xref: /openbmc/linux/drivers/crypto/ccp/ccp-crypto-aes-cmac.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) AES CMAC crypto API support
3  *
4  * Copyright (C) 2013 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/delay.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <crypto/algapi.h>
19 #include <crypto/aes.h>
20 #include <crypto/hash.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/scatterwalk.h>
23 
24 #include "ccp-crypto.h"
25 
26 static int ccp_aes_cmac_complete(struct crypto_async_request *async_req,
27 				 int ret)
28 {
29 	struct ahash_request *req = ahash_request_cast(async_req);
30 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
31 	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
32 	unsigned int digest_size = crypto_ahash_digestsize(tfm);
33 
34 	if (ret)
35 		goto e_free;
36 
37 	if (rctx->hash_rem) {
38 		/* Save remaining data to buffer */
39 		unsigned int offset = rctx->nbytes - rctx->hash_rem;
40 
41 		scatterwalk_map_and_copy(rctx->buf, rctx->src,
42 					 offset, rctx->hash_rem, 0);
43 		rctx->buf_count = rctx->hash_rem;
44 	} else {
45 		rctx->buf_count = 0;
46 	}
47 
48 	/* Update result area if supplied */
49 	if (req->result)
50 		memcpy(req->result, rctx->iv, digest_size);
51 
52 e_free:
53 	sg_free_table(&rctx->data_sg);
54 
55 	return ret;
56 }
57 
58 static int ccp_do_cmac_update(struct ahash_request *req, unsigned int nbytes,
59 			      unsigned int final)
60 {
61 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
62 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
63 	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
64 	struct scatterlist *sg, *cmac_key_sg = NULL;
65 	unsigned int block_size =
66 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
67 	unsigned int need_pad, sg_count;
68 	gfp_t gfp;
69 	u64 len;
70 	int ret;
71 
72 	if (!ctx->u.aes.key_len)
73 		return -EINVAL;
74 
75 	if (nbytes)
76 		rctx->null_msg = 0;
77 
78 	len = (u64)rctx->buf_count + (u64)nbytes;
79 
80 	if (!final && (len <= block_size)) {
81 		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
82 					 0, nbytes, 0);
83 		rctx->buf_count += nbytes;
84 
85 		return 0;
86 	}
87 
88 	rctx->src = req->src;
89 	rctx->nbytes = nbytes;
90 
91 	rctx->final = final;
92 	rctx->hash_rem = final ? 0 : len & (block_size - 1);
93 	rctx->hash_cnt = len - rctx->hash_rem;
94 	if (!final && !rctx->hash_rem) {
95 		/* CCP can't do zero length final, so keep some data around */
96 		rctx->hash_cnt -= block_size;
97 		rctx->hash_rem = block_size;
98 	}
99 
100 	if (final && (rctx->null_msg || (len & (block_size - 1))))
101 		need_pad = 1;
102 	else
103 		need_pad = 0;
104 
105 	sg_init_one(&rctx->iv_sg, rctx->iv, sizeof(rctx->iv));
106 
107 	/* Build the data scatterlist table - allocate enough entries for all
108 	 * possible data pieces (buffer, input data, padding)
109 	 */
110 	sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2;
111 	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
112 		GFP_KERNEL : GFP_ATOMIC;
113 	ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
114 	if (ret)
115 		return ret;
116 
117 	sg = NULL;
118 	if (rctx->buf_count) {
119 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
120 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
121 	}
122 
123 	if (nbytes)
124 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
125 
126 	if (need_pad) {
127 		int pad_length = block_size - (len & (block_size - 1));
128 
129 		rctx->hash_cnt += pad_length;
130 
131 		memset(rctx->pad, 0, sizeof(rctx->pad));
132 		rctx->pad[0] = 0x80;
133 		sg_init_one(&rctx->pad_sg, rctx->pad, pad_length);
134 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg);
135 	}
136 	if (sg) {
137 		sg_mark_end(sg);
138 		sg = rctx->data_sg.sgl;
139 	}
140 
141 	/* Initialize the K1/K2 scatterlist */
142 	if (final)
143 		cmac_key_sg = (need_pad) ? &ctx->u.aes.k2_sg
144 					 : &ctx->u.aes.k1_sg;
145 
146 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
147 	INIT_LIST_HEAD(&rctx->cmd.entry);
148 	rctx->cmd.engine = CCP_ENGINE_AES;
149 	rctx->cmd.u.aes.type = ctx->u.aes.type;
150 	rctx->cmd.u.aes.mode = ctx->u.aes.mode;
151 	rctx->cmd.u.aes.action = CCP_AES_ACTION_ENCRYPT;
152 	rctx->cmd.u.aes.key = &ctx->u.aes.key_sg;
153 	rctx->cmd.u.aes.key_len = ctx->u.aes.key_len;
154 	rctx->cmd.u.aes.iv = &rctx->iv_sg;
155 	rctx->cmd.u.aes.iv_len = AES_BLOCK_SIZE;
156 	rctx->cmd.u.aes.src = sg;
157 	rctx->cmd.u.aes.src_len = rctx->hash_cnt;
158 	rctx->cmd.u.aes.dst = NULL;
159 	rctx->cmd.u.aes.cmac_key = cmac_key_sg;
160 	rctx->cmd.u.aes.cmac_key_len = ctx->u.aes.kn_len;
161 	rctx->cmd.u.aes.cmac_final = final;
162 
163 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
164 
165 	return ret;
166 }
167 
168 static int ccp_aes_cmac_init(struct ahash_request *req)
169 {
170 	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
171 
172 	memset(rctx, 0, sizeof(*rctx));
173 
174 	rctx->null_msg = 1;
175 
176 	return 0;
177 }
178 
179 static int ccp_aes_cmac_update(struct ahash_request *req)
180 {
181 	return ccp_do_cmac_update(req, req->nbytes, 0);
182 }
183 
184 static int ccp_aes_cmac_final(struct ahash_request *req)
185 {
186 	return ccp_do_cmac_update(req, 0, 1);
187 }
188 
189 static int ccp_aes_cmac_finup(struct ahash_request *req)
190 {
191 	return ccp_do_cmac_update(req, req->nbytes, 1);
192 }
193 
194 static int ccp_aes_cmac_digest(struct ahash_request *req)
195 {
196 	int ret;
197 
198 	ret = ccp_aes_cmac_init(req);
199 	if (ret)
200 		return ret;
201 
202 	return ccp_aes_cmac_finup(req);
203 }
204 
205 static int ccp_aes_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
206 			       unsigned int key_len)
207 {
208 	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
209 	struct ccp_crypto_ahash_alg *alg =
210 		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
211 	u64 k0_hi, k0_lo, k1_hi, k1_lo, k2_hi, k2_lo;
212 	u64 rb_hi = 0x00, rb_lo = 0x87;
213 	__be64 *gk;
214 	int ret;
215 
216 	switch (key_len) {
217 	case AES_KEYSIZE_128:
218 		ctx->u.aes.type = CCP_AES_TYPE_128;
219 		break;
220 	case AES_KEYSIZE_192:
221 		ctx->u.aes.type = CCP_AES_TYPE_192;
222 		break;
223 	case AES_KEYSIZE_256:
224 		ctx->u.aes.type = CCP_AES_TYPE_256;
225 		break;
226 	default:
227 		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
228 		return -EINVAL;
229 	}
230 	ctx->u.aes.mode = alg->mode;
231 
232 	/* Set to zero until complete */
233 	ctx->u.aes.key_len = 0;
234 
235 	/* Set the key for the AES cipher used to generate the keys */
236 	ret = crypto_cipher_setkey(ctx->u.aes.tfm_cipher, key, key_len);
237 	if (ret)
238 		return ret;
239 
240 	/* Encrypt a block of zeroes - use key area in context */
241 	memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
242 	crypto_cipher_encrypt_one(ctx->u.aes.tfm_cipher, ctx->u.aes.key,
243 				  ctx->u.aes.key);
244 
245 	/* Generate K1 and K2 */
246 	k0_hi = be64_to_cpu(*((__be64 *)ctx->u.aes.key));
247 	k0_lo = be64_to_cpu(*((__be64 *)ctx->u.aes.key + 1));
248 
249 	k1_hi = (k0_hi << 1) | (k0_lo >> 63);
250 	k1_lo = k0_lo << 1;
251 	if (ctx->u.aes.key[0] & 0x80) {
252 		k1_hi ^= rb_hi;
253 		k1_lo ^= rb_lo;
254 	}
255 	gk = (__be64 *)ctx->u.aes.k1;
256 	*gk = cpu_to_be64(k1_hi);
257 	gk++;
258 	*gk = cpu_to_be64(k1_lo);
259 
260 	k2_hi = (k1_hi << 1) | (k1_lo >> 63);
261 	k2_lo = k1_lo << 1;
262 	if (ctx->u.aes.k1[0] & 0x80) {
263 		k2_hi ^= rb_hi;
264 		k2_lo ^= rb_lo;
265 	}
266 	gk = (__be64 *)ctx->u.aes.k2;
267 	*gk = cpu_to_be64(k2_hi);
268 	gk++;
269 	*gk = cpu_to_be64(k2_lo);
270 
271 	ctx->u.aes.kn_len = sizeof(ctx->u.aes.k1);
272 	sg_init_one(&ctx->u.aes.k1_sg, ctx->u.aes.k1, sizeof(ctx->u.aes.k1));
273 	sg_init_one(&ctx->u.aes.k2_sg, ctx->u.aes.k2, sizeof(ctx->u.aes.k2));
274 
275 	/* Save the supplied key */
276 	memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
277 	memcpy(ctx->u.aes.key, key, key_len);
278 	ctx->u.aes.key_len = key_len;
279 	sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
280 
281 	return ret;
282 }
283 
284 static int ccp_aes_cmac_cra_init(struct crypto_tfm *tfm)
285 {
286 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
287 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
288 	struct crypto_cipher *cipher_tfm;
289 
290 	ctx->complete = ccp_aes_cmac_complete;
291 	ctx->u.aes.key_len = 0;
292 
293 	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_aes_cmac_req_ctx));
294 
295 	cipher_tfm = crypto_alloc_cipher("aes", 0,
296 					 CRYPTO_ALG_ASYNC |
297 					 CRYPTO_ALG_NEED_FALLBACK);
298 	if (IS_ERR(cipher_tfm)) {
299 		pr_warn("could not load aes cipher driver\n");
300 		return PTR_ERR(cipher_tfm);
301 	}
302 	ctx->u.aes.tfm_cipher = cipher_tfm;
303 
304 	return 0;
305 }
306 
307 static void ccp_aes_cmac_cra_exit(struct crypto_tfm *tfm)
308 {
309 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
310 
311 	if (ctx->u.aes.tfm_cipher)
312 		crypto_free_cipher(ctx->u.aes.tfm_cipher);
313 	ctx->u.aes.tfm_cipher = NULL;
314 }
315 
316 int ccp_register_aes_cmac_algs(struct list_head *head)
317 {
318 	struct ccp_crypto_ahash_alg *ccp_alg;
319 	struct ahash_alg *alg;
320 	struct hash_alg_common *halg;
321 	struct crypto_alg *base;
322 	int ret;
323 
324 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
325 	if (!ccp_alg)
326 		return -ENOMEM;
327 
328 	INIT_LIST_HEAD(&ccp_alg->entry);
329 	ccp_alg->mode = CCP_AES_MODE_CMAC;
330 
331 	alg = &ccp_alg->alg;
332 	alg->init = ccp_aes_cmac_init;
333 	alg->update = ccp_aes_cmac_update;
334 	alg->final = ccp_aes_cmac_final;
335 	alg->finup = ccp_aes_cmac_finup;
336 	alg->digest = ccp_aes_cmac_digest;
337 	alg->setkey = ccp_aes_cmac_setkey;
338 
339 	halg = &alg->halg;
340 	halg->digestsize = AES_BLOCK_SIZE;
341 
342 	base = &halg->base;
343 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "cmac(aes)");
344 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "cmac-aes-ccp");
345 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
346 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
347 			  CRYPTO_ALG_NEED_FALLBACK;
348 	base->cra_blocksize = AES_BLOCK_SIZE;
349 	base->cra_ctxsize = sizeof(struct ccp_ctx);
350 	base->cra_priority = CCP_CRA_PRIORITY;
351 	base->cra_type = &crypto_ahash_type;
352 	base->cra_init = ccp_aes_cmac_cra_init;
353 	base->cra_exit = ccp_aes_cmac_cra_exit;
354 	base->cra_module = THIS_MODULE;
355 
356 	ret = crypto_register_ahash(alg);
357 	if (ret) {
358 		pr_err("%s ahash algorithm registration error (%d)\n",
359 		       base->cra_name, ret);
360 		kfree(ccp_alg);
361 		return ret;
362 	}
363 
364 	list_add(&ccp_alg->entry, head);
365 
366 	return 0;
367 }
368