This limits the
132 	 * number of scenarios we can handle.
133 	 */
134 	unit_size = CCP_XTS_AES_UNIT_SIZE__LAST;
135 	for (unit = 0; unit < ARRAY_SIZE(xts_unit_sizes); unit++) {
136 		if (req->nbytes == xts_unit_sizes[unit].size) {
137 			unit_size = unit;
138 			break;
139 		}
140 	}
141 	/* The CCP has restrictions on block sizes. Also, a version 3 device
142 	 * only supports AES-128 operations; version 5 CCPs support both
143 	 * AES-128 and -256 operations.
144 	 */
145 	if (unit_size == CCP_XTS_AES_UNIT_SIZE__LAST)
146 		fallback = 1;
147 	if ((ccpversion < CCP_VERSION(5, 0)) &&
148 	    (ctx->u.aes.key_len != AES_KEYSIZE_128))
149 		fallback = 1;
150 	if ((ctx->u.aes.key_len != AES_KEYSIZE_128) &&
151 	    (ctx->u.aes.key_len != AES_KEYSIZE_256))
152 		fallback = 1;
153 	if (fallback) {
154 		SYNC_SKCIPHER_REQUEST_ON_STACK(subreq,
155 					       ctx->u.aes.tfm_skcipher);
156 
157 		/* Use the fallback to process the request for any
158 		 * unsupported unit sizes or key sizes
159 		 */
160 		skcipher_request_set_sync_tfm(subreq, ctx->u.aes.tfm_skcipher);
161 		skcipher_request_set_callback(subreq, req->base.flags,
162 					      NULL, NULL);
163 		skcipher_request_set_crypt(subreq, req->src, req->dst,
164 					   req->nbytes, req->info);
165 		ret = encrypt ? crypto_skcipher_encrypt(subreq) :
166 				crypto_skcipher_decrypt(subreq);
167 		skcipher_request_zero(subreq);
168 		return ret;
169 	}
170 
171 	memcpy(rctx->iv, req->info, AES_BLOCK_SIZE);
172 	sg_init_one(&rctx->iv_sg, rctx->iv, AES_BLOCK_SIZE);
173 
174 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
175 	INIT_LIST_HEAD(&rctx->cmd.entry);
176 	rctx->cmd.engine = CCP_ENGINE_XTS_AES_128;
177 	rctx->cmd.u.xts.type = CCP_AES_TYPE_128;
178 	rctx->cmd.u.xts.action = (encrypt) ? CCP_AES_ACTION_ENCRYPT
179 					   : CCP_AES_ACTION_DECRYPT;
180 	rctx->cmd.u.xts.unit_size = unit_size;
181 	rctx->cmd.u.xts.key = &ctx->u.aes.key_sg;
182 	rctx->cmd.u.xts.key_len = ctx->u.aes.key_len;
183 	rctx->cmd.u.xts.iv = &rctx->iv_sg;
184 	rctx->cmd.u.xts.iv_len = AES_BLOCK_SIZE;
185 	rctx->cmd.u.xts.src = req->src;
186 	rctx->cmd.u.xts.src_len = req->nbytes;
187 	rctx->cmd.u.xts.dst = req->dst;
188 
189 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
190 
191 	return ret;
192 }
193 
194 static int ccp_aes_xts_encrypt(struct ablkcipher_request *req)
195 {
196 	return ccp_aes_xts_crypt(req, 1);
197 }
198 
199 static int ccp_aes_xts_decrypt(struct ablkcipher_request *req)
200 {
201 	return ccp_aes_xts_crypt(req, 0);
202 }
203 
204 static int ccp_aes_xts_cra_init(struct crypto_tfm *tfm)
205 {
206 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
207 	struct crypto_sync_skcipher *fallback_tfm;
208 
209 	ctx->complete = ccp_aes_xts_complete;
210 	ctx->u.aes.key_len = 0;
211 
212 	fallback_tfm = crypto_alloc_sync_skcipher("xts(aes)", 0,
213 					     CRYPTO_ALG_ASYNC |
214 					     CRYPTO_ALG_NEED_FALLBACK);
215 	if (IS_ERR(fallback_tfm)) {
216 		pr_warn("could not load fallback driver xts(aes)\n");
217 		return PTR_ERR(fallback_tfm);
218 	}
219 	ctx->u.aes.tfm_skcipher = fallback_tfm;
220 
221 	tfm->crt_ablkcipher.reqsize = sizeof(struct ccp_aes_req_ctx);
222 
223 	return 0;
224 }
225 
226 static void ccp_aes_xts_cra_exit(struct crypto_tfm *tfm)
227 {
228 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
229 
230 	crypto_free_sync_skcipher(ctx->u.aes.tfm_skcipher);
231 }
232 
233 static int ccp_register_aes_xts_alg(struct list_head *head,
234 				    const struct ccp_aes_xts_def *def)
235 {
236 	struct ccp_crypto_ablkcipher_alg *ccp_alg;
237 	struct crypto_alg *alg;
238 	int ret;
239 
240 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
241 	if (!ccp_alg)
242 		return -ENOMEM;
243 
244 	INIT_LIST_HEAD(&ccp_alg->entry);
245 
246 	alg = &ccp_alg->alg;
247 
248 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
249 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
250 		 def->drv_name);
251 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
252 			 CRYPTO_ALG_KERN_DRIVER_ONLY |
253 			 CRYPTO_ALG_NEED_FALLBACK;
254 	alg->cra_blocksize = AES_BLOCK_SIZE;
255 	alg->cra_ctxsize = sizeof(struct ccp_ctx);
256 	alg->cra_priority = CCP_CRA_PRIORITY;
257 	alg->cra_type = &crypto_ablkcipher_type;
258 	alg->cra_ablkcipher.setkey = ccp_aes_xts_setkey;
259 	alg->cra_ablkcipher.encrypt = ccp_aes_xts_encrypt;
260 	alg->cra_ablkcipher.decrypt = ccp_aes_xts_decrypt;
261 	alg->cra_ablkcipher.min_keysize = AES_MIN_KEY_SIZE * 2;
262 	alg->cra_ablkcipher.max_keysize = AES_MAX_KEY_SIZE * 2;
263 	alg->cra_ablkcipher.ivsize = AES_BLOCK_SIZE;
264 	alg->cra_init = ccp_aes_xts_cra_init;
265 	alg->cra_exit = ccp_aes_xts_cra_exit;
266 	alg->cra_module = THIS_MODULE;
267 
268 	ret = crypto_register_alg(alg);
269 	if (ret) {
270 		pr_err("%s ablkcipher algorithm registration error (%d)\n",
271 		       alg->cra_name, ret);
272 		kfree(ccp_alg);
273 		return ret;
274 	}
275 
276 	list_add(&ccp_alg->entry, head);
277 
278 	return 0;
279 }
280 
281 int ccp_register_aes_xts_algs(struct list_head *head)
282 {
283 	int i, ret;
284 
285 	for (i = 0; i < ARRAY_SIZE(aes_xts_algs); i++) {
286 		ret = ccp_register_aes_xts_alg(head, &aes_xts_algs[i]);
287 		if (ret)
288 			return ret;
289 	}
290 
291 	return 0;
292 }
293